
Contents

Semidefinite Programming and Constraint Programming
Willem-Jan van Hoeve. 1
1 Introduction 1
2 Constraint Programming 2

2.1 Modeling 3
2.2 Solving 4
2.3 Optimization Constraints 7
2.4 Search Strategies 8

3 Semidefinite Relaxations in Constraint Programming 10
3.1 Building a Semidefinite Relaxation 11
3.2 Semidefinite Relaxation as Optimization Constraint 12
3.3 Semidefinite Relaxation as Search Heuristic 12
3.4 Semidefinite Relaxations for Restricted Constraint Programming

Problems 13
4 Application to the Maximum Weighted Stable Set Problem 15

4.1 Problem Description and Model Formulations 15
4.2 Evaluation of the Hybrid Approach 16

5 Accuracy of Semidefinite Relaxations as Search Heuristic 16
5.1 Problem Description and Model Formulations 17
5.2 Experimental Evaluation 19

6 Telecommunications Application: Biclique Completion 22
6.1 Problem Description 23
6.2 Constraint Programming Model 24
6.3 Semidefinite Programming Model 25
6.4 Evaluation of the Hybrid Approach 26

7 Conclusion and Future Directions 27
References 28

Index 33

2 Contents

This chapter is to appear as

W.-J. van Hoeve. Semidefinite Programming and Constraint Programming. In M.F.
Anjos and J.B. Lasserre (eds.),Handbook on Semidefinite, Cone and Polynomial
Optimization: Theory, Algorithms, Software and Applications, Springer.

This is a draft. Please do not distribute.

Semidefinite Programming and Constraint
Programming

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
vanhoeve@andrew.cmu.edu

Recently, semidefinite programming relaxations have been applied in constraint pro-
gramming to take advantage of the high-quality bounds and precise heuristic guid-
ance during the search for a solution. The purpose of this chapter is to present an
overview of these developments, and to provide future research prospects.

1 Introduction

Constraint programming is a modeling and solving paradigm for combinatorial opti-
mization problems. In constraint programming, a combinatorial problem is modeled
using variables that have an associated domain of possible values, and constraints
over these variables. What makes constraint programming different from similar
methods such as integer programming, is that the variable domains can be any finite
set of elements, and the constraints can be of any type. For example, a constraint can
be defined explicitly by a list of allowed tuples, or implicitly by an expression such
asalldifferent(x1,x2, . . . ,xn), which specifies that the variablesx1,x2, . . . ,xn take
pairwise different values. In contrast, integer linear programming restricts the vari-
ables to take either a continuous or integer valued domain (in fact, an interval), while
constraints can be only linear expressions. Hence, constraint programming offers a
very rich, and often convenient, modeling language.

In order to solve a given model, a constraint programming solver implicitly enu-
merates all possible variable-value combinations througha systematic search process
until a solution satisfying all constraints has been found (or until it is proved that no
solution exists). Most constraint programming systems allow the user to specify a
particular search strategy. For example, criteria can be expressed to determine the
variable order to branch on, as well as the value order to assign to those variables.

To reduce the underlying exponentially large search space,so-calleddomain fil-
tering algorithms are applied during the systematic search process. Each constraint
has an associated filtering algorithm. Its task is to remove provably inconsistent val-
ues from the domains of the variables that are in the scope of the constraint, based
on the individual constraint only. When a filtering algorithm for one constraint has

2 Willem-Jan van Hoeve

processed the variables in its scope, the updated domains are propagated to the other
constraints that share these variables, whose filtering algorithms are in turn activated.
This cascading effect is called constraint propagation. Whenever a filtering algorithm
makes a domain empty, we know that at that point of the search no solution is possi-
ble, and we backtrack to a previous search state.

By design, the inference of domain filtering is based on feasibility of each do-
main value. For optimization problems, similar inference can be performed by means
of cost-baseddomain filtering. That is, a domain value is considered infeasible if as-
signing it to its variable will always yield a suboptimal solution (if any). Focacci,
Lodi, and Milano [1999a] introduced a systematic way of designing cost-based do-
main filtering algorithms for so-called ‘optimization constraints’, through embed-
ding an associated relaxation. Although they apply linear relaxations, conceptually
any suitable relaxation can be embedded, including semidefinite relaxations, as pro-
posed by Van Hoeve [2003, 2006].

From a constraint programming perspective, there are two major reasons why
semidefinite relaxations could be successfully integrated. First, the bounds obtained
can be much tighter than those obtained with linear relaxations, and can help to im-
prove the optimization reasoning. Second, the fractional solution of the semidefinite
relaxation can be applied as an accurate search heuristic. It should be noted that the
intention here is not to solve a semidefinite relaxation at every node of the search
tree necessarily. Instead, a semidefinite relaxation may besolved only once at the
root node, or at selected times during the search process.

Also from a semidefinite programming perspective, the integration with con-
straint programming can be beneficial. Namely, it is not uncommon that solving a
semidefinite relaxation takes so much time that embedding itinside a pure SDP-
based branch-and-bound scheme does not pay off. Instead, the approaches studied in
this chapter focus on a limited number of relaxations to be solved, while different in-
formation is extracted and utilized from the solution, namely for domain filtering and
search heuristics. These ideas may be applied also inside a pure SDP-based solver.

The remainder of the chapter is structured as follows. In Section 2 we present
necessary background information on constraint programming. In Section 3 we de-
scribe how semidefinite relaxations have been applied within constraint program-
ming. Section 4 presents a first application of this, for stable set problems. In Sec-
tion 5 we discuss the accuracy of semidefinite relaxations when applied as a search
heuristic. In Section 6, an integrated approach to a telecommunications application
is presented, corresponding to the biclique completion problem. Finally, Section 7
presents conclusions and future research perspectives.

2 Constraint Programming

We first introduce basic constraint programming concepts that are necessary for this
chapter. For more information on constraint programming werefer to the textbooks

Semidefinite Programming and Constraint Programming 3

by Apt [2003] and Dechter [2003], and to the Handbook on Constraint Program-
ming by Rossi et al. [2006]. For more information on the integration of constraint
programming and operations research we refer to Hooker [2000], Milano [2003] and
Hooker [2007].

2.1 Modeling

Even though constraint programming has many similarities with integer linear pro-
gramming (ILP), there are some basic differences, also in terminology, that may
cause confusion.

First, ILP assumes that variables take a value from a continuous interval repre-
sented by a lower and upper bound. In ILP systems, a variable is considered to be
integer if its value is within a small tolerance factor of an integer number. In contrast,
a CP variable takes its value from a specific finite set called its domain. For a vari-
ablex, we denote its domain byD(x). Variable domains are represented explicitly in
CP systems. This is a fundamental difference between ILP systems and CP systems.
Namely, the explicit domain representation of CP not only allows more expressive
models, but also allows to represent high-level inferences(e.g., we can remove indi-
vidual values from a variable domain). On the other hand, thecontinuity assumption
and linearity of ILP models allow the use of efficient linear programming solvers,
but inferences are limited to those that can be represented by linear constraints and
changes in the bounds of variables.

In CP, constraints can take several forms. Formally, a constraint C on a set of
variablesX = {x1,x2, . . . ,xk} is defined as a subset of the Cartesian product of
the domains of the variables inX, i.e., C ⊆ D(x1)×D(x2)× ·· · ×D(xk). A tuple
(d1, . . . ,dk) ∈C is called asolutiontoC. An immediate form to represent constraints
is thus to list out the individual tuples that form the definition, and we say that such
constraints are given ‘in extension’. For several applications, such as database appli-
cations, such representation is very natural and useful. However, often we prefer to
model combinatorial problems using implicit formulations, for example using linear
expressions. Most constraint programming systems allow constraints to be defined
by any algebraic expression, using common operators such asaddition and multi-
plication, but also logical connectives in which sub-expressions serve as Boolean
functions, whose truth value can be interpreted as a binary value. For example, the
constraint

z=
n

∑
i=1

(xi ≥ b)

restricts variablez to be equal to the number of variablesx1, . . . ,xn that take a value of
at leastb. Furthermore, variables can appear as subscripts. For example, for an index
set I , consider an arrayc ∈ Q|I |, a variablex with domainD(x) = I , and a variable
z. The expressionz= cx states thatz will be assigned thex-th value in the array
c. Such constraints, in which a variable functions as an index, are called ‘element’
constraints.

Constraint programming further allows the use of so-calledglobal constraints
[Régin, 2003; Van Hoeve and Katriel, 2006]. Global constraints are defined on an

4 Willem-Jan van Hoeve

arbitrary number of variables, and usually encapsulate a combinatorial structure that
can be exploited during the solving process. A well-known example is the constraint
alldifferent(x1,x2, . . . ,xn), that requires the variablesx1,x2, . . . ,xn to take pair-
wise different values. Global constraints and element constraints can lead to very
concise formulations. For example, consider a Traveling Salesman Problem onn
cities, in which the distance between two citiesi and j is denoted bydi, j . The prob-
lem asks to find a closed tour visiting each city exactly once,with minimum to-
tal distance. We introduce a variablexi representing thei-th city to be visited, for
i = 1, . . . ,n. The problem can then be formulated as

min
n−1

∑
i=1

dxi ,xi+1 +dxn,x1

s.t.alldifferent(x1,x2, . . . ,xn),

D(xi) = {1,2, . . . ,n}, ∀i ∈ {1, . . . ,n}.
In addition to global constraints, most CP systems contain other high-level modeling
objects. For example,set variablesare variables that will be assigned a set of ele-
ments [Puget, 1992; Gervet, 1994]. The domain of a set variable is a finite set of sets,
that however often is exponentially large. Therefore, CP systems usually represent
the domain of a set variable by a ‘lower bound’ of mandatory elements and an ‘upper
bound’ of possible elements. In addition, a lower and upper bound on the cardinality
of the set is maintained as part of the domain information. For example, if the domain
of a set variableS is defined asD(S) = [{a,c},{a,b,c,d,e}] with 3≤ |S| ≤ 4}, the
mandatory elements are{a,c} while the possible elements are{a,b,c,d,e} and in
addition the cardinality must be between 3 and 4. That is, thedomain implicitly in-
cludes the sets{a,b,c},{a,c,d},{a,c,e},{a,b,c,d},{a,b,c,e}, and{a,c,d,e}. As
an illustration, we next model the weighted stable set problem using a set variable.
Let G = (V,E) be an undirected weighted graph with vertex setV, edge setE, and
a ‘weight’ functionw : V → R. The maximum weighted stable set problem asks to
find a subset of vertices with maximum total weight, such thatno two vertices in this
subset share an edge. We introduce one set variableS representing the vertices that
will form the stable set. The initial domain of this set variable isD(S) = [∅,V], and
0 ≤ |S| ≤ |V|. That is, initially there are no mandatory elements, and allelements
in V can potentially be in the stable set. The constraint programming model then
becomes

max∑i∈Swi

s.t. (i ∈ S)⇒ (j /∈ S), ∀(i, j) ∈ E,

D(S) = [∅,V],0≤ |S| ≤ |V| .
Note that this model makes use of logical implications to ensure that no two adjacent
vertices belong to the stable set.

