
Revisiting the Sequence Constraint

Willem-Jan van Hoeve1, Gilles Pesant2,3,
Louis-Martin Rousseau2,3,4, and Ashish Sabharwal1

1 Department of Computer Science, Cornell University,
4130 Upson Hall, Ithaca, NY 14853, USA

{vanhoeve, sabhar}@cs.cornell.edu
2 École Polytechnique de Montréal, Montreal, Canada

3 Centre for Research on Transportation (CRT),
Université de Montréal, C.P. 6128, succ. Centre-ville, Montreal, H3C 3J7, Canada

4 Oméga Optimisation Inc.
{pesant, louism}@crt.umontreal.ca

Abstract. Many combinatorial problems, such as car sequencing and
rostering, feature sequence constraints, restricting the number of occur-
rences of certain values in every subsequence of a given width. To date,
none of the filtering algorithms proposed guaranteed domain consistency.
In this paper, we present three filtering algorithms for the sequence con-
straint, with complementary strengths. One borrows ideas from dynamic
programming; another reformulates it as a regular constraint; the last is
customized. The last two algorithms establish domain consistency. Our
customized algorithm does so in polynomial time, and can even be ap-
plied to a generalized sequence constraint for subsequences of variable
widths. Experimental results show the practical usefulness of each.

1 Introduction

The sequence constraint was introduced by Beldiceanu and Contejean [4] as
a set of overlapping among constraints. The constraint is also referred to as
among seq in [3]. An among constraint restricts the number of variables to be
assigned to a value from a specific set. For example, consider a nurse-rostering
problem in which each nurse can work at most 2 night shifts during every 7
consecutive days. The among constraint specifies the 2-out-of-7 relation, while
the sequence constraint imposes such among for every subsequence of 7 days.

Beldiceanu and Carlsson [2] have proposed a filtering algorithm for the se-
quence constraint, while Régin and Puget [10] have presented a filtering
algorithm for the sequence constraint in combination with a global cardinal-
ity constraint [8] for a car sequencing application. Neither approach establishes
domain consistency, however. As the constraint is inherent to many real-life
problems, improved filtering could have a substantial industrial impact.

In this work we present three novel filtering algorithms for the sequence
constraint. The first is based on dynamic programming concepts and runs in
polynomial time, but it does not establish domain consistency. The second algo-
rithm is based on the regular constraint [7]. It establishes domain consistency,

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 620–634, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Revisiting the Sequence Constraint 621

but needs exponential time in the worst case. In most practical cases it is very
efficient however. Our third algorithm establishes domain consistency in polyno-
mial time. It can be applied to a generalized version of the sequence constraint,
for which the subsequences are of variable length. Moreover the number of oc-
currences may also vary per subsequence. Each algorithm has advantages over
the others, either in terms of (asymptotic) running time or in terms of filtering.

The rest of the paper is structured as follows. Section 2 presents some back-
ground and notation on constraint programming. Section 3 recalls and discusses
the among and sequence constraints. Sections 4 to 6 describe filtering algo-
rithms for sequence. Section 7 compares the algorithms experimentally. Fi-
nally, Section 8 summarizes the contributions of the paper and discusses possible
extensions.

2 Constraint Programming Preliminaries

We first introduce basic constraint programming concepts. For more information
on constraint programming we refer to [1].

Let x be a variable. The domain of x is a set of values that can be assigned
to x and is denoted by D(x). In this paper we only consider variables with finite
domains. Let X = x1, x2, . . . , xk be a sequence of variables. We denote D(X) =⋃

1≤i≤k D(xi). A constraint C on X is defined as a subset of the Cartesian
product of the domains of the variables in X , i.e. C ⊆ D(x1)×D(x2)×· · ·×D(xk).
A tuple (d1, . . . , dk) ∈ C is called a solution to C. We also say that the tuple
satisfies C. A value d ∈ D(xi) for some i = 1, . . . , k is inconsistent with respect to
C if it does not belong to a tuple of C, otherwise it is consistent. C is inconsistent
if it does not contain a solution. Otherwise, C is called consistent.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence of
variables X = x1, x2, . . . , xn, together with a finite set of constraints C, each on
a subsequence of X . The goal is to find an assignment xi = di with di ∈ D(xi)
for i = 1, . . . , n, such that all constraints are satisfied. This assignment is called
a solution to the CSP.

The solution process of constraint programming interleaves constraint propa-
gation, or propagation in short, and search. The search process essentially consists
of enumerating all possible variable-value combinations, until we find a solution
or prove that none exists. We say that this process constructs a search tree. To re-
duce the exponential number of combinations, constraint propagation is applied
to each node of the search tree: Given the current domains and a constraint C,
remove domain values that do not belong to a solution to C. This is repeated
for all constraints until no more domain value can be removed. The removal of
inconsistent domain values is called filtering.

