
Two Set-Constraints for Modeling and Efficiency

Willem-Jan van Hoeve1 and Ashish Sabharwal2

1 Tepper School of Business, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.

vanhoeve@andrew.cmu.edu
2 Department of Computer Science, Cornell University

5160 Upson Hall, Ithaca, NY 14853-7501, U.S.A.
sabhar@cs.cornell.edu

Abstract. Set variables provide convenient modeling shorthands for
many combinatorial problems. However, it is often challenging to ef-
ficiently handle set constraints when solving the problem. We present
efficient filtering algorithms, establishing bounds consistency, for two
such constraints: the sum-free constraint, and the atmost1 constraint
on pairs of set variables with known cardinality. The filtering algorithm
for the sum-free constraint achieves the same pruning as the correspond-
ing collection of constraints on the binary representation, but it does so
more efficiently and without running into memory bottlenecks. For the
atmost1 constraint on pairs of set variables, the additional time spent
on pruning more values pays off well in terms of overall efficiency. Our
results show that set constraints can not only ease modeling the problem,
they can also decrease the solution time and memory requirements.

1 Introduction

Many combinatorial problems, such as bin packing, set covering, and combina-
torial design, can be conveniently expressed using set variables and constraints
over these variables [10]. However, for solving such problems in practice, peo-
ple often resort to integer programming (IP), or constraint programming (CP)
on single-valued domains, for which efficient off-the-shelf solvers are available.
From a constraint programming perspective, set variables (or variables with a
structured domain) are not fundamentally different from ‘normal’ variables with
single-valued domains. Set variables are present in most constraint programming
solvers, such as ILOG Solver [11], Eclipse [6], and Gecode [9]. We can post con-
straints over them, enumerate their domains in a search tree, and filter their
domains according to the constraints. This makes constraint programming a
particularly suitable environment to both model a problem in its natural form
using set variables and reason over those variables directly.

It is widely accepted that domain filtering algorithms for global constraints
have greatly improved the performance of constraint programming solvers, and
thus their use in practice [3, 18]. Most of these filtering algorithms, if not all,
were designed for constraints on single-valued variables. Over the years, several

researchers have studied the application of set variables and set constraints in
constraint programming (we refer to [10] for a survey). Nonetheless, the number
of (global) set constraints with efficient domain filtering algorithms is limited.
We believe that the development of such algorithms is indispensable for the
successful application of set variables and set constraints, which would allow
modeling and solving many problems in a more natural and efficient way. This
paper is a step in this direction.

In the last few years, several researchers have studied filtering algorithms
for set constraints. For example, Sadler and Gervet [15] presented filtering algo-
rithms for the atmost1 constraint, and for the alldifferent constraint on set
variables with known cardinality. More recently, Dooms and Katriel [5] intro-
duced filtering algorithms for the minimum spanning tree constraint over graph
variables, which are defined by two set variables representing the vertices and
the edges of a graph, respectively.

Filtering constraints over set variables can be much more challenging than
filtering constraints on single-valued variables. Intuitively this can be explained
by the fact that a constraint on a single set variable may capture a structure that
must otherwise be represented by a global constraint on multiple single-valued
variables. Hence, a constraint on a single set variable may be as difficult to filter
as a global constraint on multiple single-valued variables. Filtering a global con-
straint involving more than one set variables can therefore be even more difficult.

In this work, we present efficient filtering algorithms for two constraints on
set variables. First, we study the sum-free constraint. This constraint is defined
on a single integer-valued set variable and states that for each pair of (possibly
identical) elements of the set, their sum may not be an element of that set. This
constraint arises naturally in a well-known number-theoretic problem: finding the
Schur number. This latter problem has been studied, for example, by Fredricksen
and Sweet [8], who give lower bounds for the Schur number. Our experimental
results on this problem highlight, in addition to efficiency gains, the succinctness
of the set representation, which allows us to solve several problems that cannot
even be modeled with an equivalent integer representation without exceeding
memory limits.

The atmost1 constraint was introduced by Sadler and Gervet [15]. It states
that for n ≥ 2 set variables with known cardinality, each pair of variables can
share at most one element. It was shown by Bessiere et al. [4] that it is NP-
hard to establish bounds consistency for this constraint. The filtering algorithm
proposed by Sadler and Gervet [15] runs in polynomial time and filters the
domains partially, i.e., it does not necessarily establish bounds consistency.3 In
this paper, we give in on complete bounds consistency for n sets for general n,
and instead focus on atmost1 constraints on pairs of variables (i.e., for n = 2).
We show that in this case, it is possible to establish bounds consistency in
polynomial time. The filtering algorithm here is more involved than for the
sum-free constraint, and exploits the indistinguishability of a few different kinds

3 This is true even for n = 2, as one of our example scenarios will show.

2

of elements in the two set variables. We use as a test bed for this constraint
the Social Golfer problem, which has been studied extensively in the context
of symmetry breaking. Our method, however, is orthogonal to symmetry-based
techniques and focuses on better filtering. Our experiments highlight a significant
reduction in the number of failed search nodes as well as the runtime.

