
Postponing Branching Decisions
Willem Jan van Hoeve1 and Michela Milano2

Abstract. Solution techniques for Constraint Satisfaction and Op-
timisation Problems often make use of backtrack search methods,
exploiting variable and value ordering heuristics. In this paper, we
propose and analyse a very simple method to apply in case the value
ordering heuristic produces ties: postponing the branching deci-
sion. To this end, we group together values in a tie, branch on this
sub-domain, and defer the decision among them to lower levels of
the search tree. We show theoretically and experimentally that this
simple modification can dramatically improve the efficiency of the
search strategy. Although in practise similar methods may have been
applied already, to our knowledge, no empirical or theoretical study
has been proposed in the literature to identify when and to what ex-
tent this strategy should be used.

1 INTRODUCTION

Constraint Satisfaction Problems (CSPs) and Constraint Optimisa-
tion Problems (COPs) are defined on a set of variables representing
problem entities. Variables range on finite domains and are subject to
a set of constraints that define the feasible configurations of variable-
value assignments. A COP in addition has an objective function to be
optimised. A solution to a CSP or a COP is a variable-value assign-
ment respecting all constraints, and optimising the objective function
if present. When being solved with Constraint Programming, the so-
lution process interleaves constraint propagation and search.

A general way of building a search tree for solving CSPs and COPs
is called labelling. Labelling consists in selecting a variable and as-
signing it a single value from its domain. The variable and value
selection are guided by heuristics. In particular, a value-selection
heuristic ranks values in such a way that the most promising value
is selected first. Concerning value-selection heuristics, we consider
the following situations.

If the heuristic regards two or more values equally promising we
say the heuristic produces a tie, consisting of equally ranked do-
main values. The definition of ties can be extended to the concept
of heuristic equivalence [2] that considers equivalent all values that
receive a rank within a given percentage from a value taken as refer-
ence.

A similar situation occurs when different domain value heuristics
are applied simultaneously. Often a problem is composed of differ-
ent aspects, for instance optimisation of profit, resource balance, or
feasibility of some problem constraints. For each of those aspects a
heuristic may be available. However, applying only one such heuris-
tic often does not lead to a globally satisfactory solution. The goal is
to combine these heuristics into one global domain value heuristic.

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands email:
W.J.van.Hoeve@cwi.nl

2 DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
email: mmilano@deis.unibo.it

Many combinations are used in practise: (i) to follow the heuristic
that is regarded most important, and apply a different heuristic on
values belonging to the tie, (ii) to define a new heuristic (that might
still contain ties) as the (weighted) sum of the ranks that each heuris-
tic assigns to a domain value or (iii) rank the domain values through
a multi-criteria heuristic. In this third case, a domain value has a
higher rank than another domain value if it has a higher rank with
respect to all heuristics. With respect to the multi-criteria heuristic,
some values may be incomparable. These incomparable values to-
gether form a tie.

The two cases considered above describe the same situation: the
used heuristic(s) define(s) a partial order on the values’ ranks. In
these cases, labelling chooses one of these values and branches on
it. In traditional tree search values are chosen according to a deter-
ministic rule, for instance lexicographic order. More recently, ran-
domisation has been applied to these choices, see [2]. We propose
a simple, yet effective method that improves the efficiency of tree
search in these situations: avoid making this choice and postpone the
branching decision.

Postponing branching decisions is practically used upon back-
tracking in scheduling applications [1] when the chronological
heuristic is chosen. We select the activity A with the smallest ear-
liest start time est and assign it to this value. Upon backtracking, we
postpone the decision for A and go on assigning a different activity.
The motivation underlying this postponement is that after a schedule
that assigns activity A to est is found (or the search has failed), it
is unlikely that assigning activity A to est + 1 would produce much
better results. Indeed, values est and est+1 are equivalent (i.e., form
a tie) for the scheduling application.

We propose here to apply decision postponement systematically
in case of ties. Therefore, equivalent values are grouped together in a
sub-domain and a branching is performed on the whole sub-domain,
while those that are clearly ranked by the heuristic are still assigned
singularly to a variable. We call this method partitioning. Even this
simple change can dramatically improve the efficiency of the tree
search, as we will see later. In addition, partitioning has another im-
portant advantage: it enhances the bound computation (in particu-
lar when used in conjunction with LDS), as shown in [7] where a
strategy using partitioning is presented. Moreover, partitioning gen-
erates sub-problems, to which any appealing search method may
be applied, speeding up the solution process. However, partitioning
has also some drawbacks. In particular, when constraint propagation
heavily relies on variable instantiation, partitioning may result in less
propagation. Nevertheless, when we apply a fast solution method to
the generated sub-problems, partitioning can still be favourable in-
stead of labelling.

