
Global Constraints in Constraint Programming

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

Optimization Days 2010

Pittsburgh, PA

2

Outline

• Constraint Programming
– Central concepts, motivation, applications
– Domain filtering algorithms

• Global Constraints
– Classical (alldifferent)
– Over-Constrained Problems (soft-alldifferent)
– Sequencing and Scheduling (sequence)

• Recent Developments
– Open constraints (open-alldifferent)
– Constraint-based (local) search

(With apologies for the bias towards my own work...)

3

Constraint Programming

4

Comparison with Integer Programming

Integer Linear Programming
(branch-and-bound/branch-and-cut)

• systematic search
• at each search state, solve

continuous relaxation of problem
(expensive)

• add cuts to reduce search space

• domains are intervals

very suitable for optimization
problems

Constraint Programming

• systematic search
• at each search state, reason on

individual constraints (cheap)

• filter variable domains to reduce
search space

• domains may contain holes

very suitable for highly
combinatorial problems, e.g.,
scheduling, timetabling

5

Constraint Programming History

1970s: Artificial Intelligence

• image processing applications
• search + qualitative inference
1980s: Logic Programming

• logic programming languages (e.g., Prolog)
• search + logical inference

1989: CHIP system (Constraint Handling In Prolog)
• constraint logic programming

1990s: Constraint Programming
• combines artificial intelligence, logic programming, and operations research

• industrial solvers (e.g., ILOG, Eclipse, Xpress-Kalis) and industrial applications
1994: filtering for alldifferent and resource scheduling (edge finding)

2000s: Various developments
• efficient algorithms for special constraints

• integrated methods (with OR techniques)
• modeling languages (e.g., OPL, Comet, Zinc)

6

Successful applications

7

Sport Scheduling

Schedule of 1997/1998 ACC basketball league (9 teams)
• various complicated side constraints
• all 179 solutions were found in 24h using enumeration and

integer linear programming [Nemhauser & Trick, 1998]

• all 179 solutions were found in less than a minute using
constraint programming [Henz, 1999, 2001]

 An 8 Team Round Robin Timetable

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

8

Hong Kong Airport

• Gate allocation at the new (1998) Hong Kong airport
• System was implemented in only four months, including

constraint programming technology (ILOG)
• Schedules ~800 flights a day

(47 million passengers in 2007)

G. Freuder and M. Wallace. Constraint Technology and the Commercial World.
IEEE Intelligent Systems 15(1): 20-23, 2000.

9

Port of Singapore

• One of the world’s largest container transshipment hubs
• Links shippers to a network of 200 shipping lines with

connections to 600 ports in 123 countries
• Problem: Assign yard locations and loading plans under various

operational and safety requirements
• Solution: Yard planning system, based on constraint

programming

10

Railroad Optimization

• Netherlands Railways has among the densest rail networks in
the world, with 5,500 trains per day

• Constraint programming is one of the components in their
railway planning software, which was used to design a new
timetable from scratch (2009)

• Much more robust and effective schedule, and $75M additional
annual profit

• INFORMS Edelman Award winner (2009)

11

CP Modeling

A Constraint Satisfaction Problem, or CSP, consists of
• a set of variables X,
• variable domains D(x) (for all x ∈ X),

• and a set of constraints on subsets of the variables

A solution to a CSP is:
assign to each variable a single element from its domain
such that all constraints are satisfied

Example:
variables x1, x2, x3

domains D(x1) = {1,2}, D(x2) = {0,1,2,3}, D(x3) = {2,3}
constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)
solution: x1 = 2, x2 = 1, x3 = 3

12

Modeling

A Constraint Optimization Problem, or COP, consists of

• a set of variables X,
• variable domains D(x) (for all x ∈ X),

• a set of constraints on subsets of the variables,
• and an objective function f(X) → R to be optimized

A solution to a COP is:
assign to each variable a single element from its domain

such that all constraints are satisfied, and the objective function is a global optimum

Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)
objective function maximize x2 + x3

solution: x1 = 2, x2 = 1, x3 = 3

13

More modeling examples

• variables range over finite or continuous domain:
v ∈ {a,b,c,d}, start ∈ {0,1,2,3,4,5}, z ∈ [2.18, 4.33], S ∈ [{b,c}, {a,b,c,d,e}]

• algebraic expressions:
x3(y2 – z) ≥ 25 + x2∙max(x,y,z)

• variables as subscripts:
y = cost[x] (here y and x are variables, ‘cost’ is an array of parameters)

• logical relations in which constraints can be mixed:
((x < y) OR (y < z)) ⇒ (c = min(x,y))

• ‘global’ constraints (a.k.a. symbolic constraints):
alldifferent(x1,x2, ...,xn)
UnaryResource([start1,..., startn], [duration1,...,durationn])

14

Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

Solving

15

x3

2 3

x3

2 3

2 3

x3

2 3

x3

2 3

2 3

Solving

x1

x2

x3

2 3

x3

2 3

x2

x3

2 3

x3

2 3

0 1 0 1

1 2

Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

16

Example:
variables/domains x1 ∈ {1}, x2 ∈ {0,1}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

x3

2 3

x3

2 3

0 1

Solving

x1

x2 x2

x3

2 3

x3

2 3

0 1

1 2

17

Example:
variables/domains x1 ∈ {2}, x2 ∈ {0,1}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

3

1

x3

2 3 2

0

Solving

x1

x2

1 2

x3

3

1

x3

x2

18

Solving - summary

The solution process of CP interleaves
• domain filtering

– remove inconsistent values from the domains of the variables, based on
individual constraints

• constraint propagation
– propagate the filtered domains through the constraints, by re-evaluating

them until there are no more changes in the domains

• search
– implicitly all possible variable-value combinations are enumerated, but

the search tree is kept small due to the domain filtering and constraint
propagation

Because all variable-value combinations are (implicitly)
enumerated, this solution method is complete

19

Domain Filtering Algorithms

20

Example:
alldifferent(x1,x2,...,xn) semantically equivalent to { xi ≠ xj for all i ≠ j }

x1 ∈ {1,2}, x2 ∈ {1,2}, x3 ∈ {1,2}

x1 ≠ x2, x1 ≠ x3 , x2 ≠ x3

→ no filtering for individual not-equal constraints

x1 ∈ {1,2}, x2 ∈ {1,2}, x3 ∈ {1,2}

alldifferent(x1,x2,x2)

→ global view of alldifferent: no solution

Observation: conjunction of constraints allows more filtering!

Domain Filtering

21

More filtering: just group constraints together?
Problem: solving arbitrary conjunction of constraints is NP-hard

Solution:
• group constraints together that occur frequently in applications,

and capture tractable structure
• result is called a global constraint

(e.g., alldifferent)

(Alternative: keep NP-hard subproblem, but don’t require to filter
all inconsistent values)

Domain Filtering (cont’d)

22

Overview of global constraints

matching [Petit, Régin & Bessière, 2001], minimum-cost flow [v.H., 2004]soft-alldifferent

bipartite matching [Régin, 1994]alldifferent
general matching [Régin, 1999]symmetric-alldifferent

network flow [v.H. & Régin, 2006]open-alldifferent

network flow [Régin, 1999, 2002]cardinality

minimum-cost flow [v.H., Pesant & Rousseau, 2006], [Milano & Zanarini, 2006]soft-cardinality

network flow [v.H. & Régin, 2006]open-cardinality

dynamic programming [Trick, 2003]knapsack/sum

directed acyclic graph [Pesant, 2004]regular

shortest paths [v.H., Pesant & Rousseau, 2006]soft-regular

network flow [Genc Kaya & Hooker, 2006]circuit

dedicated algorithm [v.H., Pesant, Rousseau & Sabharwal, 2006, 2009]sequence

dedicated algorithm [Carlier & Pinson, 1994] [Vilim, 2009]disjunctive/cumulative

dedicated algorithm [Quimper, Lopez-Ortiz & Pesant, 2006]inter-distance

.