2 Preliminaries

We recall basic definitions and concepts from constraint programming. We refer
to Rossi et al. [14] for an overview.

Let x be a variable. The domain of x, denoted D(x), is a finite set of elements
(also called domain values) that can be assigned to x. A set variable is a variable
whose domain values are sets. Since the number of possible values of a set variable
can be enormous (the size of a power set, in the worst case), one often represents
the domain of a set variable S by an “interval” [L(S), U(S)], where L(S) and
U(S) are sets such that L(S) ⊆ U(S) and D(S) = {s | L(S) ⊆ s ⊆ U(S)}. In
words, this says that all elements of L(S) must be in S and any elements not in
U(S) must not be in S. In this sense, L(S) and U(S) form a lowerbound and
an upperbound for S, respectively. For example, let V be a set, let a, b ∈ V be
two elements of V , and let S have domain D(S) = [{a} , V \ {b}]. Then D(S)
consists of all possible subsets of V that contain a but do not contain b. We
assume throughout that variable domains are finite.

The solution process of constraint programming interleaves constraint prop-

agation and search. The search process essentially consists of enumerating all
possible combinations of variable domain values, until we find a solution to the
CSP at hand or prove that none exists. This process can be thought of as con-
structing a search tree, starting with no variable restrictions at the root and
constraining the domains of more and more variables as one goes down the tree.
To reduce exhaustive search of the exponential number of variable-value com-
binations, we filter the domains of the variables and propagate this information
through all constraints:

Filter and Propagate: Given the current domains and a constraint C,
remove domain values that do not belong to any solution to C. Repeat
for all constraints until no more domain values can be removed.

We typically apply constraint propagation at each node in the search tree.
In order to be effective, filtering algorithms must be efficient because they are
executed several times during the solution process. Furthermore, they should
remove as many domain values that are not part of a solution as possible. If a
filtering algorithm for a constraint C removes all such values from the domains
with respect to C, we say that it makes C domain consistent. In the context of
set variables, which are represented by an interval defined by a lower bound and
an upper bound, we apply bounds consistency instead:

3

Definition 1. Let S1, . . . , Sn be set variables. A constraint C(S1, . . . , Sn) is

called bounds consistent if for all i = 1, . . . , n, L(Si) and U(Si) are the in-

tersection and the union, respectively, of all values in D(Si) that can be assigned

to Si in a solution to C.

Note that Definition 1 does not require the lower or upper bounds of a variable
domain to themselves belong to a solution of the constraint. When a filtering
algorithm for set constraints does not necessarily establish bounds consistency,
we call it a partial filtering algorithm.

Finally, we recall the concept of domain-delta [17]. It represent the changes
in the domain of a variable x between two filtering events, and is denoted by
∆(x). For a set variable S, the domain-delta consists of two sets: a set ∆L(S)
of elements added to the lower bound and a set ∆U (S) of elements removed
from the upper bound. Domain-deltas can be very helpful in designing efficient
incremental algorithms. Specifically, they can allow the complexity of a filtering
algorithm to be amortized over an entire path in the search tree from the root to
any leaf. Both of our algorithms in this paper exploit domain-deltas, although
our current implementation for atmost1 constraint does not use domain-deltas
because of technical reasons (see end of Section 4).

3 The Sum-Free Constraint

In this section, we present a relatively straightforward yet effective filtering algo-
rithm for the sum-free constraint. As we will demonstrate in the experimental
section, its main purpose is to address ease of modeling and memory require-
ments for the problem. We first give a formal definition of the constraint:

Definition 2. Let S be a set variable with domain D(S) = [L(S), U(S)], where

∅ ⊆ L(S) ⊆ U(S) ⊆ N
+. The sum-free constraint on S is defined as

sum-free(S) = {s | s ∈ D(S), (i, j ∈ s) ⇒ (i + j 6∈ s)} .

N
+ here denotes the set of positive integers. Note that the constraint does not

require i 6= j, so that for each i ∈ s, we have that 2i 6∈ s. A filtering algorithm for
this constraint is described as Algorithm 1. For each element i added to the lower
bound of S, we compare i to all other elements j in the lower bound of S, and
remove the corresponding possible sums i + j and |i − j| from the upper bound
of S. For efficiency, we only consider elements i in the domain-delta ∆L(S); this
is justifiable because once two elements are added to the lower bound, they never
need to be processed again as a pair.4 Also note that the domain of S may be the
empty set according to the sum-free constraint. Hence the filtering algorithm
never returns ‘inconsistent’.

Proposition 1. Algorithm FilterSumFree establishes bounds consistency on

the sum-free constraint.