Although domain partitioning and labelling have been already
used for solving CSPs and COPs, to our knowledge there is no the-
oretical and practical study that indicates to practitioners when they



should be applied. In this paper we discuss the effect of domain par-
titioning to search strategies that include depth-first search, limited
discrepancy search and variants.

The outline of this paper is as follows. In Section 2 we define the
concepts and the background of our work. In Section 3 a theoretical
comparison of partitioning and labelling is given. This is followed
by an experimental comparison in Section 4. We conclude with a
discussion in Section 5.

2 BACKGROUND
A constraint satisfaction problem (CSP) consists of a set of variables
x1, . . . , xn with respective finite domains D1, . . . , Dn, and a set of
constraints C on these variables. A constraint optimisation problem
(COP) is a CSP together with an objective function to be optimised.

We recall the concepts of labelling and partitioning, which are
standard and widely used in search strategies for solving CSPs and
COPs. During the search for a solution, a search tree is built by sub-
sequently taking branching decisions. A branching decision implies
first a variable selection. Then, labelling chooses a single value and
assigns the variable to that value. Upon backtracking another value is
assigned until no more values can be found in the domain. Formally,
for variable xi, labelling generates the assignments

xi = di1 ∨ xi = di2 ∨ . . . ∨ xi = dil

where Di = {di1 , . . . , dil
}.

On the other hand partitioning is a technique that partitions the
domain of a variable and branches on the resulting sub-domains,
which may consist of only a single value. A very simple example,
widely used in CSPs, is to split a numerical domain in two sets:
the first containing values smaller or equal than a given threshold
T , the second containing values greater than T . For example, if a
variable X ranges on a domain {1, . . . , 10} the partitioning can be
X ≤ 5 ∨ X > 5. This domain can also be partitioned in differ-
ent ways like X ∈ {4, 5, 6} ∨ X ∈ {1, 3, 7, 8} ∨ X ∈ {2, 9, 10}.
Formally, for variable xi, partitioning generates the branching

xi ∈ D1
i ∨ xi ∈ D2

i ∨ . . . ∨ xi ∈ Dm
i

where D1
i , . . . Dm

i is a partition of Di. In this work, the partition
will be defined by the ties of the value-selection heuristic, i.e. each
Dj

i consists of all values belonging to the same tie.
Constructing a search tree via labelling leads to the appearance of

leaves only at depth n. Constructing a search tree via partitioning
leads to a sub-problem at depth n. If all assigned sub-domains are
single-valued, this sub-problem is a leaf. Otherwise, the sub-problem
must be searched again, through labelling or partitioning. In this pa-
per, we will always search the sub-problem via labelling. This means
that the leaves of the search tree appear at depth between n and 2n.

A search strategy defines the order in which the nodes of a search
tree are being traversed. We consider in this paper only depth-first
based search strategies. A depth-first based search strategy traverses
the search tree by going from a node to one of its successors, until
it reaches a leaf. Examples of depth-first based search strategies are
depth-first search (DFS), limited discrepancy search (LDS) [4] and
depth-bounded discrepancy search (DDS) [11].

A discrepancy (of a certain value) is a branching decision that is
not selected first by the domain value ordering heuristic. For LDS
and DDS, the cumulative discrepancy of a path from the root to a
node may not exceed a given limit. LDS gradually allows this limit
to increase during search. DDS follows LDS until a certain depth, but

allows only heuristic choices (discrepancy 0) below this depth. The
value of discrepancy of a branching decision is equal to the num-
ber of preceding branching decisions at the current tree node. In case
of labelling, the discrepancy increases with value 1 for each domain
value. For partitioning, the discrepancy value increases with the num-
ber of domain values in each sub-domain. However, below depth n,
i.e. inside a sub-problem, we say that no branching decision increases
the discrepancy.

3 THEORETICAL COMPARISON
This section shows, on a probabilistic basis, that partitioning is more
beneficial than labelling in case the (combined) heuristic produces
ties. In this section we do not consider constraint propagation.