In order to be effective, filtering algorithms should be efficient, because they
are applied many times during the solution process. Further, they should remove
as many inconsistent values as possible. If a filtering algorithm for a constraint
C removes all inconsistent values from the domains with respect to C, we say
that it makes C domain consistent. Formally:



622 W.-J. van Hoeve et al.

Definition 1 (Domain consistency, [6]). A constraint C on the variables
x1, . . . , xk is called domain consistent if for each variable xi and each value
di ∈ D(xi) (i = 1, . . . , k), there exist a value dj ∈ D(xj) for all j �= i such that
(d1, . . . , dk) ∈ C.

In the literature, domain consistency is also referred to as hyper-arc consistency
or generalized-arc consistency.

Establishing domain consistency for binary constraints (constraints defined on
two variables) is inexpensive. For higher arity constraints this is not necessarily
the case since the naive approach requires time that is exponential in the number
of variables. Nevertheless the underlying structure of a constraint can sometimes
be exploited to establish domain consistency much more efficiently.

3 The Among and Sequence Constraints

The among constraint restricts the number of variables to be assigned to a value
from a specific set:

Definition 2 (Among constraint, [4]). Let X = x1, x2, . . . , xq be a sequence
of variables and let S be a set of domain values. Let 0 ≤ min ≤ max ≤ q be
constants. Then

among(X, S, min, max) = {(d1, . . . , dq) | ∀i ∈ {1, . . . , q} di ∈ D(xi),
min ≤ |{i ∈ {1, . . . , q} : di ∈ S}| ≤ max}.

Establishing domain consistency for the among constraint is not difficult. Sub-
tracting from min, max, and q the number of variables that must take their value
in S, and subtracting further from q the number of variables that cannot take
their value in S, we are in one of four cases:

1. max < 0 or min > q: the constraint is inconsistent;
2. max = 0: remove values in S from the domain of all remaining variables,

making the constraint domain consistent;
3. min = q: remove values not in S from the domain of all remaining variables,

making the constraint domain consistent;
4. max > 0 and min < q: the constraint is already domain consistent.

The sequence constraint applies the same among constraint on every q con-
secutive variables:

Definition 3 (Sequence constraint, [4]). Let X = x1, x2, . . . , xn be an or-
dered sequence of variables (according to their respective indices) and let S be a
set of domain values. Let 1 ≤ q ≤ n and 0 ≤ min ≤ max ≤ q be constants. Then

sequence(X, S, q, min, max) =
n−q+1∧

i=1

among(si, S, min, max),

where si represents the sequence xi, . . . , xi+q−1.



Revisiting the Sequence Constraint 623

In other words, the sequence constraint states that every sequence of q consec-
utive variables is assigned to at least min and at most max values in S. Note
that working on each among constraint separately, and hence locally, is not as
powerful as reasoning globally. In particular, establishing domain consistency on
each among of the conjunction does not ensure domain consistency for sequence.

Example 1. Let X = x1, x2, x3, x4, x5, x6, x7 be an ordered sequence of variables
variables with domains D(xi) = {0, 1} for i ∈ {3, 4, 5, 7}, D(x1) = D(x2) = {1},
and D(x6) = {0}. Consider the constraint sequence(X, {1}, 5, 2, 3), i.e., every
sequence of five consecutive variables must account for two or three 1’s. Each
individual among is domain consistent but it is not the case for sequence: value 0
is unsupported for variable x7. (x7 = 0 forces at least two 1’s among {x3, x4, x5},
which brings the number of 1’s for the leftmost among to at least four.)

Establishing domain consistency for the sequence constraint is not nearly as
easy as for among. The algorithms proposed so far in the literature may miss
such global reasoning. The filtering algorithm proposed in [10] and implemented
in Ilog Solver does not filter out 0 from D(x7) in the previous example. However
in some special cases domain consistency can be efficiently computed: When min
equals max, it can be established in linear time. Namely, if there is a solution,
then xi must equal xi+q because of the constraints ai +ai+1 + · · ·+ai+q−1 = min
and ai+1 + · · · + ai+q = min. Hence, if one divides the sequence up into n/q
consecutive subsequences of size q each, they must all look exactly the same.
Thus, establishing domain consistency now amounts to propagating the “set-
tled” variables (i.e. D(xi) ⊆ S or D(xi) ∩ S = ∅) to the first subsequence and
then applying the previously described algorithm for among. Two of the filter-
ing algorithms we describe below establish domain consistency in the general
case.

Without loss of generality, we shall consider instances of sequence in which
S = {1} and the domain of each variable is a subset of {0, 1}. Using an element
constraint, we can map every value in S to 1 and every other value (i.e., D(X)\S)
to 0, yielding an equivalent instance on new variables.

4 A Graph-Based Filtering Algorithm

We propose a first filtering algorithm that considers the individual among con-
straints of which the sequence constraint is composed. First, it filters the among
constraints for each sequence of q consecutive variables si. Then it filters the
conjunction of every pair of consecutive sequences si and si+1. This is presented
as SuccessiveLocalGraph (SLG) in Algorithm 1, and discussed below.

