

Global Constraints in Constraint Programming

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

Pittsburgh, PA

Optimization Days 2010

Outline

- Constraint Programming
 - Central concepts, motivation, applications
 - Domain filtering algorithms
- Global Constraints
 - Classical (alldifferent)
 - Over-Constrained Problems (soft-alldifferent)
 - Sequencing and Scheduling (sequence)
- Recent Developments
 - Open constraints (open-alldifferent)
 - Constraint-based (local) search

(With apologies for the bias towards my own work...)

Constraint Programming

Comparison with Integer Programming

Integer Linear Programming	Constraint Programming			
(branch-and-bound/branch-and-cut)				
 systematic search 	 systematic search 			
 at each search state, solve continuous relaxation of problem (expensive) 	 at each search state, reason on individual constraints (cheap) 			
 add cuts to reduce search space 	 filter variable domains to reduce search space 			
 domains are intervals 	 domains may contain holes 			
very suitable for optimization problems	very suitable for highly combinatorial problems, e.g., scheduling, timetabling			

Constraint Programming History

1970s: Artificial Intelligence

- image processing applications
- search + qualitative inference
- **1980s:** Logic Programming
- logic programming languages (e.g., Prolog)
- search + logical inference
- 1989: CHIP system (Constraint Handling In Prolog)
- constraint logic programming
- 1990s: Constraint Programming
- combines artificial intelligence, logic programming, and operations research
- industrial solvers (e.g., ILOG, Eclipse, Xpress-Kalis) and industrial applications

1994: filtering for alldifferent and resource scheduling (edge finding)

2000s: Various developments

- efficient algorithms for special constraints
- integrated methods (with OR techniques)
- modeling languages (e.g., OPL, Comet, Zinc)

Successful applications

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

An 8 Team Round Robin Timetable

Schedule of 1997/1998 ACC basketball league (9 teams)

- various complicated side constraints
- all 179 solutions were found in 24h using enumeration and integer linear programming [Nemhauser & Trick, 1998]
- all 179 solutions were found in less than a minute using constraint programming [Henz, 1999, 2001]

Hong Kong Airport

- Gate allocation at the new (1998) Hong Kong airport
- System was implemented in only four months, including constraint programming technology (ILOG)
- Schedules ~800 flights a day (47 million passengers in 2007)

G. Freuder and M. Wallace. Constraint Technology and the Commercial World. IEEE Intelligent Systems 15(1): 20-23, 2000.

Port of Singapore

- One of the world's largest container transshipment hubs
- Links shippers to a network of 200 shipping lines with connections to 600 ports in 123 countries
- Problem: Assign yard locations and loading plans under various operational and safety requirements
- Solution: Yard planning system, based on constraint programming

- Netherlands Railways has among the densest rail networks in the world, with 5,500 trains per day
- Constraint programming is one of the components in their railway planning software, which was used to design a new timetable from scratch (2009)
- Much more robust and effective schedule, and \$75M additional annual profit
- INFORMS Edelman Award winner (2009)

CP Modeling

A Constraint Satisfaction Problem, or CSP, consists of

- a set of variables X,
- variable domains D(x) (for all $x \in X$),
- and a set of constraints on subsets of the variables

A solution to a CSP is:

assign to each variable a single element from its domain such that all constraints are satisfied

Example:

variables x_1, x_2, x_3 domains $D(x_1) = \{1,2\}, D(x_2) = \{0,1,2,3\}, D(x_3) = \{2,3\}$ constraints $x_1 > x_2$ $x_1 + x_2 = x_3$ solution: $x_1 = 2, x_2 = 1, x_3 = 3$ *alldifferent* (x_1, x_2, x_3)

Modeling

A Constraint Optimization Problem, or COP, consists of

- a set of variables X,
- variable domains D(x) (for all $x \in X$),
- a set of constraints on subsets of the variables,
- and an objective function $f(X) \rightarrow \mathbb{R}$ to be optimized

A solution to a COP is:

assign to each variable a single element from its domain such that all constraints are satisfied, and the objective function is a global optimum

