Contents

Semidefinite Programming and Constraint Programming
Willem-Janvan Hoeve

1 INtroducCtion
2 Constraint Programmingttt e e
21 Modeling.oo e
2.2 SOIVING .. e
2.3 Optimization Constraintso iiimmnnaen...
2.4 SearchStrategieso i
3 Semidefinite Relaxations in Constraint Programming
3.1 Building a Semidefinite Relaxation . e
3.2 Semidefinite Relaxation as Opt|m|zat|on Constramt

3.3 Semidefinite Relaxation as Search Heuristic. .

3.4 Semidefinite Relaxations for Restricted ConstramgFﬂmmlng
Problems
4 Application to the Maximum Weighted Stable Set Problem.........
4.1 Problem Description and Model Formulations

4.2 Evaluation of the Hybrid Approach
5 Accuracy of Semidefinite Relaxations as Search Heuristic...
5.1 Problem Description and Model Formulations
5.2 Experimental Evaluation........... iani
6 Telecommunications Application: Biclique Completion.............
6.1 Problem Descriptionttt i
6.2 Constraint Programming Model
6.3 Semidefinite ProgrammingModel
6.4 Evaluation of the Hybrid Approach
7 Conclusion and Future DIrectionsottmmmmneeenn..
RefereNCeS ...

2 Contents

This chapter is to appear as

W.-J. van Hoeve. Semidefinite Programming and Constramgf@mming. In M.F.
Anjos and J.B. Lasserre (edsHandbook on Semidefinite, Cone and Polynomial
Optimization: Theory, Algorithms, Software and Applioa Springer.

This is a draft. Please do not distribute.

Semidefinite Programming and Constraint
Programming

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University(BB0rbes Avenue, Pittsburgh, PA
vanhoeve@andrew. cmu.edu

Recently, semidefinite programming relaxations have bpplieal in constraint pro-
gramming to take advantage of the high-quality bounds aadige heuristic guid-
ance during the search for a solution. The purpose of thiptehds to present an
overview of these developments, and to provide future rebgarospects.

1 Introduction

Constraint programming is a modeling and solving paradigncémbinatorial opti-
mization problems. In constraint programming, a combiriatproblem is modeled
using variables that have an associated domain of possiles; and constraints
over these variables. What makes constraint programmiffiereiit from similar
methods such as integer programming, is that the varialieads can be any finite
set of elements, and the constraints can be of any type. on@e, a constraint can
be defined explicitly by a list of allowed tuples, or impllgiby an expression such
asalldifferent(xy,Xy,...,%n), Which specifies that the variables xy, . . . , X, take
pairwise different values. In contrast, integer lineargreonming restricts the vari-
ables to take either a continuous or integer valued domaifagt, an interval), while
constraints can be only linear expressions. Hence, camsmagramming offers a
very rich, and often convenient, modeling language.

In order to solve a given model, a constraint programmingesamplicitly enu-
merates all possible variable-value combinations thragystematic search process
until a solution satisfying all constraints has been founrdutil it is proved that no
solution exists). Most constraint programming systemavathe user to specify a
particular search strategy. For example, criteria can Ipeessed to determine the
variable order to branch on, as well as the value order tgassithose variables.

To reduce the underlying exponentially large search sgaeealleddomain fil-
tering algorithms are applied during the systematic search pso&ch constraint
has an associated filtering algorithm. Its task is to remawegbly inconsistent val-
ues from the domains of the variables that are in the scopeeoédnstraint, based
on the individual constraint only. When a filtering algontHor one constraint has

2 Willem-Jan van Hoeve

processed the variables in its scope, the updated doma&ips@ragated to the other
constraints that share these variables, whose filteriragitthgns are in turn activated.
This cascading effectis called constraint propagatioreléiver a filtering algorithm
makes a domain empty, we know that at that point of the sear&olution is possi-
ble, and we backtrack to a previous search state.

By design, the inference of domain filtering is based on fefisi of each do-
main value. For optimization problems, similar inferenaa be performed by means
of cost-basedlomain filtering. That is, a domain value is considered igitele if as-
signing it to its variable will always yield a suboptimal stibn (if any). Focacci,
Lodi, and Milano [1999a] introduced a systematic way of gesig cost-based do-
main filtering algorithms for so-called ‘optimization carents’, through embed-
ding an associated relaxation. Although they apply linetaxations, conceptually
any suitable relaxation can be embedded, including semitiefelaxations, as pro-
posed by Van Hoeve [2003, 2006].

From a constraint programming perspective, there are twjormeasons why
semidefinite relaxations could be successfully integratedt, the bounds obtained
can be much tighter than those obtained with linear relaratiand can help to im-
prove the optimization reasoning. Second, the fractioolatt®n of the semidefinite
relaxation can be applied as an accurate search heurigfmould be noted that the
intention here is not to solve a semidefinite relaxation @&rgwode of the search
tree necessarily. Instead, a semidefinite relaxation magohed only once at the
root node, or at selected times during the search process.

Also from a semidefinite programming perspective, the irgggn with con-
straint programming can be beneficial. Namely, it is not umemn that solving a
semidefinite relaxation takes so much time that embeddingsitle a pure SDP-
based branch-and-bound scheme does not pay off. Instesappnoaches studied in
this chapter focus on a limited number of relaxations to Iheesh while different in-
formation is extracted and utilized from the solution, ngnfier domain filtering and
search heuristics. These ideas may be applied also inside&PP-based solver.

The remainder of the chapter is structured as follows. IrtiGe@ we present
necessary background information on constraint prograrmgniin Section 3 we de-
scribe how semidefinite relaxations have been applied mwitbnstraint program-
ming. Section 4 presents a first application of this, for Istaet problems. In Sec-
tion 5 we discuss the accuracy of semidefinite relaxationsnwdpplied as a search
heuristic. In Section 6, an integrated approach to a telewonications application
is presented, corresponding to the biclique completiomlera. Finally, Section 7
presents conclusions and future research perspectives.

2 Constraint Programming

We first introduce basic constraint programming concesdhe necessary for this
chapter. For more information on constraint programmingever to the textbooks

Semidefinite Programming and Constraint Programming 3

by Apt [2003] and Dechter [2003], and to the Handbook on Guairst Program-
ming by Rossi et al. [2006]. For more information on the imé&tigpn of constraint
programming and operations research we refer to Hooke2®0lano [2003] and
Hooker [2007].

2.1 Modeling

Even though constraint programming has many similaritig¢k imteger linear pro-
gramming (ILP), there are some basic differences, alsorimitelogy, that may
cause confusion.

First, ILP assumes that variables take a value from a contisinterval repre-
sented by a lower and upper bound. In ILP systems, a varialderisidered to be
integer if its value is within a small tolerance factor of ateiger number. In contrast,
a CP variable takes its value from a specific finite set catieddmain For a vari-
ablex, we denote its domain by (x). Variable domains are represented explicitly in
CP systems. This is a fundamental difference between ILResgsand CP systems.
Namely, the explicit domain representation of CP not onlgves more expressive
models, but also allows to represent high-level infereifeas, we can remove indi-
vidual values from a variable domain). On the other handctrginuity assumption
and linearity of ILP models allow the use of efficient lineaogramming solvers,
but inferences are limited to those that can be representéiddar constraints and
changes in the bounds of variables.

In CP, constraints can take several forms. Formally, a caim$iC on a set of
variablesX = {x1,Xo,...,X} is defined as a subset of the Cartesian product of
the domains of the variables K, i.e.,C C D(x1) x D(x2) x --- x D(X). A tuple
(d,...,d) € Cis called asolutionto C. An immediate form to represent constraints
is thus to list out the individual tuples that form the defanit, and we say that such
constraints are given ‘in extension’. For several applicet, such as database appli-
cations, such representation is very natural and usefwlieder, often we prefer to
model combinatorial problems using implicit formulatiofar example using linear
expressions. Most constraint programming systems allavstcaints to be defined
by any algebraic expression, using common operators suekditon and multi-
plication, but also logical connectives in which sub-esiens serve as Boolean
functions, whose truth value can be interpreted as a biranev For example, the
constraint

2= 3 (i

restricts variableto be equal to the number of variablgs. . . , x, that take a value of
at leasth. Furthermore, variables can appear as subscripts. Forgaafor an index
setl, consider an arrag € QI'l, a variablex with domainD(x) = I, and a variable
Z. The expressionr = ¢ states that will be assigned the-th value in the array
¢. Such constraints, in which a variable functions as an indexcalled ‘element’
constraints.

Constraint programming further allows the use of so-cafjexbal constraints
[Régin, 2003; Van Hoeve and Katriel, 2006]. Global coristsaare defined on an

4 Willem-Jan van Hoeve

arbitrary number of variables, and usually encapsulatevebamatorial structure that
can be exploited during the solving process. A well-knowaregle is the constraint
alldifferent(xs,Xo,...,Xn), that requires the variableg,xy, ..., Xy to take pair-
wise different values. Global constraints and element ttaims can lead to very
concise formulations. For example, consider a Travelings®aan Problem on
cities, in which the distance between two citiemd j is denoted byd; j. The prob-
lem asks to find a closed tour visiting each city exactly onaigh minimum to-
tal distance. We introduce a variablerepresenting théth city to be visited, for
i =1,...,n. The problem can then be formulated as

n-1
min Z dXi X1 + an,Xl
i=

s.t.alldifferent(Xg,Xo,...,Xn),
D(x)=1{1,2,...,n}, vie{1,....n}.

In addition to global constraints, most CP systems contiardhigh-level modeling
objects. For exampleset variablesare variables that will be assigned a set of ele-
ments [Puget, 1992; Gervet, 1994]. The domain of a set Variah finite set of sets,
that however often is exponentially large. Therefore, C&teaps usually represent
the domain of a set variable by a ‘lower bound’ of mandatoeyrednts and an ‘upper
bound’ of possible elements. In addition, a lower and uppeiniol on the cardinality
of the setis maintained as part of the domain informationeikample, if the domain
of a set variabl&is defined aP(S) = [{a,c},{a,b,c,d,e}] with 3< | < 4}, the
mandatory elements af@,c} while the possible elements afe,b,c,d,e} and in
addition the cardinality must be between 3 and 4. That isdtmeain implicitly in-
cludes the setéa, b,c},{a,c,d},{a,c.e},{ab,c,d},{ab,c e}, and{ac,d,e}. As
an illustration, we next model the weighted stable set mwblising a set variable.
Let G = (V,E) be an undirected weighted graph with vertex\$eedge sek, and
a ‘weight’ functionw : V — R. The maximum weighted stable set problem asks to
find a subset of vertices with maximum total weight, such tiretwo vertices in this
subset share an edge. We introduce one set vargatapresenting the vertices that
will form the stable set. The initial domain of this set vaimisD(S) = [@,V], and
0 < |9 < |V|. That is, initially there are no mandatory elements, anctl@inents
in V can potentially be in the stable set. The constraint prograng model then
becomes
max ¥ icsWi
st.(ieS=(j¢9), v(i,j) € E,
D(§ =[a,V][,0<[§ < V.
Note that this model makes use of logical implications tase@shat no two adjacent
vertices belong to the stable set.