4.1 Filtering the among Constraints

The individual among constraints are filtered with the algorithm FilterLocal-

Graph. For each sequence si = xi, . . . , xi+q−1 of q consecutive variables in



624 W.-J. van Hoeve et al.

x1 x2 x3 x4 x2 x3 x4 x5 x3 x4 x5 x6

S
¬S

Fig. 1. Filtered Local Graphs of Example 2

X = x1, . . . , xn, we build a digraph Gsi = (Vi, Ai) as follows. The vertex set and
the arc set are defined as

Vi = {vj,k | j ∈ {i − 1, . . . , i + q − 1}, k ∈ {0, . . . , j}},

Ai ={(vj,k, vj+1,k) | j∈{i − 1, . . . , i + q − 2}, k∈{0, . . . , j}, D(xj+1) \ S �=∅} ∪
{(vj,k, vj+1,k+1) | j∈{i − 1, . . . , i + q − 2}, k∈{0, . . . , j}, D(xj+1) ∩ S �=∅}.

In other words, the arc (vj,k, vj+1,k+1) represents variable xj+1 taking its value
in S, while the arc (vj,k, vj+1,k) represents variable xj+1 not taking its value in
S. The index k in vj,k represents the number of variables in xi, . . . , xj−1 that
take their value in S. This is similar to the dynamic programming approach
taken in [11] to filter knapsack constraints.

Next, the individual among constraint on sequence si is filtered by removing
all arcs that are not on a path from vertex vi−1,0 to a goal vertex vi+q−1,k with
min ≤ k ≤ max. This can be done in linear time (in the size of the graph,
Θ(q2)) by breadth-first search starting from the goal vertices. Naturally, if the
filtered graph contains no arc (vj,k, vj+1,k) for all k, we remove S from D(xj+1).
Similarly, we remove D(X)\S from D(xj+1) if it contains no arc (vj,k, vj+1,k+1)
for all k.

Example 2. Let X = x1, x2, x3, x4, x5, x6 be an ordered sequence of variables
with domains D(xi) = {0, 1} for i ∈ {1, 2, 3, 4, 6} and D(x5) = {1}. Let S = {1}.
Consider the constraint sequence(X, S, 4, 2, 2). The filtered local graphs of this
constraint are depicted in Figure 1.

4.2 Filtering for a Sequence of among

We filter the conjunction of two “consecutive” among constraints. This algorithm
has a “forward” phase and a “backward” phase. In the forward phase, we com-
pare the among on si with the among on si+1 for increasing i, using the algorithm
Compare. This is done by projecting Gsi+1 onto Gsi such that corresponding
variables overlap. Doing so, the projection keeps only arcs that appear in both
original local graphs. We can either project vertex vi+1,0 of Gsi+1 onto vertex
vi+1,0 of Gsi , or onto vertex vi+1,1 of Gsi . We consider both projections sep-
arately, and label all arcs “valid” if they belong to a path from vertex vi,0 to



Revisiting the Sequence Constraint 625

SuccessiveLocalGraph(X, S, q, min, max) begin
build a local graph Gsi

for each sequence si (1 ≤ i ≤ n − q)
for i = 1, . . . , n− q do

FilterLocalGraph(Gsi
)

for i = 1, . . . , n− q − 1 do
Compare(Gsi

, Gsi+1)

for i = n− q − 1, . . . , 1 do
Compare(Gsi

, Gsi+1)

end

FilterLocalGraph(Gsi
) begin

mark all arcs of Gsi
as invalid.

by breadth-first search, mark as valid every arc on a path from vi−1,0 to a goal vertex
remove all invalid arcs

end

Compare(Gsi
, Gsi+1) begin

mark all arcs in Gsi
and Gsi+1 “invalid”

for k = 0, 1 do
project Gsi+1 onto vertex vi,k of Gsi

by breadth-first search, mark all arcs on a path from vi−1,0 to a goal vertex in Gsi+1
“valid”

remove all invalid arcs
end

goal vertex in Gsi+1 in one of the composite graphs. All other arcs are labeled
“invalid”, and are removed from the original graphs Gsi and Gsi+1 . In the back-
ward phase, we compare the among on si with the among on si+1 for decreasing
i, similarly to the forward phase.

4.3 Analysis

SuccessiveLocalGraph does not establish domain consistency for the se-
quence constraint. We illustrate this in the following example.

Example 3. Let X = x1, x2, . . . , x10 be an ordered sequence of variables with do-
mains D(xi) = {0, 1} for i ∈ {3, 4, 5, 6, 7, 8} and D(xi) = {0} for i ∈ {1, 2, 9, 10}.
Let S = {1}. Consider the constraint sequence(X, S, 5, 2, 3), i.e., every sequence
of 5 consecutive variables must take between 2 and 3 values in S. The first
among constraint imposes that at least two variables out of {x3, x4, x5} must be
1. Hence, at most one variable out of {x6, x7} can be 1, by the third among. This
implies that x8 must be 1 (from the last among). Similarly, we can deduce that
x3 must be 1. This is however not deduced by our algorithm.

The problem occurs in the Compare method, when we merge the valid arcs
coming from different projection. Up until that point there is a direct equivalence
between a path in a local graph and a support for the constraint. However
the union of the two projection breaks this equivalence and thus prevents this
algorithm from being domain consistent.