Similar to the analysis of LDS by Harvey and Ginsberg [4], we
introduce a probability that the heuristic makes a correct choice. Let
the search tree consist of good and bad nodes. A node is called good
if one of its successors is a (optimal) solution to the CSP. Otherwise,
the node is called bad. The heuristic probability is the probability
that at a good node, the heuristic selects a good node first. Every
following node selection has a similar probability of being a good
node. For simplicity, Harvey and Ginsberg assume that this proba-
bility remains constant throughout the search tree. To analyse DDS,
Walsh [11] introduces a similar probability, but explicitly assumes
that it increases with the depth. In both cases, binary search trees are
considered, while our analysis is not restricted to binary trees.

The analysis of partitioning with respect to labelling should be
based on the sole fact that the heuristic produces ties. Hence, we may
assume that the heuristic probability remains constant throughout the
search tree. The heuristic probability is denoted by pd

i , corresponding
to assigning value d ∈ Di to variable xi. Note that

∑
d∈Di

pd
i = 1,

and we explicitly assume p
dij

i > p
dik
i if the heuristic prefers dij

over dik
. If the heuristic produces a tie for xi, including values dij

and dik
, then p

dij

i = p
dik
i .

Let a search tree be defined by a certain variable ordering and
domain value heuristic. A leaf l of the search tree consists of the
instantiation of all n variables:

l = {xi = dij
| dij

∈ Di, i ∈ {1, . . . , n}}.

Thus, a leaf can either be a (optimal) solution or not. The probability
of a leaf l being successful is

prob(l) =
∏

{xi=dij
}∈l

p
dij

i .

When we apply a certain search strategy to a tree defined by la-
belling or by partitioning, leaves are visited in a different order. An
example of the probability distribution along the leaves of the differ-
ent search trees is given in Figure 1. The trees correspond to 2 vari-
ables, both having 3 domain values. The branches are ordered from
left to right following the heuristic’s choice. The heuristic probability
of success for is shown for each branch. Note that the heuristic pro-
duces a tie, consisting of two values, for the first variable. Labelling
follows the heuristic on single values, while partitioning groups to-
gether values in the tie. For DFS and LDS, the order in which the
leaves are visited is given, together with the cumulative probability
of success. Note that for every leaf, partitioning always has a higher
(or equal) cumulative probability of success than labelling. This will
be formalised in Theorem 1. Note also that in a sub-problem gener-
ated by partitioning all leaves have the same probability of success.

2



a. labelling b. partitioning

Figure 1. Cumulative probability of success using DFS and LDS.

This property follows immediately from the construction of the sub-
problems. As a consequence, any search strategy applied to this sub-
problem will be equally likely to be successful. In practise, we will
therefore use DFS to solve the sub-problems.

Theorem 1 For a fixed variable ordering and a domain value order-
ing heuristic, let Tlabel be the search tree defined by labelling, and
let Tpartition be the search tree defined by partitioning, grouping to-
gether ties. Let the set of the first k leaf nodes visited by labelling
and partitioning be denoted by Lk

label and Lk
partition respectively. If

Tlabel and Tpartition are traversed using the same depth-first based
search strategy then

∑

l∈Lk
partition

prob(l) ≥
∑

l∈Lk
label

prob(l). (1)

Proof. For k = 1, (1) obviously holds. Let k increase until labelling
and partitioning visit a leaf with a different probability of success,
say llabel

k and lpartition

k respectively. If such leaves do not exist, (1)
holds with equality for all k.

Assume next that such leaves do exist, and let llabel
k and lpartition

k

be the first leaves with a different probability of success. As the leafs
are different, there is at least one different branching decision be-
tween the two. The only possibility for this different branching de-
cision is that we have encountered a tie, because partitioning and
labelling both follow the same depth-first based search strategy. This
tie made partitioning create a sub-problem S, with lpartition

k ∈ S,
and llabel

k /∈ S. If labelling made a branching decision different from
partitioning, with a higher probability of being successful, then par-
titioning would have made the same decision. Namely, partitioning
and labelling follow the same strategy, and the heuristic prefers val-
ues with a higher probability. So it must be that a different branching
decision made by labelling has a smaller or equal probability of be-
ing successful with respect to the corresponding decision made by
partitioning. However, as we have assumed that prob(lpartition

k ) 6=
prob(llabel

k ), there must be at least one different branching decision
made by labelling, that has a strictly smaller probability of being suc-
cessful. Thus for the current k, (1) holds, and the inequality is strict.