Constraint Structure/technique

23

Filtering algorithm for alldifferent

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 362-367, 1994.

24

Observation [Régin, 1994]:

Example:
x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {b,c}

alldifferent(x1,x2,x3)

Filtering: remove all edges (and corresponding domain values)
that are not in any matching covering the variables

Find initial matching: O(m√n) time1 [Hopcroft and Karp, 1973]

How to filter all inconsistent edges?

1 for n variables and m edges

Filtering for alldifferent

x1 x2 x3

a b c

solution to alldifferent matching in bipartite graph
covering all variables

⇔

25

• Naive approach is to fix each edge and test for consistency
– Time complexity too high: O(m2√n)

• Instead, the following can be done
– compute one maximum matching M: is it covering all variables X ?
– orient the edges in M ‘forward’, and edges not in M ‘backward’
– compute the strongly connected components (SCCs)
– edges in M, and edges on even M-alternating path are consistent

(i.e., edges within SCC and edges on path starting from M-free vertex)
– all other edges are not consistent and can be removed

Filtering Edges

x1 x2 x3

a b c d

O(m) [Tarjan `72]

Filtering in O(m) time

26

Important aspects

• Separation of consistency check (O(m√n)) and
domain filtering (O(m))

• Incremental algorithm
– When k domain values have been removed, we can repair

the matching in O(km) time

Note that these algorithms are typically invoked many
times during constraint propagation

• We can apply/embed efficient algorithms from graph
theory, computer science, and operations research in
global constraints

27

Soft Global Constraints

28

Over-constrained problems

• Assign seats for overbooked airplane; no solution that carries
all passengers

• Create roster for employees with conflicting preferences
• Factory wants to satisfy demands of all customers, but has

limited resources
(Many industrial problems are essentially over-constrained)

A CP solver will report that no solution exists. How to find
acceptable ‘solution’?

• Soften (some of) the constraints of the problem
• Compute solution that minimizes conflicts or maximizes

satisfaction

29

From soft constraints to hard optimization constraints

Cost-based approach [Petit, Régin, and Bessiere, 2000] (see also [Baptiste et al., 1998]):

• Introduce a cost variable for each soft constraint
• This variable represents some violation measure of the constraint
• Optimize aggregation of all cost variables (e.g., take their sum, or max)
• Use upper bound on cost variable to apply cost-based filtering (with back-

propagation)

In this way

• soft global constraints become hard optimization constraints
• soft CSPs become hard COPs
• the cost variables can be used in other (meta-)constraints!

if (z1 > 0) then (z2 = 0)
• we can apply classical constraint programming solvers
• we can apply (cost-based) domain filtering algorithms!

30

Soft-alldifferent

Example: x1 ∈ {1,2}, x2 ∈ {1,2}, x3 ∈ {1,2}

alldifferent(x1,x2,x3)

x1 ∈ {1,2}, x2 ∈ {1,2}, x3 ∈ {1,2}, z ∈ {0,1,2,3}

 soft-alldifferent(x1,x2,x3,z)
minimize z

Let z represent the total number of violated not-equal constraints

Solution: x1=1, x2=2, x3=1, z=1 with only x1 ≠ x3 violated

Filter soft-alldifferent:
remove domain values for which minimum violation > max(z)

Note: Typically we have many more constraints in our model

31

Filtering algorithm for soft-alldifferent

v.H. A Hyper-Arc Consistency Algorithm for the Soft Alldifferent Constraint. In
Proceedings of the Tenth International Conference on Principles and Practice of Constraint
Programming (CP), LNCS 3258, pp. 679-689. Springer, 2004.

v.H., Pesant, and Rousseau. On Global Warming: Flow-Based Soft Global Constraints.
Journal of Heuristics 12(4-5), pp. 347-373, 2006.