4 A technical detail is that when ILOG Solver makes the first call for filtering, the
domain-deltas may be empty while the lower bounds are potentially non-empty. In
this special case, we use L(S) instead of ∆L(S) in the first for-loop.

4

FilterSumFree(S)
begin

for i ∈ ∆L(S) do

for j ∈ L(S) do
U(S)← U(S) \ {i + j}
U(S)← U(S) \ {|i− j|}

end

Algorithm 1: Filtering algorithm for the sum-free constraint.

Proof. The algorithm removes all elements that can never be part of a solution.
Hence, the resulting upper bound respects the bounds consistency definition.
For bounds consistency w.r.t. the lower bound, observe that we can never add
more elements to the lower bound and indeed the sum-free constraint can never
force any element to be in the set. The justification for using domain-deltas was
discussed already. �

A single call to FilterSumFree takes O(|∆L(S)| |L(S)|) time because of the
two loops. Here we assume linear-time element listing for ∆L(S) and L(S) using
implementations such as array, linked list, or tree, and constant time set deletion
operations for U(S) using implementations such as a bit-vector. This is O(n2)
in the worst case, where n is the integer domain size for U(S). We can obtain a
tighter analysis by amortizing this complexity for any path from the root of the
search tree to a leaf. Specifically, the cumulative complexity along any such path
is O(

∑
path |∆L(S)| |L(S)|), which is at most O(n

∑
path |∆L(S)|) = O(n2).

As a final remark, we note that the natural integer representation of the
sum-free constraint achieves exactly the same pruning as FilterSumFree.

4 The Atmost1 Constraint on Pairs of Variables

In this section, we present a bounds consistent filtering algorithm for the atmost1
constraint on pairs of set variables. The general atmost1 constraint specifies, for
a collection of set variables with given cardinalities, that each pair of variables
overlaps in at most one element. Formally:

Definition 3 (adapted from [15]). Let S1, . . . , Sn be set variables and let

c1, . . . , cn ≥ 1 be integers. The atmost1 constraint on the n sets Si and the

corresponding cardinalities ci is defined as atmost1(S1, . . . , Sn, c1, . . . , cn) =

{(s1, . . . , sn) | ∀i, 1 ≤ i ≤ n : si ∈ D(Si), |si| = ci;

∀i, j, 1 ≤ i < j ≤ n : |si ∩ sj | ≤ 1} .

As mentioned earlier, filtering the atmost1 constraint to bounds consistency
is NP-hard [4]. In this work, we consider the atmost1 constraint involving two
set variables only (i.e., for n = 2), which we will refer to as the pair-atmost1

5

constraint. A natural way of implementing this constraint is to use the following
decomposition of pair-atmost1(S1, S2, c1, c2) into three constraints:

|S1| = c1, |S2| = c2, |S1 ∩ S2| ≤ 1.

We will refer to this as the standard decomposition for pair-atmost1. Un-
fortunately, this decomposition treats the three constraints separately, and fil-
tering these constraints separately does not lead to bounds consistency on the
pair-atmost1 constraint. For example, the intersection constraint by itself never
forces any element to be added to the lower bound of either set, although this is
sometimes possible through reasoning together with the cardinality constraints
for the sets. This is illustrated by the following example:

Example 1. Consider the following scenario: D(S1) = [{1, 2} , {1, 2, 3, 5, 6}],
D(S2) = [{3} , {1, 2, 3, 4}], and the required cardinalities are c1 = c2 = 3. Since
1 and 2 both must belong to S1, at most one of them may be in S2 due to
the intersection constraint. This, because of the cardinality requirement for S2,
forces 4 to always be in S2. Also, again because of the cardinality requirement
for S2, at least one of 1 and 2 must belong to S2, which in turn implies that
the pairs (1,3) and (2,3) cannot be in S1 due to the intersection constraint; that
is, 3 cannot be in S1. With this reasoning, a bounds-consistent filtering algo-
rithm will achieve the following domain filtering: D(S1) = [{1, 2} , {1, 2, 5, 6}],
D(S2) = [{3, 4} , {1, 2, 3, 4}].

In this example, the standard decomposition does not achieve any filtering
at all because it does not add values to the domain lower bounds to begin with.
In particular, it will not add 4 to L(S2). In fact, the original algorithm of Sadler
and Gervet [15] for atmost1 also does not achieve bounds consistency on this
example scenario.

4.1 Bounds Consistency

We now describe algorithm BC-FilterPairAtmost1 (shown as Algorithm 2),
which exploits the interplay between the intersection constraint and the two
cardinality constraints, and achieves bounds consistency for pair-atmost1. It
applies a somewhat involved data structure, but its eventual filtering steps are
surprisingly simple, taking constant time for the actual checks. The complexity
of the algorithm is dominated by the availability of incremental set operations
during search. We next describe in words the idea behind the algorithm.