As we let k increase further, partitioning will visit first all
leaves inside S, and then continue with llabel

k . On the other

hand, labelling will visit leaves l that are either in S or not,
all with prob(l) ≤ prob(lpartition

k ). However, as partitioning
follows the same search strategy as labelling, partitioning will
either visit a leaf of a sub-problem, or a leaf that labelling
has already visited (possibly simultaneously). In both cases,∑

l∈Lk
partition

prob(l) ≥
∑

l∈Lk
label

prob(l). 2

Next we measure the effect that the number of ties has on the per-
formance of partitioning with respect to labelling. For this reason, we
vary the number of ties in a fixed search tree of depth 30. A branch-
width of 3 will be used in all cases, as this allows ties, and a larger
branch-width would make it impractical to measure effectively the
performance of labelling. Depending on the occurrence of a tie, the
heuristic probability pi of branch i will be chosen either

p1 = 0.95, p2 = 0.04, p3 = 0.01 (no tie), or
p1 = 0.495, p2 = 0.495, p3 = 0.01 (tie).

Our method assumes a fixed variable ordering in the search tree, and
uniformly distributes the ties among them. This is reasonable, since
in practise ties can appear unexpectedly. We have investigated the
appearance of 10%, 33% and 50% ties out of the n branching deci-
sions that lead to a leaf. In Figure 2.a and b., we report the cumulative
probability of success for labelling and partitioning using DFS and
LDS until 50000 leaves. Note that in Figure 2.a the graphs for la-
belling with 33% and 50% ties almost coincide along the x-axis. The
figures show that in the presence of ties partitioning may be much
more beneficial than labelling, i.e. the strict gap in (1) can be very
large.

4 EXPERIMENTAL COMPARISON
This section presents computational results of two applications for
which we have compared partitioning and labelling. The first is the
Travelling Salesman Problem (TSP), the second the Partial Latin
Square Completion Problem (PLSCP). We first explain the reason
why we chose these two problems among a set of problems consid-
ered to test the methods. The TSP is an optimisation problem where
the propagation is quite poor and the heuristic used is very infor-
mative but produces (not very large indeed) ties. Instead, PLSCP is

3



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f s
uc

ce
s

number of leafs

labelling, 50% ties
partitioning, 50% ties

labelling, 33% ties
partitioning, 33% ties

labelling, 10% ties
partitioning, 10% ties

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f s
uc

ce
s

number of leafs

labelling, 50% ties
partitioning, 50% ties

labelling, 33% ties
partitioning, 33% ties

labelling, 10% ties
partitioning, 10% ties

a. using DFS b. using LDS

Figure 2. Partitioning versus labelling on search trees of depth 30 and branch-width 3.

a constraint satisfaction problem whose model contains many all-
different constraints whose filtering algorithm is particularly effec-
tive. The heuristic used is quite good and sometimes produces ties.
Therefore, the two problems have opposite structure and characteris-
tics. For the TSP partitioning is very suitable since the only drawback
of the method, i.e., the decreased effect of propagation, does not play
any role. On the contrary, the PLSCP is a problem whose characteris-
tics are not suitable for the partitioning. Therefore, we will point out
also the weakness of the method. For each application we state the
problem, define the applied heuristic and report the computational
results. For both problems we apply LDS as search strategy.

The applications are implemented on a Pentium 1Ghz with 256
MB RAM, using ILOG Solver 5.1 [6] and Cplex 7.1 [5].

4.1 Travelling Salesman Problem

The travelling salesman problem (TSP) is a traditional NP-hard com-
binatorial optimisation problem. Given a set of cities with distances
(costs) between them, the problem is to find a closed tour of minimal
length visiting each city exactly once.

For the TSP, we have used a constraint programming model and
a heuristic similar to [8] based on reduced costs. Sub-problems are
being solved using DFS, since all leaves can be considered to have
equal probability of being successful.

To compare labelling and partitioning fairly, we stop the search
as soon as an optimal solution has been found. For the considered
instances, the optimal values are known in advance. The proof of
optimality should not be taken into account, because it is not directly
related to the probability of a branch being successful.

The results of our comparison are presented in Table 1. The in-
stances are taken from TSPLIB [10] and represent symmetric TSPs.
For labelling and partitioning, the table shows the time and the num-
ber of fails (backtracks) needed to find an optimum. For labelling,
the discrepancy of the leaf node that represents the optimum is given.
For partitioning, the discrepancy of the sub-problem that contains the
optimum is reported.

