
Contents

6 Over-Constrained Problems . 1

Willem-Jan van Hoeve

6.1 Introduction . 1

6.1.1 A brief historical overview . 2

6.1.2 Outline . 3

6.2 Constraint Programming . 4

6.3 From Soft Constraints to Hard Optimization Constraints 5

6.4 Soft Global Constraints . 9

6.4.1 Soft Alldifferent Constraint . 11

6.4.2 Soft Global Cardinality Constraint 15

6.4.3 Soft Regular Constraint . 19

6.4.4 Other Soft Global Constraints . 24

6.5 Constraint-Based Local Search . 30

6.6 Conclusion and Outlook . 31

References . 32

Index . 37

This chapter is to appear as

W.-J. van Hoeve. Over-Constrained Problems. Chapter 6 of P. Van Hentenryck and

M. Milano (eds.), Hybrid Optimization: the 10 years of CPAIOR, Springer.

This is a draft. Please do not distribute.

i

Chapter 6

Over-Constrained Problems

Willem-Jan van Hoeve

Abstract Over-constrained problems are ubiquitous in real-world applications. In

constraint programming, over-constrained problems can be modeled and solved us-

ing soft constraints. Soft constraints, as opposed to hard constraints, are allowed

to be violated, and the goal is to find a solution that minimizes the total amount of

violation. In this chapter, an overview of recent developments in solution methods

for over-constrained problems using constraint programming is presented, with an

emphasis on soft global constraints.

6.1 Introduction

In the context of constraint programming, combinatorial optimization problems are

modeled using variables and constraints over subsets of these variables. When the

constraints in a model do not allow any solution to the problem, we say that the

problem is over-constrained. Unfortunately, most combinatorial problems found in

real-world applications are essentially over-constrained. Practitioners typically cir-

cumvent this inherent difficulty when modeling the problem, by ignoring certain

aspects of the problem. The resulting model, that hopefully allows a solution, then

serves as a relaxation of the original problem.

Instead of removing constraints, one may wish to slightly modify (some of) the

constraints, thereby maintaining a model that is as close as possible to the original

problem description. A natural way to modify constraints in an over-constrained set-

ting is to allow some constraints to be (partly) violated. In constraint programming,

constraints that are allowed to be violated are called soft constraints. Solving the

original problem then amounts to finding a solution that minimizes the overall cost

Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA

e-mail: vanhoeve@andrew.cmu.edu

1

2 Willem-Jan van Hoeve

of violation, or to optimize the original objective function given a threshold value

on the total amount of violation that is acceptable.

This chapter gives an overview of techniques to handle over-constrained prob-

lems in the context of constraint programming. Following the nature of this collec-

tion, the focus will be on recent developments that are most relevant to CPAIOR,

over (roughly) the last ten years. Interestingly, in 1998, the first paper appeared that

marked the start of the recent research efforts that will be discussed in this chapter;

that of soft global constraints.

6.1.1 A brief historical overview

We start by presenting a brief overview of soft constraints and over-constrained

problems in constraint programming. The most influential early works on soft

constraints are the framework for Constraint Hierarchies by Borning, Duisberg,

Freeman-Benson, Kramer, and Woolf [1987], and the Partial-CSP framework by

Freuder and Wallace [1992]. The latter includes the Max-CSP framework that aims

to maximize the number of satisfied constraints. Since in this framework each con-

straint is either violated or satisfied, the objective is equivalent to minimizing the

number of violated constraints. It has been extended to the Weighted CSP frame-

work by Larrosa [2002] and Larrosa and Schiex [2003], associating a degree of

violation (not just a Boolean value) to each constraint and minimizing the sum of

all weighted violations. The Possibilistic-CSP framework in [Schiex, 1992] asso-

ciates a preference to each constraint (a real value between 0 and 1) representing

its importance. The objective of the framework is the hierarchical satisfaction of the

most important constraints, i.e., the minimization of the highest preference level for

a violated constraint. The Fuzzy-CSP framework in [Dubois et al., 1993], [Fargier

et al., 1993] and [Ruttkay, 1994] is somewhat similar to the Possibilistic-CSP but

here a preference is associated to each tuple of each constraint. A preference value

of 0 means the constraint is highly violated and 1 stands for satisfaction. The ob-

jective is the maximization of the smallest preference value induced by a variable

assignment. The last two frameworks are different from the previous ones since the

aggregation operator is a min/max function instead of addition. With valued-CSPs

[Schiex et al., 1995] and semi-rings [Bistarelli et al., 1997] it is possible to encode

Max-CSP, weighted CSPs, Fuzzy CSPs, and Possibilistic CSPs.

Even though the above approaches allow to model a wide range of over-con-

strained problems, certain aspects arising in practical problems cannot be repre-

sented, as argued by Petit, Régin, and Bessière [2000]. First, it is important to dis-

tinguish hard constraints that must always be satisfied (for example due to physical

restrictions) and soft constraints, that are allowed to be violated. All above frame-

works, except for Max-CSP, allow to model this distinction. However, in most prac-

tical problems, not all soft constraints are equally important. Instead, they are usu-

ally subject to certain rules, such as “if constraint c1 is violated, then c2 cannot be

violated”, or “if constraint c3 is violated, a new constraint c4 becomes active”. Rules

6 Over-Constrained Problems 3

of this nature cannot be modeled using the above frameworks, which was one of the

main motivations to introduce the meta-constraint framework by Petit, Régin, and

Bessière [2000]; see also Petit [2002]. In this framework, a cost variable is associ-

ated to each soft constraint, representing the degree of violation for that constraint.

If the cost variable is 0, the constraint is satisfied. By posting meta-constraints on

these cost variables, we can easily model additional rules and preferences among

the soft constraints. For example, if zi represents the cost variable of soft constraint

ci (for i = 1,2,3,4), the above rules can be modeled as (z1 > 0) → (z2 = 0), and
(z3 > 0)→ c4, respectively. In addition, Petit, Régin, and Bessière [2000] show that

the meta-constraint framework can be used to model the Max-CSP, Weighted CSP,

Possibilistic CSP, and Fuzzy CSP frameworks in a straightforward manner.

An important aspect of the meta-constraint framework is that it allows to prop-

agate information from one (soft) constraint to the other through the domains of

the cost variables using domain filtering algorithms. This can be done even for

global constraints (and soft global constraints) that encapsulate a particular com-

binatorial structure on an arbitrary number of variables. The first such filtering al-

gorithm was given by Baptiste, Le Pape, and Péridy [1998], while Petit, Régin,

and Bessière [2001] introduce soft global constraints in the context of their meta-

constraint framework. Since then, several papers have appeared that present filtering

algorithms for soft global constraints, many of which use methods from operations

research (e.g., matchings and network flows), or computer science (e.g., formal lan-

guages). Therefore, the developments in the area of soft global constraints are an

exemplary illustration for the successful integration of CP, AI, and OR over the last

10 years.

6.1.2 Outline

The main focus of this chapter will be on soft global constraints. We first intro-

duce basic constraint programming concepts in Section 6.2. Then, in Section 6.3,

we introduce soft constraints and show how they can be treated as hard optimiza-

tion constraints using the meta-constraint framework of Petit, Régin, and Bessière

[2000]. Section 6.4 presents soft global constraints: We will discuss in detail the

soft alldifferent constraint, the soft global cardinality constraint, and the soft

regular constraint. This section also provides a comprehensive overview of other

soft global constraints that have appeared in the literature. Section 6.5 discusses

constraint-based local search, and shows the parallel between soft global constraints

and constraint-based local search. Finally, we present a conclusion and an outlook

in Section 6.6.

4 Willem-Jan van Hoeve

6.2 Constraint Programming

We first introduce basic constraint programming concepts. For more information on

constraint programming we refer to the books by Apt [2003], Dechter [2003], and

Rossi et al. [2006]. For more information on global constraints we refer to [Régin,

2003], [van Hoeve and Katriel, 2006], and Chapter 3 of this collection.

Let x be a variable. The domain of x, denoted by D(x), is a set of values that can
be assigned to x. In this chapter we only consider variables with finite domains. For

a set of variables X we denote D(X) =
⋃

x∈X D(x).
A constraint C on a set of variables X = {x1,x2, . . . ,xk} is defined as a subset of

the Cartesian product of the domains of the variables in X , i.e.,C⊆D(x1)×D(x2)×
·· ·×D(xk). A tuple (d1, . . . ,dk) ∈ C is called a solution to C. We also say that the

tuple satisfies C. A value d ∈D(xi) for some i= 1, . . . ,k is inconsistent with respect
toC if it does not belong to a tuple ofC, otherwise it is consistent.C is inconsistent

if it does not contain a solution. Otherwise, C is called consistent. A constraint is

called a binary constraint if it is defined on two variables. If it is defined on an

arbitrary number of variables, we call it a global constraint.

A constraint satisfaction problem, or a CSP, is defined by a finite set of variables

X = {x1,x2, . . . ,xn} with respective domains D = {D(x1),D(x2), . . . ,D(xn)}, to-
gether with a finite set of constraints C , each on a subset of X . This is written

as P = (X ,D ,C). The goal is to find an assignment xi = di with di ∈ D(xi) for
i = 1, . . . ,n, such that all constraints are satisfied. This assignment is called a solu-

tion to the CSP. A constraint optimization problem, or COP, is a CSP (X ,D ,C)
together with an objective function f : D(x1)× ·· ·×D(xn) → R that has to be op-

timized. This is written as P = (X ,D ,C , f). A variable assignment is a solution

to a COP if it is a solution to its associated CSP. An optimal solution to a COP is

a solution that optimizes the objective function. In this chapter, we assume that the

objective function is to be minimized, unless stated otherwise.

The solution process of constraint programming interleaves constraint propaga-

tion and search. The search process essentially consists of enumerating all possible

variable-value combinations, until we find a solution or prove that none exists. We

say that this process constructs a search tree. To reduce the exponential number of

combinations, domain filtering and constraint propagation is applied at each node

of the search tree. A domain filtering algorithm operates on an individual constraint.

Given a constraint, and the current domains of the variables in its scope, a domain

filtering algorithm removes domain values that do not belong to a solution to the

constraint. Since variables usually participate in several constraints, the updated do-

mains are propagated to the other constraints, whose domain filtering algorithms in

effect become active. This process of constraint propagation is repeated for all con-

straints until no more domain values can be removed, or a domain becomes empty.