Given set variables S1 and S2, and cardinalities c1 and c2, we first scan
the elements of the lower and upper bounds of the domains of S1 and S2, and
partition the elements of each set variable into 6 disjoint sets. For S1, we have
L1only, L1L2, L1U2, U1only, U1L2, U1U2; for S2, we have L2only, L2L1, L2U1,
U2only, U2L1, U2U1. The semantics of these sets are straightforward, except for
U1 here being a shorthand for U(S1)\L(S1), and similarly for U2. For instance,
L1L2 denotes L(S1)∩L(S2), L1only denotes L(S1)\L(S2), U1L2 denotes (U(S1)\
L(S1))∩L(S2), etc. Note that L1L2 = L2L1, U1L2 = L2U1, and U2L1 = L1U2.

6

For these three pairs, we explicitly maintain only one set per pair, namely, L1L2,
U1L2, and U2L1, respectively. (While U1U2 = U2U1 as well, we still maintain
both of these sets because we need different “flags” for these two sets, as will
become clear shortly.) Henceforth, we will talk of the remaining 9 sets that we
consider and into which the elements are partitioned.

Example 2. Consider the scenario of Example 1, where L(S1) = {1, 2} , U(S1) \
L(S1) = {3, 5, 6} , L(S2) = {3} , and U(S2) \L(S2) = {1, 2, 4}. The 9 sets in this
case are: L1only = ∅, L2only = ∅, L1L2 = ∅, U1only = {5, 6}, U2only = {4},
U1L2 = {3}, U2L1 = {1, 2}, U1U2 = ∅, and U2U1 = ∅.

A key observation is that the elements in each of these 9 sets behave iden-

tically as far as filtering for pair-atmost1 is concerned. That is, if, say, the
filtering algorithm concludes that some element x ∈ L1L2 needs to be removed
from U(S2), then it must be the case that all elements of L1L2 need to be
removed from U(S2). In this sense, all elements within each of the 9 sets are
indistinguishable from each other. In Example 2, elements 5 and 6 are indistin-
guishable, and so are elements 1 and 2. The algorithm exploits this fact, and
once these 9 sets are constructed, it is able to identify in constant time the ele-
ments to be added to the lower bounds or to be removed from the upper bounds.
Of course, filtering the identified elements then takes time proportional to the
number of elements filtered. Accordingly, until the final filtering step of the al-
gorithm, we only maintain the cardinality of and one arbitrary representative
element from each of the 9 sets.

For each of the 9 sets, we maintain two Boolean flags throughout, which
are all initialized to False to begin with. These are the “can-have” flag and the
“not-necessary” flag. During the course of the algorithm, we turn the can-have
flag for one of the 9 sets to True when we determine that there is a solution with
some element from that set included in S1 or S2, as appropriate. Similarly, we
turn the not-necessary flag to True when we determine that there is a solution to
the constraint without using any element of this set in S1 or S2, as appropriate.
The actual filtering is done at the very end, once we have gone through every
case of the filtering algorithm. At this point, we examine each of the 18 flags. If,
say, U1L2.can-have is still False, this implies that none of the solutions contain
an element of U1L2, so that we can remove U1L2 from U(S1). Similarly, if, say,
U1U2.not-necessary is still False, this implies that all elements in U1U2 are in
fact necessary for any solution and we can add U1U2 to L(S1). These 18 checks
are the only real filtering steps of the algorithm.

We are now ready to describe filtering for pair-atmost1(S1, S2, c1, c2). If
|L1L2| > 1, we have an immediate failure. Otherwise, BC-FilterPairAtmost1

implicitly goes through every possible solution to the constraint, given the do-
main values of S1 and S2. For this, it considers several cases, based on which of
the 9 sets, if any, the shared element, i.e., the element common to both sets in
the solution, comes from. We will refer to the case that S1 and S2 do not share
any element in the solution as Case0. Updating the can-have and not-necessary
flags for this case will form the basic block of the overall algorithm, the other

7

cases reducing to this one with appropriate minor modifications to the involved
constants.
Filtering for Case0. If |L1L2| = 1, there is no solution in Case0 and we stop
updating flags for this case. Otherwise, let k1 = c1 − |L(S1)|, i.e., the number
of new elements that must be added to S1 to achieve cardinality c1. Similarly
define k2 for S2. The number of potential elements that may be added to S1 is
`1 = |U1only| + |U1U2|, because elements in U1L2 cannot be in S1 in Case0. Let
slack1 = `1−k1, that is, the number of “extra” elements we have available for S1.
Similar define slack2. Finally define slack3 to be the total number of elements
available for S1 and S2 combined, less k1 + k2. Formally, slack3 = (|U1only|
+|U2only| + |U1U2|) − (k1 + k2).

Lemma 1. In Case0, there is a solution iff slack1 ≥ 0, slack2 ≥ 0, and slack3 ≥
0. Moreover, the can-have and not-necessary flags should be updated as described

in Algorithm 2, Case0.