2.2 Solving

The solution process of constraint programming interls@eastraint propagation
andsearch During the search process, all possible variable-valngbxioations are

Semidefinite Programming and Constraint Programming 5

implicitly enumerated until we find a solution or prove thahe exists. We say that
this process constructssgarch treein which the root node represents the original
problem to be solved, and a branching decision partitionsderinto at least two
subproblems. To reduce the exponential number of combimsiilomain filtering
and constraint propagatiors applied at each node of the search treedofnain
filtering algorithmoperates on an individual constraint. Given a constraimd, the
current domains of the variables in its scope, a domainifigealgorithm removes
domain values that do not belong to a solution to the comgtr&uch domain val-
ues are calledhconsistentwvith respect to the constraint. Likewise, domain values
that do belong to a solution are callednsistentvith respect to the constraint. Since
variables usually participate in more than one constréiat,updated domains are
propagated to the other constraints, whose domain filtexiggrithms in effect be-
come active. This process of constraint propagation isatepkfor all constraints
until no more domain values can be removed, or a domain becem@ty. Since
the variable domains are finite, this process always tert@én&urthermore, it can
be shown that under certain conditions on the domain filgegilgorithms, the con-
straint propagation process always reaches the same fixet ipeespective of the
order in which the constraints are processed [Apt, 1999].

For example, consider the following constraint prograngmmodel (correspond-
ing to a feasibility problem):

X1 > Xo, 1)

X1+ X2 = X3, (2)
alldifferent(Xy,X2,X3,Xa), €))

x1 € {1,2},% € {0,1,2,3},x3 € {2,3},x4 € {0,1}. 4)

If we process the constraints in the top-down order of theehalde constraint prop-
agation first considers constraint (1), whose domain filtgelgorithm removes the
inconsistent values 2 and 3 froB(xz), i.e.,D(xz) = {0,1} at this point. We then
continue with constraint (2), for which all values are cateit. For constraint (3),
observe that variables andx4 now both have domaif0, 1}, and thus saturate these
values. Therefore, we can remove values 0 and 1 from the asrothe other vari-
ables in its scope, i.eD(x1) = {2}. As an immediate effect, the same algorithm
will deduce thatD(x3) = {3}. At this point, we have processed all constraints, but
note that since we have changed the domains, 0k,, andxs, we need to repeat
the domain filtering for the constraints in which they papiite. Considering again
constraint (1), we find that all domain values are consistérdm constraint (2),
however, we deduce th&t(x,) = {1}. Finally, reconsidering constraint (3) leads to
D(xs) = {0}. In summary, in this case the constraint propagation at®able to find

a solution to the problem, i.ex; = 2,x, = 1,X3 = 3,x4 = 0.

In order to be effective, domain filtering algorithms shohkl computationally
efficient, because they are applied many times during theisealprocess. Further,
they should remove as many inconsistent values as posHilsledlomain filtering
algorithm for a constraint removesall inconsistent values from the domains with

6 Willem-Jan van Hoeve

respect t&, we say that it make8 domain consisteritin other words, all remaining
domain values participate in at least one solutio@.tdore formally:

Definition 1 (Domain consistency).A constraint C on the variables;x .., x is
called domain consistenif for each variable x and each value jde D(x) (i =
1,...,k), there exist a valuejd= D(x;) for all j # i such that(ds,...,dx) € C.

In practice, one usually tries to develop filtering algamththat separate the
check for consistency and the actual domain filtering, éafigavhen processing
global constraints. That is, we would like to avoid applythg algorithm that per-
forms the consistency check to each individual variablere/pair, since that strategy
can often be improved. Moreover, one typically tries to geshcremental algo-
rithms that re-use data structures and partial solutias fine filtering event to the
next, instead of applying the filtering algorithm from scragach time it is invoked.

Without effective domain filtering algorithms to reduce #earch space, con-
straint programming would not be applicable in practice. fany practical prob-
lems, global constraints are the most effective, since theoit the underlying
combinatorial structure to identify more inconsistentues than a corresponding
decomposition in ‘elementary’ constraints would identfpr example, consider a
set of variableX that must take pairwise different values, while the doméieach
variablex € X isD(x) = {1,...,|X|—1}. Clearly, as the number of variables exceeds
the number of possible values that can be jointly assignéldeim, the problem has
no solution. However, if we model the problem using not-égoastraintsy; # X;
for all pairsx;,x; € X with i # j, constraint propagation alone cannot deduce this
fact. Namely, for each individual not-equal constraing x;, the associated domain
filtering algorithm will consider only the domains xfandx;j, and each value within
these domains participates in a solution to that constr@intthe other hand, if we
establish domain consistency for the global constrsiatiifferent(X), we would
be able to immediately deduce that the constraint cannaoatigfied. In fact, Régin
[1994] showed that domain consistency farldifferent can be established in
polynomial time by representing the constraint as a bifganiatching problem.

As a final remark on domain filtering, consider the constr@iatS) = (j ¢ S) as
applied in the stable set model above. Such constraintintiave the truth value of
subexpressions, will internally be represented using @molariables by most CP
systems. That is, one Boolean variakleepresents whether the expressior S)
is true or not, and another Boolean variaplepresents the expressiong S). The
associated domain filtering will then be performed on thatiehx = y and the rela-
tionsx = (i € §) andy = (j ¢ S). However, such decomposition into a Boolean repre-
sentation is not always necessary for set variables, as efficient algorithms may
be implemented directly, especially for global constraon set variables. For exam-
ple, the global constraiplartition(S;, S, ..., S, V) requires that the set variables
S1,S,...,S form a partition of the se¥. For this constraint, an efficient filtering
algorithm can be designed based on a bipartite network flpnesentation [Sadler
and Gervet, 2004; Régin, 2004].

1 In the literature, domain consistency is also referred thy@er-arc consistencyr gener-
alized arc consistendgpr historic reasons.

Semidefinite Programming and Constraint Programming 7

When a constraint programming model involves an objectivetion to be op-
timized, the default solving process applies the followstigiightforward bounding
procedure. Consider an objective nfgX) where the objective functioh can be an
arbitrary expression mapped to a totally ordered set. Assythat we have a known
upper boundJ on the objective, it will be treated as a constrdifX) < U, and the
associated domain filtering algorithms for this constraitiitbe applied. As soon as
a solution satisfying all the constraints has been found that has objective value
U’, the right hand side of the ‘objective’ constraint will bedaed asf (X) < U’,
after which the search continues. Note that if the objectadlee of the incumbent
solution is higher than the current upper bound, the assat@omain filtering algo-
rithm will detect an inconsistency and the solver will baiekk to a previous search
state.

2.3 Optimization Constraints

As explained in the previous section, the CP solver evaduaie objective function
as an individual constraint, where the potential solutienis formed by the Carte-
sian product of the domains of the variables in its scopet hay default it is
not aware of any underlying combinatorial structure thay ingprove the bound of
the objective, unless we add this structure explicitly ® tbnstraint that represents
the objective. Many works have studied how to improve theesgntation of the
objective in constraint programming, and the resultingst@ints are now often re-
ferred to as ‘optimization constraints’, or ‘optimizationiented global constraints’
[Focacci et al., 2002a].

Even though a formal definition of optimization constraistsot easy to provide,
they can be thought of as weighted versions of global coingral hat is, for a global
constrainC(X) on a set of variableX, we can define a corresponding optimization
constraint with respect to a ‘weight’ functidr{X) as

CX)A(f(X) <2),

wherezis a variable representing the upper bound on the weightifumcThe opti-
mization constraint thus ensures that we only allow sohgdithat respect constraint
C and have a corresponding weight not more tharhe domain filtering associated
with such reasoning is referred to as ‘cost-based’ domagrifilg. Cost-based do-
main filtering algorithms usually work in two directions: &direction is to update
the domain ofz, i.e., improve the bound, based on the current domains ofahie
ablesX, while the second direction is to update the domains of thiabkesX based
on the currentbound af The latter direction is also referred to as ‘back-propagéat
in the literature.

While many optimization constraints utilize specializedmbinatorial algo-
rithms to perform cost-based filtering (see, e.g., [Ré8DN2; Van Hoeve et al.,
2006; Katriel et al., 2007; Sellmann et al., 2007]), a generéthodology to design-
ing cost-based filtering for optimization constraints wasdduced in a sequence of
papers by Focacci, Lodi, Milano, and Vigo [1999b] and Fogdordi, and Milano

8 Willem-Jan van Hoeve

[1999a, 2002b,c]. In these works, the domain filtering isshlaen a linear relaxation
of the associated global constraint together with a ‘gratdienction’ gradx, v) that
returns, for each possible variable-value gaiv) with v € D(x), an optimistic eval-
uation of the cost to be paid\fis assigned ta. For example, consider the constraint
alldifferent(Xy,...,%n), together with ‘weightsw;; for every pair(x;, j) such
thatj € D(x) (i € {1,...,n}). We introduce binary variableg; fori € {1,...,n}
andj € D(x) such that

yij=1<(x=j), and

Yij =06 (% #).
The weightede11different constraint corresponds to the following Assignment
Problem formulation:

n
z= Z > Wijij

i=1jeD(x)

Z yij=1,Vie{l,... n}
%)
n

jeD
i;yij <1,Vje Uin:]_D(Xj),
vij €{0,1},Vie {1,...,n},Vj € D(x),

wherez represents the value of the objective function. It is welbwn that the lin-
ear relaxation of the Assignment Problem yields an integhrtion. Focacci et al.
[1999a] propose to use the reduced costs obtained by sdlvisgelaxation as the
gradient function. That is, l&; represent the reduced cost of variaj|ein a solu-
tion to the Assignment Problem relaxation with lower boahdand letzy;, be the
current best solution value. WhenewH-Tjj > Zmin, We can remove valug from
D(x). Note that in the Operations Research literature this tgciens known under
the name ‘variable fixing’ [Nemhauser and Wolsey, 1988]sTdpproach has been
generalized to Lagrangian relaxations, where the grafiietion is formed by the
Lagrange multipliers, see for example [Hooker, 2006].