Example:

variables/domains
$$x_1 \in \{1,2\}, x_2 \in \{0,1,2,3\}, x_3 \in \{2,3\}$$
constraints $x_1 > x_2$ $x_1 + x_2 = x_3$ solution: $x_1 = 2, x_2 = 1, x_3 = 3$ objective functionmaximize $x_2 + x_3$

More modeling examples

- variables range over finite or continuous domain:
 v ∈ {a,b,c,d}, start ∈ {0,1,2,3,4,5}, z ∈ [2.18, 4.33], S ∈ [{b,c}, {a,b,c,d,e}]
- algebraic expressions: $x^{3}(y^{2} - z) \ge 25 + x^{2} \cdot \max(x,y,z)$
- variables as subscripts:
 y = cost[x] (here y and x are variables, 'cost' is an array of parameters)
- logical relations in which constraints can be mixed: ((x < y) OR (y < z)) ⇒ (c = min(x,y))
- 'global' constraints (a.k.a. symbolic constraints):
 alldifferent(x₁,x₂, ...,x_n)
 UnaryResource([start₁,..., start_n], [duration₁,...,duration_n])

Example:

variables/domains constraints

$$x_1 \in \{1,2\}, x_2 \in \{0,1,2,3\}, x_3 \in \{2,3\}$$

 $x_1 > x_2$
 $x_1 + x_2 = x_3$
all different (x_1, x_2, x_3)

The solution process of CP interleaves

- domain filtering
 - remove inconsistent values from the domains of the variables, based on individual constraints
- constraint propagation
 - propagate the filtered domains through the constraints, by re-evaluating them until there are no more changes in the domains
- search
 - implicitly all possible variable-value combinations are enumerated, but the search tree is kept small due to the domain filtering and constraint propagation

Because all variable-value combinations are (implicitly) enumerated, this solution method is complete

Domain Filtering Algorithms

Example:

all different $(x_1, x_2, ..., x_n)$ semantically equivalent to $\{x_i \neq x_j \text{ for all } i \neq j\}$

$$\mathbf{x}_{1} \in \{1,2\}, \, \mathbf{x}_{2} \in \{1,2\}, \, \mathbf{x}_{3} \in \{1,2\}$$

 $\mathbf{x}_{1} \neq \mathbf{x}_{2}, \, \mathbf{x}_{1} \neq \mathbf{x}_{3}, \, \mathbf{x}_{2} \neq \mathbf{x}_{3}$

 \rightarrow no filtering for <u>individual</u> not-equal constraints

```
x_1 \in \{1,2\}, x_2 \in \{1,2\}, x_3 \in \{1,2\}
all different (x_1, x_2, x_2)
```

 \rightarrow global view of *alldifferent*: no solution

Observation: conjunction of constraints allows more filtering!

More filtering: just group constraints together? Problem: solving arbitrary conjunction of constraints is NP-hard

Solution:

- group constraints together that occur frequently in applications, and capture tractable structure
- result is called a global constraint (e.g., alldifferent)

(Alternative: keep NP-hard subproblem, but don't require to filter *all* inconsistent values)

Constraint	Structure/technique
alldifferent	bipartite matching [Régin, 1994]
symmetric-alldifferent	general matching [Régin, 1999]
soft-alldifferent	matching [Petit, Régin & Bessière, 2001], minimum-cost flow [v.H., 2004]
open-alldifferent	network flow [v.H. & Régin, 2006]
cardinality	network flow [Régin, 1999, 2002]
soft-cardinality	minimum-cost flow [v.H., Pesant & Rousseau, 2006], [Milano & Zanarini, 2006]
open-cardinality	network flow [v.H. & Régin, 2006]
knapsack/sum	dynamic programming [Trick, 2003]
regular	directed acyclic graph [Pesant, 2004]
soft-regular	shortest paths [v.H., Pesant & Rousseau, 2006]
circuit	network flow [Genc Kaya & Hooker, 2006]
sequence	dedicated algorithm [v.H., Pesant, Rousseau & Sabharwal, 2006, 2009]
disjunctive/cumulative	dedicated algorithm [Carlier & Pinson, 1994] [Vilim, 2009]
inter-distance	dedicated algorithm [Quimper, Lopez-Ortiz & Pesant, 2006]
	•••

Filtering algorithm for alldifferent

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 362-367, 1994.