In order to be effective, domain filtering algorithms should be computationally

efficient, because they are applied many times during the solution process. Further,

they should remove as many inconsistent values as possible. If a domain filtering

algorithm for a constraintC removes all inconsistent values from the domains with

6 Over-Constrained Problems 5

respect toC, we say that it makesC domain consistent.1 In other words, all remain-

ing domain values participate in at least one solution toC. More formally:

Definition 1 (Domain consistency). A constraint C on the variables x1, . . . ,xk is

called domain consistent if for each variable xi and each value di ∈ D(xi) (i =
1, . . . ,k), there exist a value d j ∈D(x j) for all j 6= i such that (d1, . . . ,dk) ∈C.

In practice, one usually tries to develop filtering algorithms that separate the

check for consistency and the actual domain filtering. That is, we would like to

avoid applying the algorithm that performs the consistency check for each individual

variable-value pair. Moreover, one typically tries to design incremental algorithms

that re-use data structures and partial solutions from one filtering event to the next,

instead of applying the filtering algorithm from scratch every time it is invoked.

In the context of constraint optimization problems, we define optimization con-

straints in the following way. Let variable z represent the value of the objective

function f (X) to be minimized, where X = {x1,x2, . . . ,xn} is a set of variables. The
corresponding “optimization constraint” can then be defined as

C(X ,z, f) = {(d1, . . . ,dn,d)|di ∈ D(xi),d ∈D(z), f (d1, . . . ,dn)≤ d}. (6.1)

In other words,C allows only those tuples in the Cartesian product of variables in X

that have an objective function smaller than the maximum value of z (we assume z is

to be minimized). An optimization constraint is different from a standard inequality

constraint mainly because its right-hand side (the value representing the current best

solution) will change during the search for a solution. Note that in this definition,

we add the function f as an argument to C for syntactical convenience.

It should be noted that we intentionally define z to be not equal to f (X) in (6.1).

The reason for this is that the relation f (X)≤ z allows us to establish domain consis-

tency on several optimization constraints efficiently. In particular, it implies that we

can filter the domains of variables in X with respect to maxD(z), and to potentially

increase minD(z) with respect to X . If we would have used the relation f (X) = z in

(6.1) instead, the task of establishing domain consistency becomes NP-complete for

general optimization constraints.

In some cases, the objective function aggregates several sub-functions, e.g., z =
z1 + z2 + · · ·+ zk, where zi = fi(Xi), and Xi is a set of variables, for i = 1, . . . ,k.
We apply the concept of optimization constraint to each of these variables zi and

functions fi correspondingly.

6.3 From Soft Constraints to Hard Optimization Constraints

So far, all constraints in a given CSP or COP are defined as hard constraints, that

must always be satisfied. We next focus on soft constraints, that are allowed to

1 In the literature, domain consistency is also referred to as hyper-arc consistency or generalized

arc consistency.

6 Willem-Jan van Hoeve

be violated. When a soft constraint is violated, we assume that we can measure

to what degree it is violated, and that we wish to minimize the overall amount of

violation. As discussed in Section 6.1.1, there exist several frameworks to handle

soft constraints, and we will focus on the meta-constraint framework introduced by

Petit, Régin, and Bessière [2000]; Petit [2002].

The meta-constraint framework of Petit, Régin, and Bessière [2000] for over-

constrained problems works as follows. With each soft constraint we associate a

particular measure of violation, and a “cost” variable that represents this violation.

As we will see later, the eventual effectiveness of a soft constraint depends heavily

on the measure of violation that is applied. We then transform each soft constraint

into a hard optimization constraint, and minimize an aggregation function on the

cost variables. The aggregation function can for example be a weighted sum, or a

weighted maximum, of the cost variables. In addition, we can post meta-constraints

over the cost variables to model preferences among soft constraints, or more com-

plex relationships, as indicated in Section 6.1.1.

Let us first consider a small motivating example, taken from Petit et al. [2001],

to illustrate the application and potential of this framework.

Example 1. Consider the constraint x≤ y where x and y are variables with respective

domains specified by the intervals D(x) = [9000,10000] and D(y) = [0,20000]. We

soften this constraint by introducing a cost variable z, representing the amount of

violation for the constraint. In this case, we let z represent the gap between x and

y if the constraint is not satisfied, that is, z represents max{0,x− y}. Suppose the
maximum amount of violation is 5, i.e., D(z) = [0,5]. This allows us to deduce that
D(y) = [8995,20000], based on the relation x− y ≤ 5. We can use the semantics

of this constraint to obtain the updated domain efficiently by only comparing the

bounds of the variables. If we would not exploit the semantics, but instead list and

check all possible variable-value combinations, reducing D(y) would take at least

|D(x)| ·8995 checks. �

The example above demonstrates how we can exploit the semantics of a con-

straint to design efficient filtering algorithms for soft constraints. Moreover, it shows

that we can perform “back-propagation” from the cost variable to filter the domains

of the the other variables. This is crucial to make soft global constraints (and opti-

mization constraints in general) effective in practice [Baptiste et al., 1998], [Focacci

et al., 2002].

We next formally introduce violation measures and the transformation of soft

constraints into hard optimization constraints, following the notation of van Hoeve,

Pesant, and Rousseau [2006a].

Definition 2 (Violationmeasure). A violationmeasure of a constraintC(x1, . . . ,xn)
is a function µ : D(x1)×·· · ×D(xn)→ R+ such that µ(d1, . . . ,dn) = 0 if and only

if (d1, . . . ,dn) ∈C.

Definition 3 (Constraint softening). Let z be a variable with finite domain D(z)
andC(x1, . . . ,xn) a constraint with a violation measure µ . Then

6 Over-Constrained Problems 7

soft-C(x1, . . . ,xn,z,µ) = {(d1, . . . ,dn,d) | di ∈ D(xi),d ∈D(z), µ(d1, . . . ,dn)≤ d}

is the soft version ofC with respect to µ .

In the definition of soft-C, z is the cost variable that represents the measure of viola-

tion ofC; maxD(z) represents the maximum amount of violation that is allowed for

C, given the current state of the solution process. Note that soft-C is an optimization

constraint, since we assume that z is to be minimized.

In addition to definition 2, we usually require that the violation measure allows

us to “back-propagate” the domain of the cost variable z to the domains of the other

variables efficiently, when we apply definition 3. That is, we need to be able to

remove inconsistent domain values from D(x1), . . . ,D(xn), based on D(z). The vio-
lation measures discussed in this chapter possess that property.

For most global constraints, there exist several natural ways to evaluate the de-

gree to which it is violated, and these are usually not equivalent. Two general mea-

sures are the variable-based violation measure and the decomposition-based viola-

tion measure, both introduced by Petit et al. [2001].

Definition 4 (Variable-based violation measure). Let C be a constraint on the

variables x1, . . . ,xn and let d1, . . . ,dn be an instantiation of variables such that

di ∈ D(xi) for i = 1, . . . ,n. The variable-based violation measure µvar of C is the

minimum number of variables that need to change their value in order to satisfy C.

For the decomposition-based violation measure we make use of the binary de-

composition of a constraint [Dechter, 1990].

Definition 5 (Binary decomposition). LetC be a constraint on the variables x1, . . . ,
xn. A binary decomposition of C is a minimal set of binary constraints Cdec =
{C1, . . . ,Ck} (for integer k > 0) on the variables x1, . . . ,xn such that the solution

set ofC equals the solution set of
⋂k

i=1Ci.

Note that we can extend the definition of binary decomposition by defining the con-

straints inCdec on arbitrary variables, such that the solution set of
∧k

i=1Ci is mapped

to the solution set ofC and vice versa, as proposed in [Rossi et al., 1990].

Definition 6 (Decomposition-based violation measure). 2 Let C be a constraint

on the variables x1, . . . ,xn for which a binary decomposition Cdec exists and let

d1, . . . ,dn be an instantiation of variables such that di ∈ D(xi) for i = 1, . . . ,n. The
decomposition-based violation measure µdec of C is the number of violated con-

straints inCdec.

Example 2. The alldifferent constraint specifies that a given set of variables take

pairwise different values. Consider the following over-constrained CSP:

x1 ∈ {a,b},x2 ∈ {a,b},x3 ∈ {a,b},x4 ∈ {b,c},
alldifferent(x1,x2,x3,x4).

2 In [Petit et al., 2001], the decomposition-based violation measure is referred to as primal graph

based violation cost.

8 Willem-Jan van Hoeve

The following table shows the value of µvar and µdec for a number of different vari-

able assignments:

(x1,x2,x3,x4) µvar µval
(a,a,b,c) 1 1

(a,a,b,b) 2 2

(a,a,a,b) 2 3

(b,b,b,b) 3 6

The table shows that µdec can be more distinctive than µvar. For example, the as-

signments (a,a,b,b) and (a,a,a,b) are equivalent with respect to µvar, while µdec is
able to distinguish them.

Next, we convert the alldifferent constraint into a soft-alldifferent

constraint, and introduce a variable z that measures its violation. For the sake of this

example, we assume that its domain is D(z) = {0,1,2}:

x1 ∈ {a,b},x2 ∈ {a,b},x3 ∈ {a,b},x4 ∈ {b,c},z ∈ {0,1,2}
soft-alldifferent(x1,x2,x3,x4,z,µ).

We can choose µ to be any measure of violation, for example µdec or µvar. This
choice impacts the solution space; the assignment (a,a,a,b) is allowed by µvar since
its violation value is 2, but not by µdec because its violation value of 3 is higher than
the maximum of D(z). �

The variable-based and decomposition-based violation measures can be viewed

as “combinatorial violation measures”, as they are based on the combinatorial

structure of the global constraint. Other violation measures were introduced by

Beldiceanu and Petit [2004]. For example, they introduce the refined variable-based

violation measure, that applies the variable-based violation measure to a specific

subset of variables only. Furthermore, they introduce the object-based violation

measure, that can be applied to high-level modeling objects such as activities in a

scheduling context. Finally, they propose specific violation measures based on the

graph properties-representation of global constraints [Beldiceanu, 2000].

In addition to these general violation measures, alternative measures exist for

specific constraints. For example, van Hoeve et al. [2006a] introduce the value-

based violation measure for the global cardinality constraint, and the edit-based

violation measure for the regular constraint.