We omit the tedious formal proof of this lemma. It can be shown to be correct
by examining one-by-one the conditions under which the flags are updated. For
example, when all three slacks are non-negative, we have a solution. In particular,
this solution can always use elements of U1only without violating the atmost1

constraint; we therefore set U1only.can-have to True. Similarly, since we are in
Case0, the solution will not use elements of U1L2, and we can mark this set
as not-necessary. Next, when, say, slack1 is strictly positive, this means that
there are more than the minimum required elements (k1) available for S1, and
therefore some of the shared elements are free to be used by S2. This translates
into turning both U2U1.can-have and U1U2.not-necessary to True, i.e, S2 can use
some elements of U2U1 and S1 does not need all elements of U1U2. Finally, when
we also have slack3 strictly positive, we can deduce that even the corresponding
U1only or U2only set is not necessary in its entirety.
Filtering for other cases. When we are not in Case0, i.e., we are considering
possible solutions in which S1 and S2 do share an element x, x can come from
one of L1L2, U1L2, U2L1, U1U2, and U2U1. Note that, as observed earlier, the
elements within these five sets are indistinguishable so that x can be taken as
any representative element from these sets. If |L1L2| = 1, x must come from
L1L2. Otherwise (when |L1L2| = 0), x can come from either of the other four
sets. For each of these possibilities, we compute k1, k2, slack1, slack2, and slack3
taking the source of x into account, and look for a solution with cardinalities
c1 − 1 and c2 − 1 from the remaining elements while exploiting the fact that no
more elements can be shared (so that the reduced sub-problem is in Case0). If a
solution is determined to exist, we update the can-have and not-necessary flags
as in Case0, and in addition also set to True the can-have flag for the set x came
from.

We have the following property, which is crucial for the correctness of the
above filtering mechanism for bounds consistency:

Lemma 2. For each of the 9 sets T , the following holds: T should be removed

from the upper bound of the appropriate Si, i ∈ {1, 2} , iff T .can-have is False

8

BC-FilterPairAtmost1(S1, S2, c1, c2)
begin

Scan L(S1), U(S1), L(S2), and U(S2), and compute the cardinality of and a
representative element from each of the 9 sets:

L1only, L2only, L1L2, U1only, U2only,
U1L2, U2L1, U1U2, U2U1

Initialize all can-have and not-necessary flags to False
if |L1L2| > 1 then Fail
if |L1L2| = 1 then

Let x be the (representative) element of L1L2; share x

Perform BC-Case0 on (S1 \ {x} , S2 \ {x} , c1 − 1, c2 − 1)
Perform BC-UpdateDomains

Return
// |L1L2| = 0
for each s ∈ { U1L2, U2L1, U1U2, U2U1 } do

// possible solution has a shared element from s; use representative x

Perform BC-Case0 on (S1 \ {x} , S2 \ {x} , c1 − 1, c2 − 1)
if all three slack conditions are non-negative then

s.can-have ← True

Perform BC-UpdateDomains

end

sub BC-Case0(S1, S2, c1, c2)
begin

k1 ← c1 − (|L1only| + |L1L2| + |U2L1|)
k2 ← c2 − (|L2only| + |L1L2| + |U1L2|)
slack1 ← (|U1only| + |U1U2|)− k1

slack2 ← (|U2only| + |U2U1|)− k2

slack3 ← (|U1only| + |U2only| + |U1U2|)− (k1 + k2)

if (slack1 ≥ 0) and (slack2 ≥ 0) and (slack3 ≥ 0) then
// solution exists
U1only.can-have ← True; U2only.can-have ← True
U1L2.not-necessary ← True; U2L1.not-necessary ← True
if slack1 > 0 then

U2U1.can-have ← True; U1U2.not-necessary ← True
if slack3 > 0 then U1only.not-necessary ← True

if slack2 > 0 then
U1U2.can-have ← True; U2U1.not-necessary ← True
if slack3 > 0 then U2only.not-necessary ← True

end

sub BC-UpdateDomains

begin

for each s in the 9 sets do

if s.can-have = False or s.not-necessary = False then

for all y ∈ s computed by re-scanning L(S1), U(S1), L(S2), U(S2) do
if s.can-have = False then Remove y from U(Si) for correct i

if s.not-necessary = False then Add y to L(Si) for correct i

end

Algorithm 2: Filtering pair-atmost1. Case0 shown here in detail.

9

at the end, and T should be added to the lower bound for the appropriate Si iff

T .not-necessary is False at the end.

We again omit a formal proof of this lemma and only mention that it follows
by recognizing that the algorithm implicitly goes through every possible solution
of the problem instance so that the can-have and not-necessary flags have their
intended semantic meaning.

Theorem 1. Algorithm 2 establishes bounds consistency on the pair-atmost1

constraint.