The complexity of the algorithm is polynomial since the local graphs are all of
size O(q · max). Hence FilterLocalGraph runs in O(q · max) time, which is
called n − q times. The algorithm Compare similarly runs for O(q · max) steps

Algorithm 1. Filtering algorithm for the sequence constraint



626 W.-J. van Hoeve et al.

and is called 2(n−q) times. Thus, the filtering algorithm runs in O((n−q)·q·max)
time. As max ≤ q, it follows that the algorithm runs in O(nq2) time.

5 Reaching Domain Consistency Through regular

The regular constraint [7], defining the set of allowed tuples for a sequence of
variables as the language recognized by a given automaton, admits an incremen-
tal filtering algorithm establishing domain consistency. In this section, we give
an automaton recognizing the tuples of the sequence constraint whose number
of states is potentially exponential in q. Through that automaton, we can express
sequence as a regular constraint, thereby obtaining domain consistency.

The idea is to record in a state the last q values encountered, keeping only
the states representing valid numbers of 1‘s for a sequence of q consecutive
variables and adding the appropriate transitions between those states. Let Qq

k

denote the set of strings of length q featuring exactly k 1’s and q −k 0’s — there
are

(
q
k

)
such strings. Given the constraint sequence(X, {1}, q, �, u), we create

states for each of the strings in
⋃u

k=� Qq
k. By a slight abuse of notation, we will

refer to a state using the string it represents. Consider a state d1d2 . . . dq in
Qq

k, � ≤ k ≤ u. We add a transition on 0 to state d2d3 . . . dq0 if and only if
d1 = 0 ∨ (d1 = 1 ∧ k > �). We add a transition on 1 to state d2d3 . . . dq1 if and
only if d1 = 1 ∨ (d1 = 0 ∧ k < u).

We must add some other states to encode the first q−1 values of the sequence:
one for the initial state, two to account for the possible first value, four for the
first two values, and so forth. There are at most 2q−1 of those states, considering
that some should be excluded because the number of 1’s does not fall within [�, u].
More precisely, we will have states

q−1⋃

i=0

min(i,u)⋃

k=max(0,�−(q−i))

Qi
k.

Transitions from a state d1 . . . di in Qi
k to state d1 . . . di0 in Qi+1

k on value 0
and to state d1 . . . di1 in Qi+1

k+1 on value 1, provided such states are part of
the automaton. Every state in the automaton is considered a final (accepting)
state. Figure 2 illustrates the automaton that would be built for the constraint
sequence(X, {1}, 4, 1, 2).

The filtering algorithm for regular guarantees domain consistency provided
that the automaton recognizes precisely the solutions of the constraint. By con-
struction, the states Qq

� of the automaton represent all the valid configurations
of q consecutive values and the transitions between them imitate a shift to the
right over the sequence of values. In addition, the states Qi

�, 0 ≤ i < q are linked
so that the first q values reach a state that encodes them. All states are accept-
ing states so the sequence of n values is accepted if and only if the automaton
completes the processing. Such a completion corresponds to a successful scan of
every subsequence of length q, precisely our solutions.



Revisiting the Sequence Constraint 627

Q 4
2

Q 4
1

Q 1
1

Q 1
0

UUQ 2
0

Q 2
1

Q 2
2

1100

1001

0011

0110

1010

0101

1

1

0

1

0

0

1000

0010

0001

0100

0

0

1

1

1

0

1

0 0

0

000

001

010

011

100

101

110

00

01

10

11

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

0001

0010
0011

0100
0101

0110

1000
1001

1010

1100

1

1
0

1

1

0

0

0

0

0

U UUQ 3
0

Q 3
1

Q 3
2

Q 0
0

Fig. 2. Automaton for sequence(X, {1}, 4, 1, 2)

The resulting algorithm runs in time linear in the size of the underlying graph,
which has O(n2q) vertices and arcs in the worst case. Nevertheless, in most
practical problems q is much smaller than n. Note also that subsequent calls of
the algorithm run in time proportional to the number of updates in the graph
and not to the size of the whole graph.

6 Reaching Domain Consistency in Polynomial Time

The filtering algorithms we considered thus far apply to sequence constraints
with fixed among constraints for the same q, min, and max. In this section we
present a polynomial-time algorithm that achieves domain consistency in a more
generalized setting, where we have m arbitrary among constraints over sequences
of consecutive variables in X . These m constraints may have different min and
max values, be of different length, and overlap in an arbitrary fashion. A con-
junction of k sequence constraints over the same ordered set of variables, for
instance, can be expressed as a single generalized sequence constraint. We define
the generalized sequence constraint, gen-sequence, formally as follows:

Definition 4 (Generalized sequence constraint). Let X = x1, . . . , xn be
an ordered sequence of variables (according to their respective indices) and S
be a set of domain values. For 1 ≤ j ≤ m, let sj be a sequence of consecutive
variables in X, |sj | denote the length of sj, and integers minj and maxj be such
that 0 ≤ minj ≤ maxj ≤ |sj |. Let Σ = {s1, . . . , sm} , Min = {min1, . . . , minm} ,
and Max = {max1, . . . , maxm}. Then

gen-sequence(X, S, Σ, Min, Max) =
m∧

j=1

among(sj , S, minj , maxj).