2.4 Search Strategies

Even though the search process of constraint programmmgihdlarities with in-
teger programming, there are several differences. Theajtla¢ search processis to
implicitly enumerate all possible variable-value combioas until a (provably opti-
mal) solution has been found, or until it is proved that nagoh exists. As stated
before, this process is said to create a search tree, whilpasticular rooted tree.
The root node represents the original problem to be solvedagh node of the tree
constraint propagation is applied, typically until a fixemnt is reached. If this pro-
cess does not prove infeasibility, and does not finish withlati®n, the node is split
into two or more subproblems. We must ensure that the unidineo$olution set of
the subproblems is equal to the solution set of the problgmesented by the node
itself.

Semidefinite Programming and Constraint Programming 9

The splitting, or branching, procedure can take variousmfrand an important
difference with integer programming systems is that a uaerdefine the branching
decisions to be made. In many cases this can even be donewabtleding level, see,
e.g., Van Hentenryck et al. [2000]. A branching decisiont&ex] as a constraint,
which will be added to the subproblem (its negation will beledito the other sub-
problem in case of a binary branching decision). For exapiptea variablex with
v € D(x), we can branch on the constraimt= v) versus(x # v). This corresponds
to the traditional enumeration of variable-value comliovz.

In order to apply a particular branching constraint, we fiestd to identify one or
more variables on which to define the constraint. When thedtriag decisions cor-
respond to variable assignmefits= v) versus(x # v), the order in which variables,
and corresponding values, are considered follows fromadledtvariable selection
heuristics andalue selectiomeuristics. That is, when the problem is not infeasible
and one or more variables are still ‘free’ (i.e., they haveeha domain with size
larger than one), the variable selection heuristic wilhiify one variablex from the
set of free variables. Similarly, the value selection r&iaiwill identify one valuev
from its domainD(x). A standard heuristic in constraint programming is to cleoos
first the variable with the smallest domain size (this isezhfiail-first), and assign it
the smallest value in its domain. For more involved hewsstive refer to [van Beek,
2006].

In addition to the branching decisions that define the shéjpkeosearch tree,
the search process also depends on the order in which tleeattiffsearch tree nodes
are visited. In integer programming, the order is almostagbvdefined by some
variant of a ‘best-bound-first’ strategy, in which the negtle to explore is that with
the most promising bound following from the linear relagati Even though this
strategy is often superior in practice for integer prograngnproblems, it has the
potential drawback of creating an exponential number afasearch nodes. Here,
a node is considered active when it must be split further,it.és not proved to be
infeasible or suboptimal and it does not correspond to atisoluBest-bound-first
and similar strategies can also be applied to constrairgrpmoming search trees.
However, it is much more common to apply a depth-first seanciegy instead.
An important reason for this may be the fact that constraiogmramming does not
contain ‘primal heuristics’ that can find feasible solusaquickly for a given search
node. In fact, one may view the constraint programming $eprocess itself as a
primal heuristic. Furthermore, the memory consumption exftt-first is linear in
the depth of the search tree, while this can be exponentiddrieadth-first search
strategies (including best-bound-first).

Search strategies have been studied extensively in thexdtasftconstraint pro-
gramming, and more generally in the context of artificiatlligence; see van Beek
[2006] for an overview. One particular search strategywithilso be applied in this
chapter idimited discrepancy searcintroduced by Harvey and Ginsberg [1995]. It
is based on the assumption that we have a good, but not pdsfacching heuris-
tic available (e.g., corresponding to a variable and vaélection heuristic). If the
branching heuristic were perfect, the first visited leahie search tree (when apply-
ing depth-first search) would correspond to a solution topitedlem (assuming it

10 Willem-Jan van Hoeve

o,
g ‘ 0
% 6 b & b d % kS
a. discrepancy 0 b. discrepancy 1
c. discrepancy 2 d. discrepancy 3

Fig. 1. Limited discrepancy search. For each discrepancy 0, 1, the3iop node of the tree
indicates the root, visited nodes are filled, and bold ardate the parts of the tree that are
traversed newly.

exists). Harvey and Ginsberg [1995] argue that when theistauis equally likely to
make a mistake at each search node, we should visit the lg&isfieasing value of
total discrepancy from the heuristic choice required tahehat leaf. An illustration
is given in Figure 1. In the binary search tree of this figures a&ssumed that the left
branch corresponds to the heuristic choice. Discrepanay Bigure 1.a thus corre-
sponds to the first leaf found by depth-first search. The Maited for discrepancy 1
(in Figure 1.b correspond to all leafs that are reached whkaatly one right branch
is chosen, and so on.

Note that the ‘Local Branching’ search strategy in the ceintd integer pro-
gramming resembles limited discrepancy search [Fiscaedti_odi, 2003]. Namely,
given a current solutior* and an integek, Local Branching creates a subproblem
in which k variables are allowed to deviate from the value takexiifThe solutions
considered in that subproblem correspond to those havsayepiancy 0 up td,
wherex* serves as the heuristic to be followed.

3 Semidefinite Relaxations in Constraint Programming

There exist two streams of research that combine semidefiléxations and con-
straint programming. The first stream considers const@imgramming models of
an arbitrary form, and assumes that any suitable semidefiglixation may be ap-
plied, depending on the problem at hand. It is in the samé& sgithe ‘optimization

constraints’ mentioned before, and this stream will be tlaénrfocus of the remain-
der of this chapter. The second stream considers congraigtamming models of a
specific form, and applies a dedicated semidefinite relemahiat maps exactly onto

Semidefinite Programming and Constraint Programming 11

the format of the constraint programming model. Examplesgaren at the end of
this section.

In this section, we will first discuss how suitable semidédimelaxations may be
found for arbitrary constraint programming models. Uniodtely, it is not straight-
forward to obtain a computationally efficient semidefinitegram that provides a
tight solution for any given constraint programming mod#bwever, for a number
of combinatorial optimization problems such semidefingkaxations do exist, see
Laurent and Rendl [2004] and Chapter 27 ‘Combinatorial @jzation’ of this vol-
ume for an overview. If such semidefinite relaxations areawailable, we need to
build up a relaxation from scratch. One possible way is tdyathie generic frame-
work by Laurent, Poljak, and Rendl [1997] that will be delked in Section 3.1.

After the discussion of building semidefinite relaxationws, consider the appli-
cation of such relaxations inside optimization constsaintSection 3.2. Next, we
discuss how the solution to the semidefinite relaxation eaagplied to guide the
search process in Section 3.3. Finally, in Section 3.4 weudts other applications
to combining semidefinite relaxations and constraint peogning, that are in the
second stream mentioned above.

3.1 Building a Semidefinite Relaxation

Consider a constraint programming model consisting of afsedriablesxy, ..., X,
a set of constraints and an objective function. If the dowBixy), ..., D(xn) are not
binary, we first transform the variables and their domaits dorresponding binary
variablesyjj fori=1,...,nandj € D(x):

X =]jey=1
% 7] < yij =0.

We will use the binary variableg; to construct a semidefinite relaxation, following
Laurent, Poljak, and Rendl [1997]. Of course, the trans#iiom has consequences
for the constraints also, which will be discussed below. ifte¢hod of Laurent et al.
[1997] to transform a model with binary variables into a s#efinite relaxation is
the following. For a positive integé¥, letd € {0,1}N be a vector of binary variables
representing all variablegj fori=1,...,nandj € D(x). Construct thgN + 1) x
(N+ 1) variable matrixX as

X = (3) (1d7) = (3 dddTT). (6)

We then constraiiX to satisfy

(5)

X =0 (7)
Xi =Xo Vi € {1,...,N} (8)
where the rows and columns Xfare indexed from O t&. Condition (8) expresses

the fact that:li2 = d;, which is equivalent tal € {0,1}. Note however that the latter
constraint is relaxed by requirirto be positive semidefinite.

12 Willem-Jan van Hoeve

The matrixX contains the variables to model our semidefinite relaxai@in
viously, the diagonal entries (as well as the first row andiewl) of this matrix
represent the binary variables from which we started. Usiege variables, we need
to express (a part of) the original constraints as our sefimitkerelaxation.

In case the binary variables are obtained from transfoong®), not all con-
straints may be trivially transformed accordingly. Espéigibecause the original
constraints may be of any form. The same holds for the obdtinction. On the
other hand, as we are constructing a relaxation, we may etaerosng the set of con-
straints an appropriate subset to include in the relaxakitwmreover, the constraints
itself are allowed to be relaxed.

In most practical cases, however, the suitability of apmyan SDP relaxation
heavily relies on the problem at hand. Instead of applyirgabove framework, a
practitioner may be more interested in identifying a corabimnial substructure of
the problem for which a known SDP relaxation exists and careadily applied.

3.2 Semidefinite Relaxation as Optimization Constraint

Similar to linear programming relaxations, semidefiniteggamming relaxations
can be embedded inside optimization constraints. As distlibefore, the role of
such a constraint is twofold. First, the relaxation can bedus improve the bound
on the variable representing the corresponding objeciigeond, the relaxation can
be applied to perform cost-based domain filtering.

So far, semidefinite relaxations have only been applied iorsttaint program-
ming context to improve the bound on the objective. Cosetiadomain filtering
utilizing the semidefinite relaxation has not yet been pedsiNevertheless, Helm-
berg [2000] has introduced variable fixing procedures faridefinite programming,
while Fleischman and Poggi de Aragao [2010] have presesiaithr variable fixing
procedures for unconstrained quadratic programs. In jplsndhese methods could
be readily applied as filtering algorithms inside an optatiizn constraint. However,
there are some practical hurdles that may prevent suchirfitéo be worthwhile.
Perhaps the most important one is the issue of incremgnfétall that domain fil-
tering algorithms are typically invoked many times durihg solving process. Since
it is not straightforward to efficiently re-use data from qrepagation event to the
next when using semidefinite programming, the relaxatigpially have to be re-
computed from scratch at each event. This can be very timstroing, and may not
offset the extra amount of search space reduction that cgaibed from it.

3.3 Semidefinite Relaxation as Search Heuristic

Several works on optimization constraints have appliecethbedded linear relax-
ation not only for cost-based filtering, but also to define & e heuristic. For ex-
ample, Focacci, Lodi, and Milano [1999a] use the solutioth&linear relaxation as
a branching heuristic for Traveling Salesman Problems.ngteer example, Milano
and Van Hoeve [2002] apply reduced costs following from adinrelaxation as a

Semidefinite Programming and Constraint Programming 13

search heuristic. Leahu and Gomes [2004] investigate taktyof linear relaxations
as a search heuristic in detail.