2.2 Solving

The solution process of constraint programming interleaves constraint propagation
andsearch. During the search process, all possible variable-value combinations are

Semidefinite Programming and Constraint Programming 5

implicitly enumerated until we find a solution or prove that none exists. We say that
this process constructs asearch tree, in which the root node represents the original
problem to be solved, and a branching decision partitions a node into at least two
subproblems. To reduce the exponential number of combinations,domain filtering
andconstraint propagationis applied at each node of the search tree. Adomain
filtering algorithmoperates on an individual constraint. Given a constraint, and the
current domains of the variables in its scope, a domain filtering algorithm removes
domain values that do not belong to a solution to the constraint. Such domain val-
ues are calledinconsistentwith respect to the constraint. Likewise, domain values
that do belong to a solution are calledconsistentwith respect to the constraint. Since
variables usually participate in more than one constraint,the updated domains are
propagated to the other constraints, whose domain filteringalgorithms in effect be-
come active. This process of constraint propagation is repeated for all constraints
until no more domain values can be removed, or a domain becomes empty. Since
the variable domains are finite, this process always terminates. Furthermore, it can
be shown that under certain conditions on the domain filtering algorithms, the con-
straint propagation process always reaches the same fixed point, irrespective of the
order in which the constraints are processed [Apt, 1999].

For example, consider the following constraint programming model (correspond-
ing to a feasibility problem):

x1 > x2, (1)

x1+ x2 = x3, (2)

alldifferent(x1,x2,x3,x4), (3)

x1 ∈ {1,2},x2 ∈ {0,1,2,3},x3 ∈ {2,3},x4 ∈ {0,1}. (4)

If we process the constraints in the top-down order of the model, the constraint prop-
agation first considers constraint (1), whose domain filtering algorithm removes the
inconsistent values 2 and 3 fromD(x2), i.e., D(x2) = {0,1} at this point. We then
continue with constraint (2), for which all values are consistent. For constraint (3),
observe that variablesx2 andx4 now both have domain{0,1}, and thus saturate these
values. Therefore, we can remove values 0 and 1 from the domains of the other vari-
ables in its scope, i.e.,D(x1) = {2}. As an immediate effect, the same algorithm
will deduce thatD(x3) = {3}. At this point, we have processed all constraints, but
note that since we have changed the domains ofx1, x2, andx3, we need to repeat
the domain filtering for the constraints in which they participate. Considering again
constraint (1), we find that all domain values are consistent. From constraint (2),
however, we deduce thatD(x2) = {1}. Finally, reconsidering constraint (3) leads to
D(x4) = {0}. In summary, in this case the constraint propagation alone is able to find
a solution to the problem, i.e.,x1 = 2,x2 = 1,x3 = 3,x4 = 0.

In order to be effective, domain filtering algorithms shouldbe computationally
efficient, because they are applied many times during the solution process. Further,
they should remove as many inconsistent values as possible.If a domain filtering
algorithm for a constraintC removesall inconsistent values from the domains with

6 Willem-Jan van Hoeve

respect toC, we say that it makesC domain consistent.1 In other words, all remaining
domain values participate in at least one solution toC. More formally:

Definition 1 (Domain consistency).A constraint C on the variables x1, . . . ,xk is
called domain consistentif for each variable xi and each value di ∈ D(xi) (i =
1, . . . ,k), there exist a value dj ∈ D(x j) for all j 6= i such that(d1, . . . ,dk) ∈C.

In practice, one usually tries to develop filtering algorithms that separate the
check for consistency and the actual domain filtering, especially when processing
global constraints. That is, we would like to avoid applyingthe algorithm that per-
forms the consistency check to each individual variable-value pair, since that strategy
can often be improved. Moreover, one typically tries to design incremental algo-
rithms that re-use data structures and partial solutions from one filtering event to the
next, instead of applying the filtering algorithm from scratch each time it is invoked.

Without effective domain filtering algorithms to reduce thesearch space, con-
straint programming would not be applicable in practice. For many practical prob-
lems, global constraints are the most effective, since theyexploit the underlying
combinatorial structure to identify more inconsistent values than a corresponding
decomposition in ‘elementary’ constraints would identify. For example, consider a
set of variablesX that must take pairwise different values, while the domain of each
variablex∈X is D(x) = {1, . . . , |X|−1}. Clearly, as the number of variables exceeds
the number of possible values that can be jointly assigned tothem, the problem has
no solution. However, if we model the problem using not-equal constraintsxi 6= x j

for all pairsxi ,x j ∈ X with i 6= j, constraint propagation alone cannot deduce this
fact. Namely, for each individual not-equal constraintxi 6= x j , the associated domain
filtering algorithm will consider only the domains ofxi andx j , and each value within
these domains participates in a solution to that constraint. On the other hand, if we
establish domain consistency for the global constraintalldifferent(X), we would
be able to immediately deduce that the constraint cannot be satisfied. In fact, Régin
[1994] showed that domain consistency foralldifferent can be established in
polynomial time by representing the constraint as a bipartite matching problem.

As a final remark on domain filtering, consider the constraint(i ∈S)⇒ (j /∈S) as
applied in the stable set model above. Such constraints, that involve the truth value of
subexpressions, will internally be represented using Boolean variables by most CP
systems. That is, one Boolean variablex represents whether the expression(i ∈ S)
is true or not, and another Boolean variabley represents the expression(j /∈ S). The
associated domain filtering will then be performed on the relationx⇒ y and the rela-
tionsx= (i ∈S) andy= (j /∈S). However, such decomposition into a Boolean repre-
sentation is not always necessary for set variables, as moreefficient algorithms may
be implemented directly, especially for global constraints on set variables. For exam-
ple, the global constraintpartition(S1,S2, . . . ,Sn,V) requires that the set variables
S1,S2, . . . ,Sn form a partition of the setV. For this constraint, an efficient filtering
algorithm can be designed based on a bipartite network flow representation [Sadler
and Gervet, 2004; Régin, 2004].

1 In the literature, domain consistency is also referred to ashyper-arc consistencyor gener-
alized arc consistencyfor historic reasons.

Semidefinite Programming and Constraint Programming 7

When a constraint programming model involves an objective function to be op-
timized, the default solving process applies the followingstraightforward bounding
procedure. Consider an objective maxf (X) where the objective functionf can be an
arbitrary expression mapped to a totally ordered set. Assuming that we have a known
upper boundU on the objective, it will be treated as a constraintf (X) ≤U , and the
associated domain filtering algorithms for this constraintwill be applied. As soon as
a solution satisfying all the constraints has been found, and that has objective value
U ′, the right hand side of the ‘objective’ constraint will be updated asf (X) ≤ U ′,
after which the search continues. Note that if the objectivevalue of the incumbent
solution is higher than the current upper bound, the associated domain filtering algo-
rithm will detect an inconsistency and the solver will backtrack to a previous search
state.

2.3 Optimization Constraints

As explained in the previous section, the CP solver evaluates the objective function
as an individual constraint, where the potential solution set is formed by the Carte-
sian product of the domains of the variables in its scope. That is, by default it is
not aware of any underlying combinatorial structure that may improve the bound of
the objective, unless we add this structure explicitly to the constraint that represents
the objective. Many works have studied how to improve the representation of the
objective in constraint programming, and the resulting constraints are now often re-
ferred to as ‘optimization constraints’, or ‘optimizationoriented global constraints’
[Focacci et al., 2002a].

Even though a formal definition of optimization constraintsis not easy to provide,
they can be thought of as weighted versions of global constraints. That is, for a global
constraintC(X) on a set of variablesX, we can define a corresponding optimization
constraint with respect to a ‘weight’ functionf (X) as

C(X)∧ (f (X)≤ z) ,

wherez is a variable representing the upper bound on the weight function. The opti-
mization constraint thus ensures that we only allow solutions that respect constraint
C and have a corresponding weight not more thanz. The domain filtering associated
with such reasoning is referred to as ‘cost-based’ domain filtering. Cost-based do-
main filtering algorithms usually work in two directions: One direction is to update
the domain ofz, i.e., improve the bound, based on the current domains of thevari-
ablesX, while the second direction is to update the domains of the variablesX based
on the current bound ofz. The latter direction is also referred to as ‘back-propagation’
in the literature.

While many optimization constraints utilize specialized combinatorial algo-
rithms to perform cost-based filtering (see, e.g., [Régin,2002; Van Hoeve et al.,
2006; Katriel et al., 2007; Sellmann et al., 2007]), a generic methodology to design-
ing cost-based filtering for optimization constraints was introduced in a sequence of
papers by Focacci, Lodi, Milano, and Vigo [1999b] and Focacci, Lodi, and Milano

8 Willem-Jan van Hoeve

[1999a, 2002b,c]. In these works, the domain filtering is based on a linear relaxation
of the associated global constraint together with a ‘gradient function’grad(x,v) that
returns, for each possible variable-value pair(x,v) with v∈ D(x), an optimistic eval-
uation of the cost to be paid ifv is assigned tox. For example, consider the constraint
alldifferent(x1, . . . ,xn), together with ‘weights’wi j for every pair(xi , j) such
that j ∈ D(xi) (i ∈ {1, . . . ,n}). We introduce binary variablesyi j for i ∈ {1, . . . ,n}
and j ∈ D(xi) such that

yi j = 1⇔ (xi = j), and
yi j = 0⇔ (xi 6= j).

The weightedalldifferent constraint corresponds to the following Assignment
Problem formulation:

z=
n

∑
i=1

∑
j∈D(xi)

wi j yi j

∑
j∈D(xi)

yi j = 1, ∀i ∈ {1, . . . ,n},

n

∑
i=1

yi j ≤ 1, ∀ j ∈ ∪n
i=1D(xi),

yi j ∈ {0,1}, ∀i ∈ {1, . . . ,n},∀ j ∈ D(xi),

wherez represents the value of the objective function. It is well-known that the lin-
ear relaxation of the Assignment Problem yields an integer solution. Focacci et al.
[1999a] propose to use the reduced costs obtained by solvingthis relaxation as the
gradient function. That is, letci j represent the reduced cost of variableyi j in a solu-
tion to the Assignment Problem relaxation with lower boundz∗, and letzmin be the
current best solution value. Wheneverz∗ + ci j > zmin, we can remove valuej from
D(xi). Note that in the Operations Research literature this technique is known under
the name ‘variable fixing’ [Nemhauser and Wolsey, 1988]. This approach has been
generalized to Lagrangian relaxations, where the gradientfunction is formed by the
Lagrange multipliers, see for example [Hooker, 2006].