The time complexity of BC-FilterPairAtmost1 is dominated entirely by
the creation of the 9 sets during search. Computing the cardinalities of and a
representative from these sets takes time O(n) where n is the integer domain
size. The rest of the algorithm has only a constant number of calls to BC-Case0

and one call to BC-UpdateDomains. Notice that BC-Case0 itself runs in
constant time; all it does is process a constant number of flags based on the
pre-computed cardinalities of 9 sets. Since we do not maintain all elements of
the 9 sets throughout, the call to BC-UpdateDomains at the end re-creates
and filters these elements for any set whose can-have or not-necessary flag is
still False. This takes time O(n + k log n), where k is the number of elements
removed from an upper bound or added to a lower bound, assuming standard
set operations used for maintaining these upper and lower bounds take time
O(log n).

We can tighten this analysis by amortizing over an entire path in the search
tree from the root to any leaf. Observe that we can add to either lower bound
and remove from either upper bound at most n elements in an entire path, so
that the total filtering complexity is O(n log n) for the path. Similarly, the fil-
tering algorithm can be called at most n times due to each of S1 and S2, so
that updating the flags takes total time O(n) for the path. Finally, by exploiting
domain-deltas for S1 and S2 and computing not only the cardinalities and rep-
resentatives of the 9 sets but rather the complete sets, we can similarly reduce
the computation time for generating the 9 sets to O(n log n) per path, since the
time for this is O(|∆| log n) per call (assuming O(log n) time set operations) and
the ∆’s sum to O(n). This last part requires a way to “remember” the elements
of the 9 sets from the parent node so that their cardinalities can be updated by
only looking at domain-deltas of S1 and S2. We note that we used ILOG Solver
6.3 for our implementation of this algorithm. Unfortunately, currently the solver
does not provide complete access to the domain-deltas for both S1 and S2 si-
multaneously. Moreover it does not support ‘RevIntSet’ types, which would be
needed to maintain and update the 9 sets incrementally as discussed above.

5 Experimental Results

We now discuss computational results for the sum-free constraint and the
pair-atmost1 constraint. All our models were implemented in ILOG Solver 6.3,

10

and all experiments run on a 3.8 GHz Intel Xeon machine with 2 GB memory
running Linux 2.6.9-22.ELsmp.

5.1 The Schur Problem

To evaluate the performance of the sum-free constraint, we applied it to solve
Schur problems. Given an integer k ≥ 0, the Schur number of k is the largest
integer n for which we can partition the set {1, 2, . . . , n} into k sum-free sets.
The related decision problem is: given two integers k, n ≥ 0, does there exist a
partition of {1, 2, . . . , n} into k sum-free sets? We next present two constraint
programming models for the decision version.

First model: We introduce n integer variables xi, 1 ≤ i ≤ n, representing
the subset in which element i is placed. Thus, D(xi) = {1, . . . , k}. To ensure
that the subsets are sum-free, we add the constraints

(xi = s) ∧ (xj = s) ⇒ (xi+j 6= s),

for all subsets s = 1, . . . , k, and elements 1 ≤ i ≤ j ≤ n such that i + j ≤ n.
Note that there are O(kn2) such constraints.

Second model: We introduce k set variables Si representing the sum-free
subsets (i = 1, . . . , k). Thus, D(Si) = [∅, {1, . . . , n}]. To ensure that the subsets
are sum-free, we add the constraints

sum-free(Si)

for all subsets i = 1, . . . , k. In this way, we just add k such constraints.

These two different representations achieve the same amount of filtering at
each node of the search tree. However, for large n, the number of constraints in
the integer representation often becomes an issue, which we hope to circumvent
using the set representation.

From a search perspective, we observed that the representation using integer
variables (the first model) provides a better handle to tune the search strategy.
During our experiments we found that the best search strategy is to branch first
on the integer variable with the smallest domain, breaking ties in favor of the
variable with the smallest maximum domain value, and assigning the smallest
domain value first. Hence, in our set model (the second model), we also apply
an integer representation of the set variables, in order to benefit from the same
effective search strategy. We note that we only use the integer variables, and not
the corresponding constraints.

We compare the performance of the two models on a number of Schur problem
instances; see Table 1. As the two models achieve the same amount of filtering,
they always use same number of fails (backtracks). However, the set representa-
tion using sum-free constraints does so much more efficiently (when the number
of fails is larger than 2). For example, schur-7-750 cannot be solved using the

11

Problem
Integer Model Set Model

time memory fails time memory fails

schur-5-123 60.7 98 MB 9,520 14.6 22 MB 9,520

schur-5-135 137.9 112 MB 17,550 35.8 22 MB 17,550

schur-5-139 3559.1 117 MB 415,705 980.8 23 MB 415,705

schur-6-300 3.8 552 MB 75 1.8 29 MB 75

schur-6-306 75.3 572 MB 3,050 17.9 30 MB 3,050

schur-7-500 3.6 1,762 MB 2 12.4 40 MB 2

schur-7-550 – > 2 GB – 16.8 42 MB 2

schur-7-750 – > 2 GB – 38.7 51 MB 54

schur-8-500 4.3 1,993 MB 2 16.2 43 MB 2

schur-8-550 – > 2 GB – 22.6 45 MB 2

schur-8-1000 – > 2 GB – 179.4 67 MB 2

schur-8-1400 – > 2 GB – 563.8 89 MB 3

Table 1. Computational results on Schur problems. Instance schur-k-n asks to

partition {1, . . . , n} into k sum-free subsets. Time is in seconds.