Van Hoeve [2006, 2003] proposes to use the solution to an 8RRation as a
heuristic to guide the CP search. In general, the soluti@engemidefinite relaxation
yields fractional values for its variable matrix. Thesecfranal values can serve as
an indication for the values that the original constrairtggamming variables take
in a solution. Consider for example the matkyof equation (6) above, and suppose
it is obtained from non-binary original variables by trasrsfation (5). Assume that
variableX;; corresponds to the binary variabyg (for some integef andk), which
corresponds t&; = k, wherex; is a constraint programming variable aad D(X;).

If variable X; is close to 1, then alsgj, is supposed to be close to 1, which corre-
sponds to assigning = k.

Hence, the variable and value selection heuristics fordinstcaint programming
variables are based upon the fractional solution valuesi@fcbrresponding vari-
ables in the semidefinite relaxation. A natural variableatbn heuristic is to select
first the constraint programming variable for which the esponding variable in the
semidefinite relaxations has a fractional solution thatdsest to the corresponding
integer solution. As value selection heuristic, we theeddirst the corresponding
suggested value. As an alternative, we can design a randdtianching heuristic,
in which a selected variable (or value) is accepted with abdity proportional to
the corresponding fractional value in the semidefinitexatian.

Note that not all semidefinite relaxations may offer a precwpping between
a variable-value pair in the constraint programming model a variable in the
semidefinite relaxation. We will see an example of this int®ad, where the con-
straint programming variables,, x, all have domaing1,... k} for some integer
k > 1. The semidefinite relaxation of that application usesadeisz;; that repre-
sent whethex; andx; are assigned the same value, irrespective of the eventual va
In such situations, we can still apply the solution to the isierfinite relaxation as a
branching heuristic, for example by branching@n= x;) versus(x; # x;). How-
ever, additional branching decisions may be necessaryaoteally assign a value
to each variable.

3.4 Semidefinite Relaxations for Restricted Constraint Prgramming
Problems

Several works have applied semidefinite relaxations totcains programming prob-
lems of a specific form, including Boolean satisfiability ameighted constraint sat-
isfaction problems (CSPs). TiB®olean satisfiability problepor SAT problem, con-
sists of a set of Boolean variables and a conjunction of elsusach of which is a
disjunction of literals. The conjunction of clauses is edlh formula. Each literal is
a logical variableX) or its negationX). The SAT problem is to determine whether
there exists a variable assignment that makes the formuga(ire., each clause is
true). Thek-SAT problem represents the SAT problem where the clausesar-
strained to have length equal ko The (2+p)-SAT problem is a SAT problem in
which a fractionp of the clauses is defined on three literals, while a fractibn p)

14 Willem-Jan van Hoeve

is defined on two literals. Clearly, the SAT problem is a coaist programming
problem of a restricted form, i.e., the variables take Banldomains and constraints
are restricted to take the form of clauses.

MAX-SAT is the optimization version of SAT. Given a formuiae want to max-
imize the number of simultaneously satisfied clauses. Givealgorithm for MAX-
SAT we can solve SAT, but not vice-versa, therefore MAX-SATmore complex
than SAT. The distinction becomes obvious when considettiegcase when the
clauses are restricted to two literals per clause (2-SAIJAZ is solvable in linear
time, while MAX-2-SAT is NP-hard [Garey and Johnson, 1979].

Goemans and Williamson [1995] were the first to apply semidefrelaxations
to the MAX-2-SAT and MAX-SAT problems for obtaining approxation algo-
rithms with provable performance ratios. Other works feilog this approach in-
clude Karloff and Zwick [1997] for MAX-3-SAT and Halperin dnZwick [2001]
for MAX-4-SAT. Warners [1999] applies semidefinite reldrat for MAX-2-SAT
problems within a DPLL-based SAT solver (see also De Klek\afarners [2002]).
The experimental results show that the semidefinite relaxsprovide very tight ob-
jective values, and are applicable in practice in terms offmatational efficiency. De
Klerk et al. [2000] study semidefinite relaxations for gedeSAT problems, while
De Klerk and Van Maaren [2003] consider semidefinite relaxeatfor (2+p)-SAT
problems. Anjos [2005] introduces improved semidefinitaxations to SAT prob-
lems.

Lau [2002] considergveighted CSRghat generalize the MAX-2-SAT problem
above in two ways. First, variables can have arbitrary fid@deains. Second, even
though the constraints are still defined on two variableg,ordw a weight is asso-
ciated to each constraint. That is, a constr@imn two variablex andy is defined
asC C D(x) x D(y), and has an associated weight (a natural number). The gial is
maximize the sum of the weights of the satisfied constrairata.[2002] represents
such weighted CSPs as a quadratic integer program, and fatea@ corresponding
semidefinite relaxation. He applies a randomized roundiogqulure to prove worst-
case bounds for fixed variable domain sizes 2 and 3. He alsidesocomputational
results, comparing his approach to greedy and randomizatidearch procedures.

A recent line of research studies problems of the form MAKSP, where vari-
ables can take an arbitrary finite domain, each constraiéfined ork variables,
and the goal is to maximize the number of satisfied constrawick [1998] also
applies semidefinite relaxations to a similar problem refééto as MAX 3-CSP, but
in that case the domains are Boolean, constraints take timedica Boolean function
on at most three variables, and each constraint has an atesbeieight. Therefore,
these problems are more similar to weighted CSPs than tettent interpretation
of MAX k-CSP. Most of the recent works for MAK-CSP consider the approxima-
bility of such problems, and apply semidefinite relaxatitmsbtain certain approx-
imation ratios, e.g., [Charikar et al., 2009], [Guruswamd&aghavendra, 2008]
and [Raghavendra, 2008]. Other works study the integrghty following from the
semidefinite relaxation, for similar constraint satisiac{problems, e.g., [Raghaven-
dra and Steurer, 2009a,b].

Semidefinite Programming and Constraint Programming 15
4 Application to the Maximum Weighted Stable Set Problem

As a first application of integrating constraint programgnand semidefinite pro-
gramming we consider the hybrid approach of Van Hoeve [2R063] for the stable
set problem. The motivation for this work is based on two clam@ntary observa-
tions: i) a standard CP approach can have great difficulty finding a goadion,

let alone proving optimality, and) SDP relaxations may provide a good starting
solution, but the embedding of SDP inside a branch-and-tbénamework to prove
optimality can be computationally too expensive.

4.1 Problem Description and Model Formulations

Recall from Section 2 that the weighted stable set probledefied on an undi-
rected weighted grapB = (V,E), with ‘weight’ functionw : E — R. Without loss
of generality, we assume all weights to be non-negative.grbblem is to find a
subset of verticeSC V of maximum total weight, such that no two verticesSare
joined by an edge k.

The constraint programming model applied by Van Hoeve [20@@s binary
variabless; representing whether vertéis in S(x; = 1) or not & = 0), for alli € V.
The CP model is then formulated as an integer linear progiagimodel:

n
max ZWiXi
i=

st.x+x; <1,V(i,j) €E, ©)
X € {0,1}, Vie V.

A, by now classical, semidefinite relaxation for the maximweight stable set
problem was introduced by Lovasz [1979]. The value of tlddxation is called
the theta number, and is denoted yG) for a graphG. The theta number arises
from several different formulations, see Grotschel, &sw;"and Schrijver [1988].
Van Hoeve [2006] uses the formulation that has been showe tmmputationally
most efficient among those alternatives [Gruber and Re@@I3R Let us introduce
that particular formulation (calle@s; by Grotschel, Lovasz, and Schrijver [1988]).
Let x € {0,1}" be the vector of binary variables representing a stablevgegre
n= |V|. Define then x nmatrix X = £&T where the vecto€ is given by

Ei=7\/wi X

n v
\/ 2j=1WjX;

foralli € V. Furthermore, let tha x n cost matrixJ be defined abljj = , /Wiwj for
i,j € V. Observe that in these definitions we exploit the factthat O for alli € V.
The following semidefinite program

max t{UX)
st.tr(X)=1

Xij=0,V(i,j) €E
X>0

(10)

16 Willem-Jan van Hoeve

provides the theta number & see Grotschel et al. [1988]. HeréXy) represent the
trace of matrixX, i.e., the sum of its main diagonal elements. When (10) igesblo
optimality, the diagonal elemeix; can be interpreted as an indication for the value
thatx; (i € V) takes in an optimal solution to the problem.

4.2 Evaluation of the Hybrid Approach

In the hybrid approach of Van Hoeve [2006], the semidefirélexation is solved
once, at the root node of the search tree. The associatettivbjealue is applied to
bound the initial domain of the variable representing thiedtve in the CP model.
Van Hoeve [2006] does not apply any additional cost-basedado filtering. In-
stead, the fractional solution to the semidefinite relaxais applied as a variable
and value selection heuristic. The variaklevith the highest corresponding solution
for X;; will be selected first, and value 1 will be assigned to it fihce the semidef-
inite relaxation often provides a very accurate variatdk+& selection heuristic, Van
Hoeve [2006] applies limited discrepancy search to travere resulting search tree.

This approach is applied to solve random problem instans®sel as structured
instances arising from coding theory, and maximum cliqguebjgms. The hybrid
approach is compared to a pure CP solver with a lexicogragriable selection
strategy, choosing value 1 first. In almost all cases, the &ilRion provides a very
accurate branching strategy, and the best solution is fatiadrery low discrepancy
(recall that limited discrepancy search is applied). Irt,fat many cases the tight
bound obtained by the SDP relaxation suffices to prove oflitynaf the solution
found with the SDP-based heuristic.

5 Accuracy of Semidefinite Relaxations as Search Heuristic

In this section, the accuracy of the semidefinite relaxatisra search heuristic is
investigated in more detail. A similar investigation hagmheerformed for linear
programming relaxations by Leahu and Gomes [2004]. Theytifyethat the heuris-
tic quality of the LP solution is dependent on structural bamatorial properties of
the problem at hand, which in their experiments is measuyethé ‘constrained-
ness’ of the problem. More specifically, the problems thaytbonsider, i.e., Latin
Square completion problems, exhibit an easy-hard-easgeptnansition when the
problem becomes more constrained. The ‘typically hardastblem instances are
those that originate from the critically constrained regiorresponding to the easy-
hard-easy phase transition. For instances that are outsigleegion, and that are
typically less hard to solve, the linear programming relexaprovides quite accu-
rate values. However, for problem instances from withinghase transition region,
the information quality as search heuristic shows a shacpedse. In other words,
the quality of the relaxation degrades exactly for thostaimses it is most needed.
In light of these results, Gomes, Van Hoeve, and Leahu [2680f]y the accu-
racy of semidefinite relaxations as search heuristic. Orleeofnain motivations for
this was to investigate whether semidefinite relaxationside more robust search

Semidefinite Programming and Constraint Programming 17

heuristics, and of higher quality, than linear programnmglgxations. The particu-
lar problem of study in [Gomes et al., 2006] is MAX-2-SAT, aBBP relaxations
are contrasted with LP relaxations and complete (exactitisol methods for this
problem.