For simplicity, we will identify each sj ∈ Σ with the corresponding among con-
straint on sj . The basic structure of the filtering algorithm for the gen-sequence



628 W.-J. van Hoeve et al.

CompleteFiltering(X, S = {1} , Σ,Min, Max) begin
for xi ∈ X do

for d ∈ D(xi) do
if CheckConsistency(xi, d) = false then

D(xi)← D(xi) \ {d}

end

CheckConsistency(xi, d) begin
fix xi = d, i.e., temporarily set D(xi) = {d}
y[0]← 0
for �← 1, . . . , n do

y[�]← number of forced 1’s among x1, . . . , x�

while a constraint sj ∈ Σ is violated, i.e., value(sj ) < minj or value(sj ) > maxj do
if value(sj) < minj then

idx← right end-point of sj

PushUp(idx,minj − value(sj ))

else
idx← left end-point of sj

PushUp(idx, value(sj )−maxj)

if sj still violated then
return false

return true
end

PushUp(idx, v) begin
y[idx]← y[idx] + v
if y[idx] > idx then return false
// repair y on the left
while (idx>0)∧ ((y[idx]− y[idx−1] > 1) ∨ ((y[idx]− y[idx−1] = 1) ∧ (1 /∈ D(xidx−1))))
do

if 1 /∈ D(xidx−1) then
y[idx− 1]← y[idx]

else
y[idx− 1]← y[idx]− 1

if y[idx− 1] > idx− 1 then
return false

idx← idx− 1
// repair y on the right
while (idx < n) ∧ ((y[idx]− y[idx + 1] > 0) ∨ ((y[idx]− y[idx + 1] = 0) ∧ (0 /∈ D(xidx))))
do

if 0 /∈ D(xidx) then
y[idx + 1]← y[idx] + 1

else
y[idx + 1]← y[idx]

idx← idx + 1

end

constraint is presented as Algorithm 2. The main loop, CompleteFiltering,
simply considers all possible domain values of all variables. If a domain value is
yet unsupported, we check its consistency via procedure CheckConsistency.
If it has no support, we remove it from the domain of the corresponding variable.

Procedure CheckConsistency is the heart of the algorithm. It finds a single
solution to the gen-sequence constraint, or proves that none exists. It uses
a single array y of length n + 1, such that y[0] = 0 and y[i] represents the
number of 1’s among x1, . . . , xi. The invariant for y maintained throughout is
that y[i + 1] − y[i] is either 0 or 1. Initially, we start with the lowest possible
array, in which y is filled according to the lower bounds of the variables in X .

Algorithm 2. Complete filtering algorithm for the gen-sequence constraint



Revisiting the Sequence Constraint 629

For clarity, let Lj and Rj denote the left and right end-points, respectively,
of the among constraint sj ∈ Σ; Rj = Lj + |sj | − 1. As an example, for the
usual sequence constraint with among constraints of size q, Lj would be i and
Rj would be i+q−1. The value of sj is computed using the array y: value(sj) =
y[Rj ] − y[Lj − 1]. In other words, value(sj) counts exactly the number of 1’s
in the sequence sj . Hence, a constraint sj is satisfied if and only if minj ≤
value(sj) ≤ maxj . In order to find a solution, we consider all among constraints
sj ∈ Σ. Whenever a constraint sj is violated, we make it consistent by “pushing
up” either y[Rj ] or y[Lj − 1]:

if value(sj) < minj , then push up y[Rj ] with value minj − value(sj),
if value(sj) > maxj , then push up y[Lj − 1] with value value(sj) − maxj .

Such a “push up” may result in the invariant for y being violated. We therefore
repair y in a minimal fashion to restore its invariant as follows. Let y[idx] be the
entry that has been pushed up. We first push up its neighbors on the left side
(from idx downward). In case xidx−1 is fixed to 0, we push up y[idx − 1] to the
same level y[idx]. Otherwise, we push it up to y[idx] − 1. This continues until
the difference between all neighbors is at most 1. Whenever y[i] > i for some i,
we need more 1’s than there are variables up to i, and we report an immediate
failure. Repairing the array on the right side is done in a similar way.

Example 4. Consider again the sequence constraint from Example 2, i.e., the
constraint sequence(X, S, 4, 2, 2) with X = {x1, x2, x3, x4, x5, x6}, D(xi) =
{0, 1} for i ∈ {1, 2, 3, 4, 6}, D(x5) = {1}, and S = {1}. The four among con-
straints are over s1 = {x1, x2, x3}, s2 = {x2, x3, x4}, s3 = {x3, x4, x5}, and
s4 = {x4, x5, x6}. We apply CheckConsistency to find a minimum solution.
The different steps are depicted in Figure 3. We start with y = [0, 0, 0, 0, 0, 1, 1],
and consider the different among constraints. First we consider s1, which is vio-
lated. Namely, value(s1) = y[3] − y[0] = 0 − 0 = 0, while it should be at least 2.
Hence, we push up y[3] with 2 units, and obtain y = [0, 0, 1, 2, 2, 3, 3]. Note that
we push up y[5] to 3 because x5 is fixed to 1.