32

Filtering soft-alldifferent

Observation: solution to soft-alldifferent with minimum violation
⇔ integer minimum-cost flow

[1,1]

[0,1] [0,1]

[4,4]

Example:
x1 ∈ {a,b}, x2 ∈ {a,b},
x3 ∈ {a,b}, x4 ∈ {b,c}, z ∈ {0,1}

soft-alldifferent(x1,x2,x3,x4,z)
minimize z

Filtering: remove all edges (and corresponding domain values)
that are not in any flow f with cost(f) ≤ max(z)

33

Filtering soft-alldifferent

• Naive approach: fix each edge and test for consistency by
computing a minimum-cost network flow
– Time complexity: O(m2n)

Drawbacks:
• no separation between consistency check and filtering
• time complexity too high
• algorithm not incremental: start from scratch every time

34

Improved Algorithm

To improve algorithm: use residual graph Gf

for all arcs a
if f(a) = 1: reverse a and weight(a)
if f(a) = 0: leave unchanged

35

Helpful Flow Theory

Theorem (e.g., Ahuja et al. 1993)

f minimum-cost flow in G

P shortest d-xi path in Gf

⇔

minimum-cost flow f’ in G with f’(xi,d) = 1 has
cost(f’) = cost(f) + cost(P)

36

Improved Algorithm

compute minimum-cost flow f in G
if cost(f) > max(D(z)) return inconsistent

for all arcs (xi,d) {

compute minimum-cost d-xi path P in Gf

if cost(f) + cost (P) > max(D(z)) remove d from D(xi)
if D(xi) is empty return inconsistent

}
update min(D(z)) ≥ min(cost(f))
if D(z) is empty return inconsistent
else return consistent

37

Minimum-cost paths

how to compute minimum-cost d-xi path P in Gf:

if f(xi,d)=1 then P = d,xi and cost(P) = 0

else if xi and d in same SCC1 then cost(P) = 0
else P must visit t (once) and

cost(P) = min-cost SCC(d)-t path + min-cost t-SCC(xi) path

?

1 strongly connected component in Gf - {s,t}.

38

Improved algorithm in detail

compute minimum-cost flow f in G
if cost(f) > max(z) return inconsistent
compute SCCs in Gf-{s,t}
compute minimum-cost paths from all nodes to t and reverse
for all arcs (xi,d) {

compute minimum-cost d-xi path P in Gf

if cost(f) + cost(P) > max(z) remove d from D(xi)
if D(xi) is empty return inconsistent
}

update min(D(z)) ≥ min(cost(f))
if D(z) is empty return inconsistent

else return consistent

• Consistency check: O(mn)

• Filtering all inconsistent values: O(m)
• Incremental: after k changes initial flow can be repaired in O(km) time

O(mn)

O(m)

O(1)

39

Many other soft global constraints

• Soft cumulative constraint [Baptiste et al., 1998], [Petit and Poder 2008]

• Soft global cardinality constraint [v.H. et al., 2006] [Zanarini et al. 2006, 2010]

• Soft regular constraint, soft same constraint [v.H. et al., 2006]

• Soft slide constraint [Bessiere et al., 2007]

• Sigma-alldifferent, Sigma-Gcc, Sigma-regular [Métivier et al., 2007, 2009]

• Soft sequence constraint [Maher et al., 2008]

• Soft context-free grammar constraint [Katsirelos et al., 2008]

• Soft constraints for timetabling application [Cambazard et al., 2008]

• Soft all-equal constraint [Hebrard et al., 2008], [Hebrard et al., 2009]

• Soft precedence constraint [Lesaint et al., 2009]

• Soft open global constraints [Maher, 2009]

• Soft global constraints for Weighted CSPs [Lee and Leung, 2009]

v.H. Over-Constrained Problems. In M. Milano and P. Van Hentenryck (eds.), Hybrid
Optimization: the 10 years of CPAIOR, chapter 6. Springer, to appear.

40

Filtering algorithm for sequence

v.H., Pesant, Rousseau and Sabharwal. Revisiting the Sequence Constraint. In
Proceedings of the Twelfth International Conference on Principles and Practice of Constraint
Programming (CP 2006), pp. 620-634, LNCS 4204, 2006.

v.H., Pesant, Rousseau, and Sabharwal. New Filtering Algorithms for Combinations of
Among Constraints. Constraints14: 273-292, 2009.