A related work is that of Warners [1999] and De Klerk and Wasrj2002], who
propose and analyze a MAX-2-SAT solver that employs a sefinitke relaxation
as well. However, they do not apply the SDP solution as a bd@aristic. Instead,
the branching rule is to choose first the variable with the imak occurrence in
the longest clauses. De Klerk and Van Maaren [2003] pres®ithar related work,
in which the accuracy of the semidefinite relaxation to detesatisfiability for the
(2+p)-SAT problem is experimentally evaluated. Finally, weentbtat Cheriyan et al.
[1996] also apply linear programming and rounding teche@to solve MAX-2-
SAT problems.

5.1 Problem Description and Model Formulations

Let the MAX-2-SAT problem consist of Boolean variablasx,, ..., x, and clauses
C1,Cy,...,Cyon these variables. We consider the following ILP formalatior the
MAX-SAT problem from Goemans and Williamson [1994]. WithckeclauseC; we
associate a variablg € {0,1}, for j = 1,...,m. Value 1 corresponds to the clause
being satisfied and 0 to the clause not being satisfied. Fér Baclean variable

we associate a corresponding variaplén the ILP, fori = 1,...,n. Variabley; can
take the values 0 and 1, correspondingjtbeing false or true, respectively. L@}*

be the set of indices of positive literals that appear in sselj, ande* be the set
of indices of negative literals (i.e., complemented vesapthat appear in clausg.
The problem can then be stated as follows:

m
max ¥ z;
2
subjecttoz i+ Z (1-y)>1z,Vje{l,....m}
ieCJ* ieCy’
¥i,zj €{0,1}, Vie{l,...,n},je{1,...,m}.

This model ensures that a clause is true only if at least orteeofsariables that
appear in the clause has the value 1. Since we maxifiizez; andz; can be set to
1 only when claus€; is satisfied, it follows that the objective function courtie t
number of satisfied clauses. By relaxing the integralitystxaint, we obtain an LP
relaxation for the MAX-SAT problem. This ILP formulation égjuivalent to the ILP
used in Xing and Zhang [2005] to compute the lower bound arldgdLP solved at
each node by the MAX-SAT branch-and-cut algorithm in Joyl t1897].

Observe that there exists a trivial way to satisfy all theisks by setting each
variabley; to 0.5. Using this assignment, the sum of literals for each cl&isractly
1, hence the clause can be satisfied and the objective faristegual to the number
of clauses. The value.Bis not at all informative, lying half way between 0 and 1,

18 Willem-Jan van Hoeve

it gives no information whether the corresponding Booleaable should be set to
true or false. As the problem becomes more constrainedtfieenumber of clauses
increases) the corresponding 2-SAT problem is very likelge unsatisfiable, hence
any variable assignment different thad @vould lead to a less than optimal objective
value. Naturally, the LP solver finds the highest possibledive value (i.e., the
number of clauses) when setting all variables & 0

Gomes et al. [2006] apply the following semidefinite relémmiof MAX-2-SAT
that was introduced by Goemans and Williamson [1995]. Th &molean variable;
(i=1,...,n), we associate a variabjec {—1,1}. Moreover, we introduce a variable
Yo € {—1,1}. We definex to be true if and only if; = yo, and false otherwise.

Next, we express the truth value of a Boolean formula in tesfrits variables.
Given a formulac, we define itsvalue denoted by(c), to be 1 if the formula is true,
and O otherwise. Hence, L

+ YoVi
V(X)) = >
gives the value of a Boolean variabdeas defined above. Similarly,

_ 1oy

V(%) =1—v(x) >

The value of the formulg Vv x; can be expressed as

1 yoyi 1Yoy
v(mvxj):1fv(>—qm—<j):1fV(X)V(71):1*%%
CL14+yoyi 14+voy; 1wy
=t

The value of other clauses can be expressed similarly. Ifiabax; is negated in a
clause, then we replageby —y; in the above expression.
Now we are ready to state the integer quadratic program foKAN2ASAT:

max zcv(c)
& (11)
st. yie{-1,1}Vvie{0,1,...,n}.

It is convenient to rewrite this program as follows. We iluoe ann+ 1) x (n+ 1)
matrix Y, such that entryj; represents;y; (we index the rows and columns of Y
from 0 ton). Then program (11) can be rewritten as

max t{WY)
st. Yij e {-1,1}Vi,je{0,1,...,n},i # |,

whereW is an(n+ 1) x (n+ 1) matrix representing the coefficients in the objective
function of (11). For example, if the coefficienty¥; is wij, thenW; =W = %Wij .

The final step consists in relaxing the conditiofise {—1,1} by demanding
thatY should be positive semidefinite aWgd= 1Vi € {0,1,...,n}. The semidefinite
relaxation of MAX-2-SAT can then be formulated as

(12)

Semidefinite Programming and Constraint Programming 19

1.2 T T T — T T T T
optimum ——
upper bound (SDP objective function) ---x---
lower bound (SDP) ---%---
1.15 upper bound (LP objective function) o g
lower bound (LP) --m- g BB
G
o 15} 54
11r a 4
=
E s}
E &
15)
g 1.05 | - 4
° SET
e = ey e
B & = B e
2 Ir o e SSOEE oot o B S SR FE S
<4 u
s v
5 095 i 4
8
g
\
09 F | i
\
\
n
0.85 [AN om Tl T]
N J—
" _a
f’l\\-><.4‘.
08 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

clause/variable ratio

Fig. 2. Lower and upper bounds based on LP and SDP relaxations for{g/SAT instances
of increasing constrainedness.

max t(WY)
st. Yi=1Vvie{01,...,n}, (13)
Y =0.

Program (13) provides an upper bound on the solution to MASAT problems.
Furthermore, the valuegy, representingpy;, correspond to the original Boolean
variables (i =1,...,n). Namely, ifYy; is close to 1, variablg is ‘likely’ to be true.
Similarly, if Yo is close to—1, variablex; is ‘likely’ to be false.

5.2 Experimental Evaluation

We next describe the experiments performed by Gomes et@56]2on randomly
generated MAX-2-SAT instances. First, we consider the aihje value of the LP
and SDP relaxations across different constrainednessnegif the problem. Fig-
ure 2 presents the relative lower and upper bounds obtaindd®band SDP, for
MAX-2-SAT instances on 80 variables where the constraiesdmatio (number of
clauses over the number of variables) ranges frobnt® 10. The figure compares
the ratio of these bounds to the optimal solution value. Bl bounds for LP and
SDP are obtained by rounding the suggested fractionalisoltt the closest inte-
ger. As is clear from this plot, the semidefinite relaxatiooMides far better bounds
than the linear relaxation. This confirms the observatioaderby Warners [1999]
for MAX-2-SAT problems.

Next we consider the strengths of the relaxations in ternfeafistic guidance.
This is done by first measuring the ‘fractionality’ of the dn to the relaxation.
Namely, if a solution value of the relaxation is in the midtdietween the two in-
teger endpoints (i.e., 0.5 for LP and 0.0 for SDP), we comditke suggested value

20 Willem-Jan van Hoeve

ujj 4 003 |
0 L L L L L 002

o 01 02 03 04 05 06 07 08 09 1 -1 0.9-08-0.7-06-05-04-03-02-01 0 0102 03 0.4 05 06 0.7 0.8 09 1
LP value SDP value

a. LP relaxation solution values b. SDP relaxation solut@aines

Fig. 3. Distribution of the values returned by the LP relaxationgia the SDP relaxation (b),
averaged over instances with clause over variable ratgimgrfrom 0.5 to 10.

" lPvale=05 —— " LPvalué =001 ——
DP value = 0 - absolute SDP value > 0.7 =----
SDP value in [-0.1, 0) or (0, 0.1] -

o BT ol

clauselvariable ratio clauselvariable ratio

a. uninformative solution values b. informative solutiaiues

Fig. 4. Fraction of variables having (a) uninformative value 0.5npoted by LP and 0 or
smaller than 0.1 in absolute value computed by SDP, andfd@nirative value 0 or 1 computed
by the LP relaxation and above 0.7 in absolute value by the Ig2Ration.

uninformative. On the other hand, if the suggested valuéosecto an integer end-
point, we consider that value informative.

Figure 3 presents the distribution of the solution valugsrreed by the LP and
SDP relaxations, respectively. In Figure 3.a the distidmng for the LP relaxation
is given, clearly indicating that most values (more than B@% uninformative. In
contrast, the distribution of the solution values for thePSielaxation indicates that
the majority of the suggested values is close to an intedaeyand are much more
informative. In this figure, the distribution averages tb&utons over all instances
where the ratio of the number of clauses over the number ddibiass ranges from
0.5to 10.

Figure 4 depicts how the fractionality evolves with respecthe range of in-
creasing constrainedness. In Figure 4.a the uninformatiltees are considered. It
depicts the fraction of variables taking value 0.5 in the loRuson, and value O,
respectively in the intervals close to 0, i.e., [-0.1,0)0(0], for the SDP solution.

Semidefinite Programming and Constraint Programming 21

" SDP‘AO*
LP

optimum -+

fraction of clause:

4 5
clauselvariable ratio clauselvariable ratio

a. setting 84% of the variables b. setting 1, 5, and 10 vatabl

Fig. 5. Change in the number of satisfied clauses as we set (a) 84% wéhtlables and (b) 1,
5 and 10 variables using the LP and SDP solutions.

When the number of clauses increases (clause/variabteggater than 1), the LP
solution values quickly become more uninformative. The SbRtion values of O
show exactly the opposite, while the SDP values close to @irefairly constant. In
Figure 4.b considers the informative values, i.e., LP $ofutalues 0 or 1, and SDP
values close to -1 or 1 (with absolute value more than 0.7 torbeise). Again, the
LP solution values quickly loose their informative qualityyond clause/variable ra-
tio 1. At the same time, the informative quality of the SDPusioin values increases
up to that point, and remains constant afterward.