Next we consider s2 with value y[4] − y[1] = 2, which is not violated. We
continue with s3 with value y[5] − y[2] = 2, which is not violated. Then we
consider s4 with value y[6] − y[3] = 1, which is violated as it should be at least
2. Hence, we push up y[6] by 1, and obtain y = [0, 0, 1, 2, 2, 3, 4]. One more
loop over the among constraint concludes consistency, with minimum solution
x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1.

We have optimized the basic procedure in Algorithm 2 in several ways. The main
loop of CompleteFiltering is improved by maintaining a support for all do-
main values. Namely, one call to CheckConsistency (with positive response)
yields a support for n domain values. This immediately reduces the number of
calls to CheckConsistency by half, while in practice the reduction is even
more. A second improvement is achieved by starting out CompleteFilter-

ing with the computation of the “minimum” and the “maximum” solutions to
gen-sequence, in a manner very similar to the computation in CheckConsis-

tency but without restricting the value of any variable. This defines bounds



630 W.-J. van Hoeve et al.

x1 x2 x3 x4 x5 x6

y0 y1 y3 y5 y6y2 y4

x1 x2 x3 x4 x5 x6

y0 y1 y3 y5 y6y2 y4 y0 y5 y6y2 y4y1

x1 x2 x3 x4 x5 x6

y3

Fig. 3. Finding a minimum solution to Example 4

ymin and ymax within which y must lie for all subsequent consistency checks
(details in the following section).

6.1 Analysis

A solution to a gen-sequence constraint can be thought of as the corresponding
binary sequence or, equivalently, as the y array for it. This y array representation
has a useful property. Let y and y′ be two solutions. Define array y ⊕ y′ to be
the smaller of y and y′ at each point, i.e., (y ⊕ y′)[i] = min(y[i], y′[i]).

Lemma 1. If y, y′ are solutions to a gen-sequence constraint, then so is y⊕y′.

Proof. Suppose for the sake of contradiction that y∗ = y ⊕ y′ violates an
among constraint s of the gen-sequence constraint. Let L and R denote the left
and right end-points of s, respectively. Suppose y∗ violates the min constraint,
i.e., y∗[R] − y∗[L − 1] < min(s). Since y and y′ satisfy s, it must be that y∗

agrees with y on one end-point of s and with y′ on the other. W.l.o.g., assume
y∗[L − 1] = y′[L − 1] and y∗[R] = y[R]. By the definition of y∗, it must be that
y[L−1] ≥ y′[L−1], so that y[R]−y[L−1] ≤ y[R]−y′[L−1] = y∗[R]−y∗[L−1] <
min(s). In other words, y itself violates s, a contradiction. A similar reasoning
works when y∗ violates the max constraint of s. �

As a consequence of this property, we can unambiguously define an absolute
minimum solution for gen-sequence as the one whose y value is the lowest over
all solutions. Denote this solution by ymin; we have that for all solutions y and
for all i, ymin[i] ≤ y[i]. Similarly, define the absolute maximum solution, ymax.

Lemma 2. The procedure CheckConsistency constructs the minimum solu-
tion to the gen-sequence constraint or proves that none exists, in O(n2) time.

Proof. CheckConsistency reports success only when no among constraint in
gen-sequence is violated by the current y values maintained by it, i.e., y is a
solution. Hence, if there is no solution, this fact is detected. We will argue that
when CheckConsistency does report success, its y array exactly equals ymin.

We first show by induction that y never goes above ymin at any point, i.e.,
y[i] ≤ ymin[i], 0 ≤ i ≤ n throughout the procedure. For the base case, y[i] is



Revisiting the Sequence Constraint 631

clearly initialized to a value not exceeding ymin[i], and the claim holds trivially.
Assume inductively that the claim holds after processing t ≥ 0 among constraint
violations. Let s be the t + 1st violated constraint processed. We will show that
the claim still holds after processing s.

Let L and R denote the left and right end-points of s, respectively. First
consider the case that the min constraint was violated, i.e., y[R] − y[L − 1] <
min(s), and index L−1 was pushed up so that the new value of y[L−1], denoted
ŷ[L − 1], became y[R] − min(s). Since this was the first time a y value exceeded
ymin, we have y[R] ≤ ymin[R], so that ŷ[L−1] ≤ ymin[R]−min(s) ≤ ymin[L−1].
It follows that ŷ[L − 1] itself does not exceed ymin[L − 1]. It may still be that
the resulting repair on the left or the right causes a ymin violation. However, the
repair operations only lift up y values barely enough to be consistent with the
possible domain values of the relevant variables. In particular, repair on the right
“flattens out” y values to equal ŷ[L − 1] (forced 1’s being exceptions) as far as
necessary to “hit” the solution again. It follows that since ŷ[L−1] ≤ ymin[L−1],
all repaired y values must also not go above ymin. A similar argument works when
instead the max constraint is violated. This finishes the inductive step.