Filtering for alldifferent

Observation [Régin, 1994]:

solution to all different \Leftrightarrow

matching in bipartite graph covering all variables

Example:

 $\begin{aligned} \mathbf{x}_1 &\in \{a, b\}, \, \mathbf{x}_2 &\in \{a, b\}, \, \mathbf{x}_3 &\in \{b, c\} \\ \textit{alldifferent}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \end{aligned}$

Filtering: remove all edges (and corresponding domain values) that are not in any matching covering the variables

Find initial matching: $O(m\sqrt{n})$ time¹ [Hopcroft and Karp, 1973] How to filter all inconsistent edges?

¹ for *n* variables and *m* edges

Filtering Edges

- Naive approach is to fix each edge and test for consistency
 - Time complexity too high: $O(m^2\sqrt{n})$
- Instead, the following can be done
 - compute one maximum matching M: is it covering all variables X?
 - orient the edges in M 'forward', and edges not in M 'backward'
 - compute the strongly connected components (SCCs) \triangleleft O(m) [Tarjan `72]
 - edges in M, and edges on even M-alternating path are consistent
 (i.e., edges within SCC and edges on path starting from M-free vertex)
 - all other edges are not consistent and can be removed

Filtering in O(m) time

- Separation of consistency check ($O(m\sqrt{n})$) and domain filtering (O(m))
- Incremental algorithm
 - When k domain values have been removed, we can repair the matching in O(km) time
- Note that these algorithms are typically invoked many times during constraint propagation
- We can apply/embed efficient algorithms from graph theory, computer science, and operations research in global constraints

Soft Global Constraints

- Assign seats for overbooked airplane; no solution that carries all passengers
- Create roster for employees with conflicting preferences
- Factory wants to satisfy demands of all customers, but has limited resources

(Many industrial problems are essentially over-constrained)

- A CP solver will report that no solution exists. How to find *acceptable* 'solution'?
- Soften (some of) the constraints of the problem
- Compute solution that minimizes conflicts or maximizes satisfaction

Cost-based approach [Petit, Régin, and Bessiere, 2000] (see also [Baptiste et al., 1998]):

- Introduce a cost variable for each soft constraint
- This variable represents some violation measure of the constraint
- Optimize aggregation of all cost variables (e.g., take their sum, or max)
- Use upper bound on cost variable to apply cost-based filtering (with back-propagation)

In this way

- soft global constraints become hard optimization constraints
- soft CSPs become hard COPs
- the cost variables can be used in other (meta-)constraints! if $(z_1 > 0)$ then $(z_2 = 0)$
- we can apply classical constraint programming solvers
- we can apply (cost-based) domain filtering algorithms!

Soft-alldifferent

Example:

 $x_1 \in \{1,2\}, x_2 \in \{1,2\}, x_3 \in \{1,2\}$ all different (x_1, x_2, x_3) $x_1 \in \{1,2\}, x_2 \in \{1,2\}, x_3 \in \{1,2\}, z \in \{0,1,2,3\}$ soft-all different (x_1, x_2, x_3, z) minimize z

Let z represent the total number of violated not-equal constraints Solution: $x_1=1$, $x_2=2$, $x_3=1$, z=1 with only $x_1 \neq x_3$ violated

Filter soft-alldifferent:

remove domain values for which minimum violation > max(z)

Note: Typically we have many more constraints in our model

Filtering algorithm for soft-alldifferent

v.H. A Hyper-Arc Consistency Algorithm for the Soft Alldifferent Constraint. In *Proceedings of the Tenth International Conference on Principles and Practice of Constraint Programming (CP)*, LNCS 3258, pp. 679-689. Springer, 2004.

v.H., Pesant, and Rousseau. On Global Warming: Flow-Based Soft Global Constraints. Journal of Heuristics 12(4-5), pp. 347-373, 2006.

