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Abstract. This paper presents an algorithm that achieves hyper-arc
consistency for the soft alldifferent constraint. To this end, we prove
and exploit the equivalence with a minimum-cost flow problem. Consis-
tency of the constraint can be checked in O(nm) time, and hyper-arc
consistency is achieved in O(m) time, where n is the number of variables
involved and m is the sum of the cardinalities of the domains. It improves
a previous method that did not ensure hyper-arc consistency.

1 Introduction

If a constraint satisfaction problem (CSP) is over-constrained, i.e. has no so-
lution satisfying all constraints, it is natural to allow certain constraints, the
soft constraints, to be violated and search for solutions that violate as few soft
constraints as possible. Constraints that are not decided to be soft are hard
constraints, and should always be satisfied.

Several methods have been proposed to handle over-constrained CSPs, see for
instance [6, 2, 4]. In this paper, we follow the scheme proposed by Régin, Petit,
Bessière and Puget [11], that is particularly useful for non-binary constraints.
The idea is as follows. A cost function is assigned to each soft constraint, measur-
ing the violation. Then the soft CSP is transformed into a constraint optimiza-
tion problem (COP), where all constraints are hard, and the (weighted) sum of
cost functions is minimized. This approach allows one to use specialized filtering
algorithms for soft constraints, as shown by Petit, Régin and Bessière [7].

For the soft alldifferent constraint, an algorithm is presented in [7] that re-
moves inconsistent values in O(m2n

√
n) time, where n is the number of variables

and m the sum of the cardinalities of their domains. However, that algorithm
does not ensure hyper-arc consistency. In this paper, we propose an algorithm
that does ensure hyper-arc consistency and runs in O(nm) time. In principle, we
consider the soft alldifferent constraint as a minimum-cost flow problem in
a particular graph. Checking the consistency can then be done in O(nm) time.
Thereafter, domain values are checked for consistency by an efficient shortest
path computation, which takes in total O(m) time.

The outline of the paper is as follows. Section 2 presents definitions related
to constraint satisfaction problems. Section 3 shows a graph-theoretic analysis



of the soft alldifferent constraint, using flow theory. In Section 4 the filtering
algorithm is presented. We conclude with a discussion in Section 5.

2 Background

We assume familiarity with the basic concepts of constraint programming. For
a thorough explanation of constraint programming, see [1].

A constraint satisfaction problem (CSP) consists of a finite set of variables
V = {v1, . . . , vr} with finite domains D = {D1, . . . , Dr} such that vi ∈ Di

for all i, together with a finite set of constraints C, each on a subset of V . A
constraint C ∈ C is defined as a subset of the Cartesian product of the domains
of the variables that are in C. A tuple (d1, . . . , dr) ∈ D1 × · · · ×Dr is a solution
to a CSP if for every constraint C ∈ C on the variables vi1 , . . . , vik

we have
(di1 , . . . , dik

) ∈ C. A constraint optimization problem (COP) is a CSP together
with an objective function to be optimized. A solution to a COP is a solution
to the corresponding CSP, that has an optimal objective function value.

Definition 1 (Hyper-arc consistency). A constraint C on the variables x1,

. . . , xk is called hyper-arc consistent if for each variable xi and value di ∈ Di,

there exist values d1, . . . , di−1, di+1, . . . , dk in D1, . . . , Di−1, Di+1, . . . , Dk, such

that (d1, . . . , dk) ∈ C.

Definition 2 (Consistent CSP). A CSP is hyper-arc consistent if all its con-

straints are hyper-arc consistent. A CSP is inconsistent if it has no solution.

Similarly for a COP.

Definition 3 (Pairwise difference). Let x1, . . . , xn be variables with respec-

tive finite domains D1, . . . , Dn. Then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ Di, dj 6= dk for j 6= k}.