For all instances but one, partitioning performs much better than
labelling. Both the number of fails and the computation time are

substantially less for partitioning. Observe that for the instance
‘dantzig42’ labelling needs less fails than partitioning, but uses more
time. This is because partitioning solves the sub-problems using
DFS. Partitioning can visit almost three times more nodes in less
time, because it lacks the LDS overhead inside the sub-problems.

labelling partitioning
instance time (s) fails discr time (s) fails discr
gr17 0.08 36 2 0.02 3 0
gr21 0.16 52 3 0.01 1 0
gr24 0.49 330 5 0.01 4 0
fri26 0.16 82 2 0.01 0 0
bayg29 8.06 4412 8 0.07 82 1
bays29 2.31 1274 5 0.07 43 1
dantzig42 0.98 485 1 0.79 1317 1
swiss42 6.51 2028 4 0.08 15 0
hk48 190.96 35971 11 0.23 175 1
brazil58 N.A. N.A. N.A. 0.72 770 1

N.A. means ‘not applicable’ due to time limit (900 s).

Table 1. Results for finding optima of TSP instances (not proving
optimality).

4.2 Partial Latin Square Completion Problem
The Partial Latin Square Completion Problem (PLSCP) is a well
known NP-complete combinatorial satisfaction problem. A Latin
square is an n × n square in which each row and each column is
a permutation of the numbers {1, . . . , n}. A partial Latin square is
a partially pre-assigned square. The PLSCP is the problem of ex-
tending a partial Latin square to a feasible (completely filled) Latin
square.

The constraint programming model is straightforward, using all-
different constraints on the rows and the columns, with maximal
propagation. The maximal alldifferent propagation (achieving hyper-
arc consistency [9]) is of great importance for solving the PLSCP.
With less powerful propagation, the considered instances are practi-
cally unsolvable.

4



As heuristic we have used a simple first-fail principle for the val-
ues, i.e. values that are most constrained are to be considered first.
Therefore the rank of a value is taken equal to the number of the
value’s occurrences in the partial Latin square, and a higher rank is
regarded better. Hence, labelling selects the value with the highest
rank, and uses lexicographic ordering in case of ties. Partitioning se-
lects the sub-domain consisting of all values having the highest rank.
The sub-problems are again being solved using DFS. For both la-
belling and partitioning, constraint propagation is applied throughout
the whole search tree.

In Table 2 we report the performance of labelling and partition-
ing on a set of partial Latin square completion problems. It follows
the same format as Table 1. The instances are generated with the
PLS-generator [3]. Following remarks made in [3], our generated in-
stances are such that they are difficult to solve, i.e. they appear in the
transition phase of the problem. The instances ‘b.o25.hm’ are bal-
anced 25 × 25 partial Latin squares, with m unfilled entries (around
38%). Instances ‘u.o30.hm’ are unbalanced 30 × 30 partial Latin
squares, with m unfilled entries (around 38%).

Although partitioning performs much better than labelling on av-
erage, the results are not homogeneous. For some instances labelling
has better performances w.r.t. partitioning. This can be explained by
the pruning power of the alldifferent constraint. Since partitioning
branches on sub-domains of cardinality larger than one, the alldif-
ferent constraint will remove less inconsistent values compared to
branching on single values, as is the case with labelling. Using par-
titioning, such values will only be removed inside the sub-problems.
However, even in instances where partitioning is less effective, the
difference between the two strategies is not so high, while on many
instances partitioning is much more effective.

As was already mentioned in Section 4.1, partitioning effectively
applies DFS inside the sub-problems. For a number of instances, par-
titioning finds a solution earlier than labelling, although making use
of a higher number of fails.

5 DISCUSSION

We have seen both theoretically and experimentally that partitioning
is to be preferred over labelling, when some domain values are in-
comparable with respect to one or more heuristics. There are several
additional benefits to partitioning, of which we would like to mention
two. Thereafter we discuss various drawbacks of partitioning.

The sub-problems that are created by partitioning may be sub-
ject to any applicable search method. In particular, when the sub-
problems are large, one could apply a local search method. Another
possibility is to apply a (mixed-integer) (non)linear programming
solver. This allows the user to effectively combine several solution
methods to solve the problem.

For COPs, proving optimality is often more difficult than finding
a good solution. Partitioning can sometimes be useful to prove op-
timality earlier. In [8], partitioning is applied to a domain value or-
dering heuristic based on reduced costs, together with LDS. For that
particular case, the partitioning scheme allows a very effective bound
computation.