2.4 Search Strategies

Even though the search process of constraint programming has similarities with in-
teger programming, there are several differences. The goalof the search process is to
implicitly enumerate all possible variable-value combinations until a (provably opti-
mal) solution has been found, or until it is proved that no solution exists. As stated
before, this process is said to create a search tree, which isa particular rooted tree.
The root node represents the original problem to be solved. At each node of the tree
constraint propagation is applied, typically until a fixed point is reached. If this pro-
cess does not prove infeasibility, and does not finish with a solution, the node is split
into two or more subproblems. We must ensure that the union ofthe solution set of
the subproblems is equal to the solution set of the problem represented by the node
itself.

Semidefinite Programming and Constraint Programming 9

The splitting, or branching, procedure can take various forms, and an important
difference with integer programming systems is that a user can define the branching
decisions to be made. In many cases this can even be done at themodeling level, see,
e.g., Van Hentenryck et al. [2000]. A branching decision is stated as a constraint,
which will be added to the subproblem (its negation will be added to the other sub-
problem in case of a binary branching decision). For example, for a variablex with
v∈ D(x), we can branch on the constraint(x= v) versus(x 6= v). This corresponds
to the traditional enumeration of variable-value combinations.

In order to apply a particular branching constraint, we firstneed to identify one or
more variables on which to define the constraint. When the branching decisions cor-
respond to variable assignments(x= v) versus(x 6= v), the order in which variables,
and corresponding values, are considered follows from so-calledvariable selection
heuristics andvalue selectionheuristics. That is, when the problem is not infeasible
and one or more variables are still ‘free’ (i.e., they have have a domain with size
larger than one), the variable selection heuristic will identify one variablex from the
set of free variables. Similarly, the value selection heuristic will identify one valuev
from its domainD(x). A standard heuristic in constraint programming is to choose
first the variable with the smallest domain size (this is called fail-first), and assign it
the smallest value in its domain. For more involved heuristics, we refer to [van Beek,
2006].

In addition to the branching decisions that define the shape of the search tree,
the search process also depends on the order in which the different search tree nodes
are visited. In integer programming, the order is almost always defined by some
variant of a ‘best-bound-first’ strategy, in which the next node to explore is that with
the most promising bound following from the linear relaxation. Even though this
strategy is often superior in practice for integer programming problems, it has the
potential drawback of creating an exponential number of active search nodes. Here,
a node is considered active when it must be split further, i.e., it is not proved to be
infeasible or suboptimal and it does not correspond to a solution. Best-bound-first
and similar strategies can also be applied to constraint programming search trees.
However, it is much more common to apply a depth-first search strategy instead.
An important reason for this may be the fact that constraint programming does not
contain ‘primal heuristics’ that can find feasible solutions quickly for a given search
node. In fact, one may view the constraint programming search process itself as a
primal heuristic. Furthermore, the memory consumption of depth-first is linear in
the depth of the search tree, while this can be exponential for breadth-first search
strategies (including best-bound-first).

Search strategies have been studied extensively in the context of constraint pro-
gramming, and more generally in the context of artificial intelligence; see van Beek
[2006] for an overview. One particular search strategy thatwill also be applied in this
chapter islimited discrepancy search, introduced by Harvey and Ginsberg [1995]. It
is based on the assumption that we have a good, but not perfect, branching heuris-
tic available (e.g., corresponding to a variable and value selection heuristic). If the
branching heuristic were perfect, the first visited leaf in the search tree (when apply-
ing depth-first search) would correspond to a solution to theproblem (assuming it

10 Willem-Jan van Hoeve

a. discrepancy 0 b. discrepancy 1

c. discrepancy 2 d. discrepancy 3

Fig. 1. Limited discrepancy search. For each discrepancy 0, 1, 2, 3,the top node of the tree
indicates the root, visited nodes are filled, and bold arcs indicate the parts of the tree that are
traversed newly.

exists). Harvey and Ginsberg [1995] argue that when the heuristic is equally likely to
make a mistake at each search node, we should visit the leafs by increasing value of
total discrepancy from the heuristic choice required to reach that leaf. An illustration
is given in Figure 1. In the binary search tree of this figure, it is assumed that the left
branch corresponds to the heuristic choice. Discrepancy 0 (in Figure 1.a thus corre-
sponds to the first leaf found by depth-first search. The leafsvisited for discrepancy 1
(in Figure 1.b correspond to all leafs that are reached when exactly one right branch
is chosen, and so on.

Note that the ‘Local Branching’ search strategy in the context of integer pro-
gramming resembles limited discrepancy search [Fischettiand Lodi, 2003]. Namely,
given a current solutionx∗ and an integerk, Local Branching creates a subproblem
in whichk variables are allowed to deviate from the value taken inx∗. The solutions
considered in that subproblem correspond to those having discrepancy 0 up tok,
wherex∗ serves as the heuristic to be followed.

3 Semidefinite Relaxations in Constraint Programming

There exist two streams of research that combine semidefinite relaxations and con-
straint programming. The first stream considers constraintprogramming models of
an arbitrary form, and assumes that any suitable semidefinite relaxation may be ap-
plied, depending on the problem at hand. It is in the same spirit as the ‘optimization
constraints’ mentioned before, and this stream will be the main focus of the remain-
der of this chapter. The second stream considers constraintprogramming models of a
specific form, and applies a dedicated semidefinite relaxation that maps exactly onto

Semidefinite Programming and Constraint Programming 11

the format of the constraint programming model. Examples are given at the end of
this section.

In this section, we will first discuss how suitable semidefinite relaxations may be
found for arbitrary constraint programming models. Unfortunately, it is not straight-
forward to obtain a computationally efficient semidefinite program that provides a
tight solution for any given constraint programming model.However, for a number
of combinatorial optimization problems such semidefinite relaxations do exist, see
Laurent and Rendl [2004] and Chapter 27 ‘Combinatorial Optimization’ of this vol-
ume for an overview. If such semidefinite relaxations are notavailable, we need to
build up a relaxation from scratch. One possible way is to apply the generic frame-
work by Laurent, Poljak, and Rendl [1997] that will be described in Section 3.1.

After the discussion of building semidefinite relaxations,we consider the appli-
cation of such relaxations inside optimization constraints in Section 3.2. Next, we
discuss how the solution to the semidefinite relaxation can be applied to guide the
search process in Section 3.3. Finally, in Section 3.4 we discuss other applications
to combining semidefinite relaxations and constraint programming, that are in the
second stream mentioned above.

3.1 Building a Semidefinite Relaxation

Consider a constraint programming model consisting of a setof variablesx1, . . . ,xn,
a set of constraints and an objective function. If the domainsD(x1), . . . ,D(xn) are not
binary, we first transform the variables and their domains into corresponding binary
variablesyi j for i = 1, . . . ,n and j ∈ D(xi):

xi = j ⇔ yi j = 1,
xi 6= j ⇔ yi j = 0.

(5)

We will use the binary variablesyi j to construct a semidefinite relaxation, following
Laurent, Poljak, and Rendl [1997]. Of course, the transformation has consequences
for the constraints also, which will be discussed below. Themethod of Laurent et al.
[1997] to transform a model with binary variables into a semidefinite relaxation is
the following. For a positive integerN, let d ∈ {0,1}N be a vector of binary variables
representing all variablesyi j for i = 1, . . . ,n and j ∈ D(xi). Construct the(N+1)×
(N+1) variable matrixX as

X =

(

1
d

)

(1 dT) =

(

1 dT

d ddT

)

. (6)

We then constrainX to satisfy

X � 0 (7)

Xii = X0i ∀i ∈ {1, . . . ,N} (8)

where the rows and columns ofX are indexed from 0 toN. Condition (8) expresses
the fact thatd2

i = di , which is equivalent todi ∈ {0,1}. Note however that the latter
constraint is relaxed by requiringX to be positive semidefinite.

12 Willem-Jan van Hoeve

The matrixX contains the variables to model our semidefinite relaxation. Ob-
viously, the diagonal entries (as well as the first row and column) of this matrix
represent the binary variables from which we started. Usingthese variables, we need
to express (a part of) the original constraints as our semidefinite relaxation.

In case the binary variables are obtained from transformation (5), not all con-
straints may be trivially transformed accordingly. Especially because the original
constraints may be of any form. The same holds for the objective function. On the
other hand, as we are constructing a relaxation, we may choose among the set of con-
straints an appropriate subset to include in the relaxation. Moreover, the constraints
itself are allowed to be relaxed.

In most practical cases, however, the suitability of applying an SDP relaxation
heavily relies on the problem at hand. Instead of applying the above framework, a
practitioner may be more interested in identifying a combinatorial substructure of
the problem for which a known SDP relaxation exists and can bereadily applied.

3.2 Semidefinite Relaxation as Optimization Constraint

Similar to linear programming relaxations, semidefinite programming relaxations
can be embedded inside optimization constraints. As discussed before, the role of
such a constraint is twofold. First, the relaxation can be used to improve the bound
on the variable representing the corresponding objective.Second, the relaxation can
be applied to perform cost-based domain filtering.

So far, semidefinite relaxations have only been applied in a constraint program-
ming context to improve the bound on the objective. Cost-based domain filtering
utilizing the semidefinite relaxation has not yet been pursued. Nevertheless, Helm-
berg [2000] has introduced variable fixing procedures for semidefinite programming,
while Fleischman and Poggi de Aragão [2010] have presentedsimilar variable fixing
procedures for unconstrained quadratic programs. In principle, these methods could
be readily applied as filtering algorithms inside an optimization constraint. However,
there are some practical hurdles that may prevent such filtering to be worthwhile.
Perhaps the most important one is the issue of incrementality. Recall that domain fil-
tering algorithms are typically invoked many times during the solving process. Since
it is not straightforward to efficiently re-use data from onepropagation event to the
next when using semidefinite programming, the relaxations typically have to be re-
computed from scratch at each event. This can be very time-consuming, and may not
offset the extra amount of search space reduction that can begained from it.