In [7], two different measures of violation for a soft constraint are presented.
The first is the minimum number of variables that need to change their value
in order to satisfy the constraint. For this measure, applied to the alldiff-

erent constraint, [7] also contains a hyper-arc consistency algorithm. The second
measure is the number of violated constraints in the binary decomposition of the
constraint, if this decomposition exists. For the alldifferent constraint, such a
decomposition does exist, namely xi 6= xj for i ∈ {1, . . . , n−1}, j ∈ {i+1, . . . , n}.
We follow this second, more refined, measure, and present it in terms of the
soft alldifferent constraint. For alldifferent(x1, . . . , xn), let the cost of
violation be defined as

violation(x1, . . . , xn) = |{(i, j) | xi = xj , for i < j}| . (1)

Definition 4 (Soft pairwise difference). Let x1, . . . , xn, z be variables with

respective finite domains D1, . . . , Dn, Dz. Then

soft alldifferent(x1, . . . , xn, z) =

{(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz , violation(d1, . . . , dn) ≤ d̃}.



The variable z in Definition 4 will serve as a so-called cost variable, which will
be minimized during the solution process. This means that admissible tuples
in Definition 4 are those instantiations of variables, such that the number of
violated dis-equality constraints di 6= dj is not more than that of the currently
best found solution, represented by max Dz . At the same time, min Dz should
not be less than the currently lowest possible value of violation(x1, . . . , xn).

An over-constrained CSP with an alldifferent constraint is transformed
into a COP by introducing z, replacing alldifferent with soft alldifferent,
and minimizing z. This is illustrated in the following example.

Example 1. Consider the following over-constrained CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

We transform this CSP into

z ∈ {0, . . . , 6},
x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
soft alldifferent(x1, x2, x3, x4, z),
minimize z.

This COP is not hyper-arc consistent, as there is no support for z < 1. If we
remove 0 from Dz , the COP is hyper-arc consistent, because there are at most 6
simultaneously violated dis-equalities. Suppose now that during the search for a
solution, we have found the tuple (x1, x2, x3, x4, z) = (a, a, b, c, 1), that has one
violated dis-equality. Then z ∈ {1} in the remaining search. As the assignment
x4 = b always leads to a solution with z ≥ 2, b can be removed from D4. The
resulting COP is hyper-arc consistent again.

One should take into account that a simplified CSP is considered in Exam-
ple 1. In general, a CSP can consist of many more constraints, and also more
cost-variables that together with z form an objective function to be minimized.

Throughout this paper, let m =
∑

i∈{1,...,n} |Di| for variables x1, . . . , xn.

3 Graph-Theoretic Analysis

A directed graph is a pair G = (V, A) where V is a finite set of vertices V and
A is a family1 of ordered pairs from V , called arcs. A pair occurring more than
once in A is called a multiple arc. For v ∈ V , let δin(v) and δout(v) denote the
family of arcs entering and leaving v respectively.

A (directed) walk in G is a sequence P = v0, a1, v1, . . . , ak, vk where k ≥ 0,
v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A and ai = (vi−1, vi) for i = 1, . . . , k. If there
is no confusion, P may be denoted as P = v0, v1, . . . , vk. A (directed) walk is
called a (directed) path if v0, . . . , vk are distinct. A closed (directed) walk, i.e.
v0 = vk, is called a (directed) circuit if v1, . . . , vk are distinct.

1 A family is a set in which elements may occur more than once.



3.1 Minimum-cost flow problem

First, we introduce the concept of a flow, following Schrijver [12, pp. 148–150].
Let G = (V, A) be a directed graph and let s, t ∈ V . A function f : A → R is

called a flow from s to t, or an s − t flow, if

(i) f(a) ≥ 0 for each a ∈ A,

(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}, (2)

where f(S) =
∑

a∈S f(a) for all S ⊆ A. Property (2)(ii) ensures flow conser-
vation, i.e. for a vertex v 6= s, t, the amount of flow entering v is equal to the
amount of flow leaving v.