41

Nurse rostering

• find feasible working pattern for each employee
• restrictions:

– every calendar-week 4 or 5 working days
– every 9 consecutive days at most 7 working days
– every 30 consecutive days at least 20 working days

54321week

52821147Sat

42720136Fri

32619125Thu

22518114Wed

12417103Tue

30231692Mon

29221581Sun

...

• additional constraints
– demand, union requirements, night shift restrictions, etcetera

42

Sequence constraint

Example: every 9 consecutive days at most 7 working days
 variable xi ∈ {0,1} for each day i

x12x11x10x9x8x7x6x5x4x3x2x1

thuwedtuemonsunsatfrithuwedtuemonsun

0 ≤ x1+x2+ ... +x9 ≤ 7

0 ≤ x2+x3+ ... +x10 ≤ 7

0 ≤ x3+x4+ ... +x11 ≤ 7

0 ≤ x4+x5+ ... +x12 ≤ 7

sequence(x1,x2,...,xn, q, min, max):
the sum of every q consecutive variables is between min and max

A sequence constraint groups together the individual constraints

=: sequence(x1,x2,...,x12, q=9, min=0, max=7)

43

Sequence constraint

sequence is more powerful than individual constraints filtered separately

Example: sequence(x1,x2,...,x7, q=5, min=2, max=3)
 x1=1, x2=1, x6=0

0/100/10/10/111

x7x6x5x4x3x2x1

2 ≤ x1+x2+x3+x4+x5 ≤ 3
≤ 1

2 ≤ x2+x3+x4+x5+x6 ≤ 3

2 ≤ x3+x4+x5+x6+x7 ≤ 3

=1

44

Sequence constraint

History:
1988: car sequencing (Dincbas, Simonis & Van Hentenryck, 1988)
1994: sequence introduced (Beldiceanu & Contejean, 1994)

as conjunction of overlapping cardinality constraints
1997: filtering algorithm (Régin & Puget, 1997)

tailored to car sequencing, no complete filtering
2001: filtering algorithm (Beldiceanu & Carlsson, 2001)

instance of generic class of cardinality-path constraints, no complete
filtering

Goal: efficient (polynomial-time) complete filtering for sequence

45

Accumulative solutions

Accumulate variables: y[i] = x1 + x2 + ... + xi

Example: sequence(x1,x2,x3,x4,x5,x6, q=3, min=1, max=2)

x1 x2 x3 x4 x5 x6

0

1

2

3

4

5

6

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

1 ≤ x1+x2+x3 ≤ 2
1 ≤ x2+x3+x4 ≤ 2

1 ≤ x3+x4+x5 ≤ 2
1 ≤ x4+x5+x6 ≤ 2

1 ≤ y[3] – y[0] ≤ 2
1 ≤ y[4] – y[1] ≤ 2

1 ≤ y[5] – y[2] ≤ 2
1 ≤ y[6] – y[3] ≤ 2

yblue = 0 1 1 2 2 2 3

46

Accumulative solutions

Accumulate variables: y[i] = x1 + x2 + ... + xi

Example: sequence(x1,x2,x3,x4,x5,x6, q=3, min=1, max=2)

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

6

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

Observation: for any two
accumulate solutions, their
pointwise minimum and
maximum are also solutions

yblue = 0 1 1 2 2 2 3

yred = 0 0 1 1 2 3 3

This is not true for binary x
representation!

xblue = 1 0 1 0 0 1

xred = 0 1 0 1 1 0

47

Accumulative solutions

Accumulate variables: y[i] = x1 + x2 + ... + xi

Example: sequence(x1,x2,x3,x4,x5,x6, q=3, min=1, max=2)

Observation: for any two
accumulate solutions, their
pointwise minimum and
maximum are also solutions