Observation: solution to soft-alldifferent with minimum violation ⇔ integer minimum-cost flow

Filtering: remove all edges (and corresponding domain values) that are not in any flow f with $cost(f) \le max(z)$

Filtering soft-alldifferent

- Naive approach: fix each edge and test for consistency by computing a minimum-cost network flow
 - Time complexity: $O(m^2n)$

Drawbacks:

- no separation between consistency check and filtering
- time complexity too high
- algorithm not incremental: start from scratch every time

To improve algorithm: use residual graph G_f

for all arcs a if f(a) = 1: reverse a and weight(a) if f(a) = 0: leave unchanged

Helpful Flow Theory

Theorem (e.g., Ahuja et al. 1993)

f minimum-cost flow in G P shortest d-x_i path in G_f \Leftrightarrow minimum-cost flow f' in G with f'(x_i,d) = I has cost(f') = cost(f) + cost(P)


```
compute minimum-cost flow f in G

if cost(f) > max(D(z)) return inconsistent

for all arcs (x_i,d) {

    compute minimum-cost d-x_i path P in G<sub>f</sub>

    if cost(f) + cost (P) > max(D(z)) remove d from D(x_i)

    if D(x_i) is empty return inconsistent

}

update min(D(z)) \ge min(cost(f))

if D(z) is empty return inconsistent

else return consistent
```


how to compute minimum-cost $d-x_i$ path P in G_f :

```
if f(x_i,d)=1 then P = d,x_i and cost(P) = 0
else if x_i and d in same SCC<sup>1</sup> then cost(P) = 0
else P must visit t (once) and
```

 $cost(P) = min-cost SCC(d)-t path + min-cost t-SCC(x_i) path$

¹ strongly connected component in G_f - {s,t}.

Improved algorithm in detail


```
O(mn)
compute minimum-cost flow f in G
if cost(f) > max(z) return inconsistent
                                                           O(m)
compute SCCs in G_{f}-{s,t}
compute minimum-cost paths from all nodes to t and reverse
for all arcs (x_i,d) {
                                                       O(I)
    compute minimum-cost d-x_i path P in G_f
    if cost(f) + cost(P) > max(z) remove d from D(x_i)
    if D(x_i) is empty return inconsistent
update min(D(z)) \ge min(cost(f))
if D(z) is empty return inconsistent
else return consistent
```

- Consistency check: O(*mn*)
- Filtering all inconsistent values: O(m)
- Incremental: after k changes initial flow can be repaired in O(km) time

Many other soft global constraints

- Carnegie Mellon SCHOOL OF BUSINESS
- Soft cumulative constraint [Baptiste et al., 1998], [Petit and Poder 2008]
- Soft global cardinality constraint [v.H. et al., 2006] [Zanarini et al. 2006, 2010]
- Soft regular constraint, soft same constraint [v.H. et al., 2006]
- Soft slide constraint [Bessiere et al., 2007]
- Sigma-alldifferent, Sigma-Gcc, Sigma-regular [Métivier et al., 2007, 2009]
- Soft sequence constraint [Maher et al., 2008]
- Soft context-free grammar constraint [Katsirelos et al., 2008]
- Soft constraints for timetabling application [Cambazard et al., 2008]
- Soft all-equal constraint [Hebrard et al., 2008], [Hebrard et al., 2009]
- Soft precedence constraint [Lesaint et al., 2009]
- Soft open global constraints [Maher, 2009]
- Soft global constraints for Weighted CSPs [Lee and Leung, 2009]

v.H. Over-Constrained Problems. In M. Milano and P. Van Hentenryck (eds.), *Hybrid Optimization: the 10 years of CPAIOR*, chapter 6. Springer, to appear.