After we have assigned a violation measure to each soft constraint, we can recast

our problem as follows. Consider a CSP of the form P= (X ,D,C). Suppose we par-
tition the constraint set C into a subset of hard constraintsChard and a subset of con-

straints to be softened Csoft. We soften each constraint ci ∈Csoft using the violation

measure it has been assigned and a cost variable zi (i = 1, . . . , |Csoft|) representing
this measure. We choose an aggregation function f : D(z1)× ·· · ×D(z|Csoft|) → R

over the cost variables to represent the overall violation to be minimized. Then we

transform the CSP into the COP P̃= (X̃ , D̃,C̃, f) where X̃ = X ∪{z1, . . . ,z|Csoft|}, D̃

6 Over-Constrained Problems 9

violation consistency domain

constraint measure check consistency reference

alldifferent O(m
√
n) O(m) [Régin, 1994]

soft-alldifferent variable-based O(m
√
n) O(m) [Petit et al., 2001]

soft-alldifferent decomposition-based O(mn) O(m) [van Hoeve, 2004]

gcc O(m
√
n) O(m) [Quimper et al., 2004]

soft-gcc variable-based O(m
√
n) O(m) [Zanarini et al., 2006]

soft-gcc value-based O(m
√
n) O(m) [Zanarini et al., 2006]

regular O(m) O(m) [Pesant, 2004]

soft-regular variable-based O(m) O(m) [van Hoeve et al., 2006a]

soft-regular edit-based O(m) O(m) [van Hoeve et al., 2006a]

Table 6.1 Best worst-case time complexity for three hard global constraints on n variables, and

their soft counterparts. Here “consistency check” denotes the time complexity to verify that the

constraint is consistent, while “domain consistency” denotes the additional time complexity to

make the constraint domain consistent, given at least one solution. Each algorithm is based on a

graph with m arcs.

contains their corresponding domains, and C̃ containsChard and the softened version

of each constraint in Csoft. Note that if our initial problem P is a COP rather than

a CSP, we need to define an objective function that balances the original objective

and the aggregation of the cost variables.

6.4 Soft Global Constraints

In this section we present several soft global constraints, together with, for some

of them, detailed filtering algorithms establishing domain consistency. We will con-

sider in detail the soft alldifferent constraint in Section 6.4.1, the soft global car-

dinality constraint in Section 6.4.2, and the soft regular constraint in Section 6.4.3.

An interesting observation for these soft global constraints is that the corresponding

filtering algorithms establish domain consistency in the same worst-case time com-

plexity as their hard counterparts, as shown in Table 6.1. Finally, in Section 6.4.4 an

overview of other soft global constraints will be presented.

Some of the presented filtering algorithms rely on matching theory or network

flow theory. We present below the basic definitions that we will use in this chapter.

For more information we refer to Schrijver [2003] and Ahuja, Magnanti, and Orlin

[1993].

Matchings

Let G = (V,E) be a graph with vertex set V and edge set E . A matching M ⊆ E is

a subset of edges such that no two edges in M are incident to a common vertex. A

vertex that is incident to an edge in M is said to be covered by M. A vertex that is

10 Willem-Jan van Hoeve

not incident to any edge in M is called an M-free vertex. A maximum matching or

maximum-size matching is a matching in G of maximum size.

Let c :V →N be a “capacity” function on the vertices ofG. A capacitated match-

ing M ⊆ E is a subset of edges such that each vertex v∈V is incident to at most c(v)
edges in M. Note that a capacitated matching is equivalent to a “normal” matching

if c(v) = 1 for all v ∈V . A maximum (capacitated) matching in a vertex-capacitated

graph is a capacitated matching of maximum size.

Network Flows

LetD=(V,A) be a directed graph (or network) and let s, t ∈V represent the “source”

and the “sink” respectively. An arc a ∈ A from u to v will also be represented as

(u,v).
A function f : A→R is called a flow from s to t, or an s-t flow, if

(i) f (u,v)≥ 0 for each (u,v) ∈ A,

(ii) ∑
u:(u,v)∈A

f (u,v) = ∑
w:(v,w)∈A

f (v,w) for each v ∈V \ {s, t}. (6.2)

Property (6.2)(ii) ensures flow conservation, i.e., for a vertex v 6= s, t, the amount of

flow entering v is equal to the amount of flow leaving v.

The value of an s-t flow f is defined as

value(f) = ∑
v:(s,v)∈A

f (s,v)− ∑
u:(u,s)∈A

f (u,s).

In other words, the value of a flow is the net amount of flow leaving s, which by

flow conservation must be equal to the net amount of flow entering t.

In a flow network, each arc a ∈ A has an associated “demand” d(a) and “capac-

ity” c(a), such that 0≤ d(a)≤ c(a). We say that a flow f is feasible in the network

if d(a) ≤ f (a) ≤ c(a) for every a ∈ A. If the demand d and capacity c are integer-

valued, it can be shown that if there exists a feasible flow, there also exists an integer

feasible flow in D.

Letw :A→R be a “weight” (or “cost”) function on the arcs.We define the weight

of a directed path P as weight(P) = ∑a∈Pw(a). Similarly for a directed circuit. The

weight of a flow f is defined as

weight(f) = ∑
a∈A

w(a) f (a).

A feasible flow f is called a minimum-weight flow if weight(f) ≤ weight(f ′) for
any feasible flow f ′.

Let f be an s-t flow in G. The residual graph of f (with respect to c and d) is

defined as D f = (V,A f), where the arc set A f is defined as follows. For all arcs

a= (u,v) ∈ A:

6 Over-Constrained Problems 11

• if f (a)< c(a) then (u,v) ∈ A f with residual demand max{d(a)− f (a),0}, resid-
ual capacity c(a)− f (a), and residual weight w(a),

• if f (a)> d(a) then (v,u) ∈ A f with residual demand 0, residual capacity f (a)−
d(a), and residual weight −w(a).

6.4.1 Soft Alldifferent Constraint

The alldifferent constraint on a set of variables specifies that all variables should

take pairwise different values. Here we consider two measures of violation to soften

the alldifferent constraint: The variable-based violation measure µvar and the

decomposition-based violation measure µdec. For alldifferent(x1, . . . ,xn) we

have
µvar(x1, . . . ,xn) = ∑d∈D(X)max(|{i | xi = d}|− 1,0),

µdec(x1, . . . ,xn) =
∣

∣

{

(i, j) | xi = x j, for i< j
}∣

∣ .

If we apply Definition 3 to the alldifferent constraint using the measures µvar
and µdec, we obtain soft-alldifferent(x1, . . . ,xn,z,µvar) and soft-alldiffe-

rent(x1, . . . ,xn,z,µdec). Each of the violation measures µvar and µdec gives rise to a
different domain consistency filtering algorithm for soft-alldifferent.

Variable-Based Violation Measure

A domain consistency filtering algorithm for the variable-based soft-alldiffe-

rent constraint was presented by Petit, Régin, and Bessière [2001]. It makes use of

bipartite matchings.

Throughout this section, let X be a set of variables. The value graph of X is a

bipartite graph G (X) = (V,E) where V = X ∪D(X) and E = {(x,d) | x ∈ X ,d ∈
D(x)} [Lauriere, 1978]. It was first observed by Régin [1994] that a solution to

alldifferent(X) is equivalent to a matching covering X in the corresponding

value graph. For the variable-based soft-alldifferentconstraint, we can exploit

the correspondence with bipartite matchings in a similar way.

Lemma 1. [Petit et al., 2001] Let M be a maximum-size matching in the value

graph G (X). For alldifferent(X), the minimum value of µvar(X) is equal to

|X |− |M|.

Theorem 1. [Petit et al., 2001] The constraint soft-alldifferent(X ,z,µvar) is
domain consistent if and only if

i) all edges in the value graph G (X) belong to a matching M in G (X) with |X |−
|M| ≤maxD(z), and

ii) minD(z)≥ |X |− |M|, where M is a maximum-size matching in G (X).

12 Willem-Jan van Hoeve

x4

a

b

c

x3

x2

1x

x2

1x

x3
=0w

=1w

=2w

=3w

=1
w

=0
w

=2
w

=0
w

x4

ts

a

b

c

a. Maximum matching in the value graph b. Minimum-weight flow in the value network

Fig. 6.1 Graph representation for the soft-alldifferent constraint. In figure a., the value graph

for the variable-based soft-alldifferent is depicted; bold edges form a maximum matching.

In figure b., the extended value network for the decomposition-based soft-alldifferent is

presented. For all arcs the capacity is 1. For some arcs the weight w is given, for all other arcs the

weight is 0.

We can apply Theorem 1 to establish domain consistency for soft-alldif-

ferent(x1, . . . ,xn,z,µvar) as follows. First, we compute a maximum matching M

in the value graph. This can be done in O(m
√
n) time [Hopcroft and Karp, 1973],

where m is the number of edges in the graph. We then distinguish the following

cases:

• If n−|M|>maxD(z), the constraint is inconsistent.
• If n−|M|<maxD(z), the constraint is consistent, and moreover all domain val-

ues are consistent. Namely, if we change the value of any variable, the violation

increases with at most 1 unit.

• If n−|M|=maxD(z), the constraint is consistent, and only those domain values

d ∈ D(x) whose corresponding edge (x,d) belongs to a maximum matching are

consistent. We can identify all consistent domain values in the same way as for

the hard alldifferent constraint. That is, we direct the edges in M from X

to D(X), and edges not in M from D(X) to X . Then, an edge belongs to any

maximummatching if and only if it belongs toM, or it belongs to a path starting

from anM-free vertex, or it belongs to a strongly connected component. All these

edges can be identified, and the corresponding domain values can be removed, in

O(m) time [Régin, 1994; Tarjan, 1972].

Finally, we can update minD(z) to be the maximum of its current value and n−|M|.
The algorithm above separates the check for consistency and the actual domain

filtering. Moreover, it can be implemented to behave incrementally; after k domain

changes, a new matching can be found in O(min{km,√nm}) time, by re-using the

previous matching.

Example 3. Consider the following CSP:

x1 ∈ {a,b},x2 ∈ {a,b},x3 ∈ {a,b},x4 ∈ {b,c},z ∈ {0,1},
soft-alldifferent(x1,x2,x3,x4,z,µvar).

6 Over-Constrained Problems 13

The corresponding value graph is depicted in Figure 6.1.a. The bold edges indicate

a maximum-size matching, covering three variables. Hence, the minimum value of

µvar is 4−3= 1, which is equal to maxD(z). This allows us to remove edge (x4,b),
as it does not belong to a matching of size 3. Also, note that we can remove value 0

from D(z), since it does not belong to any solution. �

An alternative domain consistency algorithm for the variable-based soft-all-

different constraint was given by van Hoeve et al. [2006a], based on the cor-

respondence to a minimum-weight network flow. In that work, additional arcs are

introduced to the network whose weights reflect the violation measure. A similar

approach is presented in the next section, for the decomposition-based soft-all-

different constraint.

Decomposition-Based Violation Measure

A first filtering algorithm for the decomposition-based soft-alldifferent con-

straint was given by Petit et al. [2001]. It does not necessarily establish domain

consistency, and runs in O(m2n
√
n) time, where n is the number of variables and

m is the sum of the cardinalities of their domains. A domain consistency filtering

algorithm was given in van Hoeve [2004], running in O(mn) time. Here we present

the latter algorithm.