3.3 Semidefinite Relaxation as Search Heuristic

Several works on optimization constraints have applied theembedded linear relax-
ation not only for cost-based filtering, but also to define a search heuristic. For ex-
ample, Focacci, Lodi, and Milano [1999a] use the solution tothe linear relaxation as
a branching heuristic for Traveling Salesman Problems. As another example, Milano
and Van Hoeve [2002] apply reduced costs following from a linear relaxation as a

Semidefinite Programming and Constraint Programming 13

search heuristic. Leahu and Gomes [2004] investigate the quality of linear relaxations
as a search heuristic in detail.

Van Hoeve [2006, 2003] proposes to use the solution to an SDP relaxation as a
heuristic to guide the CP search. In general, the solution toa semidefinite relaxation
yields fractional values for its variable matrix. These fractional values can serve as
an indication for the values that the original constraint programming variables take
in a solution. Consider for example the matrixX of equation (6) above, and suppose
it is obtained from non-binary original variables by transformation (5). Assume that
variableXii corresponds to the binary variabley jk (for some integerj andk), which
corresponds tox j = k, wherex j is a constraint programming variable andk∈ D(x j).
If variableXii is close to 1, then alsoy jk is supposed to be close to 1, which corre-
sponds to assigningx j = k.

Hence, the variable and value selection heuristics for the constraint programming
variables are based upon the fractional solution values of the corresponding vari-
ables in the semidefinite relaxation. A natural variable selection heuristic is to select
first the constraint programming variable for which the corresponding variable in the
semidefinite relaxations has a fractional solution that is closest to the corresponding
integer solution. As value selection heuristic, we then select first the corresponding
suggested value. As an alternative, we can design a randomized branching heuristic,
in which a selected variable (or value) is accepted with probability proportional to
the corresponding fractional value in the semidefinite relaxation.

Note that not all semidefinite relaxations may offer a precise mapping between
a variable-value pair in the constraint programming model and a variable in the
semidefinite relaxation. We will see an example of this in Section 6, where the con-
straint programming variablesx1, . . . ,xn all have domains{1, . . . ,k} for some integer
k ≥ 1. The semidefinite relaxation of that application uses variablesZi j that repre-
sent whetherxi andx j are assigned the same value, irrespective of the eventual value.
In such situations, we can still apply the solution to the semidefinite relaxation as a
branching heuristic, for example by branching on(xi = x j) versus(xi 6= x j). How-
ever, additional branching decisions may be necessary to eventually assign a value
to each variable.

3.4 Semidefinite Relaxations for Restricted Constraint Programming
Problems

Several works have applied semidefinite relaxations to constraint programming prob-
lems of a specific form, including Boolean satisfiability andweighted constraint sat-
isfaction problems (CSPs). TheBoolean satisfiability problem, or SAT problem, con-
sists of a set of Boolean variables and a conjunction of clauses, each of which is a
disjunction of literals. The conjunction of clauses is called a formula. Each literal is
a logical variable (x) or its negation (x). The SAT problem is to determine whether
there exists a variable assignment that makes the formula true (i.e., each clause is
true). Thek-SAT problem represents the SAT problem where the clauses are con-
strained to have length equal tok. The (2+p)-SAT problem is a SAT problem in
which a fractionp of the clauses is defined on three literals, while a fraction(1− p)

14 Willem-Jan van Hoeve

is defined on two literals. Clearly, the SAT problem is a constraint programming
problem of a restricted form, i.e., the variables take Boolean domains and constraints
are restricted to take the form of clauses.

MAX-SAT is the optimization version of SAT. Given a formula,we want to max-
imize the number of simultaneously satisfied clauses. Givenan algorithm for MAX-
SAT we can solve SAT, but not vice-versa, therefore MAX-SAT is more complex
than SAT. The distinction becomes obvious when consideringthe case when the
clauses are restricted to two literals per clause (2-SAT): 2-SAT is solvable in linear
time, while MAX-2-SAT is NP-hard [Garey and Johnson, 1979].

Goemans and Williamson [1995] were the first to apply semidefinite relaxations
to the MAX-2-SAT and MAX-SAT problems for obtaining approximation algo-
rithms with provable performance ratios. Other works following this approach in-
clude Karloff and Zwick [1997] for MAX-3-SAT and Halperin and Zwick [2001]
for MAX-4-SAT. Warners [1999] applies semidefinite relaxations for MAX-2-SAT
problems within a DPLL-based SAT solver (see also De Klerk and Warners [2002]).
The experimental results show that the semidefinite relaxations provide very tight ob-
jective values, and are applicable in practice in terms of computational efficiency. De
Klerk et al. [2000] study semidefinite relaxations for general SAT problems, while
De Klerk and Van Maaren [2003] consider semidefinite relaxations for (2+p)-SAT
problems. Anjos [2005] introduces improved semidefinite relaxations to SAT prob-
lems.

Lau [2002] considersweighted CSPs, that generalize the MAX-2-SAT problem
above in two ways. First, variables can have arbitrary finitedomains. Second, even
though the constraints are still defined on two variables only, now a weight is asso-
ciated to each constraint. That is, a constraintC on two variablesx andy is defined
asC⊆ D(x)×D(y), and has an associated weight (a natural number). The goal isto
maximize the sum of the weights of the satisfied constraints.Lau [2002] represents
such weighted CSPs as a quadratic integer program, and formulates a corresponding
semidefinite relaxation. He applies a randomized rounding procedure to prove worst-
case bounds for fixed variable domain sizes 2 and 3. He also provides computational
results, comparing his approach to greedy and randomized local search procedures.

A recent line of research studies problems of the form MAXk-CSP, where vari-
ables can take an arbitrary finite domain, each constraint isdefined onk variables,
and the goal is to maximize the number of satisfied constraints. Zwick [1998] also
applies semidefinite relaxations to a similar problem referred to as MAX 3-CSP, but
in that case the domains are Boolean, constraints take the form of a Boolean function
on at most three variables, and each constraint has an associated weight. Therefore,
these problems are more similar to weighted CSPs than to the recent interpretation
of MAX k-CSP. Most of the recent works for MAXk-CSP consider the approxima-
bility of such problems, and apply semidefinite relaxationsto obtain certain approx-
imation ratios, e.g., [Charikar et al., 2009], [Guruswami and Raghavendra, 2008]
and [Raghavendra, 2008]. Other works study the integralitygap following from the
semidefinite relaxation, for similar constraint satisfaction problems, e.g., [Raghaven-
dra and Steurer, 2009a,b].

Semidefinite Programming and Constraint Programming 15

4 Application to the Maximum Weighted Stable Set Problem

As a first application of integrating constraint programming and semidefinite pro-
gramming we consider the hybrid approach of Van Hoeve [2006,2003] for the stable
set problem. The motivation for this work is based on two complementary observa-
tions: i) a standard CP approach can have great difficulty finding a goodsolution,
let alone proving optimality, andii) SDP relaxations may provide a good starting
solution, but the embedding of SDP inside a branch-and-bound framework to prove
optimality can be computationally too expensive.

4.1 Problem Description and Model Formulations

Recall from Section 2 that the weighted stable set problem isdefined on an undi-
rected weighted graphG = (V,E), with ‘weight’ functionw : E → R. Without loss
of generality, we assume all weights to be non-negative. Theproblem is to find a
subset of verticesS⊆V of maximum total weight, such that no two vertices inSare
joined by an edge inE.

The constraint programming model applied by Van Hoeve [2006] uses binary
variablesxi representing whether vertexi is in S(xi = 1) or not (xi = 0), for all i ∈V.
The CP model is then formulated as an integer linear programming model:

max
n

∑
i=1

wixi

s.t. xi + x j ≤ 1, ∀(i, j) ∈ E,

xi ∈ {0,1}, ∀i ∈V.

(9)

A, by now classical, semidefinite relaxation for the maximum-weight stable set
problem was introduced by Lovász [1979]. The value of that relaxation is called
the theta number, and is denoted byϑ(G) for a graphG. The theta number arises
from several different formulations, see Grötschel, Lov´asz, and Schrijver [1988].
Van Hoeve [2006] uses the formulation that has been shown to be computationally
most efficient among those alternatives [Gruber and Rendl, 2003]. Let us introduce
that particular formulation (calledϑ3 by Grötschel, Lovász, and Schrijver [1988]).
Let x ∈ {0,1}n be the vector of binary variables representing a stable set,where
n= |V|. Define then×n matrixX = ξξT where the vectorξ is given by

ξi =

√
wi

√

∑n
j=1wj x j

xi

for all i ∈V. Furthermore, let then×n cost matrixU be defined asUi j =
√

wiwj for
i, j ∈V. Observe that in these definitions we exploit the fact thatwi ≥ 0 for all i ∈V.
The following semidefinite program

max tr(UX)
s.t. tr(X) = 1

Xi j = 0, ∀(i, j) ∈ E
X � 0

(10)

16 Willem-Jan van Hoeve

provides the theta number ofG, see Grötschel et al. [1988]. Here tr(X) represent the
trace of matrixX, i.e., the sum of its main diagonal elements. When (10) is solved to
optimality, the diagonal elementXii can be interpreted as an indication for the value
thatxi (i ∈V) takes in an optimal solution to the problem.

4.2 Evaluation of the Hybrid Approach

In the hybrid approach of Van Hoeve [2006], the semidefinite relaxation is solved
once, at the root node of the search tree. The associated objective value is applied to
bound the initial domain of the variable representing the objective in the CP model.
Van Hoeve [2006] does not apply any additional cost-based domain filtering. In-
stead, the fractional solution to the semidefinite relaxation is applied as a variable
and value selection heuristic. The variablexi with the highest corresponding solution
for Xii will be selected first, and value 1 will be assigned to it first.Since the semidef-
inite relaxation often provides a very accurate variable-value selection heuristic, Van
Hoeve [2006] applies limited discrepancy search to traverse the resulting search tree.

This approach is applied to solve random problem instances as well as structured
instances arising from coding theory, and maximum clique problems. The hybrid
approach is compared to a pure CP solver with a lexicographicvariable selection
strategy, choosing value 1 first. In almost all cases, the SDPsolution provides a very
accurate branching strategy, and the best solution is foundat a very low discrepancy
(recall that limited discrepancy search is applied). In fact, in many cases the tight
bound obtained by the SDP relaxation suffices to prove optimality of the solution
found with the SDP-based heuristic.

5 Accuracy of Semidefinite Relaxations as Search Heuristic

In this section, the accuracy of the semidefinite relaxationas a search heuristic is
investigated in more detail. A similar investigation has been performed for linear
programming relaxations by Leahu and Gomes [2004]. They identify that the heuris-
tic quality of the LP solution is dependent on structural combinatorial properties of
the problem at hand, which in their experiments is measured by the ‘constrained-
ness’ of the problem. More specifically, the problems that they consider, i.e., Latin
Square completion problems, exhibit an easy-hard-easy phase transition when the
problem becomes more constrained. The ‘typically hardest’problem instances are
those that originate from the critically constrained region corresponding to the easy-
hard-easy phase transition. For instances that are outsidethis region, and that are
typically less hard to solve, the linear programming relaxation provides quite accu-
rate values. However, for problem instances from within thephase transition region,
the information quality as search heuristic shows a sharp decrease. In other words,
the quality of the relaxation degrades exactly for those instances it is most needed.