The value of an s − t flow f is defined as

value(f) = f(δout(s)) − f(δin(s)).

In other words, the value of a flow is the net amount of flow leaving s, which
can be shown to be equal to the net amount of flow entering t.

When we study flows we typically endow capacity constraints, via a “capac-
ity” function c : A → R+. We say that a flow f is under c if f(a) ≤ c(a) for each
a ∈ A. A feasible flow is a flow under c.

We also assign costs to flows via a “cost” function w : A → R+. Doing so the
cost of a flow f is defined as

cost(f) =
∑

a∈A

w(a)f(a).

A minimum-cost flow is an s−t flow under c of maximum value and minimum
cost. The minimum-cost flow problem is the problem of finding such a minimum-
cost flow.

A minimum-cost flow can be computed using an algorithm originally due
to Ford and Fulkerson [5] (we follow the description given by Schrijver [12, pp.
183–185]). It consists of successively finding shortest (with respect to the cost
function) s−t paths in the so-called residual graph, while maintaining an optimal
flow.

Define the residual graph Gf = (V, Af ) of f (with respect to c), where

Af = {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > 0}.

Here a−1 = (v, u) if a = (u, v). We extend w to A−1 = {a−1 | a ∈ A} by defining

w(a−1) = −w(a)

for each a ∈ A.
Any directed path P in Gf gives an undirected path in G = (V, A). We define

χP ∈ R
A by

χP (a) =







1 if P traverses a,

−1 if P traverses a−1,

0 if P traverses neither a nor a−1,



Algorithm 1 Minimum-cost s − t flow

set f = 0

while termination criterion not satisfied do

compute minimum-cost s − t path P in Gf

if no s − t path in Gf exists then

terminate
else

set ε maximal, such that 0 ≤ f + εχP
≤ c

reset f = f + εχP

end if

end while

for a ∈ A. Define the cost of a path P as cost(P ) =
∑

a∈P w(a).
Call a feasible flow extreme when it has minimum cost among all feasible

flows with the same value. Then the following holds (cf. [12, Theorem 12.3 and
12.4]). Let 0 denote the all-zero vector of appropriate size.

Theorem 1. A flow f is extreme if and only if each directed circuit of Gf has

nonnegative cost.

Theorem 2. Let f be an extreme flow in G = (V, A). Let P be a minimum-cost

s − t path in Gf , for some s, t ∈ V , and let ε > 0 be such that f ′ = f + εχP

satisfies 0 ≤ f ′ ≤ c. Then f ′ is an extreme flow again.

In fact, for f, P, ε and f ′ in Theorem 2 holds

value(f ′) = value(f) + ε,

cost(f ′) = cost(f) + ε · cost(P ).

This means that we can find a minimum-cost s− t flow in G by successively
computing minimum-cost s − t paths in Gf . Along such a path we increase the
amount of flow to the maximum possible value ε. By Theorem 2, the last flow
(of maximum value) we obtain must be extreme, and hence optimal. This is
presented as Algorithm 1. Note that the cost of minimum-cost s− t paths in Gf

is bounded, because there are no directed circuits of negative cost in Gf . For
rational capacities, Algorithm 1 terminates with a feasible s−t flow of maximum
value and minimum cost. Although faster algorithms exist for general minimum-
cost flow problems, Algorithm 1 suffices when applied to our problem. This is
because in our particular graph Algorithm 1 is faster than the algorithms for
general minimum-cost flow problems.

3.2 From soft alldifferent to minimum-cost flow

We transform the problem of finding a solution to the soft alldifferent con-
straint into a minimum-cost flow problem.

Construct the directed graph G = (V, A) with

V = {s, t} ∪ X ∪ DX
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Fig. 1. Graph G for the soft alldifferent constraint of Example 1. For each arc a,
(c(a), w(a)) is given. Bold arcs indicate an optimal s − t flow with cost 1.

and
A = AX ∪ As ∪ At

where
X = {x1, . . . , xn},
DX =

⋃

i∈{1,...,n} Di,

and
AX = {(xi, d) | d ∈ Di},
As = {(s, xi) | i ∈ {1, . . . , n}},
At = {(d, t) | d ∈ Di, i ∈ {1, . . . , n}}.