The filtering algorithm for the decomposition-based soft-alldifferent con-

straint by van Hoeve [2004] exploits the correspondence with a minimum-weight

network flow. Let us first introduce the network representation of the hard alldiff-

erent constraint, which can be viewed as an extension of the value graph. For a set

of variables X , we define the value network of X as a directed graph D(X) = (V,A),
with vertex set V = X ∪D(X)∪{s, t}, and arc set A= As∪AX ∪At , where

As = {(s,x) | x ∈ X},
AX = {(x,d) | x ∈ X ,d ∈D(x)},
At = {(d, t) | d ∈ D(X)},

with “capacity” function c(a) = 1 for all a ∈ A. An integer flow f of value |X | in
D(X) corresponds to a solution to the constraint alldifferent(X); the solution

is formed by assigning x= d for all arcs a = (x,d) ∈ AX with f (a) = 1. Moreover,

those arcs form a maximum-size matching in the graph induced by AX (i.e., the

value graph).

If the alldifferent constraint cannot be satisfied, there does not exist a flow of

value |X | in the value network. Therefore, for the soft-alldifferent constraint,

we adapt the value network in such a way that a flow of value |X | becomes possible,

and moreover represents a variable assignment whose violation measure is exactly

the cost of the network flow. This is done as follows.

In the graph D(X) = (V,A), we replace the arc set At by Ãt = {(d, t) | d ∈
D(x),x ∈ X}, with capacity c(a) = 1 for all arcs a ∈ Ãt . Note that Ãt contains par-

allel arcs if two or more variables share a domain value. If there are k parallel arcs

14 Willem-Jan van Hoeve

(d, t) between some d ∈ D(X) and t, we distinguish them by numbering the arcs as

(d, t)0,(d, t)1, . . . ,(d, t)k−1 in a fixed but arbitrary way. One can view the arcs (d, t)0
to be the original arc set At .

We next apply a “cost” function w : A→ N as follows. If a ∈ Ãt , i.e., a = (d, t)i
for some d ∈ D(X) and integer i, we define w(a) = i. Otherwise w(a) = 0. Let the

resulting digraph be denoted by Ddec(X). We have the following result.

Lemma 2. [van Hoeve, 2004] Let X be a set of variables, and let f be an integer

s-t flow of value |X | in Ddec(X). Let X̄ be the variable assignment {x= d | (x,d) ∈
AX , f (x,d) = 1}. For alldifferent(X), µdec(X̄) = weight(f).

Example 4. For the problem in Example 2, the extended value network Ddec(X) is
presented in Figure 6.1.b. Bold arcs indicate a minimum-weight flow of weight 1,

corresponding to the variable assignment x1 = a,x2 = b,x3 = a,x4 = c. Indeed, this

assignment violates one not-equal constraint, x1 6= x3.

To illustrate how the cost structure of Ddec represents the decomposition-based

violation measure, suppose we were to assign all variables to value b. Then there

are three units of flow that need to use an arc in Ãt with positive cost, while one

unit of flow can use the arc in Ãt without violation cost. Indeed, for the first variable

assigned to b, say x1, there is no violated binary constraint and the corresponding

unit of flow may use the arc without violation cost. The second variable assigned

to b, say x2, violates one binary constraint, namely x1 6= x2. Indeed it uses the arc

with the next lowest possible cost, i.e., 1. The following variable assigned to b,

say x3, violates two binary constraints (involving x1 and x2), which corresponds to

using the arc with cost 2. Finally, the fourth variable assigned to b, x4, violates three

binary constraints and uses the arc with cost 3. Together, they exactly constitute the

decomposition-based violation of value 6. �

Theorem 2. [van Hoeve, 2004] The constraint soft-alldifferent(X ,z,µdec) is
domain consistent if and only if

i) for every arc a ∈ AX there exists an integer feasible s-t flow f of value |X | in
Ddec(X) with f (a) = 1 and weight(f) ≤maxD(z), and

ii) minD(z) ≥ weight(f) for a feasible minimum-weight s-t flow f of value |X | in
Ddec.

We can apply Theorem 2 to establish domain consistency for soft-alldif-

ferent(X ,z,µdec) as follows. We first compute a minimum-weight flow f in Ddec.

Since the only positive costs are on arcs in Ãt , this can be done inO(mn) time, where

m is the number of arcs in the graph, and n is the number of variables in X [van

Hoeve, 2004]. If weight(f)>maxD(z) we know that the constraint is inconsistent.

Consistent domain values d ∈ D(x) for x ∈ X correspond to arcs a= (x,d) ∈ AX

for which there exists a flow g with g(a) = 1, value(g) = |X | and weight(g) ≤
maxD(z). To identify these arcs we apply a theorem from flow theory stating that

a minimum-weight flow g with g(a) = 1 can be found by “re-routing” the flow f

through a shortest directed cycle C containing the arc a in the residual graph of f .

Then weight(g) = weight(f) +weight(C). In other words, for each arc a = (x,d)

6 Over-Constrained Problems 15

with f (a) = 0, we need to compute a shortest d-x path in the residual graph. If the

weight of this path exceeds maxD(z)−weight(f), the value d ∈ D(x) is inconsis-
tent.

In order to find the shortest d-x paths, we first consider the strongly connected

components in the graph induced by AX . For all arcs (x,d) in these components, the

shortest d-x path will remain within the component and has cost 0; indeed, if the

path would visit t the cost cannot decrease since f is a minimum-weight flow.

We next consider all arcs (x,d) between two strongly connected components.

Observe that we can assume that the shortest d-x path must visit t exactly once.

Therefore we can split the path into two parts: The shortest d-t path and the shortest

t-x path. Now, all vertices inside a strongly connected component have the same

shortest distance to t, and also the same shortest distance from t (possibly visiting

other strongly connected components). Therefore, we can contract the strongly con-

nected components in the graph induced by AX , and use the resulting acyclic “com-

ponent graph”. Since the algorithm to compute the strongly connected components

also provides the topological order and inverse topological order of the component

graph, we can apply these to efficiently compute the shortest distance to and from t

for every component. Hence, a shortest d-x path is the shortest path from the com-

ponent to which d belongs to t, plus the path from t to the component to which x

belongs. All these computations can be done in O(m) time [Tarjan, 1972; Cormen

et al., 2001].

Finally, we update minD(z) = weight(f) if minD(z) < weight(f). Again, this
algorithm separates the consistency check from the actual domain filtering. More-

over, the algorithm can be implemented to behave incrementally. After k domain

changes, we can re-compute a minimum-weight flow in O(km) time.

6.4.2 Soft Global Cardinality Constraint

The global cardinality constraint (gcc) was introduced by Régin [1996]. It is de-

fined on a set of variables and specifies for each value in the union of their domains

an upper and lower bound to the number of variables that are assigned to this value.

Throughout this section, let X = {x1, . . . ,xn} be a set of variables and let ld ,ud ∈
N with ld ≤ ud for all d ∈D(X).

Definition 7 (Global cardinality constraint).

gcc(X , l,u) = {(d1, . . . ,dn) | di ∈D(xi) ∀i ∈ {1, . . . ,n},
ld ≤ |{i | di = d}| ≤ ud ∀d ∈ D(X)}.

The gcc is a generalization of the alldifferent constraint; if we set ld = 0 and

ud = 1 for all d ∈ D(X), the gcc is equal to the alldifferent constraint.

In order to define measures of violation for the gcc, it is convenient to introduce

for each domain value a “shortage” function s : D(x1)× ·· · ×D(xn)×D(X) → N

16 Willem-Jan van Hoeve

and an “excess” function e :D(x1)×·· ·×D(xn)×D(X)→N as follows [van Hoeve

et al., 2006a]:

s(X ,d) =

{

ld −|{x | x ∈ X ,x= d}| if |{x | x ∈ X ,x= d}| ≤ ld ,
0 otherwise,

e(X ,d) =

{

|{x | x ∈ X ,x= d}|− ud if |{x | x ∈ X ,x= d}| ≥ ud ,
0 otherwise.

For gcc(X , l,u), the variable-based violation measure µvar can then be expressed in
terms of the shortage and excess functions:

µvar(X) =max

(

∑
d∈D(X)

s(X ,d), ∑
d∈D(X)

e(X ,d)

)

provided that

∑
d∈D(X)

ld ≤ |X | ≤ ∑
d∈D(X)

ud . (6.3)

Note that if condition (6.3) does not hold, there is no variable assignment that satis-

fies the gcc, and µvar cannot be applied. Therefore, van Hoeve et al. [2006a] intro-

duced the following violation measure for the gcc, which can also be applied when

assumption (6.3) does not hold.

Definition 8 (Value-based violation measure). For gcc(X , l,u) the value-based

violation measure is

µval(X) = ∑
d∈D(X)

(s(X ,d)+ e(X ,d)) .

Example 5. Consider the over-constrained CSP

x1 ∈ {1,2},x2 ∈ {1},x3 ∈ {1,2},x4 ∈ {1},
gcc(x1,x2,x3,x4, [1,3], [2,5]).

That is, value 1 must be taken between 1 and 2 times, while value 2 must be taken

between 3 and 5 times. The violation measures for all possible tuples are:

(x1,x2,x3,x4) ∑d∈D(X) s(X ,d) ∑d∈D(X) e(X ,d) µvar µval
(1,1,1,1) 3 2 3 5

(2,1,1,1) 2 1 2 3

(1,1,2,1) 2 1 2 3

(2,1,2,1) 1 0 1 1

�

For both the variable-based and value-based violationmeasures for the soft-gcc

constraint, van Hoeve et al. [2006a] present domain consistency filtering algorithms,

6 Over-Constrained Problems 17

running in O(n(m+n logn)) and O((n+ k)(m+n logn)) time respectively, where n

is the number of variables, m is the sum of the cardinalities of the variable domains,

and k is the cardinality of the union of the variable domains. Their algorithms are

based on an extension of the value network for the decomposition-basedsoft-all-

different constraint. They apply the same concept of adding “violation arcs” to

allow feasible flows with cost equal to the corresponding variable assignment. A

more efficient approach based on matching theory, running in O(m
√
n) time, was

proposed by Zanarini, Milano, and Pesant [2006], and we describe their method

below.