In light of these results, Gomes, Van Hoeve, and Leahu [2006]study the accu-
racy of semidefinite relaxations as search heuristic. One ofthe main motivations for
this was to investigate whether semidefinite relaxations provide more robust search

Semidefinite Programming and Constraint Programming 17

heuristics, and of higher quality, than linear programmingrelaxations. The particu-
lar problem of study in [Gomes et al., 2006] is MAX-2-SAT, andSDP relaxations
are contrasted with LP relaxations and complete (exact) solution methods for this
problem.

A related work is that of Warners [1999] and De Klerk and Warners [2002], who
propose and analyze a MAX-2-SAT solver that employs a semidefinite relaxation
as well. However, they do not apply the SDP solution as a search heuristic. Instead,
the branching rule is to choose first the variable with the maximal occurrence in
the longest clauses. De Klerk and Van Maaren [2003] present another related work,
in which the accuracy of the semidefinite relaxation to detect unsatisfiability for the
(2+p)-SAT problem is experimentally evaluated. Finally, we note that Cheriyan et al.
[1996] also apply linear programming and rounding techniques to solve MAX-2-
SAT problems.

5.1 Problem Description and Model Formulations

Let the MAX-2-SAT problem consist of Boolean variablesx1,x2, . . . ,xn and clauses
C1,C2, . . . ,Cm on these variables. We consider the following ILP formulation for the
MAX-SAT problem from Goemans and Williamson [1994]. With each clauseCj we
associate a variablezj ∈ {0,1}, for j = 1, . . . ,m. Value 1 corresponds to the clause
being satisfied and 0 to the clause not being satisfied. For each Boolean variablexi

we associate a corresponding variableyi in the ILP, for i = 1, . . . ,n. Variableyi can
take the values 0 and 1, corresponding toxi being false or true, respectively. LetC+

j

be the set of indices of positive literals that appear in clauseCj , andC−
j be the set

of indices of negative literals (i.e., complemented variables) that appear in clauseCj .
The problem can then be stated as follows:

max
m

∑
j=1

zj

subject to ∑
i∈C+

j

yi + ∑
i∈C−

j

(1− yi)≥ zj , ∀ j ∈ {1, . . . ,m}

yi ,zj ∈ {0,1}, ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.

This model ensures that a clause is true only if at least one ofthe variables that
appear in the clause has the value 1. Since we maximize∑m

j=1zj andzj can be set to
1 only when clauseCj is satisfied, it follows that the objective function counts the
number of satisfied clauses. By relaxing the integrality constraint, we obtain an LP
relaxation for the MAX-SAT problem. This ILP formulation isequivalent to the ILP
used in Xing and Zhang [2005] to compute the lower bound and tothe ILP solved at
each node by the MAX-SAT branch-and-cut algorithm in Joy et al. [1997].

Observe that there exists a trivial way to satisfy all the clauses by setting each
variableyi to 0.5. Using this assignment, the sum of literals for each clauseis exactly
1, hence the clause can be satisfied and the objective function is equal to the number
of clauses. The value 0.5 is not at all informative, lying half way between 0 and 1,

18 Willem-Jan van Hoeve

it gives no information whether the corresponding Boolean variable should be set to
true or false. As the problem becomes more constrained (i.e., the number of clauses
increases) the corresponding 2-SAT problem is very likely to be unsatisfiable, hence
any variable assignment different than 0.5 would lead to a less than optimal objective
value. Naturally, the LP solver finds the highest possible objective value (i.e., the
number of clauses) when setting all variables to 0.5.

Gomes et al. [2006] apply the following semidefinite relaxation of MAX-2-SAT
that was introduced by Goemans and Williamson [1995]. To each Boolean variablexi

(i = 1, . . . ,n), we associate a variableyi ∈ {−1,1}. Moreover, we introduce a variable
y0 ∈ {−1,1}. We definexi to be true if and only ifyi = y0, and false otherwise.

Next, we express the truth value of a Boolean formula in termsof its variables.
Given a formulac, we define itsvalue, denoted byv(c), to be 1 if the formula is true,
and 0 otherwise. Hence,

v(xi) =
1+ y0yi

2
gives the value of a Boolean variablexi as defined above. Similarly,

v(xi) = 1− v(xi) =
1− y0yi

2
.

The value of the formulaxi ∨x j can be expressed as

v(xi ∨x j) = 1− v(xi ∧x j) = 1− v(xi)v(x j) = 1− 1− y0yi

2
1− y0y j

2

=
1+ y0yi

4
+

1+ y0y j

4
+

1− yiy j

4
.

The value of other clauses can be expressed similarly. If a variablexi is negated in a
clause, then we replaceyi by−yi in the above expression.

Now we are ready to state the integer quadratic program for MAX-2-SAT:

max ∑
c∈C

v(c)

s.t. yi ∈ {−1,1} ∀i ∈ {0,1, . . . ,n}.
(11)

It is convenient to rewrite this program as follows. We introduce an(n+1)× (n+1)
matrix Y, such that entryYi j representsyiy j (we index the rows and columns of Y
from 0 ton). Then program (11) can be rewritten as

max tr(WY)
s.t. Yi j ∈ {−1,1} ∀i, j ∈ {0,1, . . . ,n}, i 6= j,

(12)

whereW is an(n+1)× (n+1) matrix representing the coefficients in the objective
function of (11). For example, if the coefficient ofyiy j is wi j , thenWi j =Wji =

1
2wi j .

The final step consists in relaxing the conditionsYi j ∈ {−1,1} by demanding
thatY should be positive semidefinite andYii = 1 ∀i ∈ {0,1, . . . ,n}. The semidefinite
relaxation of MAX-2-SAT can then be formulated as

Semidefinite Programming and Constraint Programming 19

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 1 2 3 4 5 6 7 8 9 10

ra
tio

 w
ith

 r
es

pe
ct

 to
 o

pt
im

um

clause/variable ratio

optimum
upper bound (SDP objective function)

lower bound (SDP)
upper bound (LP objective function)

lower bound (LP)

Fig. 2. Lower and upper bounds based on LP and SDP relaxations for MAX-2-SAT instances
of increasing constrainedness.

max tr(WY)
s.t. Yii = 1 ∀i ∈ {0,1, . . . ,n},

Y � 0.
(13)

Program (13) provides an upper bound on the solution to MAX-2-SAT problems.
Furthermore, the valuesY0i, representingy0yi , correspond to the original Boolean
variablesxi (i = 1, . . . ,n). Namely, ifY0i is close to 1, variablexi is ‘likely’ to be true.
Similarly, if Y0i is close to−1, variablexi is ‘likely’ to be false.

5.2 Experimental Evaluation

We next describe the experiments performed by Gomes et al. [2006] on randomly
generated MAX-2-SAT instances. First, we consider the objective value of the LP
and SDP relaxations across different constrainedness regions of the problem. Fig-
ure 2 presents the relative lower and upper bounds obtained by LP and SDP, for
MAX-2-SAT instances on 80 variables where the constrainedness ratio (number of
clauses over the number of variables) ranges from 0.5 to 10. The figure compares
the ratio of these bounds to the optimal solution value. The lower bounds for LP and
SDP are obtained by rounding the suggested fractional solution to the closest inte-
ger. As is clear from this plot, the semidefinite relaxation provides far better bounds
than the linear relaxation. This confirms the observations made by Warners [1999]
for MAX-2-SAT problems.

Next we consider the strengths of the relaxations in terms ofheuristic guidance.
This is done by first measuring the ‘fractionality’ of the solution to the relaxation.
Namely, if a solution value of the relaxation is in the midpoint between the two in-
teger endpoints (i.e., 0.5 for LP and 0.0 for SDP), we consider the suggested value

20 Willem-Jan van Hoeve

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

LP value

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 v

ar
ia

bl
es

SDP value

a. LP relaxation solution values b. SDP relaxation solutionvalues

Fig. 3.Distribution of the values returned by the LP relaxation (a)and the SDP relaxation (b),
averaged over instances with clause over variable ratio ranging from 0.5 to 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0.5
SDP value = 0

SDP value in [-0.1, 0) or (0, 0.1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 v

ar
ia

bl
es

clause/variable ratio

LP value = 0 or 1
absolute SDP value > 0.7

a. uninformative solution values b. informative solution values

Fig. 4. Fraction of variables having (a) uninformative value 0.5 computed by LP and 0 or
smaller than 0.1 in absolute value computed by SDP, and (b) informative value 0 or 1 computed
by the LP relaxation and above 0.7 in absolute value by the SDPrelaxation.

uninformative. On the other hand, if the suggested value is close to an integer end-
point, we consider that value informative.

Figure 3 presents the distribution of the solution values returned by the LP and
SDP relaxations, respectively. In Figure 3.a the distributions for the LP relaxation
is given, clearly indicating that most values (more than 80%) are uninformative. In
contrast, the distribution of the solution values for the SDP relaxation indicates that
the majority of the suggested values is close to an integer value, and are much more
informative. In this figure, the distribution averages the solutions over all instances
where the ratio of the number of clauses over the number of variables ranges from
0.5 to 10.

Figure 4 depicts how the fractionality evolves with respectto the range of in-
creasing constrainedness. In Figure 4.a the uninformativevalues are considered. It
depicts the fraction of variables taking value 0.5 in the LP solution, and value 0,
respectively in the intervals close to 0, i.e., [-0.1,0), (0,0.1], for the SDP solution.

Semidefinite Programming and Constraint Programming 21

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

SDP
LP

optimum

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

optimum value / setting 1, 5, 10 variables with SDP
setting 1 variable with LP

setting 5 variables with LP
setting 10 variables with LP

a. setting 84% of the variables b. setting 1, 5, and 10 variables

Fig. 5. Change in the number of satisfied clauses as we set (a) 84% of the variables and (b) 1,
5 and 10 variables using the LP and SDP solutions.

When the number of clauses increases (clause/variable ratio greater than 1), the LP
solution values quickly become more uninformative. The SDPsolution values of 0
show exactly the opposite, while the SDP values close to 0 remain fairly constant. In
Figure 4.b considers the informative values, i.e., LP solution values 0 or 1, and SDP
values close to -1 or 1 (with absolute value more than 0.7 to beprecise). Again, the
LP solution values quickly loose their informative qualitybeyond clause/variable ra-
tio 1. At the same time, the informative quality of the SDP solution values increases
up to that point, and remains constant afterward.