Note that At contains parallel arcs if two or more variables share a domain value.
If there are k parallel arcs (d, t) between some d ∈ DX and t, we distinguish them
by numbering the arcs as (d, t)0, (d, t)1, . . . , (d, t)k−1 in a fixed but arbitrary way.

To each arc a ∈ A, we assign a capacity c(a) = 1 and a cost w(a). If a ∈
As ∪ AX , then w(a) = 0. If a ∈ At, so a = (d, t)i for some d ∈ DX and integer
i, the value of w(a) = i.

In Figure 1, the graph G for the soft alldifferent constraint in Example 1
is depicted. For each arc a, (c(a), w(a)) is given.

Theorem 3. An integer flow f that is a solution to the minimum-cost flow prob-

lem in G corresponds to an instantiation of variables x1, . . . , xn in soft all-

different(x1, . . . , xn, z), minimizing violation(x1, . . . , xn).

Proof. For an integer flow f in G, f(a) = 1 if arc a is used, and f(a) = 0 oth-
erwise. An arc a = (xi, d) ∈ AX with f(a) = 1 corresponds to the instantiation
xi = d. By construction, every solution f to the minimum-cost flow problem in
G has value(f) = n. Thus a solution corresponds to assigning a value to each
variable xi, i ∈ {1, . . . , n}.

The cost function w(ai) = i for k parallel arcs a0, . . . , ak−1 ∈ At corre-
sponds to counting the number of violations caused by assigning i + 1 vari-
ables to a particular value. Namely, for these parallel arcs, a minimum-cost
s − t path in Gf uses the arc with lowest cost first. Using arc ai (the (i + 1)st



arc) causes a “violation” with the i previously used arcs. Thus, for a feasi-
ble flow f , which corresponds to an assignment of x1, . . . , xn,

∑

a∈A w(a)f(a)
measures exactly violation(x1, . . . , xn). Hence, a minimum-cost flow minimizes
violation(x1, . . . , xn). �

Consider again the graph G in Figure 1. A bold arc a in G denotes f(a) = 1.
This particular flow f has value(f) = 4 and cost(f) = 1. Indeed, the only
violation is x1 = a = x2.

Next we describe the behaviour of Algorithm 1 to compute a minimum-cost
flow in G. We need to compute a sequence of minimum-cost s − t paths in Gf ,
maintaining extreme intermediate flows. Note that along each minimum-cost s−t

path in Gf we can increase the flow by a maximum of ε = 1. Hence all extreme
flows in G are integer. By construction, there are exactly n such paths, each
containing one arc in As (in fact, the paths may as well be computed starting
from the vertices xi instead of s, using only arcs in AX and At). Further, each
minimum-cost s − t path contains exactly one arc in At. Namely, consider a
minimum-cost path P using multiple arcs in At. Then P consists of an s−t path
with one arc in As, followed by a t−t path. If the t−t path has cost 0, we may omit
this part, and use only the s− t path with one arc in As. If the t− t path, which
is a circuit, has negative cost, it contradicts Theorem 1. Effectively, it means
that the t− t path could have been used to improve the preceding intermediate
solution, thus contradicting the extremity of that solution. To conclude, the
minimum-cost paths we need to compute use exactly one arc in As and one arc
in At. It follows that these paths can be computed in O(m) time, and the total
time complexity for finding a maximum flow of minimum cost in G is O(nm).
Hence it follows, by Theorem 3, that consistency of the soft alldifferent

constraint can be checked in O(nm) time.

4 The Filtering Algorithm

The following theorem identifies hyper-arc consistent domain values for the
soft alldifferent constraint. For an arc a of G, let Ga arise from G by en-
forcing f(a) = 1 for every flow f in G.