Corollary: absolute minimum and
maximum solutions envelope
all solutions

ymax

ymin

48

Find minimum solution

Algorithm:
initialize y
while some subsequence violated

push-up endpoint minimally
repair on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:
sequence(x1,x2,...,x6, q=3, min=2, max=2)

D(xi) = {0,1} for all i ≠ 5
D(x5) = {1}

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

6

2 ≤ y[3] – y[0] ≤ 2

49

Find minimum solution

Algorithm:
initialize y
while some subsequence violated

push-up endpoint minimally
repair on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:
sequence(x1,x2,...,x6, q=3, min=2, max=2)

D(xi) = {0,1} for all i ≠ 5
D(x5) = {1}

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

6

2 ≤ y[4] – y[1] ≤ 2

2 ≤ y[5] – y[2] ≤ 2

2 ≤ y[6] – y[3] ≤ 2

50

Find minimum solution

Algorithm:
initialize y
while some subsequence violated

push-up endpoint minimally
repair on left and right (using push-ups)

invariant: y[i+1] - y[i] is 0 or 1

Example:
sequence(x1,x2,...,x6, q=3, min=2, max=2)

D(xi) = {0,1} for all i ≠ 5
D(x5) = {1}

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

6

51

Find minimum solution

Properties:
• repair keeps y[i] ≤ ymin[i] for all i (by induction)

hence, if minimum solution exists, algorithm
finds it
otherwise, y[i] > i leads to unsatisfiability

• total number of push-ups bounded by n2

algorithm runs in O(n2) time

y[0] y[1] y[2] y[3] y[4] y[5] y[6]

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

6

52

Filtering algorithm

Basic algorithm:
for every domain value:

compute minimum solution (using this value)
if no solution, remove value

Filtering: we remove all inconsistent values
Time complexity: O(n3)

Improvements:
• maintain supports for domain values

– each solution provides support for n values

• for each value, restart from ymin

• also compute maximum solution ymax

– detect violation if y[i] > ymax[i]

• maintain ymin and ymax during search (both are monotone)
amortize complexity: O(n3) on any path from root to a leaf

53

Additional remarks

• filtering algorithm also applies to generalized sequence:
q, min, and max vary per subsequence

Example: nurse rostering problem
– every calendar-week 4 or 5 working days
– every 9 consecutive days at most 7 working days
– every 30 consecutive days at least 20 working days

• ‘sequence’ on non-consecutive subsequences is NP-hard
[Régin, 2005]

54

Single sequence constraint

0.0200.7043195K39

0.0104261Klimitlimit19

0.0200.5048287K37

0.02047K54265K27

0.01048113K55381K17

0.010619K54362K26

0.0101834Klimitlimit15

CPU
back-
tracks

CPU
back-
tracks

CPU
back-
tracks

(max –
min)

q

our algorithm
ILOG

Extended
ILOG
Basic

n = 100

55

Single sequence constraint

0.500496242180K5007

3.30139462830K10007

0.0010818K118K509

0.010112K0.33K1009

0.490661K1849K5009

3.30169192017K10009

0.0101945K18221K1007

0.00101268K12210K507

4.201602.311K10005

0.470421K1248K5005

0.0101212K12192K1005

0.00101823K18459K505

CPU
back-
tracks

CPU
back-
tracks

CPU
back-
tracks

nq

our algorithm
ILOG

Extended
ILOG
Basic

max – min=1

56

Generalized sequence constraint

80

40

80

40

80

40

horizon

34 s07 min328k138kmax7/9-min22/30

our generalized sequence
constraint

our individual sequence
constraints

15 s02 hours1847k23k

0.05 s030 min394k3

0.01 s07 min394k3max6/9-min20/30

0.61 s018 min198k730

0.77 s04 min185k2248max6/8-min22/30

timebacktrackstimebacktracks#solutionsinstance type

Instances:
• inspired by nurse rostering problems
• two sequence constraints
• find all solutions