The following set of experiments investigate the actuaueacy of the heuris-
tics, by evaluating the optimal objective function valueemnta number of variables
is fixed to the suggested heuristic value, where the vagaidesest to integrality are
chosen to be fixed first. In Figure 5.a, 84% of the variabledigesl according to
the heuristic, and the exact solver Maxsolver is used to ceygn optimal solution,
completing the partial assignment. Below 84%, the SDP kBgahoice always pro-
vided an optimal solution, while at 84%, the SDP heuristigales slightly from the
optimal solution. The LP solution values perform much woeseis clear from the
figure. In Figure 5.b, this is shown in more detail, as it irrdés the effect of setting
1, 5, and 10 variables to the suggested heuristic value. Ed@m assigning only
one variable, the LP heuristic already deviates from th@vggtsolution for higher
clause/variable ratios.

Finally, the solution obtained by the SDP heuristic is coregdao the solution
obtained by Walksat, a state-of-the-art satisfiabilit¥sobased on local search. The
results are indicated in Figure 6. It can be observed thak¥gahnd the SDP heuris-
tic provide comparable solutions, and when the clausahbriratio is relatively low
(Figure 6.a Walksat usually finds slightly better solutidinan the heuristic guided
by the SDP solution. For larger clause/variable ratio, hatghe solutions obtained
with the SDP heuristic outperform Walksat. This is an ind&rey result, because for
these problems, the time to solve the SDP relaxation waddenably smaller than

22 Willem-Jan van Hoeve

" upper bound (SDP objective function) —— " upper bound (SDP objective function) —+—
Walksat ---x--- R

lower bound (SDP) -

optimum --+%:
lower bound (SDP) &

fraction of clauses

-
0s ...
Tk

&
Bs %vﬁ.«ﬁw%m

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 % 100
clauselvariable ratio clauselvariable ratio

a. small clause/variable ratio b. large clause/variatle ra

Fig. 6. Comparing SDP and Walksat as a lower bound.

the time taken by Walksat, while at the same time the SDP aétaxx also provides
an upper bound.

In summary, these results further motivate the use of sdmitierelaxations as
search heuristic for exact solving methods such as conspreagramming.

6 Telecommunications Application: Bicligue Completion

Gualandi [2009] presents a hybrid semidefinite and comgty@iogramming ap-
proach to a particular ‘bicligue completion problem’, args in the context of
telecommunications. Let us first describe the applicatidrich was first introduced
by Faure, Chrétienne, Gourdin, and Sourd [2007].

Traditional communication services are mostly ‘unicast\which two nodes of
a network are communicating between each other (for examfdkphone conver-
sation). In contrast, ‘multicast’ services interconnecitiple nodes in the network
(for example a video-conference meeting). Specific effigieatocols for multicast
services have been developed, and it is expected that therdkfior multicast com-
munication services will grow rapidly in the near future.

If we would choose to handle the multicast services optiynafi an individual
level, we would have to design and maintain a specific networkiguration for
each individual service, while ensuring global optimabfythe network usage and
provided services. Such a fine-grained individual apprasadar from practical, as
argued by [Faure et al., 2007]. Instead, multicast senacesisually aggregated in
clusters, and each cluster is considered as one meta-astl§iervice. For example,
if several customers share a large number of services, tirebe grouped together
and use a network configuration that provides the informasiball joint services
to all customers. As a consequence, unnecessary infomrataent between those
customers and services in the cluster for which no relaligns required.

In [Faure et al., 2007], it is proposed to cluster the musticgessions in such a
way that the amount of unnecessary information sent thrthuighetwork is limited,

Semidefinite Programming and Constraint Programming 23

clients services clients services

a. Bipartite graph representation b. Optimal solution with bicliques

Fig. 7. Clustering multicast services.

where this amount is measured by counting the humber oftidenwvice pairs be-
tween which unnecessary information is sent. An examplévisngn Figure 7. In
this example, we are given a set of multicast services{iy,i»,is,is} and a set of
clientsd = {j1,j2, 3, ja, j5}. In Figure 7.a, the services and clients are depicted in a
bipartite graph in which an edde j) represents that clierjtrequires servicé For
example, clienf; requires servicey andi,. Figure 7.b represents the clustering of
the services into two sefs1,i>} and{is,is}. This solution implies that unnecessary
information is sent between the pa(is, ja), (i2, j3), (ia, J2) @and(ig, j3), as indicated

by the dashed edges in the figure. The total ‘cost’ of thistamius therefore 4. If

we assume that the maximum number of clusters is 2, thisisoligt optimal.

Faure et al. [2007] also suggest other variants of the pnolikat consider more
fine-grained measures for the information that is sent tiindhe network. For exam-
ple, one can take into account path lengths or capacity tdicezonnections. Some
variants can be encoded as weighted versions of the prodmybrid semidefi-
nite and constraint programming approach for such weighteliqjue completion
problems was studied by Gualandi and Malucelli [2010].

6.1 Problem Description

The specific variant considered by Gualandi [2009] is dbscrimore formally as
follows [Faure et al., 2007]. Leéb = (1,J,D) be an undirected bipartite graph where
verticesl represent a set of (multicast) services, vertitespresent a set of clients,
and edge sdD C | x Jrepresents the required demands.

We definep clustersTy,..., T, as follows. A clusterTy = (I, Jk, Dk) is a sub-
graph ofG wherel, C I, J C J, andDg = (Ix x Jx) ND. LetK = {1,...,p} denote
the index set of the clusters. Since the problem will treaheduster as a single
multicast group, the cluster will in practice corresponatoiclique (a complete bi-
partite graph) on the vertex sdisandJc. The cost of clusteT is || - || — |D|.
corresponding to the amount (number) of unnecessary irftomsent to the clients.

Given a numbep € {1,...,|J| — 1}, themulticast partition problenconsists of
finding p clustersTy,..., Ty such thaty, ..., I, induce a partition of, and the total

24 Willem-Jan van Hoeve

cost
p

> I+ 13| = Di]

K=1
is minimized. Given the nature of the problem, it is also nefd to in [Faure et al.,
2007] and [Gualandi, 2009] as a ‘biclique completion’ pevhl Faure et al. [2007]
show that the problem is NP-hard, even foe 2.

6.2 Constraint Programming Model

The constraint programming model employed by Gualandi§26glies on a custom-
made global constraint, that will be applied to characeeeach cluster and the asso-
ciated cost. LeG = (S, T,E) be an undirected bipartite graph, and@¢ (S, T,E)
be the complement graph &, i.e.,E = (Sx T) \ E. We introduce two set vari-
ablesX andY with initial domainsD(X) = [, 9, D(Y) = [@, T], and 0< |X| < |5,
0 < Y| <|T|. VariableX represents a set of nodes on one ‘shore’ of the graph, and
all neighbors oX will be accumulated ity. Further, lett be an integer variable with
0<c<]E] It corresponds to the number of edges in the complemenhdgapat
are necessary to create a biclique from the subgraph induc¥dandY. The spe-
cific global constraint, called ‘one-shore induced quasiidue constraint’ takes the
form
osi-biclique(X,Y,c,G)

and states that

Y = UiexN(i), and

c=[X]-[Y|-|F],
whereF = (X x Y)NE. HereN(i) denotes the set of neighbors of a verteke.,
N(i) ={j| (i,]) € E}. Gualandi [2009] describes and implements specific domain
filtering algorithms for this constraint.

We next build the constraint programming model for the ordjiproblem on a
graphG = (l1,J,D) with multicast services, clientsJ, and demandB as specified
above. We first introduce set variabks ..., Xp andYy, ..., Yp, where a paifXy, Yi)
represents the vertices of a clustgr= (lx, J, Dk). We further introduce an inte-
ger variableck representing the cost of clust, and a variable representing the
objective function. The model then becomes

p
min z= k;Ck
s.t.partition(Xy,...,Xp,l),
osi-biclique(Xk,Yk,Ck,G), Vk € K,
D(X) = [2.1],0< X < [I], Vk e K,
D(Y) = [2.J],0 < [Yi| < |J], VkeK,
0<c <|E|, vkeK,
0<z<IE|.
Recall that thepartition constraint was defined in Section 2.

Semidefinite Programming and Constraint Programming 25
6.3 Semidefinite Programming Model

The semidefinite relaxation for this problem proposed bylé&ndi [2009] is closely
related to the semidefinite relaxations for the MAX CUT pmhl[Goemans and
Williamson, 1995] and the MAX-CUT problem [Frieze and Jerrum, 1997]. Let us
first describe the semidefinite relaxation fo= 2 and then extend this formulation
for generalp.

For p = 2, the objective of the multicast partition problem can beripreted as
minimizing the number of edges in the complement graph iaduzy the clusters
T1 = (11,J1,D1) and T, = (l2,J2,D2). This is equivalent to maximizing the number
of edges in the complement graph that are in the cut betweesels(l; UJy) NJp
and(l,UJ;)NJ;. That is, edges connected to clients that belong to Bptmd J,
are not considered in the cut.

For each verteke | we introduce a variabbg € {—1,1} representing whetheér
belongstd; (x; = 1) ortol, (x; = —1). If two verticed, j € | are in the same cluster,
the produck;x; equals 1, otherwise the product is equaktb. We further introduce
a variablezj € {—1,1} for every edgsi, j) € E representing whethér, j) belongs
to the cut &; = —1) or not ¢ = 1). Since an edgé, j) does not belong to a cut if
there exists a vertdke N(j) such that andk belong to the same cluster,gr, = 1,
we havezj = max(eN(j){x@xk}. This relation can be linearized a$ > xx, for all
ke N(j).

The multicast partition problem with = 2 can now be formulated as the follow-
ing quadratic program:

zp=maxz 5 (1-2zj)
(i,j)€eE
stz >xx, V(j)eEkeN(j),

xie{-11}, Viel,

le E{—l,l}, v('vJ)EE
Note that the optimal solution value to the multicast pantitproblem is equal to
|E| —zop.