Theorem 4. The constraint soft alldifferent(x1, . . . , xn, z) is hyper-arc con-

sistent if and only if

(i) for all all arcs a ∈ AX a minimum-cost flow of maximum value in Ga has

cost at most max Dz,

(ii) all values in Dz are not smaller than the cost of a minimum-cost flow of

maximum value in G.

Proof. Enforcing f(a) = 1 for arc a = (xi, d) corresponds to assigning xi = d.
The result follows from Definition 1 and Theorem 3. Namely, property (i) checks
consistency for all domain values in D1, . . . , Dn. Property (ii) checks consistency
of the domain values of Dz . �



Algorithm 2 Naive hyper-arc consistency
set minimum = ∞

for xi ∈ X do

for d ∈ Di do

compute minimum-cost s − t flow f in Ga where a = (xi, d)
if cost(f) > maxDz then

remove d from Di

end if

if cost(f) < minimum then

set minimum = cost(f)
end if

end for

end for

if min Dz < minimum then

set min Dz = minimum
end if

Using Theorem 4, we can construct an algorithm that enforces hyper-arc
consistency for the soft alldifferent constraint, presented as Algorithm 2.
For all variables xi ∈ X, the algorithm scans all domain values d ∈ Di, and
checks whether there exists a minimum-cost s − t flow in Ga, where a = (xi, d),
of maximum value with cost at most max Dz . If such a flow does not exist, then,
by Theorem 4, d is removed from Di. Finally, we remove all values of Dz which
are smaller than the cost of a minimum-cost flow in G. The time complexity of
Algorithm 2 is O(m2n).

We can construct a more efficient filtering algorithm, however. It is presented
as Algorithm 3, and makes use of the following theorem. We follow the notation
introduced in Section 3.1.

Theorem 5. Let f be an extreme flow of maximum value in G. Let a = (xi, d) ∈
AX and P a minimum-cost d − xi path in Gf . Let f? be an extreme flow of

maximum value in Ga. Then cost(f?) = cost(f) + cost(P ).

Proof. Either f(a) = 1 or f(a) = 0. In case f(a) = 1, f ?(a) = 1, P = d, xi,
cost(P ) = 0 and we are done. In case f(a) = 0, first note that there exists a
d−xi path in Gf . Namely, there is exactly one d′ ∈ Di for which f((xi, d

′)) = 1,
which allows the path d, t, d′, xi. Let P be a minimum-cost d − xi path in Gf .
Together with arc (xi, d) P forms a circuit C. The directed circuit C in Gf gives
an undirected circuit in Ga. For all b ∈ A, define flow f? in Ga as follows:

f?(b) =







0 if b−1 ∈ C

1 if b ∈ C

f(b) else.

It is easy to check that f? is again a flow of maximum value.
Because f is extreme, we may assume that P enters and leaves t only once, say

via arcs bin and bout respectively (where bin = (d, t)). It follows that cost(P ) =



Algorithm 3 More efficient hyper-arc consistency

compute minimum-cost flow f in G

if cost(f) > max Dz then

return Inconsistent

end if

if min Dz < cost(f) then

set min Dz = cost(f)
end if

for a = (xi, d) with f(a) = 0 do

compute minimum-cost d − xi path P in Gf

if cost(f) + cost(P ) > max Dz then

remove d from Di

end if

end for

w(bin) − w(bout). From Theorem 1 we know that cost(P ) ≥ 0. Similarly,

cost(f?) =
∑

b∈A f?(b)w(b)
=

∑

b∈A f(b)w(b) + w(bin) − w(bout)
= cost(f) + cost(P )