Filtering algorithm for sequence

v.H., Pesant, Rousseau and Sabharwal. Revisiting the Sequence Constraint. In *Proceedings of the Twelfth International Conference on Principles and Practice of Constraint Programming (CP 2006)*, pp. 620-634, LNCS 4204, 2006.

v.H., Pesant, Rousseau, and Sabharwal. New Filtering Algorithms for Combinations of Among Constraints. *Constraints* 14: 273-292, 2009.

Nurse rostering

- find feasible working pattern for each employee
- restrictions:
 - every calendar-week 4 or 5 working days
 - every 9 consecutive days at most 7 working days
 - every 30 consecutive days at least 20 working days

Carnegie Mellon

week	I	2	3	4	5	
Sun	I	8	15	22	29	
Mon	2	9	16	23	30	
Tue	3	10	17	24	I	
Wed	4	Ш	18	25	2	
Thu	5	12	19	26	3)
Fri	6	13	20	27	4	1 1
Sat	7	14	21	28	5	

- additional constraints
 - demand, union requirements, night shift restrictions, etcetera

Example: every 9 consecutive days at most 7 working days variable $x_i \in \{0, 1\}$ for each day i

รเ	ın	mon	tue	wed	thu	fri	sat	sun	mon	tue	wed	thu
X	۲ _۱	x ₂	X 3	x ₄	X 5	x ₆	X ₇	х ₈	X 9	x ₁₀	x _{II}	x ₁₂

$$\begin{array}{l} 0 \leq x_{1} + x_{2} + \dots + x_{9} \leq 7 \\ 0 \leq x_{2} + x_{3} + \dots + x_{10} \leq 7 \\ 0 \leq x_{3} + x_{4} + \dots + x_{11} \leq 7 \\ 0 \leq x_{4} + x_{5} + \dots + x_{12} \leq 7 \end{array} \right\} =: sequence(x_{1}, x_{2}, \dots, x_{12}, q=9, min=0, max=7)$$

sequence($x_1, x_2, ..., x_n$, q, min, max):

the sum of every q consecutive variables is between min and max

A sequence constraint groups together the individual constraints

sequence is more powerful than individual constraints filtered separately

Example: sequence($x_1, x_2, \dots, x_7, q=5, min=2, max=3$)

 $x_1 = 1, x_2 = 1, x_6 = 0$

 $2 \le x_1 + x_2 + x_3 + x_4 + x_5 \le 3$ $2 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 3$ $2 \le x_3 + x_4 + x_5 + x_6 + x_7 \le 3$

History:

- 1988: car sequencing (Dincbas, Simonis & Van Hentenryck, 1988)
- 1994: sequence introduced (Beldiceanu & Contejean, 1994) as conjunction of overlapping cardinality constraints
- 1997: filtering algorithm (Régin & Puget, 1997) tailored to car sequencing, no complete filtering
- 2001: filtering algorithm (Beldiceanu & Carlsson, 2001) instance of generic class of *cardinality-path* constraints, no complete filtering

Goal: efficient (polynomial-time) complete filtering for sequence

Accumulate variables: $y[i] = x_1 + x_2 + ... + x_i$

Example: sequence($x_1, x_2, x_3, x_4, x_5, x_6, q=3, min=1, max=2$)

Accumulate variables:
$$y[i] = x_1 + x_2 + ... + x_i$$

Example: sequence($x_1, x_2, x_3, x_4, x_5, x_6, q=3, min=1, max=2$)

Observation: for any two accumulate solutions, their pointwise minimum and maximum are also solutions

 $y_{blue} = 0 | | 2 2 2 3$ $y_{red} = 0 0 | | 2 3 3$

This is not true for binary x representation!