On the other hand, branching on sub-domains instead of single
values decreases the effect of constraint propagation. This is a seri-
ous drawback of partitioning, as we have seen in Section 4.2. It also
affects the bound computation of COPs. As was suggested in [7],
‘additive bounding’ procedures may be helpful in this case.

Finally, we have only considered partitioning on depth-first based
search strategies. We are currently investigating the possibility to ef-

labelling partitioning
instance time (s) fails discr time (s) fails discr
b.o25.h238 2.36 668 5 1.09 746 5
b.o25.h239 0.49 15 1 0.42 2 1
b.o25.h240 1.17 179 4 0.86 893 4
b.o25.h241 3.31 772 3 4.70 3123 4
b.o25.h242 2.41 537 3 1.80 1753 4
b.o25.h243 4.06 1082 4 3.96 2542 4
b.o25.h244 1.33 214 3 2.99 2072 4
b.o25.h245 9.40 2308 6 10.66 12906 7
b.o25.h246 2.01 401 5 2.22 1029 4
b.o25.h247 258.91 69105 6 11.66 5727 4
b.o25.h248 33.65 6969 5 0.68 125 2
b.o25.h249 212.76 60543 11 101.46 85533 8
b.o25.h250 2.45 338 2 0.83 687 3
u.o30.h328 273.53 32538 4 82 14102 3
u.o30.h330 21.79 2756 3 25.15 5019 3
u.o30.h332 235.40 30033 5 56.94 9609 3
u.o30.h334 4.18 256 2 6.09 843 2
u.o30.h336 1.73 69 2 0.76 12 1
u.o30.h338 49.17 5069 3 29.41 8026 3
u.o30.h340 1.68 91 2 0.81 66 2
u.o30.h342 28.40 3152 3 5.41 600 2
u.o30.h344 9.05 605 2 8.35 1103 2
u.o30.h346 2.15 101 2 3.76 482 2
u.o30.h348 43.80 2658 2 32.86 2729 2
u.o30.h350 1.16 46 1 0.80 12 1
u.o30.h352 5.10 288 2 0.95 32 1
sum 1211.45 220793 91 396.62 159773 81
mean 46.59 8492.04 3.50 15.25 6145.12 3.12

Table 2. Results for PLS completion problems.

fectively apply partitioning to breadth-first based search strategies as
well.

REFERENCES
[1] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling,

Kluwer Academic Publishers, 2001.
[2] C.P. Gomes, B. Selman, and H. Kautz, ‘Boosting Combinatorial Search

Through Randomization’, in Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI’98), pp. 431–437, (1998).

[3] C.P. Gomes and D. Shmoys, ‘Completing Quasigroups or Latin
Squares: A Structured Graph Coloring Problem’, in Proceedings of the
Computational Symposium on Graph Coloring and its Generalizations,
(2002).

[4] W. D. Harvey and M. L. Ginsberg, ‘Limited Discrepancy Search’, in
Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence (IJCAI-95), volume 1, pp. 607–615, (1995).

[5] ILOG. ILOG Cplex 7.1, Reference Manual, 2001.
[6] ILOG. ILOG Solver 5.1, Reference Manual, 2001.
[7] A. Lodi, M. Milano, and L.M. Rousseau, ‘Discrepancy based additive

bounding’, in Ninth International Conference on the Principles and
Practice of Constraint Programming (CP’03), volume 2833 of LNCS,
pp. 510–524. Springer Verlag, (2003).

[8] M. Milano and W.J. van Hoeve, ‘Reduced cost-based ranking for gen-
erating promising subproblems’, in Eighth International Conference on
the Principles and Practice of Constraint Programming (CP’02), vol-
ume 2470 of LNCS, pp. 1–16. Springer Verlag, (2002).

[9] J.-C. Régin, ‘A Filtering Algorithm for Constraints of Difference in
CSPs’, in Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), volume 1, pp. 362–367, (1994).

[10] G. Reinelt, ‘TSPLIB - a Traveling Salesman Problem Library’, ORSA
Journal on Computing, 3, 376–384, (1991).

[11] T. Walsh, ‘Depth-Bounded Discrepancy Search’, in Proceedings of the
15th International Joint Conference on Artificial Intelligence (IJCAI),
volume 2, pp. 1388–1393, (1997).

5