The following set of experiments investigate the actual accuracy of the heuris-
tics, by evaluating the optimal objective function value when a number of variables
is fixed to the suggested heuristic value, where the variables closest to integrality are
chosen to be fixed first. In Figure 5.a, 84% of the variables arefixed according to
the heuristic, and the exact solver Maxsolver is used to compute an optimal solution,
completing the partial assignment. Below 84%, the SDP heuristic choice always pro-
vided an optimal solution, while at 84%, the SDP heuristic deviates slightly from the
optimal solution. The LP solution values perform much worse, as is clear from the
figure. In Figure 5.b, this is shown in more detail, as it indicates the effect of setting
1, 5, and 10 variables to the suggested heuristic value. Evenwhen assigning only
one variable, the LP heuristic already deviates from the optimal solution for higher
clause/variable ratios.

Finally, the solution obtained by the SDP heuristic is compared to the solution
obtained by Walksat, a state-of-the-art satisfiability solver based on local search. The
results are indicated in Figure 6. It can be observed that Walksat and the SDP heuris-
tic provide comparable solutions, and when the clause/variable ratio is relatively low
(Figure 6.a Walksat usually finds slightly better solutionsthan the heuristic guided
by the SDP solution. For larger clause/variable ratio, however, the solutions obtained
with the SDP heuristic outperform Walksat. This is an interesting result, because for
these problems, the time to solve the SDP relaxation was considerably smaller than

22 Willem-Jan van Hoeve

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat
optimum

lower bound (SDP)

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

of
 c

la
us

es

clause/variable ratio

upper bound (SDP objective function)
Walksat

lower bound (SDP)

a. small clause/variable ratio b. large clause/variable ratio

Fig. 6. Comparing SDP and Walksat as a lower bound.

the time taken by Walksat, while at the same time the SDP relaxation also provides
an upper bound.

In summary, these results further motivate the use of semidefinite relaxations as
search heuristic for exact solving methods such as constraint programming.

6 Telecommunications Application: Biclique Completion

Gualandi [2009] presents a hybrid semidefinite and constraint programming ap-
proach to a particular ‘biclique completion problem’, arising in the context of
telecommunications. Let us first describe the application,which was first introduced
by Faure, Chrétienne, Gourdin, and Sourd [2007].

Traditional communication services are mostly ‘unicast’,in which two nodes of
a network are communicating between each other (for examplea telephone conver-
sation). In contrast, ‘multicast’ services interconnect multiple nodes in the network
(for example a video-conference meeting). Specific efficient protocols for multicast
services have been developed, and it is expected that the demand for multicast com-
munication services will grow rapidly in the near future.

If we would choose to handle the multicast services optimally on an individual
level, we would have to design and maintain a specific networkconfiguration for
each individual service, while ensuring global optimalityof the network usage and
provided services. Such a fine-grained individual approachis far from practical, as
argued by [Faure et al., 2007]. Instead, multicast servicesare usually aggregated in
clusters, and each cluster is considered as one meta-multicast service. For example,
if several customers share a large number of services, they can be grouped together
and use a network configuration that provides the information of all joint services
to all customers. As a consequence, unnecessary information is sent between those
customers and services in the cluster for which no relationship is required.

In [Faure et al., 2007], it is proposed to cluster the multicast sessions in such a
way that the amount of unnecessary information sent throughthe network is limited,

Semidefinite Programming and Constraint Programming 23

i2

i3

i4

i5

j4

j3

j2

j1

i1

clients services

i2

i3

i4

i5

j4

j3

j2

j1

i1

clients services

a. Bipartite graph representation b. Optimal solution withtwo bicliques

Fig. 7. Clustering multicast services.

where this amount is measured by counting the number of client/service pairs be-
tween which unnecessary information is sent. An example is given in Figure 7. In
this example, we are given a set of multicast servicesI = {i1, i2, i3, i4} and a set of
clientsJ = { j1, j2, j3, j4, j5}. In Figure 7.a, the services and clients are depicted in a
bipartite graph in which an edge(i, j) represents that clientj requires servicei. For
example, clientj1 requires servicesi1 andi2. Figure 7.b represents the clustering of
the services into two sets{i1, i2} and{i3, i4}. This solution implies that unnecessary
information is sent between the pairs(i1, j4), (i2, j3), (i4, j2) and(i4, j3), as indicated
by the dashed edges in the figure. The total ‘cost’ of this solution is therefore 4. If
we assume that the maximum number of clusters is 2, this solution is optimal.

Faure et al. [2007] also suggest other variants of the problem that consider more
fine-grained measures for the information that is sent through the network. For exam-
ple, one can take into account path lengths or capacity of certain connections. Some
variants can be encoded as weighted versions of the problem.A hybrid semidefi-
nite and constraint programming approach for such weightedbiclique completion
problems was studied by Gualandi and Malucelli [2010].

6.1 Problem Description

The specific variant considered by Gualandi [2009] is described more formally as
follows [Faure et al., 2007]. LetG= (I ,J,D) be an undirected bipartite graph where
verticesI represent a set of (multicast) services, verticesJ represent a set of clients,
and edge setD ⊂ I × J represents the required demands.

We definep clustersT1, . . . ,Tp as follows. A clusterTk = (Ik,Jk,Dk) is a sub-
graph ofG whereIk ⊂ I , Jk ⊂ J, andDk = (Ik× Jk)∩D. Let K = {1, . . . , p} denote
the index set of the clusters. Since the problem will treat each cluster as a single
multicast group, the cluster will in practice correspond toa biclique (a complete bi-
partite graph) on the vertex setsIk andJk. The cost of clusterTk is |Ik| · |Jk| − |Dk|,
corresponding to the amount (number) of unnecessary information sent to the clients.

Given a numberp∈ {1, . . . , |J|−1}, themulticast partition problemconsists of
finding p clustersT1, . . . ,Tp such thatI1, . . . , Ip induce a partition ofI , and the total

24 Willem-Jan van Hoeve

cost
p

∑
k=1

|Ik| · |Jk|− |Dk|

is minimized. Given the nature of the problem, it is also referred to in [Faure et al.,
2007] and [Gualandi, 2009] as a ‘biclique completion’ problem. Faure et al. [2007]
show that the problem is NP-hard, even forp= 2.

6.2 Constraint Programming Model

The constraint programming model employed by Gualandi [2009] relies on a custom-
made global constraint, that will be applied to characterize each cluster and the asso-
ciated cost. LetG= (S,T,E) be an undirected bipartite graph, and letG= (S,T,E)
be the complement graph ofG, i.e., E = (S× T) \E. We introduce two set vari-
ablesX andY with initial domainsD(X) = [∅,S], D(Y) = [∅,T], and 0≤ |X| ≤ |S|,
0≤ |Y| ≤ |T|. VariableX represents a set of nodes on one ‘shore’ of the graph, and
all neighbors ofX will be accumulated inY. Further, letc be an integer variable with
0≤ c≤

∣

∣E
∣

∣. It corresponds to the number of edges in the complement graph G that
are necessary to create a biclique from the subgraph inducedby X andY. The spe-
cific global constraint, called ‘one-shore induced quasi-biclique constraint’ takes the
form

osi-biclique(X,Y,c,G)

and states that
Y = ∪i∈XN(i), and

c= |X| · |Y|− |F | ,
whereF = (X ×Y)∩E. HereN(i) denotes the set of neighbors of a vertexi, i.e.,
N(i) = { j | (i, j) ∈ E}. Gualandi [2009] describes and implements specific domain
filtering algorithms for this constraint.

We next build the constraint programming model for the original problem on a
graphG= (I ,J,D) with multicast servicesI , clientsJ, and demandsD as specified
above. We first introduce set variablesX1, . . . ,Xp andY1, . . . ,Yp, where a pair(Xk,Yk)
represents the vertices of a clusterTk = (Ik,Jk,Dk). We further introduce an inte-
ger variableck representing the cost of clusterTk, and a variablez representing the
objective function. The model then becomes

min z=
p

∑
k=1

ck

s.t.partition(X1, . . . ,Xp, I),

osi-biclique(Xk,Yk,ck,G), ∀k∈ K,

D(Xk) = [∅, I],0≤ |Xk| ≤ |I | , ∀k∈ K,

D(Yk) = [∅,J],0≤ |Yk| ≤ |J| , ∀k∈ K,

0≤ ck ≤
∣

∣E
∣

∣ , ∀k∈ K,

0≤ z≤
∣

∣E
∣

∣ .

Recall that thepartition constraint was defined in Section 2.

Semidefinite Programming and Constraint Programming 25

6.3 Semidefinite Programming Model

The semidefinite relaxation for this problem proposed by Gualandi [2009] is closely
related to the semidefinite relaxations for the MAX CUT problem [Goemans and
Williamson, 1995] and the MAXk-CUT problem [Frieze and Jerrum, 1997]. Let us
first describe the semidefinite relaxation forp= 2 and then extend this formulation
for generalp.

For p= 2, the objective of the multicast partition problem can be interpreted as
minimizing the number of edges in the complement graph induced by the clusters
T1 = (I1,J1,D1) andT2 = (I2,J2,D2). This is equivalent to maximizing the number
of edges in the complement graph that are in the cut between the sets(I1∪ J1)∩ J2

and(I2∪ J1)∩ J1. That is, edges connected to clients that belong to bothJ1 andJ2

are not considered in the cut.
For each vertexi ∈ I we introduce a variablexi ∈ {−1,1} representing whetheri

belongs toI1 (xi = 1) or toI2 (xi =−1). If two verticesi, j ∈ I are in the same cluster,
the productxix j equals 1, otherwise the product is equal to−1. We further introduce
a variablezi j ∈ {−1,1} for every edge(i, j) ∈ E representing whether(i, j) belongs
to the cut (zi j = −1) or not (zi j = 1). Since an edge(i, j) does not belong to a cut if
there exists a vertexk∈N(j) such thati andk belong to the same cluster, orxixk = 1,
we havezi j = maxk∈N(j){xixk}. This relation can be linearized aszi j ≥ xixl , for all
k∈ N(j).

The multicast partition problem withp= 2 can now be formulated as the follow-
ing quadratic program:

zQP= max 1
2 ∑
(i, j)∈E

(1− zi j)

s.t.zi j ≥ xixk, ∀(i, j) ∈ E,k∈ N(j),

xi ∈ {−1,1}, ∀i ∈ I ,

zi j ∈ {−1,1}, ∀(i, j) ∈ E.