Two Capacitated Matchings

Similar to the method proposed by Petit, Régin, and Bessière [2001], the approach

taken by Zanarini, Milano, and Pesant [2006] for the soft-gcc uses the value graph

representation. Recall from section 6.4.1 that for a set of variablesX , the value graph

of X is a bipartite graph G (X) = (V,E) where V = X ∪D(X) and E = {(x,d) |
x ∈ X ,d ∈ D(x)}. For the soft-gcc, the goal is to find two capacitated maximum

matchings, one minimizing the shortage function and one minimizing the excess

function. These matchings can then be used to measure the overall violation cost.

For a constraint gcc(X , l,u), we define two vertex-capacitated value graphs

Ge(X) and Gs(X), by extending the value graph with a “capacity” function c :V →N

on its vertices. For both Ge(X) and Gs(X), we define c(x) = 1 for each vertex x ∈ X .

For the vertices d ∈ D(X), we define c(d) = ld for Gs(X) and c(d) = ud Ge(X).
We will slightly abuse terminology and refer to a capacitated matching as simply a

matching.

We first focus on minimizing the excess function. Let Me be a maximum match-

ing in the value graph Ge. If |Me| = |X |, the edges in Me correspond to a partial

assignment satisfying the upper capacities u of the values in the gcc. If |Me|< |X |,
exactly |X |− |Me| variables must be assigned to a saturated value, which equals the

total excess for all domain values, i.e., ∑d∈D(X) e(X ,d) = |X |− |Me|.
Analogously for the shortage function, let Ms be a maximum matching in the

value graph Gs. Edges in Ms correspond to a partial assignment satisfying the lower

capacities l of the values in the gcc. If |Ms|< ∑d∈D(X) ld , one or more values have

not enough variables assigned to them. In fact, the difference corresponds to the

total shortage of all domain values, i.e., ∑d∈D(X) s(X ,d) = ∑d∈D(X) ld −|Ms|.

Variable-based violation measure

We can characterize domain consistency for the variable-based soft-gcc as fol-

lows.

18 Willem-Jan van Hoeve

Theorem 3. [Zanarini et al., 2006] The constraint soft-gcc(X , l,u,z,µvar) is do-
main consistent if and only if minD(z) ≥ max

{

|X |− |Me| ,∑d∈D(X) ld −|Ms|
}

, and

either

i) max
{

|X |− |Me| ,∑d∈D(X) ld −|Ms|
}

<maxD(z), or

ii) |X | − |Me| = maxD(z) and ∑d∈D(X) ld − |Ms| < maxD(z), and all edges in Ge

belong to a maximum matching, or

iii)|X | − |Me| < maxD(z) and ∑d∈D(X) ld − |Ms| = maxD(z), and all edges in Gs

belong to a maximum matching, or

iv) |X |− |Me|= ∑d∈D(X) ld −|Ms|=maxD(z), and all edges in Ge and Gs belong to

a maximum matching.

To establish domain consistency algorithmically, we first compute maximum

matchings Me and Ms in the value graphs Ge and Gs respectively. An algorithm

to compute such capacitated matchings was given by Quimper et al. [2004]. It is

a generalization of the Hopcroft-Karp algorithm and, similar to the Hopcroft-Karp

algorithm, runs in O(m
√
n), where n = |X | and m is the number edges in the value

graph. If max
{

|X |− |Me| ,∑d∈D(X) ld −|Ms|
}

> maxD(z), we know the constraint

is inconsistent.

Next, we filter the inconsistent edges and corresponding domain values. Using

the cardinalities of Me and Ms, we can easily determine which of the four cases of

Theorem 3 applies. In case ii), iii), or iv), we can identify all edges that do not belong
to a maximummatching inO(m) time, similar to the approach for the variable-based

soft-alldifferent constraint in Section 6.4.1.

Once again, the algorithm separates the check for consistency and the actual

domain filtering, and it can be implemented to behave incrementally.

Notice that Theorem 3 is an extension of Theorem 1 for the variable-based

soft-alldifferent constraint by Petit et al. [2001]. In fact, when the upper

bounds ud are 1 for all d ∈ D(X), the two filtering algorithms are equivalent.

Beldiceanu and Petit [2004] discuss the variable-based violation measure for a

different version of the soft-gcc. Their version considers the parameters l and u

to be variables instead of constants. Hence, the variable-based violation measure

becomes a rather poor measure, as we trivially can change l and u to satisfy the gcc.

For this reason they introduce the refined variable-based violation measure, and

apply it to their version of the soft-gcc by restricting the violation measure to the

set of variables X , which corresponds to the soft-gcc described above. Beldiceanu

and Petit [2004] do not provide a filtering algorithm, however.

Value-Based Violation Measure

For the value-based soft-gcc, domain consistency can be characterized as follows.

Theorem 4. [Zanarini et al., 2006] The constraint soft-gcc(X , l,u,z,µval) is do-
main consistent if and only if minD(z)≥ |X |− |Me|+∑d∈D(X) ld −|Ms|, and either

6 Over-Constrained Problems 19

i) |X |− |Me|+∑d∈D(X) ld −|Ms|<maxD(z), or

ii) |X |+ |Me| = maxD(z)− 1 and all edges belong to a maximum matching in at

least one of Ge or Gs, or

iii)|X |+ |Me|= maxD(z) and all edges belong to a maximum matching in both Ge

and Gs.

The filtering algorithm for the value-based soft-gcc proceeds similar to the

algorithm for the variable-based soft-gcc. We first need to compute maximum

matchingsMe and Ms, again in O(m
√
n) time, which allows us to perform the con-

sistency check.We then remove all edges and corresponding domain values in O(m)
time, if we are in cases ii) and iii).

6.4.3 Soft Regular Constraint

The regular constraint was introduced by Pesant [2004] (related concepts were in-

troduced by Beldiceanu, Carlsson, and Petit [2004]). It is defined on a fixed-length

sequence of finite-domain variables and it states that the corresponding sequence of

values taken by these variables belongs to a given regular language. Particular in-

stances of the regular constraint can for example be applied in rostering problems

or sequencing problems.

Before we introduce the regular constraint we need the following definitions

[Hopcroft and Ullman, 1979]. A deterministic finite automaton (DFA) is described

by a 5-tuple M = (Q,Σ ,δ ,q0,F) where Q is a finite set of states, Σ is an alphabet,

δ :Q×Σ →Q is a transition function, q0 ∈Q is the initial state, and F ⊆Q is the set

of final (or accepting) states. Given an input string, the automaton starts in the initial

state q0 and processes the string one symbol at the time, applying the transition

function δ at each step to update the current state. The string is accepted if and only

if the last state reached belongs to the set of final states F . Strings processed by M

that are accepted are said to belong to the language defined byM, denoted by L(M).
For example with M depicted in Figure 6.2, strings aaabaa and cc belong to L(M)
but not aacbba. The languages recognized by DFAs are precisely regular languages.

q
0

q
2

q
3

q
4

q
1

a b a

c

a b a

c

Fig. 6.2 A representation of a DFA with each state shown as a circle, final states as a double circle,

and transitions as arcs.

20 Willem-Jan van Hoeve

Given an ordered sequence of variables X = x1,x2, . . . ,xn with respective finite

domains D(x1),D(x2), . . . ,D(xn) ⊆ Σ , there is a natural interpretation of the set of

possible instantiations of X , i.e., D(x1)×D(x2)× ·· · ×D(xn), as a subset of all

strings of length n over Σ .

Definition 9 (Regular languagemembership constraint). LetM=(Q, Σ ,δ ,q0,F)
denote a DFA and let X = x1,x2, . . . ,xn be a sequence of variables with respective

finite domains D(x1),D(x2), . . . ,D(xn)⊆ Σ . Then

regular(X ,M) = {(d1, . . . ,dn) | di ∈ D(xi),d1d2 · · ·dn ∈ L(M)} .

Here we consider two measures of violation for the regular constraint: The

variable-based violation measure µvar and the edit-based violation measure µedit
that was introduced by van Hoeve et al. [2006a].

Let s1 and s2 be two strings of the same length. The Hamming distance H(s1,s2)
is the number of positions in which they differ. Associating with a tuple (d1,d2, . . . ,
dn) the string d1d2 · · ·dn, the variable-based violation measure can be expressed in

terms of the Hamming distance:

µvar(X) =min{H(D,X) | D= d1 · · ·dn ∈ L(M)}.

Another distance function that is often used for comparing two strings is the fol-

lowing. Again, let s1 and s2 be two strings of the same length. The edit distance

E(s1,s2) is the smallest number of insertions, deletions, and substitutions required

to change one string into another. It captures the fact that two strings that are iden-

tical except for one extra or missing symbol should be considered close to one an-

other. The edit distance is probably a better way to measure violations of a regular

constraint than the Hamming distance. Consider for example a regular language in

which strings alternate between pairs of a’s and b’s, e.g., “aabbaabbaa” belongs to

this language. The string “abbaabbaab” does not belong to the language, and the

minimum Hamming distance, i.e., to any string of the same length that belongs to

the language, is 5 (that is, the length of the string divided by 2) since changing either

the first a to a b or the first b to an a has a domino effect. On the other hand, the

minimum edit distance of the same string is 2, since we can insert an a at the begin-

ning and remove a b at the end. In this case, the edit distance reflects the number of

incomplete pairs whereas the Hamming distance is proportional to the length of the

string rather than to the amount of violation.

Definition 10 (Edit-based violation measure). For regular(X ,M) the edit-based
violation measure is

µedit(X) =min{E(D,X) | D= d1 · · ·dn ∈ L(M)}.

Example 6. Consider the CSP

x1 ∈ {a,b,c},x2 ∈ {a,b,c},x3 ∈ {a,b,c},x4 ∈ {a,b,c},
regular(x1,x2,x3,x4,M)

6 Over-Constrained Problems 21

q
2

q
0

q
3

q
4

q
1

q
2

q
0

q
3

q
4

q
1

q
2

q
0

q
3

q
4

q
1

q
2

q
0

q
3

q
4

q
1

q
2

q
0

q
3

q
4

s

t

q
1

x
1

x
2

x
3

x
4

V
1

a

c

c c c

a

b b

b

a a

a

V
5

V
4

V
3

V
2

Fig. 6.3 Graph representation for the regular constraint of Example 6, after filtering inconsistent

arcs.

with DFAM as in Figure 6.2.We have µvar(c,a,a,b)= 3, because we need to change

the value of at least 3 variables; corresponding valid strings with Hamming distance

3 are for example aaba or cccc. On the other hand, we have µedit(c,a,a,b) = 2,

because we can delete the value c at the front and add the value a at the end, thus

obtaining the valid string aaba. �

A graph representation for the regular constraint was presented by Pesant

[2004]. Recall thatM = (Q,Σ ,δ ,q0,F).