We next associate a unit vectar e RI'*Pl to each vertex € | UJ, with the

interpretation that and j are in the same clusterv - vj = 1. LetV be the matrix
consisting of columns; for alli € 1 UJ, and letZ =V TV. The semidefinite relaxation

thus becomes: 1
max 5 z (1-2)
(i,j)€E
s.t.Zij > Z, v(i,j) € E,ke N(j),
diagZ) =e,
Z=0.
Here diagZ) represents the vector formed by the diagonal elemer#s of

When the number of clustepsis more than 2, the model can be altered similar to
the approach taken in [Frieze and Jerrum, 1997] for MARUT. We letay,...,ap

26 Willem-Jan van Hoeve

be unit vectors ifRP~1 satisfyinga; aj = —p%l fori,j e {1,...,p},i #j. These
vectors represent the different clusters. For each vérekwe introduce a vector
Xi taking its value in{as,...,ap}. That is, if two verticed and j are in the same
cluster we have - X; = 1, otherwise we havg - xj = fpél. We then introduce a

variablezj {—p%l,l} for each edgsi, j) € E, representing whethei, j) is in
the cut @ = —pél) or not (zj = 1). Using these variables, the multicast partition

problem for genergb can be formulated as
p—1 .
max =5 (i%&(l zj)
s.t.zj > X - Xk, V(i,j) € E,ke N(j),
Xi € {a,...,ap}, Viel,
zj € {-5,1), V(,j) €E

We can apply the same labeling technique as for the pas@ above to obtain the
following semidefinite relaxation for genenal

Zspp = maxp;pl >y (1-Zy)

(i,j)eE
S.t. Zij > Z, v(i,j) € E,ke N(j),
diagZ) = e,
Zj zfp%l, Vi,jeludi#|,

Z>0.

Observe that fop = 2, the vectorsy anday are in fact scalars, i.eay = —1,a, =1,
in which case the latter model coincides precisely with #tier model forp = 2.

The value of the semidefinite relaxation can be applied awarlbound for the
multicast partition problem using the relatigh>]E] — | zspp|, wherez" represents
the optimal objective value for the multicast partition lpiem.

6.4 Evaluation of the Hybrid Approach

As stated above, Gualandi [2009] applies the semidefiniexaton as a lower
bound on the objective, but also to guide the constraintpamgiing search process.
To this end, entries in an optimal solution matzixto the semidefinite relaxation are
interpreted as the likelihood that two vertices belong |mghme cluster. That is, if
Zj; is close tmp%l, i andj are not likely to be in the same cluster, whereas they are
if Zjj is close to 1. The closer thaf; is to the midpointz(p—ﬂl), the more uncertain it
is whetheli andj belong to the same cluster.

The search heuristic first finds a pair of verti¢eg) with i, j € I, that are not yet
assigned to any cluster, such tlhaﬂ — Z(p—’il) is maximized. It then finds a variable

Xk that contains at least one of these variables as a posséteant. IfZi’] > Z(p—ril)

Semidefinite Programming and Constraint Programming 27

it will assign bothi andj to Xy as branching decision. Otherwise, it will assign either
i orjtoX.

The overall hybrid approach has two variants. The first cdegpand exploits
the semidefinite relaxation at each node in the search trees@&cond variant only
solves the semidefinite relaxation once at the root nodey ®an Hoeve [2006]. In
the computational experiments reported by Gualandi [20®@}e two approaches
are compared against two other exact methods. The first Use=asized quadratic
integer programming model similar to [Faure et al., 2007joh is solved with
IBM/ILOG CPLEX. The second is a pure constraint programntimgdel, solved
with Gecode, without the use of the semidefinite relaxation.

The computational results provide three main insightstRine hybrid semidefi-
nite and constraint programming approach is competititlee¢anteger programming
approach (and in several cases better). Furthermore nrstef efficiency, applying
the semidefinite relaxation at each node in the search treg miat pay off. Instead,
it was found that applying the semidefinite relaxation omg®at the root node was
more efficient. This strategy also outperformed the puretramt programming ap-
proach.

7 Conclusion and Future Directions

In this chapter, we have described how constraint programgroan be applied to
model and solve combinatorial optimization problems, aod semidefinite pro-

gramming has been successfully integrated into constpaogramming. Specifi-

cally, we have shown that semidefinite relaxations can balsleialternative to lin-

ear programming relaxations, that are commonly applieiwibptimization con-

straints. One of the main benefits of semidefinite relaxatiarthis context appears
to be the accuracy when the solution to the semidefinite adilaxx is applied as a
search heuristic.

From a constraint programming perspective, arguably thst imgportant ques-
tion to be addressed is the application of semidefinite e¢lams to design cost-based
filtering algorithms for the variable domains, in additianstrengthening the bound
on the objective that is currently done. Even though adad#idgheory may be de-
veloped for this purpose, it is likely that specific algonith must be designed and
engineered, e.g., taking advantage of incremental daiatstes, to make such ap-
plication worthwhile in practice.

In order to make semidefinite programming relaxations maressible to the
constraint programming community, it would be worthwhibeinvestigate how the
modeling and solving capabilities of constraint programgnsystems can be ex-
tended to facilitate this. For example, there exist variealniques to automatically
create a linear programming relaxation from a given coirgtpgogramming model,
see, e.g., [Refalo, 2000; Hooker, 2000, 2007]. Severakrystincluding the con-
straint programming solver Xpress Kalis [FICO, 2009] anel thodeling language
Zinc [Brand et al., 2008] provide an interface to embed artraatically exploit

28 Willem-Jan van Hoeve

linear programming relaxations. Having such functioydtt semidefinite program-
ming relaxations would be helpful, especially for desigpitybrid methods.

In addition, it would be very useful to develop hybrid senfiidige programming
and constraint programming approaches for more applicaitiohrough studying
more diverse applications, we not only have a chance of impgahe state of the
art in solving those, but we can also gain more insight in lle@tetical and practical
characteristics that make such approaches successful.

From a semidefinite programming perspective, it may be wdrile to consider
alternatives to the ILP-inspired branch-and-bound anddireand-cut solving meth-
ods, especially because most semidefinite relaxationstilreekatively expensive
to compute. This chapter offers several options. For exangple may consider not
solving a complete SDP relaxation at each search node thetiat selected nodes of
the search tree. Furthermore, alternative search stestegs presented in this chap-
ter, may be considered. And of course, the (cost-basedjiitalgorithms may be
applicable directly through variable fixing proceduresdesan SDP-based solver.

Finally, another issue that deserves future investigatisrthe relationship be-
tween constraint programming, integer programming, amiddefinite programming
when handling symmetry in combinatorial problems. Theistexa vast literature on
explicit symmetry breaking in constraint programming ameger programming, see
Gent et al. [2006] and Margot [2010] for recent surveys. Intcast, certain types of
symmetry breaking are implicitly accounted for in semidiédimelaxations; see for
example Anjos and Vannelli [2008]. These complementary@gghes could per-
haps be combined very effectively.

In conclusion, even though several of the developmentgithestin this chapter
are still at an early stage, there clearly is a great potdotiiybrid solution methods
combining semidefinite programming and constraint prognamg.

Acknowledgementl would like to thank Stefano Gualandi for helpful commentsam earlier
draft of the chapter.

References

M.F. Anjos. An improved semidefinite programming relaxatfor the satisfiability problem.
Mathematical Programmingl02(3):589-608, 2005.

M.F. Anjos and A. Vannelli. Computing Globally Optimal Stihns for Single-Row Layout
Problems Using Semidefinite Programming and Cutting PlanB$ORMS Journal on
Computing 20:611-617, 2008.

K.R. Apt. The essence of constraint propagatidimeoretical Computer Scienc221(1-2):
179-210, 1999.

K.R. Apt. Principles of Constraint ProgrammindCambridge University Press, 2003.

S. Brand, G.J. Duck, J. Puchinger, and P.J. Stuckey. Fextilile-Based Constraint Model
Linearisation. InProceedings of the 10th International Symposium on Pratfispects of
Declarative Languages (PADLyolume 4902 of_ecture Notes in Computer Scienpages
68-83. Springer, 2008.

Semidefinite Programming and Constraint Programming 29

M. Charikar, K. Makarychev, and Y. Makarychev. Near-opfirayorithms for maximum
constraint satisfaction problemsACM Transactions on Algorithm$(3):32—-1—32-14,
2009.

J. Cheriyan, W.H. Cunningham, L. Tuncel, and Y. Wang. A lainBrogramming and Round-
ing Approach to MAX 2-SAT.DIMACS Series in Discrete Mathematics and Theoretical
Computer Scienc®6:395-414, 1996.

R. Dechter.Constraint ProcessingMorgan Kaufmann, 2003.

N. Faure, P. Chrétienne, E. Gourdin, and F. Sourd. Bicl@prepletion problems for multicast
network designDiscrete Optimizatiop4:360-377, 2007.

FICO. Xpress-Kalis User guide, Fair Isaac Corporation,2200

M. Fischetti and A. Lodi. Local BranchingMathematical Programming98(1-3):23-47,
2003.

D. Fleischman and M.V. Poggi de Aragao. Improved SDP Bouwmdthe Exact Solution of
Unconstrained Binary Quadratic ProgrammingQptimization Days, MontreaR010.

F. Focacci, A. Lodi, and M. Milano. Cost-based domain fitigri In Proceedings of the Fifth
International Conference on Principles and Practice of €waint Programming (CRvol-
ume 1713 ot ecture Notes in Computer Scienpages 189-203. Springer, 1999a.

F. Focacci, A. Lodi, M. Milano, and D. Vigo. Solving TSP thghuthe integration of OR and
CP techniquesElectronic Notes in Discrete Mathematjds13—25, 1999b.

F. Focacci, A. Lodi, and M. Milano. Optimization-OrientedoBal ConstraintsConstraints
7(3-4):351-365, 2002a.

F. Focacci, A. Lodi, and M. Milano. Embedding relaxationggiobal constraints for solv-
ing TSP and TSPTWAnNnals of Mathematics and Atrtificial Intelligencg4(4):291-311,
2002b.

F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithrorfthe TSPTW.INFORMS
Journal on Computingl4(4):403-417, 2002c.

A. Frieze and M. Jerrum. Improved Approximation Algorithfos MAX k-CUT and MAX
BISECTION. Algorithmicg 18(1):67-81, 1997.

M.R. Garey and D.S. Johnso@omputers and IntractibilityFreeman, 1979.

I.P. Gent, K.E. Petrie, and J.-F. Puget. Symmetry in CoimitRrogramming. In F. Rossi,
P. van Beek, and T. Walsh, editotdandbook of Constraint Programminghapter 10.
Elsevier, 2006.

C. Gervet. Conjunto: Constraint Logic Programming withit€iiset Domains. IfProceedings
of the International Logic Programming Symposium (ILP®&ges 339-358. MIT Press,
1994.

M.X. Goemans and D.P. Williamson. NegvApproximation Algorithms for the Maximum
Satisfiability ProblemSIAM Journal on Discrete Mathematicg4):656—-666, 1994.

M.X. Goemans and D.P. Williamson. Improved Approximatidgatithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programmilgurnal of the ACM42(6):
1115-1145, 1995.