Note that the optimal solution value to the multicast partition problem is equal to
∣

∣E
∣

∣− zQP.
We next associate a unit vectorvi ∈ R|I |+|J| to each vertexi ∈ I ∪ J, with the

interpretation thati and j are in the same cluster ifvi · v j = 1. LetV be the matrix
consisting of columnsvi for all i ∈ I ∪J, and letZ=VTV. The semidefinite relaxation
thus becomes:

max 1
2 ∑
(i, j)∈E

(1−Zi j)

s.t.Zi j ≥ Zik, ∀(i, j) ∈ E,k∈ N(j),

diag(Z) = e,

Z � 0.

Here diag(Z) represents the vector formed by the diagonal elements ofZ.

When the number of clustersp is more than 2, the model can be altered similar to
the approach taken in [Frieze and Jerrum, 1997] for MAXk-CUT. We leta1, . . . ,ap

26 Willem-Jan van Hoeve

be unit vectors inRp−1 satisfyingai · aj = − 1
p−1 for i, j ∈ {1, . . . , p}, i 6= j. These

vectors represent the different clusters. For each vertexi ∈ I we introduce a vector
xi taking its value in{a1, . . . ,ap}. That is, if two verticesi and j are in the same
cluster we havexi · x j = 1, otherwise we havexi · x j = − 1

p−1. We then introduce a

variablezi j ∈ {− 1
p−1,1} for each edge(i, j) ∈ E, representing whether(i, j) is in

the cut (zi j = − 1
p−1) or not (zi j = 1). Using these variables, the multicast partition

problem for generalp can be formulated as

max p−1
p ∑

(i, j)∈E

(1− zi j)

s.t.zi j ≥ xi ·xk, ∀(i, j) ∈ E,k∈ N(j),

xi ∈ {a1, . . . ,ap}, ∀i ∈ I ,

zi j ∈ {− 1
p−1,1}, ∀(i, j) ∈ E.

We can apply the same labeling technique as for the casep= 2 above to obtain the
following semidefinite relaxation for generalp:

zSDP= max p−1
p ∑

(i, j)∈E

(1−Zi j)

s.t.Zi j ≥ Zik, ∀(i, j) ∈ E,k∈ N(j),

diag(Z) = e,

Zi j ≥− 1
p−1, ∀i, j ∈ I ∪J, i 6= j,

Z � 0.

Observe that forp= 2, the vectorsa1 anda2 are in fact scalars, i.e.,a1 =−1,a2 = 1,
in which case the latter model coincides precisely with the earlier model forp= 2.

The value of the semidefinite relaxation can be applied as a lower bound for the
multicast partition problem using the relationz∗ ≥

∣

∣E
∣

∣−⌊zSDP⌋, wherez∗ represents
the optimal objective value for the multicast partition problem.

6.4 Evaluation of the Hybrid Approach

As stated above, Gualandi [2009] applies the semidefinite relaxation as a lower
bound on the objective, but also to guide the constraint programming search process.
To this end, entries in an optimal solution matrixZ∗ to the semidefinite relaxation are
interpreted as the likelihood that two vertices belong to the same cluster. That is, if
Z∗

i j is close to− 1
p−1, i and j are not likely to be in the same cluster, whereas they are

if Z∗
i j is close to 1. The closer thatZ∗

i j is to the midpoint p
2(p−1) , the more uncertain it

is whetheri and j belong to the same cluster.
The search heuristic first finds a pair of vertices(i, j) with i, j ∈ I , that are not yet

assigned to any cluster, such that|Z∗
i j |− p

2(p−1) is maximized. It then finds a variable

Xk that contains at least one of these variables as a possible element. IfZ∗
i j >

p
2(p−1)

Semidefinite Programming and Constraint Programming 27

it will assign bothi and j to Xk as branching decision. Otherwise, it will assign either
i or j to Xk.

The overall hybrid approach has two variants. The first computes and exploits
the semidefinite relaxation at each node in the search tree. The second variant only
solves the semidefinite relaxation once at the root node, as in Van Hoeve [2006]. In
the computational experiments reported by Gualandi [2009], these two approaches
are compared against two other exact methods. The first uses alinearized quadratic
integer programming model similar to [Faure et al., 2007], which is solved with
IBM/ILOG CPLEX. The second is a pure constraint programmingmodel, solved
with Gecode, without the use of the semidefinite relaxation.

The computational results provide three main insights. First, the hybrid semidefi-
nite and constraint programming approach is competitive tothe integer programming
approach (and in several cases better). Furthermore, in terms of efficiency, applying
the semidefinite relaxation at each node in the search tree does not pay off. Instead,
it was found that applying the semidefinite relaxation only once at the root node was
more efficient. This strategy also outperformed the pure constraint programming ap-
proach.

7 Conclusion and Future Directions

In this chapter, we have described how constraint programming can be applied to
model and solve combinatorial optimization problems, and how semidefinite pro-
gramming has been successfully integrated into constraintprogramming. Specifi-
cally, we have shown that semidefinite relaxations can be a viable alternative to lin-
ear programming relaxations, that are commonly applied within optimization con-
straints. One of the main benefits of semidefinite relaxations in this context appears
to be the accuracy when the solution to the semidefinite relaxation is applied as a
search heuristic.

From a constraint programming perspective, arguably the most important ques-
tion to be addressed is the application of semidefinite relaxations to design cost-based
filtering algorithms for the variable domains, in addition to strengthening the bound
on the objective that is currently done. Even though additional theory may be de-
veloped for this purpose, it is likely that specific algorithms must be designed and
engineered, e.g., taking advantage of incremental data-structures, to make such ap-
plication worthwhile in practice.

In order to make semidefinite programming relaxations more accessible to the
constraint programming community, it would be worthwhile to investigate how the
modeling and solving capabilities of constraint programming systems can be ex-
tended to facilitate this. For example, there exist varioustechniques to automatically
create a linear programming relaxation from a given constraint programming model,
see, e.g., [Refalo, 2000; Hooker, 2000, 2007]. Several systems, including the con-
straint programming solver Xpress Kalis [FICO, 2009] and the modeling language
Zinc [Brand et al., 2008] provide an interface to embed and automatically exploit

28 Willem-Jan van Hoeve

linear programming relaxations. Having such functionality for semidefinite program-
ming relaxations would be helpful, especially for designing hybrid methods.

In addition, it would be very useful to develop hybrid semidefinite programming
and constraint programming approaches for more applications. Through studying
more diverse applications, we not only have a chance of improving the state of the
art in solving those, but we can also gain more insight in the theoretical and practical
characteristics that make such approaches successful.

From a semidefinite programming perspective, it may be worthwhile to consider
alternatives to the ILP-inspired branch-and-bound and branch-and-cut solving meth-
ods, especially because most semidefinite relaxations are still relatively expensive
to compute. This chapter offers several options. For example, one may consider not
solving a complete SDP relaxation at each search node, but rather at selected nodes of
the search tree. Furthermore, alternative search strategies, as presented in this chap-
ter, may be considered. And of course, the (cost-based) filtering algorithms may be
applicable directly through variable fixing procedures inside an SDP-based solver.

Finally, another issue that deserves future investigations is the relationship be-
tween constraint programming, integer programming, and semidefinite programming
when handling symmetry in combinatorial problems. There exists a vast literature on
explicit symmetry breaking in constraint programming and integer programming, see
Gent et al. [2006] and Margot [2010] for recent surveys. In contrast, certain types of
symmetry breaking are implicitly accounted for in semidefinite relaxations; see for
example Anjos and Vannelli [2008]. These complementary approaches could per-
haps be combined very effectively.

In conclusion, even though several of the developments described in this chapter
are still at an early stage, there clearly is a great potential for hybrid solution methods
combining semidefinite programming and constraint programming.

Acknowledgement.I would like to thank Stefano Gualandi for helpful comments on an earlier
draft of the chapter.

References

M.F. Anjos. An improved semidefinite programming relaxation for the satisfiability problem.
Mathematical Programming, 102(3):589–608, 2005.

M.F. Anjos and A. Vannelli. Computing Globally Optimal Solutions for Single-Row Layout
Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on
Computing, 20:611–617, 2008.

K.R. Apt. The essence of constraint propagation.Theoretical Computer Science, 221(1–2):
179–210, 1999.

K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
S. Brand, G.J. Duck, J. Puchinger, and P.J. Stuckey. Flexible, Rule-Based Constraint Model

Linearisation. InProceedings of the 10th International Symposium on Practical Aspects of
Declarative Languages (PADL), volume 4902 ofLecture Notes in Computer Science, pages
68–83. Springer, 2008.

Semidefinite Programming and Constraint Programming 29

M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for maximum
constraint satisfaction problems.ACM Transactions on Algorithms, 5(3):32–1—32–14,
2009.

J. Cheriyan, W.H. Cunningham, L. Tunçel, and Y. Wang. A Linear Programming and Round-
ing Approach to MAX 2-SAT.DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 26:395–414, 1996.

R. Dechter.Constraint Processing. Morgan Kaufmann, 2003.
N. Faure, P. Chrétienne, E. Gourdin, and F. Sourd. Bicliquecompletion problems for multicast

network design.Discrete Optimization, 4:360–377, 2007.
FICO. Xpress-Kalis User guide, Fair Isaac Corporation, 2009.
M. Fischetti and A. Lodi. Local Branching.Mathematical Programming, 98(1–3):23–47,

2003.
D. Fleischman and M.V. Poggi de Aragão. Improved SDP Boundson the Exact Solution of

Unconstrained Binary Quadratic Programming. InOptimization Days, Montreal, 2010.
F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. InProceedings of the Fifth

International Conference on Principles and Practice of Constraint Programming (CP), vol-
ume 1713 ofLecture Notes in Computer Science, pages 189–203. Springer, 1999a.

F. Focacci, A. Lodi, M. Milano, and D. Vigo. Solving TSP through the integration of OR and
CP techniques.Electronic Notes in Discrete Mathematics, 1:13–25, 1999b.

F. Focacci, A. Lodi, and M. Milano. Optimization-Oriented Global Constraints.Constraints,
7(3–4):351–365, 2002a.

F. Focacci, A. Lodi, and M. Milano. Embedding relaxations inglobal constraints for solv-
ing TSP and TSPTW.Annals of Mathematics and Artificial Intelligence, 34(4):291–311,
2002b.

F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the TSPTW.INFORMS
Journal on Computing, 14(4):403–417, 2002c.

A. Frieze and M. Jerrum. Improved Approximation Algorithmsfor MAX k-CUT and MAX
BISECTION. Algorithmica, 18(1):67–81, 1997.