 $x_{blue} = | 0 | 0 0 |$ $x_{red} = 0 | 0 | | 0$

Accumulate variables: $y[i] = x_1 + x_2 + ... + x_i$

Example: sequence($x_1, x_2, x_3, x_4, x_5, x_6, q=3, min=1, max=2$)

Observation: for any two accumulate solutions, their pointwise minimum and maximum are also solutions

Corollary: absolute *minimum* and *maximum* solutions envelope all solutions

X_6 0 X_5 0 0 X₄ 0 0 0 X_3 0 0 -O X_2 $2 \leq y[3] - y[0] \leq 2$ 0 0 **X**₁

Algorithm:

initialize y while some subsequence violated push-up endpoint minimally *repair* on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:

sequence(x₁,x₂,...,x₆, q=3, min=2, max=2) $D(x_i) = \{0, I\}$ for all $i \neq 5$ $D(x_5) = \{I\}$

Algorithm:

initialize y while some subsequence violated *push-up* endpoint minimally *repair* on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:

sequence($x_1, x_2, ..., x_6, q=3, min=2, max=2$) $D(x_i) = \{0, 1\}$ for all $i \neq 5$ $D(x_5) = \{1\}$

Algorithm:

initialize y while some subsequence violated *push-up* endpoint minimally *repair* on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:

sequence($x_1, x_2, ..., x_6, q=3, min=2, max=2$) $D(x_i) = \{0, 1\}$ for all $i \neq 5$ $D(x_5) = \{1\}$

Find minimum solution

- repair keeps y[i] ≤ y_{min}[i] for all i (by induction) hence, if minimum solution exists, algorithm finds it otherwise, y[i] > i leads to unsatisfiability
- total number of push-ups bounded by n^2 algorithm runs in $O(n^2)$ time

y[0]

Basic algorithm:

for every domain value:

compute minimum solution (using this value)

if no solution, remove value

Filtering: we remove *all* inconsistent values Time complexity: $O(n^3)$

Improvements:

- maintain supports for domain values
 - each solution provides support for *n* values
- for each value, restart from y_{min}
- also compute maximum solution y_{max}
 - detect violation if $y[i] > y_{max}[i]$
- maintain y_{min} and y_{max} during search (both are monotone) amortize complexity: $O(n^3)$ on any path from root to a leaf

filtering algorithm also applies to generalized sequence:
 q, min, and max vary per subsequence

Example: nurse rostering problem

- every calendar-week 4 or 5 working days
- every 9 consecutive days at most 7 working days
- every 30 consecutive days at least 20 working days
- 'sequence' on non-consecutive subsequences is NP-hard [Régin, 2005]

n = 100		ILOG Basic		ILC Exter		our algorithm	
q	(max – min)	back- tracks	CPU	back- tracks	CPU	back- tracks	CPU
5	I	limit	limit	34K	18	0	0.01
6	2	362K	54	19K	6	0	0.01
7	I	381K	55	II3K	48	0	0.01
7	2	265K	54	7K	4	0	0.02
7	3	287K	48	0	0.5	0	0.02
9	I	limit	limit	6IK	42	0	0.01
9	3	195K	43	0	0.7	0	0.02

Single sequence constraint

max – min=l		ILOG Basic		ILC Exter		our algorithm	
q	n	back- tracks	CPU	back- tracks	CPU	back- tracks	CPU
5	50	459K	18	23K	18	0	0.001
5	100	192K	12	I2K	12	0	0.01
5	500	48K	12	IK	42	0	0.47
5	1000	IK	I	2.3	160	0	4.2
7	50	210K	12	68K	12	0	0.001
7	100	221K	18	45K	19	0	0.01
7	500	80K	21	624	49	0	0.50
7	1000	30K	28	46	139	0	3.3
9	50	18K	I	18K	8	0	0.001
9	100	3K	0.3	2K	П	0	0.01
9	500	49K	18	IK	66	0	0.49
9	1000	I7K	20	19	169	0	3.3

Generalized sequence constraint

Instances:

- inspired by nurse rostering problems
- two sequence constraints
- find all solutions

			our individual sequence constraints		our generalized sequenc constraint	
instance type	horizon	#solutions	backtracks	time	backtracks	time
max6/8-min22/30	40	2248	185k	4 min	0	0.77 s
	80	730	198k	18 min	0	0.61 s
max6/9-min20/30	40	3	394k	7 min	0	0.01 s
	80	3	394k	30 min	0	0.05 s
max7/9-min22/30	40	l 38k	328k	7 min	0	34 s
	80	23k	1847k	2 hours	0	15 s