C.P. Gomes, W.J. van Hoeve, and L. Leahu. The Power of Semitéefirogramming Relax-
ations for MAX-SAT. InProceedings of the Third International Conference on lrdeg
tion of Al and OR Techniques in Constraint Programming fom®aatorial Optimization
Problems (CPAIOR)volume 3990 ot.ecture Notes in Computer Scienpages 104-118.
Springer, 2006.

M. Grotschel, L. Lovasz, and A. Schrijvezeometric Algorithms and Combinatorial Opti-
mization Wiley, 1988.

G. Gruber and F. Rendl. Computational experience with stsét relaxationsSIAM Journal
on Optimization13(4):1014-1028, 2003.

30 Willem-Jan van Hoeve

S. Gualandik-Clustering Minimum Biclique Completion via a Hybrid CP aBBP Approach.
In Proceedings of the 6th International Conference on Intégreof Al and OR Techniques
in Constraint Programming for Combinatorial Optimizati&moblems (CPAIOR)volume
5547 ofLecture Notes in Computer Scienpages 87-101. Springer, 2009.

S. Gualandi and F. Malucelli. Weighted Bicligue Completisia CP-SDP Randomized
Rounding. InProceedings of the European Workshop on Mixed Integer Neati Pro-
gramming pages 223-230, 2010.

V. Guruswami and P. Raghavendra. Constraint Satisfactven a Non-Boolean Domain:
Approximation Algorithms and Unique-Games HardnessPioceedings of the 11th In-
ternational Workshop on Approximation, Randomization @adnhbinatorial Optimization.
Algorithms and Techniques (APPROXdlume 1571 ofLecture Notes in Computer Sci-
ence pages 77-90. Springer, 2008.

E. Halperin and U. Zwick. Approximation Algorithms for MAX-8AT and Rounding Proce-
dures for Semidefinite Programiournal of Algorithms40:184-211, 2001.

W.D. Harvey and M.L. Ginsberg. Limited Discrepancy SeartthProceedings of the Four-
teenth International Joint Conference on Atrtificial Intgéince (IJCAI) pages 607—615.
Morgan Kaufmann, 1995.

C. Helmberg. Fixing Variables in Semidefinite RelaxatidBsAM Journal on Matrix Analysis
and Applications21(3):952—-969, 2000.

W.-J. van Hoeve. A hybrid constraint programming and sefiride programming approach
for the stable set problem. Froceedings of the Ninth International Conference on Prin-
ciples and Practice of Constraint Programming (CRdlume 2833 ofLecture Notes in
Computer Sciencgages 407—421. Springer, 2003.

W.-J. van Hoeve. Exploiting Semidefinite Relaxations in &aaint ProgrammingComputers
and Operations ResearcB3(10):2787-2804, 2006.

W.-J. van Hoeve and |. Katriel. Global Constraints. In F. ®0B. van Beek, and T. Walsh,
editors,Handbook of Constraint Programminghapter 6. Elsevier, 2006.

W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On globahiwgr Flow-based soft global
constraints.Journal of Heuristics12(4):347-373, 2006.

J. Hooker.Logic-Based Methods for Optimization - Combining Optiri@aand Constraint
Satisfaction Wiley, 2000.

J.N. Hooker. Operations Research Methods in ConstrairgrBnoming. In F. Rossi, P. van
Beek, and T. Walsh, editorslandbook of Constraint Programminghapter 15. Elsevier,
2006.

J.N. Hooker.Integrated methods for optimizatio®pringer, 2007.

S. Joy, J. Mitchell, and B. Borchers. A branch and cut algarifor MAX-SAT and weighted
MAX-SAT. DIMACS Series in Discrete Mathematics and Theoretical QaempScience
35:519-536, 1997.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MX 3SAT? In Proceedings
of the 38th Annual IEEE Symposium on Foundations of Com@dience (FOCSpages
406-415. IEEE Computer Society, 1997.

I. Katriel, M. Sellmann, E. Upfal, and P. Van Hentenryck. pagating Knapsack Constraints
in Sublinear Time. IrProceedings of the 22nd National Conference on Atrtificiabllix
gence (AAAl)pages 231-236. AAAI Press, 2007.

E. de Klerk and H. van Maaren. On semidefinite programmingxatlons of (2+p)-SAT.
Annals of Mathematics and Artificial Intelligenc#7:285-305, 2003.

E. de Klerk and J.P. Warners. Semidefinite Programming Aqpres for MAX-2-SAT
and MAX-3-SAT: computational perspectives. In P.M. PandalA. Migdalas, and R.E.
Burkard, editorsCombinatorial and Global Optimizatiotworld Scientific, 2002.

Semidefinite Programming and Constraint Programming 31

E. de Klerk, H. van Maaren, and J.P. Warners. RelaxatioriseoBatisfiability Problem Using
Semidefinite Programminglournal of Automated Reasonirgy:37—65, 2000.

H.C. Lau. A New Approach for Weighted Constraint SatisfactiConstraints 7:151-165,
2002.

M. Laurent and F. Rendl. Semidefinite Programming and ImtBgegramming. In K. Aardal,
G. Nemhauser, and R. Weismantel, edit@screte OptimizationHandbooks in Oper-
ations Research and Management Science. Elsevier, 2000 akhilable as Technical
Report PNA-R0210, CWI, Amsterdam.

M. Laurent, S. Poljak, and F. Rendl. Connections betweeridedmite relaxations of the
max-cut and stable set problemdathematical Programming’7:225-246, 1997.

L. Leahu and C.P. Gomes. Quality of LP-based Approximatfonddighly Combinatorial
Problems. IfProceedings of the Tenth International Conference on Rpiee and Practice
of Constraint Programming (CR)olume 3258 ofLecture Notes in Computer Science
pages 377-392. Springer, 2004.

L. Lovasz. On the Shannon capacity of a grafffEE Transactions on Information Theory
25:1-7,1979.

F. Margot. Symmetry in Integer Linear Programming. 5 Years of Integer Programming
1958-2008chapter 17. Springer, 2010.

M. Milano, editor. Constraint and Integer Programming - Toward a Unified Metblody,
volume 27 ofOperations Research/Computer Science Interfagdgwer Academic Pub-
lishers, 2003.

M. Milano and W.J. van Hoeve. Reduced Cost-Based Rankingsfarerating Promising
Subproblems. IrProceedings of the Eighth International Conference on &gles and
Practice of Constraint Programming (CPYolume 2470 ofLecture Notes in Computer
Sciencepages 1-16. Springer, 2002.

G.L. Nemhauser and L.A. Wolseinteger and Combinatorial OptimizatioWiley, 1988.

J.F. Puget. PECOS: a high level constraint programminguiage. InProceedings of the
Singapore International Conference on Intelligent Systé&PICIS)1992.

P. Raghavendra. Optimal Algorithms and Inapproximabmissults for Every CSP? IRro-
ceedings of the 40th Annual ACM Symposium on Theory of Corgp{8TOC) pages
245-254. ACM, 2008.

P. Raghavendra and D. Steurer. Integrality Gaps for Strdbig Belaxations of UNIQUE
GAMES. InProceedings of the 50th Annual IEEE Symposium on Foundatib@omputer
Science (FOCSpages 575-585. IEEE Computer Society, 2009a.

P. Raghavendra and D. Steurer. How to Round Any CSPPrérceedings of the 50th An-
nual IEEE Symposium on Foundations of Computer Science §§@@&ges 586-594. IEEE
Computer Society, 2009b.

P. Refalo. Linear Formulation of Constraint Programmingdels and Hybrid Solvers. In
Proceedings of the Sixth International Conference on Rpies and Practice of Constraint
Programming (CP)volume 1894 ol ecture Notes in Computer Sciengages 369-383.
Springer, 2000.

J.-C. Régin. A Filtering Algorithm for Constraints of Déffence in CSPs. IRroceedings of
the Twelfth National Conference on Atrtificial Intelligen@AAl), volume 1, pages 362—
367. AAAI Press, 1994,

J.-C. Régin. Cost-Based Arc Consistency for Global CalitinConstraints.Constraints 7:
387-405, 2002.

J.-C. Régin. Global Constraints and Filtering Algorithma M. Milano, editor,Constraint
and Integer Programming - Toward a Unified Methodolpgglume 27 ofOperations Re-
search/Computer Science Interfacelapter 4. Kluwer Academic Publishers, 2003.

32 Willem-Jan van Hoeve

J.-C. Régin. Modélisation et Contraintes Globales emRmmmation par Contraintes. Habil-
itation thesis, University of Nice, 2004.

F. Rossi, P. van Beek, and T. Walsh, editd#gandbook of Constraint Programminglsevier,
2006.

A. Sadler and C. Gervet. Global Filtering for the DisjoirgaéConstraint on Fixed Cardinality
Sets. Technical Report TR-IC-PARC-04-02, IC-PARC, ImakGiollege, 2004.

M. Sellmann, T. Gellermann, and R. Wright. Cost-Based Hiltefor Shorter Path Con-
straints.Constraints 12(2):207-238, 2007.

P. van Beek. Backtracking search algorithms. In F. RossatfPBeek, and T. Walsh, editors,
Handbook of Constraint Programminghapter 4. Elsevier, 2006.

P. Van Hentenryck, L. Perron, and J.-F. Puget. Search aatbgtes in OPLACM Transac-
tions on Computational Logjd (2):285-320, 2000.

J. WarnersNonlinear Approaches to Satisfiability Problenf®hD thesis, Technische Univer-
siteit Eindhoven, 1999.

Z. Xing and W. Zhang. MaxSolver: An efficient exact algoritfion (weighted) maximum
satisfiability. Artificial Intelligence 164(1-2):47-80, 2005.

U. Zwick. Approximation Algorithms for Constraint Satistéon Problems Involving at Most
Three Variables per Constraint. Rioceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODApages 201-210. ACM/SIAM, 1998.

Index

bicligue completion problem, 22

constraint programming
constraint propagation, 4
constraint programming, 1-32
domain filtering, 5
global constraint, 3
modeling, 3
optimization constraint, 7
search, 4
search strategy, 8
set variable, 4
solving, 4
constraint propagation, 4
CP,seeconstraint programming

domain filtering algorithm, 5

global constraint, 3

limited discrepancy search, 9
MAX-2-SAT problem, 14, 17

optimization constraint, 7
using semidefinite relaxation, 12

search strategy
value selection heuristic, 9
search strategy, 8
accuracy of semidefinite relaxation, 16
based on semidefinite relaxation, 12
variable selection heuristic, 9
semidefinite relaxation
as search heuristic, 12
bicligue completion problem, 25
MAX-2-SAT problem, 18
stable set problem, 15
set variable, 4
stable set problem, 15