M.R. Garey and D.S. Johnson.Computers and Intractibility. Freeman, 1979.
I.P. Gent, K.E. Petrie, and J.-F. Puget. Symmetry in Constraint Programming. In F. Rossi,

P. van Beek, and T. Walsh, editors,Handbook of Constraint Programming, chapter 10.
Elsevier, 2006.

C. Gervet. Conjunto: Constraint Logic Programming with Finite Set Domains. InProceedings
of the International Logic Programming Symposium (ILPS), pages 339–358. MIT Press,
1994.

M.X. Goemans and D.P. Williamson. New34-Approximation Algorithms for the Maximum
Satisfiability Problem.SIAM Journal on Discrete Mathematics, 7(4):656–666, 1994.

M.X. Goemans and D.P. Williamson. Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM, 42(6):
1115–1145, 1995.

C.P. Gomes, W.J. van Hoeve, and L. Leahu. The Power of Semidefinite Programming Relax-
ations for MAX-SAT. InProceedings of the Third International Conference on Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR), volume 3990 ofLecture Notes in Computer Science, pages 104–118.
Springer, 2006.

M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Combinatorial Opti-
mization. Wiley, 1988.

G. Gruber and F. Rendl. Computational experience with stable set relaxations.SIAM Journal
on Optimization, 13(4):1014–1028, 2003.

30 Willem-Jan van Hoeve

S. Gualandi.k-Clustering Minimum Biclique Completion via a Hybrid CP andSDP Approach.
In Proceedings of the 6th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial OptimizationProblems (CPAIOR), volume
5547 ofLecture Notes in Computer Science, pages 87–101. Springer, 2009.

S. Gualandi and F. Malucelli. Weighted Biclique Completionvia CP-SDP Randomized
Rounding. InProceedings of the European Workshop on Mixed Integer Nonlinear Pro-
gramming, pages 223–230, 2010.

V. Guruswami and P. Raghavendra. Constraint Satisfaction over a Non-Boolean Domain:
Approximation Algorithms and Unique-Games Hardness. InProceedings of the 11th In-
ternational Workshop on Approximation, Randomization andCombinatorial Optimization.
Algorithms and Techniques (APPROX), volume 1571 ofLecture Notes in Computer Sci-
ence, pages 77–90. Springer, 2008.

E. Halperin and U. Zwick. Approximation Algorithms for MAX 4-SAT and Rounding Proce-
dures for Semidefinite Programs.Journal of Algorithms, 40:184–211, 2001.

W.D. Harvey and M.L. Ginsberg. Limited Discrepancy Search.In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI), pages 607–615.
Morgan Kaufmann, 1995.

C. Helmberg. Fixing Variables in Semidefinite Relaxations.SIAM Journal on Matrix Analysis
and Applications, 21(3):952–969, 2000.

W.-J. van Hoeve. A hybrid constraint programming and semidefinite programming approach
for the stable set problem. InProceedings of the Ninth International Conference on Prin-
ciples and Practice of Constraint Programming (CP), volume 2833 ofLecture Notes in
Computer Science, pages 407–421. Springer, 2003.

W.-J. van Hoeve. Exploiting Semidefinite Relaxations in Constraint Programming.Computers
and Operations Research, 33(10):2787–2804, 2006.

W.-J. van Hoeve and I. Katriel. Global Constraints. In F. Rossi, P. van Beek, and T. Walsh,
editors,Handbook of Constraint Programming, chapter 6. Elsevier, 2006.

W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming: Flow-based soft global
constraints.Journal of Heuristics, 12(4):347–373, 2006.

J. Hooker.Logic-Based Methods for Optimization - Combining Optimization and Constraint
Satisfaction. Wiley, 2000.

J.N. Hooker. Operations Research Methods in Constraint Programming. In F. Rossi, P. van
Beek, and T. Walsh, editors,Handbook of Constraint Programming, chapter 15. Elsevier,
2006.

J.N. Hooker.Integrated methods for optimization. Springer, 2007.
S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for MAX-SAT and weighted

MAX-SAT. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
35:519–536, 1997.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Proceedings
of the 38th Annual IEEE Symposium on Foundations of ComputerScience (FOCS), pages
406–415. IEEE Computer Society, 1997.

I. Katriel, M. Sellmann, E. Upfal, and P. Van Hentenryck. Propagating Knapsack Constraints
in Sublinear Time. InProceedings of the 22nd National Conference on Artificial Intelli-
gence (AAAI), pages 231–236. AAAI Press, 2007.

E. de Klerk and H. van Maaren. On semidefinite programming relaxations of (2+p)-SAT.
Annals of Mathematics and Artificial Intelligence, 37:285–305, 2003.

E. de Klerk and J.P. Warners. Semidefinite Programming Approaches for MAX-2-SAT
and MAX-3-SAT: computational perspectives. In P.M. Pardalos, A. Migdalas, and R.E.
Burkard, editors,Combinatorial and Global Optimization. World Scientific, 2002.

Semidefinite Programming and Constraint Programming 31

E. de Klerk, H. van Maaren, and J.P. Warners. Relaxations of the Satisfiability Problem Using
Semidefinite Programming.Journal of Automated Reasoning, 24:37–65, 2000.

H.C. Lau. A New Approach for Weighted Constraint Satisfaction. Constraints, 7:151–165,
2002.

M. Laurent and F. Rendl. Semidefinite Programming and Integer Programming. In K. Aardal,
G. Nemhauser, and R. Weismantel, editors,Discrete Optimization, Handbooks in Oper-
ations Research and Management Science. Elsevier, 2004. Also available as Technical
Report PNA-R0210, CWI, Amsterdam.

M. Laurent, S. Poljak, and F. Rendl. Connections between semidefinite relaxations of the
max-cut and stable set problems.Mathematical Programming, 77:225–246, 1997.

L. Leahu and C.P. Gomes. Quality of LP-based Approximationsfor Highly Combinatorial
Problems. InProceedings of the Tenth International Conference on Principles and Practice
of Constraint Programming (CP), volume 3258 ofLecture Notes in Computer Science,
pages 377–392. Springer, 2004.

L. Lovász. On the Shannon capacity of a graph.IEEE Transactions on Information Theory,
25:1–7, 1979.

F. Margot. Symmetry in Integer Linear Programming. In50 Years of Integer Programming
1958–2008, chapter 17. Springer, 2010.

M. Milano, editor. Constraint and Integer Programming - Toward a Unified Methodology,
volume 27 ofOperations Research/Computer Science Interfaces. Kluwer Academic Pub-
lishers, 2003.

M. Milano and W.J. van Hoeve. Reduced Cost-Based Ranking forGenerating Promising
Subproblems. InProceedings of the Eighth International Conference on Principles and
Practice of Constraint Programming (CP), volume 2470 ofLecture Notes in Computer
Science, pages 1–16. Springer, 2002.

G.L. Nemhauser and L.A. Wolsey.Integer and Combinatorial Optimization. Wiley, 1988.
J.F. Puget. PECOS: a high level constraint programming language. InProceedings of the

Singapore International Conference on Intelligent Systems (SPICIS), 1992.
P. Raghavendra. Optimal Algorithms and InapproximabilityResults for Every CSP? InPro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages
245–254. ACM, 2008.

P. Raghavendra and D. Steurer. Integrality Gaps for Strong SDP Relaxations of UNIQUE
GAMES. InProceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 575–585. IEEE Computer Society, 2009a.

P. Raghavendra and D. Steurer. How to Round Any CSP. InProceedings of the 50th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pages 586–594. IEEE
Computer Society, 2009b.

P. Refalo. Linear Formulation of Constraint Programming Models and Hybrid Solvers. In
Proceedings of the Sixth International Conference on Principles and Practice of Constraint
Programming (CP), volume 1894 ofLecture Notes in Computer Science, pages 369–383.
Springer, 2000.

J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. InProceedings of
the Twelfth National Conference on Artificial Intelligence(AAAI), volume 1, pages 362–
367. AAAI Press, 1994.

J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints.Constraints, 7:
387–405, 2002.

J.-C. Régin. Global Constraints and Filtering Algorithms. In M. Milano, editor,Constraint
and Integer Programming - Toward a Unified Methodology, volume 27 ofOperations Re-
search/Computer Science Interfaces, chapter 4. Kluwer Academic Publishers, 2003.

32 Willem-Jan van Hoeve

J.-C. Régin. Modélisation et Contraintes Globales en Programmation par Contraintes. Habil-
itation thesis, University of Nice, 2004.

F. Rossi, P. van Beek, and T. Walsh, editors.Handbook of Constraint Programming. Elsevier,
2006.

A. Sadler and C. Gervet. Global Filtering for the Disjointness Constraint on Fixed Cardinality
Sets. Technical Report TR-IC-PARC-04-02, IC-PARC, Imperial College, 2004.

M. Sellmann, T. Gellermann, and R. Wright. Cost-Based Filtering for Shorter Path Con-
straints.Constraints, 12(2):207–238, 2007.

P. van Beek. Backtracking search algorithms. In F. Rossi, P.van Beek, and T. Walsh, editors,
Handbook of Constraint Programming, chapter 4. Elsevier, 2006.

P. Van Hentenryck, L. Perron, and J.-F. Puget. Search and strategies in OPL.ACM Transac-
tions on Computational Logic, 1(2):285–320, 2000.

J. Warners.Nonlinear Approaches to Satisfiability Problems. PhD thesis, Technische Univer-
siteit Eindhoven, 1999.

Z. Xing and W. Zhang. MaxSolver: An efficient exact algorithmfor (weighted) maximum
satisfiability.Artificial Intelligence, 164(1–2):47–80, 2005.

U. Zwick. Approximation Algorithms for Constraint Satisfaction Problems Involving at Most
Three Variables per Constraint. InProceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 201–210. ACM/SIAM, 1998.

Index

biclique completion problem, 22

constraint programming
constraint propagation, 4

constraint programming, 1–32
domain filtering, 5
global constraint, 3
modeling, 3
optimization constraint, 7
search, 4
search strategy, 8
set variable, 4
solving, 4

constraint propagation, 4
CP,seeconstraint programming

domain filtering algorithm, 5

global constraint, 3

limited discrepancy search, 9

MAX-2-SAT problem, 14, 17

optimization constraint, 7
using semidefinite relaxation, 12

search strategy
value selection heuristic, 9

search strategy, 8
accuracy of semidefinite relaxation, 16
based on semidefinite relaxation, 12
variable selection heuristic, 9

semidefinite relaxation
as search heuristic, 12
biclique completion problem, 25
MAX-2-SAT problem, 18
stable set problem, 15

set variable, 4
stable set problem, 15