• Brand et al. [2007] have shown that our algorithm can be interpreted as a 'Singleton Bounds Consistency' algorithm on the cumulative decomposition:

$$y_{i+1} = y_i + x_i$$
$$y_{i+q} - y_i \ge l$$
$$y_{i+q} - y_i \le u$$

This decomposition has the same filtering power and the same complexity, but runs faster in practice

- Using a different decomposition Brand et al. show that complete filtering can be done in $O(n^2 \log n)$ time
- Maher et al. [2008] present an $O(n^2)$ algorithm, by representing the problem as an integer program and then converting it into a network flow

Other Recent Developments

Traditional CSPs:

- all variables and constraints are fixed from the beginning
- "closed-world scenarios"

Open CSPs:

• variables and constraints are revealed over time

Example:

• process set of activities over different factory lines: each factory line has predefined set of constraints, but paths of the activities are unknown initially

Open constraints: defined on a-priori unknown set of variables Open constraints in a closed world: all *potential* variables and domains are known [v.H. and Regin, 2006]

Example

variables:

• start(j_1),...,start(j_n)

constraints:

- each task must be processed on one production line
- on each production line, the start times of the tasks are different:

```
open-all different (S_i) for production line i=1,2,3
```

where S_i is a set-variable representing the start time variables of the jobs on line *i*

Open constraints

Traditional CSP:

all different $(x_1, x_2, ..., x_n)$ $x_i \in D(x_i)$ for i=1,...,n

Open CSP (in a closed world):

all different (S) $S \in [\emptyset, \{x_1, x_2, ..., x_n\}]$ (S is a set variable) $x_i \in D(x_i)$ for i=1,...,n

Goals: given an open constraint, we want to filter all inconsistent values from

- $D(x_i)$ for all i,
- and D(S)
 - add mandatory elements to lower bound,
 - remove impossible elements from upper bound
 - compute tight lower and upper bound on cardinality of S

Efficient filtering algorithms for open *alldifferent* (and gcc), and *conjunctions* of them, can be designed using specific network flow representation [v.H. and Regin, 2006]

- The combinatorial structure embedded by global constraints can also be used for other purposes than only filtering, for example to guide the search
- Examples
 - Constraint Based Local Search
 - Counting Based Search

Aim: Model the problem using variables and constraints (as in CP), and apply an automatically-derived Local Search method to solve the model
[Van Hentenryck and Michel, 2002, 2005], [Galinier and Hao, 2000,2004],
[Bohlin 2004, 2005]

Essential to CBLS is that the solution method can be derived from the constraints

- Local Search evaluates current assignment and then moves to an (improving) assignment in its neighborhood
- Neighborhoods as well as evaluation functions can be based on combinatorial properties of the constraints
- Global constraints can be particularly useful for this purpose [Nareyek, 2001]

Soft global constraints for CBLS [Van Hentenryck and Michel 2005]

- Instead of domain filtering, the task is to measure the additional amount of violation (gradient) if we were to assign a variable to a certain value
- Violation measures are given for alldifferent, atmost, atleast, multi-knapsack, sequence, systems of not-equal constraints, and weighted constraint systems

- Aim: Guide the search to 'promising' search space containing many solutions
- Branching decision defined by selecting a variable-value pair
- So we need to associate to each variable-value pair a measure indicating to how many solutions it belongs
- Counting number of solution is #P-complete in general
- However, we can efficiently find approximations for individual global constraints and then aggregate the results [Pesant 2005], e.g.,
 - alldifferent and regular constraints [Zanarini and Pesant, 2007, 2009]
 - knapsack constraints [Pesant and Quimper, 2008]

- Global constraints are driving force of successful application of constraint programming
- This talk: efficient domain filtering algorithms for
 - alldifferent (matchings)
 - soft-alldifferent (minimum-cost network flow)
 - sequence (dedicated algorithm)

They provide of flavor of what can be done with global constraints

• Many more research opportunities