Theorem 5. [Pesant, 2004] A solution to regular(X ,M) corresponds to an s-t

path in the digraph R = (V,A) with vertex set

V =V1∪V2∪·· ·∪Vn+1∪{s, t}
and arc set A= As∪A1∪A2∪·· ·∪An∪At ,

where Vi = {qik | qk ∈ Q} for i= 1, . . . ,n+ 1,

and As = {(s,q10},
Ai = {(qik,qi+1

l) | δ (qk,d) = ql for d ∈ D(xi)} for i= 1, . . . ,n,

At = {(qn+1
k , t) | qk ∈ F}.

Theorem 5 can be applied to filter the regular constraint to domain consis-

tency, by removing all arcs (and corresponding domain values) that do not belong

to an s-t path in R. For the regular constraint in Example 6, Figure 6.3 gives the

corresponding graph representation, after filtering inconsistent arcs. Observe that

the filtering algorithm has correctly removed domain value b fromD(x1) andD(x4).

Whenever the regular constraint cannot be satisfied there does not exist an s-t

path in R. Therefore, for the soft-regular constraint, van Hoeve et al. [2006a]

extend the digraph R in such a way that an s-t path always exist, and has a cost

corresponding to the respective measure of violation. For both the variable-based

and the edit-based soft-regular constraint, again particular weighted “violation

arcs” are added to R to make this possible.

22 Willem-Jan van Hoeve

q1

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

s

t

q2

x1

V1

c c c

a

a

b

b

a a

a

b

x2 x3 x4

V2 V3 V4 V5

c

q1

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

s

t

q2

x1

V1

x2 x3 x4

V2 V3 V4 V5

a. b.

Fig. 6.4 a. Graph representation for the variable-based soft-regular constraint. Dashed arcs

indicate the inserted weighted arcs with weight 1. b. Example: arcs and associated path used in

solution x1 = c,x2 = a,x3 = a,x4 = b of weight 3, corresponding to three substitutions from valid

string aaba.

Variable-Based Violation Measure

For the variable-based soft-regular constraint, we add the following violation

arcs to the graph R of Theorem 5:

Asub = {(qik,qi+1
l) | δ (qk,d) = ql for some d ∈ Σ , i= 1, . . . ,n}.

We next apply a “cost” function w : A→ N as follows. For all arcs a ∈ A, w(a) = 1

if a ∈ Asub and w(a) = 0 otherwise. Let the resulting digraph be denoted by Rvar

(see Figure 6.4 for an illustration on Example 6).

The input automaton of this constraint specifies the allowed transitions from state

to state according to different values. The objective here, in counting the minimum

number of substitutions, is to make these transitions value independent. Therefore,

the violation arcs in Asub are added between two states (qik,q
i+1
l) if there already

exists at least one valid arc between them. This means that an s-t path using a vio-

lation arc is in fact a solution where a variable takes a value outside of its domain.

The number of such variables thus constitutes a minimum on the number of vari-

ables which need to change value.

Theorem 6. [vanHoeve et al., 2006a]The constraint soft-regular(X ,M,z,µvar)
is domain consistent if and only if

i) every arc a ∈ A1 ∪ ·· · ∪An belongs to an s-t path P in Rvar with weight(P) ≤
maxD(z), and

ii) minD(z)≥ weight(P) for a minimum-weight s-t path in Rvar.

The filtering algorithmmust ensure that all arcs corresponding to a variable-value

assignment are on an s-t path with cost smaller than maxD(z). Computing shortest

paths from the initial state in the first layer to every other node and from every node

to a final state in the last layer can be done in O(n |δ |) time through topological

sorts because of the special structure of the graph (it is acyclic), as observed by

6 Over-Constrained Problems 23

q1

q0

q3

q4

q2

q0

q3

q4

q1

q2

q0

q3

q4

q0

q3

q4

s

q2

x1

V1

q1

q2

q0

q3

q4

V5

q1

q2

q1

t

x2 x3 x4

V2 V3 V4

a a a a

b b

a a a

b

a

c c c

c cc

a a

a

b b

c

c

bb b

aa

aaa

q0

q3

q4

q2

q0

q3

q4

q1

q2

q0

q3

q4

q0

q3

q4

s

q2

x1

V1

q2

q1q1 q1

q2

q0

q3

q4

V5

q1

t

x2 x3 x4

V2 V3 V4

a. b.

Fig. 6.5 a. Graph representation for the edit-based soft-regular constraint. Dashed arcs in-

dicate the inserted weighted arcs with weight 1. b. Example: arcs and associated path used in

solution x1 = c,x2 = a,x3 = a,x4 = b of weight 2, corresponding to one deletion (c in position 1)

and one insertion (a in position 4) from valid string aaba.

Pesant [2004]. Here |δ | denotes the number of transitions in the correspondingDFA.

Hence, the algorithm runs in O(m) time, wherem is the number of arcs in the graph.

The computation can also be made incremental in the same way as proposed by

Pesant [2004].

A similar filtering algorithm for the variable-based soft-regular constraint

was proposed by Beldiceanu, Carlsson, and Petit [2004]. That filtering algorithm

does not necessarily achieve domain consistency, however.

Edit-Based Violation Measure

For the edit-based soft-regular constraint, we add the following violation arcs

to the graph R representing the regular constraint. As in the previous section, we

add Asub to allow the substitution of a value. To allow deletions and insertions, we

add violation arcs

Adel = {(qik,qi+1
k) | i= 1, . . . ,n}} \A

and Ains = {(qik,qil) | δ (qk,d) = ql for some d ∈ Σ ,k 6= l, i= 1, . . . ,n+ 1}.
We extend the cost function w of the previous section such that w(a) = 1 if a ∈ Adel

or a ∈ Ains. Let the resulting digraph be denoted by Redit (see Figure 6.5 for an

illustration on Example 6).

Deletions are modeled with the arcs introduced in Adel, which link equivalent

states of successive layers. The intuition is that by using such an arc it is possible

to remain at a given state and simply ignore the value taken by the corresponding

variable. The arcs in Ains allow a path to make more than one transition at any given

layer. Since a layer corresponds to a variable and a transition is made on a symbol

of the string, this is equivalent to inserting one or more symbols. Of course one has

to make sure only to allow transitions defined by the automaton.

24 Willem-Jan van Hoeve

Theorem 7. [vanHoeve et al., 2006a]The constraint soft-regular(X ,M,z,µedit)
is domain consistent if and only if

i) every arc a ∈ A1 ∪ ·· · ∪An belongs to an s-t path P in Redit with weight(P) ≤
maxD(z), and

ii) minD(z)≥ weight(P) for a minimum-weight s-t path P in Redit.

For the filtering algorithm, we proceed slightly different from the variable-based

soft-regular constraint because the structure of the graph is not the same: Arcs

within a layer may form (positive weight) directed circuits. We compute once and

for all the smallest cumulative weight to go from qik to q
i
l for every pair of nodes and

record it in a table. This can be done through breadth-first-search from each node

since every arc considered has unit weight. Notice that every layer has the same

“insertion” arcs— we may preprocess one layer and use the result for all of them. In

all, this initial step requiresΘ(|Q| |δ |) time. Then we can proceed as before through

topological sort with table lookups, in O(n |δ |) time. The overall time complexity is

therefore O((n+ |Q|) |δ |) = O(m), where m is the number of arcs in the graph. The

last step follows from |Q| ≤ n, because otherwise some states would be unreachable.

6.4.4 Other Soft Global Constraints

We next present, in brief, a comprehensive3 overview of other soft global constraints

that have appeared in the literature.

Soft Cumulative Constraint

The cumulative constraint can be applied to model and solve resource con-

straints that appear for example in scheduling and packing problems [Aggoun and

Beldiceanu, 1993]. It is defined on a set of ‘activities’, each of which has an asso-

ciated variable representing the starting time, a given fixed duration, a given fixed

time window in which it can be executed, and a given fixed amount of resource

consumption. For example, when scheduling jobs on machines such that any two

jobs cannot overlap, jobs correspond to activities, machines represent the (unary)

resource, and each job has a unary resource consumption.

For the restricted version of the cumulative constraint on unary resources, Bap-

tiste, Le Pape, and Péridy [1998] consider the soft version in which the number of

late activities (i.e., that are completed after their associated deadline) is to be mini-

mized. They provide a filtering algorithm that is able to identify that some activities

must be on time, while others must be late. It is the first soft global constraint with

an associated filtering algorithm reported in the literature.

3 Comprehensive to the best of our knowledge.

6 Over-Constrained Problems 25

Petit and Poder [2008] propose a version of the soft-cumulative constraint

that aims to minimize the amount of over-load of the resource, while enforcing the

time windows for the activities as hard constraints. They present a filtering algorithm

for the variable-based violation measure on this constraint. Petit and Poder [2008]

also provide an experimental comparison between their soft global cumulative

constraint and the Valued-CSP approach (see Section 6.1.1) on over-constrained

scheduling problems, showing the computational advantage of the soft cumulative

constraint.

Soft Precedence Constraint

Lesaint, Mehta, O’Sullivan, Quesada, and Wilson [2009] introduce the soft-pre-

cedence constraint. It groups together hard precedence constraints and (weighted)

soft precedence constraints among certain objects. In the telecommunication ap-

plication that motivates their work, the objects correspond to features in a call-

control feature subscription configuration problem. The soft-precedence con-

straint states that all hard precedence constraints be respected, while the total weight

of respected soft precedence constraints is equal to a given value. Achieving domain

consistency on soft-precedence is NP-hard, and therefore Lesaint et al. [2009]

propose filtering rules based on lower and upper bounds to the problem.

Soft Constraints for a Timetabling Application

Cambazard, Hebrard, O’Sullivan, and Papadopoulos [2008] present three soft global

constraints that are applied to solve a particular problem class from the 2007 Inter-

national Timetabling competition. The three soft global constraints are problem-

specific; their purpose is to derive and exploit good bounds for this particular prob-

lem class.

Soft Balancing Constraints

Balancing constraints appear in many combinatorial problems, such as fairly dis-

tributing workloads (or shifts) over employees, or generating spatially balanced ex-

perimental designs. Because a perfect balance is generally not possible, it is natural

to soften the balancing constraint and minimize the induced cost of violation, as

proposed by [Schaus, 2009], following earlier work by Pesant and Régin [2005].

For a set of variables X = {x1, . . . ,xn} and a given fixed sum s, Schaus [2009]

defines as a measure of violation for the balancing constraint the Lp-norm of (X −
s/n), assuming that ∑n

i=1 xi = s. The Lp-norm of (X − s/n) is defined as

26 Willem-Jan van Hoeve

‖X− s/n‖p =
(

n

∑
i=1

|xi− s/n|
) 1

p

,

with p≥ 0. Schaus [2009] then introduces the constraint soft-balance(X ,s,z,Lp)
that holds if and only if ∑n

i=1 xi = s and ‖X− s/n‖p ≤ z.