integer representation within a time limit of 30 minutes (in fact, it requires more
than 2 GB of memory to even run), while the set representation solves this prob-
lem in less than 40 seconds. When the number of backtracks is small, we don’t
benefit as much from the incremental set representation, in which case the integer
representation can be more efficient (schur-7-500 and schur-8-500). However,
in general, the high memory requirements (> 2 GB) of the integer model pre-
vented it from being used on any problem instance with n ≥ 550, while the set
representation never needed more than 100 MB even for the largest instances.
For smaller instances, such as schur-5-xxx, the set representation reduced the
runtime by roughly a factor of four.

Overall, these results demonstrate that a set representation can not only be
convenient from a modeling perspective, but also helpful from a computational
perspective.

5.2 The Social Golfer Problem

We evaluated the performance of the pair-atmost1 constraint on the well-known
social golfer problem (problem prob010 in CSPLib). The problem golf-g-s-w

asks for a partition of n golfers into g groups, each of size s, for w weeks, such
that no two golfers are in the same group more than once throughout the whole
schedule. The problem was originally posted (on sci.op.research in May 1998)
for 32 golfers, to be divided over 8 groups of size 4 over 10 weeks, i.e., problem in-
stance golf-8-4-10. The social golfer problem has received much attention over
the years in the constraint programming community, especially as a benchmark
set for symmetry breaking techniques [2, 12]. As mentioned earlier, our work fo-
cuses on better filtering algorithms for this problem, orthogonal to the symmetry

12

exploitation approaches. While the original problem with 8 golfers over 10 weeks
has been solved analytically [1], it has never been solved computationally to the
best of our knowledge, making this family of problems a challenging benchmark.

We model this problem for constraint programming using set variables, fol-
lowing Smith [16]. For each week i = 1, . . . , w and each group j = 1, . . . , g, we
introduce a set variable Sij representing the golfers that appear in this group.
Thus, D(Sij) = [∅, {1, . . . , n}]. The cardinality of each group is restricted to be
s by the constraint |Sij | = s. To ensure that in each week i the groups partition
the set of golfers, we state for each i ∈ {1, 2, . . . , w} the constraint

partition(Si1, . . . , Sig, {1, . . . , n}),

which is readily available in the ILOG library. To ensure that each pair of golfers
meet at most once, we apply the atmost1 constraint on pairs of groups:

atmost1(Sij , Skl, s, s),

for 1 ≤ i < k ≤ w, 1 ≤ j ≤ g, 1 ≤ l ≤ g. Together, these constraint are sufficient
to model the problem. To this model we can apply the standard enumeration
strategy on the set variables that is available in ILOG Solver.

As in the previous section, we experimented with a different search strategy
based on an additional integer representation of the set variables. For each week
i = 1, . . . , w and each golfer j = 1, . . . , n, we introduce an integer variable xij rep-
resenting the group in which golfer j plays in week i. Thus, D(xij) = {1, . . . , g}.
We implemented a second search strategy, based on these variables, choosing the
variable with the smallest domain first and assigning the minimum value from
its domain first. The integer representation furthermore allows us to apply a re-
dundant global cardinality constraint [13] with respect to the partitioning of the
golfers into groups. For each week i, we state that each group must be assigned
to exactly s xij , by using a global cardinality constraint:

gcc(xi1, . . . , xin, s, s),

where s denotes the g-tuple (s, . . . , s). In practice, this constraint does not add
much overhead and is able to filter some additional values, provided that we
branch on the integer variables. Hence we always apply it when using the search
strategy on integer variables. In case we branch on the set variables, this con-
straint is not effective.

The social golfer problem is notoriously difficult due to the many symmetries.
To account for some symmetry-breaking, we partly instantiate some of the set
variables before starting the search, following Fahle et al. [7] (see also [12]). For
the first week, we simply assign the groups by increasing order of the golfers,
i.e., the first s golfers in group 1, the next s golfers in group 2, and so on. The s

golfers of the first group in week 1 are then divided over the first s groups of all
other weeks in increasing order. Finally, we assign the first group of the second
week to its lower bound, being the first players in the first s groups of week 1.
Although this static symmetry-breaking improved the performance significantly,