It remains to show that f? is extreme in Ga. Suppose not, i.e. there exists
a flow g in Ga with maximum value and cost(g) < cost(f ?). As cost(f?) =
cost(f) + cost(P ) and cost(P ) ≥ 0, there are two possibilities. The first is that
cost(g) < cost(f), which is not possible because f is extreme. The second is that
there exists an xi − d path P ′ in Gf with cost(P ′) < cost(P ) which also leads
to a contradiction because P is a minimum-cost path. Hence f ? is extreme. �

Algorithm 3 first computes a minimum-cost flow f in G. This takes O(nm)
time, as we have seen in Section 3.2. If cost(f) > maxDz , we know that the
soft alldifferent constraint is inconsistent. If this is not the case, we update
min Dz . Next, we scan all arcs a = (xi, d) for which f(a) = 0. For each of these
arcs, we compute a minimum-cost d − xi path P in Gf . By Theorem 5 and
Theorem 4, we remove d from Di if cost(f) + cost(P ) > maxDz . This can be
done efficiently, as shown by the following theorem.

Theorem 6. Let soft alldifferent(x1, . . . , xn, z) be consistent and f an in-

teger minimum-cost flow in G. Then soft alldifferent(x1, . . . , xn, z) can be

made hyper-arc consistent in O(m) time.

Proof. The complexity of the filtering algorithm depends on the computation
of the minimum-cost d− xi paths inGf for arcs (xi, d). We make use of the fact
that only arcs a ∈ At contribute to the cost of such path.

Consider the strongly connected components2 of the graph G̃f which is a copy
of Gf where s and t and all their incident arcs are removed. Let P be a minimum-
cost d−xi path P in Gf . If P is equal to d, xi then f(xi, d) = 1 and cost(P ) = 0.

2 A strongly connected component in a directed graph G = (V, A) is a subset of
vertices S ⊆ V such that there exists a directed u − v path in G for all u, v ∈ S.



Otherwise, either xi and d are in the same strongly connected component of G̃f ,
or not. In case they are in the same strongly connected component, P can avoid
t in Gf , and cost(P ) = 0. In case xi and d are in different strongly connected
components, P must visit t, and we do the following.

Split t into two vertices tin and tout such that δin(tin) = δin(t), δout(tin) = ∅,
and δin(tout) = ∅, δout(tout) = δout(t). For every vertex v ∈ X ∪ DX we can
compute the minimum-cost path from v to tin and from tout to v in total O(m)
time.

The strongly connected components of G̃f can be computed in O(n + m)
time, following Tarjan [14]. Hence the total time complexity of achieving hyper-
arc consistency is O(m), as n < m. �

The proof of Theorem 6 applies to any constraint whose graph representation
resembles G and has only costs on arcs from DX to t. For all such constraints
that are consistent, hyper-arc consistency can be achieved in O(m) time. Note
that this is equal to the complexity of achieving hyper-arc consistency on these
constraints if no costs are involved.

5 Conclusion and Discussion

We have presented an algorithm that checks consistency of the soft alldiff-

erent constraint on n variables in O(nm) time and achieves hyper-arc consis-
tency in O(m) time, where m is the sum of the cardinalities of the domains.
A previous method for removing domain values that are inconsistent with the
soft alldifferent constraint did not ensure hyper-arc consistency [7]. More-
over, that method has a time complexity of O(m2n

√
n). Hence our algorithm

improves on this in terms of quality as well as time complexity.

The soft alldifferent constraint is related to the standard alldifferent

constraint [8] and the minimum weight alldifferent constraint [3]. The mini-
mum weight alldifferent constraint is a particular instance of the global car-
dinality constraint with costs [9, 10]. For that constraint, hyper-arc consistency
can be achieved in O(n(m+d log d)) time, where d is the cardinality of the union
of all domains [9, 10, 13]. It is achieved by finding n shortest paths, each taking
O(m + d log d) time to compute. Although our algorithm has a similar flavour,
the underlying graphs have a different cost structure. We improve the efficiency
by exploiting the cost structure of our particular graph when computing the
shortest paths. Our result can be applied to other constraints with a similar
graph representation and cost structure.
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