57

Further Improvements

• Brand et al. [2007] have shown that our algorithm can be interpreted as a
‘Singleton Bounds Consistency’ algorithm on the cumulative decomposition:

yi+1 = yi + xi
yi+q - yi ≥ l
yi+q - yi ≤ u

This decomposition has the same filtering power and the same complexity,
but runs faster in practice

• Using a different decomposition Brand et al. show that complete filtering can
be done in O(n2 log n) time

• Maher et al. [2008] present an O(n2) algorithm, by representing the problem
as an integer program and then converting it into a network flow

58

Other Recent Developments

59

Open constraints

Traditional CSPs:
• all variables and constraints are fixed from the beginning
• “closed-world scenarios”

Open CSPs:

• variables and constraints are revealed over time

Example:

• process set of activities over different factory lines: each factory line has
predefined set of constraints, but paths of the activities are unknown initially

Open constraints: defined on a-priori unknown set of variables

Open constraints in a closed world: all potential variables and domains are known
[v.H. and Regin, 2006]

60

Example

production line 1

production line 2

production line 3

j1
j2
j3

jn

. .
 .

?

jobs further processing

variables:

• start(j1),...,start(jn)
constraints:

• each task must be processed on one production line
• on each production line, the start times of the tasks are different:

open-alldifferent(Si) for production line i=1,2,3

where Si is a set-variable representing the start time variables of the jobs on line i

61

Open constraints

Traditional CSP:

alldifferent(x1,x2,...,xn)
xi ∈ D(xi) for i=1,..,n

Open CSP (in a closed world):

alldifferent(S)

S ∈ [ø,{x1,x2,...,xn}] (S is a set variable)
xi ∈ D(xi) for i=1,..,n

Goals: given an open constraint, we want to filter all inconsistent values from

• D(xi) for all i,
• and D(S)

– add mandatory elements to lower bound,

– remove impossible elements from upper bound
– compute tight lower and upper bound on cardinality of S

Efficient filtering algorithms for open alldifferent (and gcc), and conjunctions of them, can
be designed using specific network flow representation [v.H. and Regin, 2006]

62

Constraint-Based Search

• The combinatorial structure embedded by global constraints
can also be used for other purposes than only filtering, for
example to guide the search

• Examples
– Constraint Based Local Search
– Counting Based Search

63

Constraint-Based Local Search

Aim: Model the problem using variables and constraints (as in CP), and apply an
automatically-derived Local Search method to solve the model
[Van Hentenryck and Michel, 2002, 2005], [Galinier and Hao, 2000,2004],
[Bohlin 2004, 2005]

Essential to CBLS is that the solution method can be derived from the
constraints

• Local Search evaluates current assignment and then moves to an (improving)
assignment in its neighborhood

• Neighborhoods as well as evaluation functions can be based on
combinatorial properties of the constraints

• Global constraints can be particularly useful for this purpose
[Nareyek, 2001]

64

Constraint-Based Local Search (cont’d)

Soft global constraints for CBLS [Van Hentenryck and Michel 2005]

• Instead of domain filtering, the task is to measure the additional
amount of violation (gradient) if we were to assign a variable to
a certain value

• Violation measures are given for alldifferent, atmost, atleast,
multi-knapsack, sequence, systems of not-equal constraints, and
weighted constraint systems

65

Counting-Based Search

• Aim: Guide the search to ‘promising’ search space containing
many solutions

• Branching decision defined by selecting a variable-value pair
• So we need to associate to each variable-value pair a measure

indicating to how many solutions it belongs
• Counting number of solution is #P-complete in general
• However, we can efficiently find approximations for individual

global constraints and then aggregate the results [Pesant 2005], e.g.,
– alldifferent and regular constraints [Zanarini and Pesant, 2007, 2009]

– knapsack constraints [Pesant and Quimper, 2008]

66

Summary

• Global constraints are driving force of successful
application of constraint programming

• This talk: efficient domain filtering algorithms for
– alldifferent (matchings)
– soft-alldifferent (minimum-cost network flow)
– sequence (dedicated algorithm)

They provide of flavor of what can be done with global
constraints

• Many more research opportunities