This shows that by performing repeated PushUp operations, one can never
accidentally “go past” the solution ymin. Further, since each PushUp increases y
in at least one place, repeated calls to it will eventually “hit” ymin as a solution.

For the time complexity of CheckConsistency, note that y[i] ≤ i. Since we
monotonically increase y values, we can do so at most

∑n
i=1 i = O(n2) times.

The cost of each PushUp operation can be charged to the y values it changes
because the while loops in it terminate as soon as they find a y value that need
not be changed. Finally, simple book-keeping can be used to locate a violated
constraint in constant time. This proves the desired bound of O(n2) overall. �

The simple loop structure of CompleteFiltering immediately implies:

Theorem 1. Algorithm CompleteFiltering establishes domain consistency
on the gen-sequence constraint or proves that it is inconsistent, in O(n3) time.

Remark 1. Régin proved that finding a solution to an arbitrary combination of
among constraints is NP-complete [9]. Our algorithm finds a solution in polyno-
mial time to a more restricted problem, namely, when each among constraint is
defined on a sequence of consecutive variables with respect to a fixed ordering.

7 Experimental Results

To evaluate the different filtering algorithms presented, we used two sets of
benchmark problems. The first is a very simple model, constructed with only
one sequence constraint, allowing us to isolate and evaluate the performance of
each method. Then we conduct a limited series of experiments on the well-known
car sequencing problem. Successive Local Graph (SLG), Generalized Sequence
(GS), and regular-based implementation (REG) are compared with the se-
quence constraint provided in the Ilog Solver library in both basic (IB) and



632 W.-J. van Hoeve et al.

Table 1. Comparison on instances with n = 100, d = 10

IB IE SLG GS REG
q Δ BT CPU BT CPU BT CPU BT CPU BT CPU
5 1 – – 33976.9 18.210 0.2 0.069 0 0.014 0 0.009
6 2 361770 54.004 19058.3 6.390 0 0.078 0 0.013 0 0.018
7 1 380775 54.702 113166 48.052 0 0.101 0 0.012 0 0.020
7 2 264905 54.423 7031 4.097 0 0.129 0 0.016 0 0.039
7 3 286602 48.012 0 0.543 0 0.129 0 0.015 0 0.033
9 1 – – 60780.5 42.128 0.1 0.163 0 0.010 0 0.059
9 3 195391 43.024 0 0.652 0 0.225 0 0.016 0 0.187

Table 2. Comparison on instances with Δ = 1, d = 10

IB IE SLG GS REG
q n BT CPU BT CPU BT CPU BT CPU BT CPU
5 50 459154 18.002 22812 18.019 0.4 0.007 0 0.001 0 0.001
5 100 192437 12.008 11823 12.189 1 0.041 0 0.005 0 0.005
5 500 48480 12.249 793 41.578 0.7 1.105 0 0.466 0 0.023
5 1000 942 1.111 2.3 160.000 1.1 5.736 0 4.374 0 0.062
7 50 210107 12.021 67723 12.309 0.2 0.015 0 0.001 0 0.006
7 100 221378 18.030 44963 19.093 0.4 0.059 0 0.005 0 0.010
7 500 80179 21.134 624 48.643 2.8 2.115 0 0.499 0 0.082
7 1000 30428 28.270 46 138.662 588.5 14.336 0 3.323 0 0.167
9 50 18113 1.145 18113 8.214 0.9 0.032 0 0.001 0 0.035
9 100 3167 0.306 2040 10.952 1.6 0.174 0 0.007 0 0.087
9 500 48943 18.447 863 65.769 2.2 4.311 0 0.485 0 0.500
9 1000 16579 19.819 19 168.624 21.9 16.425 0 3.344 0 0.843

extended (IE) propagation modes. Experiments were run with Ilog Solver 6.2 on
a bi-processor Intel Xeon HT 2.8Ghz, 3G RAM.

7.1 Single Sequence

To evaluate the filtering both in terms of domain reduction and efficiency, we
build a very simple model consisting of only one sequence constraint.

The first series of instances is generated in the following manner. All instances
contain n variables of domain size d and the S set is composed of the first d/2
elements. We generate a family of instances by varying the size of q and of
the difference between min and max, Δ = max− min. For each family we try to
generate 10 challenging instances by randomly filling the domain of each variable
and by enumerating all possible values of min. These instances are then solved
using a random choice for both variable and value selection, keeping only the
ones that are solved with more than 10 backtracks by method IB. All runs were
stopped after one minute of computation.