Different values of p lead to different realizations of the soft-balance con-

straint. For example, for L0, we measure the number of different values from the

mean, while for L1, we sum the deviations from the mean. For L2, we sum the

squared deviations from the mean (which is equivalent to the variance). Finally, for

L∞, we measure the maximum deviation from the mean.

When the L1-norm is applied, the resulting soft-balance constraint corre-

sponds to the deviation constraint introduced by Schaus, Deville, Dupont, and

Régin [2007b]. Bound consistency filtering algorithms for the deviation con-

straint were given by Schaus, Deville, and Dupont [2007a].

When the L2-norm is applied, the resulting soft-balance constraint corre-

sponds to the spread constraint, introduced by Pesant and Régin [2005]. The

spread constraint is more general however, as it allows to represent the mean and

standard deviation as (continuous) variables. Pesant and Régin [2005] also provide

filtering algorithms for the spread constraint.

Soft Same Constraint

The same constraint is defined on two sequences of variables of equal length and

states that the variables in one sequence use the same values as the variables in the

other sequence. It can be applied to timetabling problems and pairing problems.

van Hoeve, Pesant, and Rousseau [2006a] present a domain consistency filtering

algorithm for the variable-based soft same constraint. Similar to the algorithms

for the decomposition-based soft-alldifferent and soft-regular constraints

presented before, it is based on the addition of “violation arcs” to a network flow

representation of the problem.

Soft All-Equal Constraint

The ALLEQUAL constraint states that a given set of variables should all be as-

signed an equal value. The soft-ALLEQUAL constraint was introduced by He-

brard, O’Sullivan, and Razgon [2008] as the inverse of the (decomposition-based)

soft-alldifferent constraint. Hebrard et al. [2008] show that finding a solution

to the decomposition-based soft-ALLEQUAL constraint is NP-complete. There-

fore, they propose to filter the constraint using an approximation algorithm, which

can be implemented to run in linear amortized time.

Hebrard, Marx, O’Sullivan, and Razgon [2009] study the relationship between

the soft-ALLEQUAL constraint and the soft-alldifferent constraint in more

6 Over-Constrained Problems 27

detail. They consider variants of the two constraints by combining the variable-

based violation measure and the decomposition-based violation measure with the

minimization objective and the maximization objective, respectively. In particular,

they show that bounds consistency on the minimization-version of the decomposi-

tion-based soft-ALLEQUAL constraint can be established in polynomial time.

A related soft global constraint, named SIMILAR, was proposed by Hebrard,

O’Sullivan, and Walsh [2007] to bound similarities between (partial) solutions, for

example based on the Hamming distance.

Soft Sequence Constraint

The sequence constraint was introduced as a global constraint by Beldiceanu and

Contejean [1994]. It is defined on an ordered sequence of variables X , a fixed num-

ber q, a fixed set of domain values S, and fixed lower and upper bounds l and u.

It states that for every subsequence of q consecutive variables, the number of vari-

ables taking a value from S must be between l and u. The sequence constraint can

be applied to model problems such as car sequencing or nurse rostering [van Hoeve,

Pesant, Rousseau, and Sabharwal, 2006b, 2009].

The soft-sequence constraint was studied by Maher, Narodytska, Quimper,

andWalsh [2008]. For each subsequence of q consecutive variables, they apply a vi-

olation measure that represents the deviation from the lower bound l or upper bound

u. The violation measure for the soft-sequence is the sum of the violations for all

subsequences. Maher et al. [2008] present a domain consistency filtering algorithm

for this soft-sequence constraint, based on a particular minimum-weight network

flow representation.

Soft Slide Constraint

The slide constraint was introduced by Bessiere, Hebrard, Hnich, Kiziltan, and

Walsh [2008]. It is an extension of the sequence constraint, as well as a special case

of the cardinality path constraint [Beldiceanu and Carlsson, 2001]. The slide

constraint allows to “slide” any constraint over an ordered sequence of variables,

similar to the sequence constraint. Additionally, it allows to slide the particular

constraint overmore than one sequence of variables. Bessiere et al. [2007] show how

the edit-based and variable-based soft-slide constraints can be reformulated

in terms of hard slide constraints using sequences of additional variables. The

slide constraint can similarly be applied to encode the variable-based and edit-

based soft-regular constraints.

28 Willem-Jan van Hoeve

Soft Context-Free Grammar Constraint

The context-free grammar constraint (CFG) is an extension of the regular con-

straint; it restricts an ordered sequence of variables to belong to a context-free

grammar [Sellmann, 2006; Quimper and Walsh, 2006]. The soft-CFG constraint

was presented by Katsirelos, Narodytska, and Walsh [2008] as a special case of the

weighted context-free grammar constraint. They propose domain consistency filter-

ing algorithms for the variable-based (or Hamming-based) and edit-based versions

of the soft-CFG constraint.

Σ -Alldifferent, Σ -Gcc, and Σ -Regular Constraints

The Σ -alldifferent constraint was introduced by Métivier, Boizumault, and

Loudni [2007] as a variation of the soft-alldifferent constraint. In the soft-

alldifferent constraint as discussed in Section 6.4.1, all variables and all not-

equal constraints are equally important. In order to be able to model preferences

among variables and constraints, the Σ -alldifferent constraint allows to asso-

ciate a weight to variables and not-equal constraints. These weights have to be taken

into account when evaluating the amount of violation of the constraint.

For the variable-based Σ -alldifferent constraint, a weight is associated to

each variable, and the goal is to find an assignment whose total weighted violation

is within the allowed bound defined by the cost variable. Métivier et al. [2007]

present a domain consistency filtering algorithm based on a weighted network flow

representation.

Similarly, for the decomposition-basedΣ -alldifferent constraint, a weight is

associated to each not-equal constraint. For this constraint, achieving domain con-

sistency is NP-hard, however. Therefore, Métivier et al. [2007] propose filtering

algorithms based on relaxations of the constraint.

Métivier, Boizumault, and Loudni [2009a] present a filtering algorithm for the

decomposition-based soft-gcc with preferences (the Σ -gcc constraint), and for a

distance-based soft-regular constraint with preferences (the Σ -regular con-

straint). The Σ -gcc and other (soft) global constraints are applied by Métivier,

Boizumault, and Loudni [2009b] to model and solve nurse rostering problems.

Soft Global Constraints for Weighted CSPs

Lee and Leung [2009] consider soft global constraints in the context of the weighted

CSP framework, where costs are associated to the tuples of variable assignments

(see Section 6.1.1). In particular, Lee and Leung [2009] study the extension of the

flow-based soft global constraints of van Hoeve et al. [2006a] in a weighted CSP set-

ting. They show that the direct application of the flow-based filtering algorithms of

van Hoeve et al. [2006a] can enforce so-called ∅-inverse consistency in weighted

6 Over-Constrained Problems 29

CSPs. Lee and Leung [2009] further show how the modify the flow-based algo-

rithms to achieve stronger forms of consistency in weighted CSPs.

Soft Global Constraints for Preference Modeling

Joseph, Chan, Hiroux, and Weil [2007] study soft global constraints for preference

modeling in the context of multi-criteria decision support and social choice theory.

Their underlying model applies several objective functions and binary preference

relations. They apply soft global constraints to build hierarchical preferencemodels.

Global Constraint for Max-CSP

The Max-CSP framework aims to maximize the number of satisfied constraints, or

equivalently minimize the number of violated constraints (see also Section 6.1.1).

Because Max-CSP problems can occur as a subproblems of real-world applications,

Régin, Petit, Bessière, and Puget [2000, 2001] propose to encapsulate the Max-CSP

problem as a single global constraint, which can be applied as a soft global con-

straint. Régin et al. [2000] propose a filtering algorithm based on a lower bound on

the number of constraint violations, for example using ‘conflict sets’. A conflict set

is a set of constraints that leads to a contradiction. For example, the set of constraints

{x< y,y < z,z < x} is a conflict set, and we can infer that at least one constraint in

this set must be violated in any solution. Régin et al. [2001] provide new lower

bounds based on conflict-sets, where the constraints in the Max-CSP subproblem

can be of any arity.

Soft Open Global Constraints

Traditionally, a (global) constraint has a fixed scope of variables on which it is de-

fined. Many practical applications require the scope of a constraint to be less rigid

however. For example, suppose we need to execute a set of activities on different

machines, such that on each machine no two activities overlap. Assuming unit pro-

cessing times, we can model the non-overlapping requirement using an alldiff-

erent constraint on the starting time variables of the activities for each machine.

However, the scope of each such alldifferent constraint is unknown until we

have assigned the activities to the machines. Constraints of this nature are called

open constraints [Faltings and Macho-Gonzalez, 2002; Barták, 2003; van Hoeve

and Régin, 2006]. During the search for a solution, variables can be added to, or

removed from, the scope of an open constraint dynamically.

Maher [2009a] considers soft open global constraints, and investigateswhen a fil-

tering algorithm for the closed version of a constraint is sound for the open version.

The property of contractibility introduced by Maher [2009b] can be used for this

purpose.Maher [2009a] shows that the contractibility of a soft constraint is indepen-

30 Willem-Jan van Hoeve

dent on the contractibility of the associated hard constraint, and relies solely on the

violation measure that is applied. He further shows that the decomposition-based

violation measure and various versions of the edit-based violation measure lead to

contractible soft open global constraints. For such soft open global constraints, one

can therefore safely apply the existing filtering algorithm for the closed version of

the constraint in an open setting. Maher [2009a] presents a corresponding filtering

algorithm for the open soft-regular constraint under a weighted edit-based vio-

lation measure, building on the existing algorithm for the soft-regular constraint

by van Hoeve et al. [2006a].

6.5 Constraint-Based Local Search

Local search methods provide an alternative to complete systematic search methods

(such as constraint programming) for solving combinatorial problems [Aarts and

Lenstra, 2003; Van Hentenryck and Michel, 2005]. Conceptually, local search iter-

atively moves from one solution to a neighboring one, with the aim of improving

the objective function. Therefore, local search algorithm are based on a definition

of a neighborhood and cost evaluation functions. In many cases, local search can

quickly find solutions of good quality, but in general it is not able to prove opti-

mality of a solution. Local search is a natural approach to solve over-constrained

problems, where the objective is to minimize some specified measure of violation

of the problem.