13

Problem

Standard Decomposition BC-FilterPairAtmost1

(partial filtering) (bounds consistency)

time fails time fails

golf-6-5-5 2106.7 10,986,224 75.5 239,966

golf-6-5-4 1517.7 10,930,370 39.7 197,837

golf-6-5-3 1060.5 10,930,016 29.6 197,607

golf-6-5-2 635.5 10,879,368 17.2 171,664

golf-8-4-4 226.7 1,555,561 157.7 738,393

golf-10-3-10 128.1 150,911 67.2 78,976

golf-10-3-9 86.0 150,452 52.4 78,613

golf-10-3-6 21.3 110,429 17.3 57,364

golf-10-3-3 0.02 50 0.02 6

golf-10-4-5 51.3 310,110 4.5 22,044

golf-10-4-4 42.5 310,109 4.0 22,043

golf-7-4-4 22.5 184,641 4.4 27,877

golf-7-3-2 0.01 48 0.01 5

golf-9-4-4 7.8 59,331 1.6 6,204

golf-9-4-3 4.7 50,468 0.3 1,853

golf-6-4-5 5.9 35,870 0.6 3,326

golf-6-4-4 4.5 35,832 0.5 3,299

golf-5-4-4 0.3 2,313 0.07 266

Table 2. Computational results on social golfer instances. Instance golf-g-s-w

asks to schedule g groups of size s over w weeks. Runtime is in seconds.

it was not sufficient to close any open problem with our additional filtering.
However, our filtering algorithm can be applied to any model, including those
with more advanced symmetry-breaking techniques.

We evaluated the performance of the standard decomposition implementation
of pair-atmost1 (achieving partial filtering) with our filtering algorithm BC-

FilterPairAtmost1 (achieving bounds consistency) on a number of instances.
The results are reported in Table 2. The results demonstrate that using the
bounds consistency algorithm, one can solve many instances 5 to 50 times faster,
with a similar reduction in the number of fails. For example, on the instance
golf-6-5-5 with 6 groups of size 5 each to be scheduled for 5 weeks, the runtime
is decreased from more than half an hour to 76 seconds and the number of fails
reduces from nearly 11 million to 250 thousand, a 40-fold reduction. There are,
of course, other instances where using BC-FilterPairAtmost1 does not pay
off significantly, although in our experiments, using this algorithm almost never
hurt the performance.

14

6 Conclusion

We studied two constraints on set variables: the sum-free constraint and the
atmost1 constraint on pairs of set variables with known cardinality. For both con-
straints we introduced efficient domain filtering algorithms, establishing bounds
consistency. Experimental results on the Schur problem and the Social Golfer
Problem showed that these constraints not only offer convenience in modeling,
but also help in solving combinatorial problems more efficiently in terms of run-
time and memory requirements.

Acknowledgments

We thank the reviewers for the many constructive comments. This research
was partly supported by the Intelligent Information Systems Institute, Cornell
University under AFOSR Grant FA-9550-04-1-0151.

References

[1] A. Aguado. A 10 days solution to the social golfer problem, 2004.
[2] N. Barnier and P. Brisset. Solving Kirkman’s schoolgirl problem in a few seconds.

Constraints, 10(1):7–21, 2005.
[3] N. Beldiceanu, M. Carlsson, and J. Rampon. Global constraint catalog, 2005.

http://www.emn.fr/x-info/sdemasse/gccat/.
[4] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Disjoint, partition and intersec-

tion constraints for set and multiset variables. In CP’04, volume 3258 of LNCS,
pages 138–152, 2004.

[5] G. Dooms and I. Katriel. The minimum spanning tree constraint. In CP’06,
volume 4204 of LNCS, pages 152–166, 2006.

[6] Eclipse. URL http://www.eclipse-clp.org.
[7] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In CP’01,

volume 2239 of LNCS, pages 93–107, 2001.
[8] H. Fredricksen and M. Sweet. Symmetric sum-free partitions and lower bounds

for Schur numbers. Electronic J. Combinatorics, 7(1):R32, 1–9, 2000.
[9] Gecode. URL http://www.gecode.org.

[10] C. Gervet. Constraints over structured domains. In Rossi et al. [14], chapter 17.
[11] ILOG Solver. URL http://www.ilog.com/products/cp.
[12] J.-F. Puget. Symmetry breaking revisited. Constraints, 10(1):23–46, 2005.
[13] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In

AAAI’96, volume 1, pages 209–215, 1996.
[14] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Program-

ming. Elsevier, 2006.
[15] A. Sadler and C. Gervet. Global reasoning on sets. In Proc. of Workshop on

Modelling and Problem Formulation (FORMUL’01), 2001.
[16] B. Smith. Reducing symmetry in a combinatorial design problem. In CP-AI-

OR’01, 2001.
[17] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algo-

rithm and its specializations. Artificial Intelligence, 57(2-3):291–321, 1992.
[18] W.-J. van Hoeve and I. Katriel. Global constraints. In Rossi et al. [14], chapter 6.

15

http://www.eclipse-clp.org
http://www.gecode.org
http://www.ilog.com/products/cp