Table 1 reports on instances with a fixed number of variables (100) and varying
q and Δ. Table 2 reports on instances with a fixed Δ (1) and growing number
of variables. The results confirm that the new algorithms are very efficient. The
average number of backtracks for SLG is generally very low. As predicted by
its time complexity, GS is very stable for fixed n in the first table but becomes
more time consuming as n grows in the second table. The performance of SLG
and REG decreases as q grows but REG remains competitive throughout these



Revisiting the Sequence Constraint 633

Table 3. Comparison on small car sequencing instances

Version Average Median
BT CPU BT CPU

A 1067 26.5 0 4.6
B 1067 10.3 0 3.8
C 802 8.4 0 4.1
D 798 34.3 0 7.0

tests. We expect that the latter would suffer with still larger values of q and Δ
but it proved difficult to generate challenging instances in that range — they
tended to be loose enough to be easy for every algorithm.

7.2 Car Sequencing

In order to evaluate this constraint in a more realistic setting, we turned to the
car sequencing problem. We ran experiments using the first set of instances on
the CSPLib web site and out of the 78 instances we kept the 31 that could be
solved within 5 minutes using a program found in the Ilog distribution. Recall
that the Ilog version of the sequence constraint also allows to specify individual
cardinalities for values in S so it is richer than our version of sequence . Table 3
compares the following versions of the sequencing constraint: (A) original Ilog
program; (B) A + REG (added as a redundant constraint); (C) A + REG
with cost [5], using the cost variable to restrict the total number of cars with a
particular option; (D) A + REG with cost, using the cost variable to restrict the
total number of cars of a particular configuration for each option. For A,B and
C we thus introduce one constraint per option and for D we add one constraint
per configuration and option.

It is interesting to see that adding REG as a redundant constraint significantly
improves performance as it probably often detects a dead end before IloSequence
does, thus avoiding expensive work. The simple cost version (C) does quite well
since it also incorporates a weak form of cardinality constraint within the se-
quence constraint. For a fairer comparison, we chose not to compare our two
other algorithms as we do not currently have incremental implementations.

8 Discussion

We have proposed, analyzed, and evaluated experimentally three filtering algo-
rithms for the sequence constraint. They have different strengths that comple-
ment each other well. The local graph approach of Section 4 does not guarantee
domain consistency but causes quite a bit of filtering, as witnessed in the ex-
periments. Its asymptotic time complexity is O(nq2). The reformulation as a
regular constraint, described in Section 5, establishes domain consistency but
its asymptotic time and space complexity are exponential in q, namely O(n2q).
Nevertheless for small q, not uncommon in applications, it performs very well
partly due to its incremental algorithm. The generalized sequence approach of



634 W.-J. van Hoeve et al.

Section 6 also establishes domain consistency on the sequence constraint, as well
as on a more general variant defined on arbitrary among constraints. It has an
asymptotic time complexity that is polynomial in both n and q, namely O(n3).
Also in practice this algorithm performed very well, being often even faster than
the local graph approach. It should be noted that previously known algorithms
did not establish domain consistency.

Since q plays an important role in the efficiency of some of the approaches pro-
posed, it is worth estimating it in some typical applications. For example, in car
sequencing values between 2 and 5 are frequent, whereas the shift construction
problem may feature widths of about 12.

As a possible extension of this work, our first two algorithms lend themselves
to a generalization of sequence in which the number of occurrences is repre-
sented by a set (as opposed to an interval of values).

Acknowledgments

We thank Marc Brisson and Sylvain Mouret for their help with some of the
implementations and experiments, as well as the referees for their comments.

References

1. K.R. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.
2. N. Beldiceanu and M. Carlsson. Revisiting the Cardinality Operator and Introduc-

ing the Cardinality-Path Constraint Family. In ICLP 2001, volume 2237 of LNCS,
pages 59–73. Springer, 2001.

3. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global Constraint Catalog. Tech-
nical Report T2005-08, SICS, 2005.

4. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal
of Mathematical and Computer Modelling, 20(12):97–123, 1994.

5. S. Demassey, G. Pesant, and L.-M. Rousseau. A cost-regular based hybrid column
generation approach. Constraints. under final review.

6. R. Mohr and G. Masini. Good Old Discrete Relaxation. In European Conference
on Artificial Intelligence (ECAI), pages 651–656, 1988.

7. G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In CP 2004, volume 3258 of LNCS, pages 482–495. Springer, 2004.

8. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
AAAI/IAAI, pages 209–215. AAAI Press/The MIT Press, 1996.

9. J.-C. Régin. Combination of Among and Cardinality Constraints. In CPAIOR
2005, volume 3524 of LNCS, pages 288–303. Springer, 2005.

10. J.-C. Régin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Con-
straints. In CP’97, volume 1330 of LNCS, pages 32–46. Springer, 1997.

11. M.A. Trick. A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints. Annals of Operations Research, 118:73–84, 2003.


	Introduction
	Constraint Programming Preliminaries
	The Among and Sequence Constraints
	A Graph-Based Filtering Algorithm
	Filtering the among Constraints
	Filtering for a Sequence of among
	Analysis

	Reaching Domain Consistency Through regular 
	Reaching Domain Consistency in Polynomial Time
	Analysis

	Experimental Results
	Single Sequence
	Car Sequencing

	Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