In the literature, local search algorithms have been largely described using low-

level concepts close to the actual computer implementation. The first modeling lan-

guage for local search was Localizer [Michel and Van Hentenryck, 1997, 2000],

which offered a generic and re-usable way of implementing different local search

methods. In constraint-based local search, the aim is to model the problem at hand

using constraints and objectives, to which then any (suitable) local search can be

applied. One of the earliest of such general approaches was developed by Galin-

ier and Hao [2000], see also [Galinier and Hao, 2004]. In that work, a library of

constraints is presented that can be used to model a problem. To each constraint,

a penalty function is associated that is used in the evaluation function of the Tabu

Search engine underlying the system. A similar approach was taken by Michel and

Van Hentenryck [2002] for the system Comet, and by Bohlin [2004, 2005] for the

system Composer.

Essential to constraint-based local search is that the solution method can be de-

rived from the constraints of the problem. That is, the definition of neighborhoods

as well as the evaluation functions can be based on the combinatorial properties

of the constraints. Also global constraints can be used for this purpose. For exam-

ple, Nareyek [2001] applies global constraints to define improvement heuristics for

scheduling problems.

The evaluation functions (or penalty functions) for constraints in local search

are closely related to the violation measures for soft global constraints in constraint

6 Over-Constrained Problems 31

programming. For example, in the system Comet, to each constraint a measure of

violation is associated similar to those that are used to define soft global constraints.

In constraint-based local search, the violation measures play a different role, how-

ever. Instead of filtering variable domains, they are applied to compute a “gradient”

with respect to the violation measure. That is, for each variable-value pair, we can

define the additional amount of violation if we were to assign this variable to the

value.

In the context of constraint-based local search, Van Hentenryck and Michel

[2005] present violation measures for several global constraints, including all-

different, atmost, atleast, multi-knapsack, sequence, systems of not-equal

constraints, and arbitrary (weighted) constraint systems.

6.6 Conclusion and Outlook

In this chapter we have presented an overview of techniques to handle over-

constrained problems in constraint programming.Themain focus has been on recent

developments in the area of soft global constraints. Starting from initial works by

Baptiste, Le Pape, and Péridy [1998], Petit, Régin, and Bessière [2000], and es-

pecially Petit, Régin, and Bessière [2001], the field of soft global constraint has

developed into a mature and established approach to modeling and solving over-

constrained problems in constraint programming.

We have presented detailed filtering algorithms for the soft-alldifferent

constraint, the soft-gcc constraint, and the soft-regular constraint. In addition,

we have given a comprehensive overview of other soft global constraints that have

been studied in the literature. The techniques for handling soft global constraints are

often based on methods from graph theory, network flows, and regular languages,

which reflect the synergy between constraint programming, operations research, and

artificial intelligence; the focus of this collection.

Several soft global constraints that appeared in the literature have been applied

successfully to solve practical (over-constrained) problems, as we have seen in Sec-

tion 6.4.4. Nevertheless, so far no commercial constraint programming solver offers

soft global constraints as part of their product. Given the increasing interest of the

research community as well as the growing number of successful applications, it

would be highly desirable if soft global constraints were added to these commercial

solvers.

Many research challenges remain in this area. Perhaps the most important one is

the issue of aggregating effectively different soft global constraints. It is likely that

a weighted sum of the associated cost variables is not the most effective aggrega-

tion. Other approaches, such as minimizing the maximum over all cost variables, or

applying a (soft) balancing constraint to the cost variables [Schaus, 2009], appear to

be more promising.

Finally, as was discussed in Section 6.5, the violation measures for soft global

constraints are closely related to constraint-based evaluation functions in local

32 Willem-Jan van Hoeve

search. Therefore, integrating local search and constraint programming based on

soft global constraints appears to be an interesting and promising avenue for future

research.

Acknowledgements As parts of this chapter are based on the paper [van Hoeve, Pesant, and

Rousseau, 2006a], I wish to thank Gilles Pesant and Louis-Martin Rousseau.

References

E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization. Princeton Uni-

versity Press, 2003.

A. Aggoun and N. Beldiceanu. Extending CHIP in order to Solve Complex Scheduling and Place-

ment Problems. Mathematical and Computer Modelling, 17(7):57–73, 1993.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

P. Baptiste, C. Le Pape, and L. Péridy. Global Constraints for Partial CSPs: A Case-Study of

Resource and Due Date Constraints. In M.J. Maher and J.-F. Puget, editors, Proceedings of the

Fourth International Conference on Principles and Practice of Constraint Programming (CP),

volume 1520 of Lecture Notes in Computer Science, pages 87–101. Springer, 1998.

R. Barták. Dynamic Global Constraints in Backtracking Based Environments. Annals of Opera-

tions Research, 118(1–4):101–119, 2003.

N. Beldiceanu. Global constraints as graph properties on a structured network of elementary con-

straints of the same type. In R. Dechter, editor, Proceedings of the Sixth International Con-

ference on Principles and Practice of Constraint Programming (CP), volume 1894 of Lecture

Notes in Computer Science, pages 52–66. Springer, 2000.

N. Beldiceanu and M. Carlsson. Revisiting the Cardinality Operator and Introducing the

Cardinality-Path Constraint Family. In P. Codognet, editor, Proceedings of the 17th Interna-

tional Conference on Logic Programming (ICLP), volume 2237 of Lecture Notes in Computer

Science, pages 59–73. Springer, 2001.

N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Mathematical and

Computer Modelling, 20(12):97–123, 1994.

N. Beldiceanu and T. Petit. Cost Evaluation of Soft Global Constraints. In J.-C. Régin and M. Rue-

her, editors, Proceedings of the First International Conference on the Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR),

volume 3011 of Lecture Notes in Computer Science, pages 80–95. Springer, 2004.

N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Filtering Algorithms from Constraint Checkers.

In M. Wallace, editor, Proceedings of the Tenth International Conference on Principles and

Practice of Constraint Programming (CP), volume 3258 of Lecture Notes in Computer Science,

pages 107–122. Springer, 2004.

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and T.Walsh. Reformulating Global

Constraints: The Slide and Regular Constraints. In I. Miguel and W. Ruml, editors, Proceedings

of 7th International Symposium on Abstraction, Reformulation, and Approximation (SARA),

volume 4612 of Lecture Notes in Computer Science, pages 80–92. Springer, 2007.

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. SLIDE: A Useful Special Case of the

CARDPATH Constraint. In M. Ghallab, C.D. Spyropoulos, N. Fakotakis, and N.M. Avouris,

editors, Proceedings of the 18th European Conference on Artificial Intelligence (ECAI), pages

475–479. IOS Press, 2008.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Satisfaction and Optimization.

Journal of the ACM, 44(2):201–236, 1997.

6 Over-Constrained Problems 33

M. Bohlin. Design and Implementation of a Graph-Based Constraint Constraint Model for Local

Search. PhD thesis, Mälardalen University, 2004. Licentiate Thesis No.27.

M. Bohlin. A Local Search System for Solving Constraint Problems. In D. Seipel, M. Hanus,

U. Geske, and O. Bartenstein, editors, Applications of Declarative Programming and Knowl-

edge Management, volume 3392 of Lecture Notes in Artificial Intelligence, pages 166–184.

Springer, 2005.

A. Borning, R. Duisberg, B. Freeman-Benson, A. Kramer, and M. Woolf. Constraint hierarchies.

In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA), pages 48–60, 1987.

H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos. Local Search and Constraint

Programming for the Post Enrolment-based Course Timetabling Problem. In Proceedings of the

7th International Conference on the Practice and Theory of Automated Timetabling (PATAT),

2008.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms - Second

edition. The MIT Press, 2001.

R. Dechter. On the expressiveness of networks with hidden variables. In Proceedings of the 8th

National Conference on Artificial Intelligence (AAAI), pages 555–562. AAAI Press/The MIT

Press, 1990.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

D. Dubois, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a basis for flexible

constraint satisfaction. In Proceedings of the Second IEEE International Conference on Fuzzy

Systems, volume 2, pages 1131–1136, 1993.

B. Faltings and S. Macho-Gonzalez. Open Constraint Satisfaction. In P. Van Hentenryck, edi-

tor, Proceedings of the 8th International Conference on Principles and Practice of Constraint

Programming (CP 2002), volume 2470 of Lecture Notes in Computer Science, pages 356–370.

Springer, 2002.

H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy constraint satisfaction

problems. In Proceedings of the first European Congress on Fuzzy and Intelligent Technologies,

1993.

F. Focacci, A. Lodi, and M. Milano. Optimization-oriented global constraints. Constraints, 7(3):

351–365, 2002.

E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelligence, 58(1-3):

21–70, 1992.

P. Galinier and J.K. Hao. A General Approach for Constraint Solving by Local Search. In Pro-

ceedings of the Second International Workshop on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems (CPAIOR), 2000.

P. Galinier and J.K. Hao. A general approach for constraint solving by local search. Journal of

Mathematical Modelling and Algorithms, 3(1):73–88, 2004.

E. Hebrard, B. O’Sullivan, and T. Walsh. Distance Constraints in Constraint Satisfaction. In

M.M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI), pages 106–111, 2007. Available online at http://ijcai.org/.

E. Hebrard, B. O’Sullivan, and I. Razgon. A Soft Constraint of Equality: Complexity and Ap-

proximability. In P.J. Stuckey, editor, Proceedings of the 14th International Conference on

Principles and Practice of Constraint Programming (CP), volume 5202 of Lecture Notes in

Computer Science, pages 358–371. Springer, 2008.

E. Hebrard, D. Marx, B. O’Sullivan, and I. Razgon. Constraints of Difference and Equality: A

Complete Taxonomic Characterization. In I.P. Gent, editor, Proceedings of the 15th Interna-

tional Conference on Principles and Practice of Constraint Programming (CP), volume 5732

of Lecture Notes in Computer Science, pages 424–438. Springer, 2009.

J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing, 2(4):225–231, 1973.

J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages, and computation.

Addison-Wesley, 1979.

34 Willem-Jan van Hoeve

R.-R. Joseph, P. Chan, M. Hiroux, and G. Weil. Decision-support with preference constraints.

European Journal of Operational Research, 177(3):1469–1494, 2007.

G. Katsirelos, N. Narodytska, and T. Walsh. The Weighted CFG Constraint. In L. Perron and M.A.

Trick, editors, Proceedings of the 5th International Conference on the Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR),

volume 5015 of Lecture Notes in Computer Science, pages 323–327. Springer, 2008.

J. Larrosa. Node and Arc Consistency in Weighted CSP. In R. Dechter, M. Kearns, and R. Sutton,

editors, Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages

48–53. AAAI Press, 2002.

J. Larrosa and T. Schiex. In the quest of the best form of local consistency for Weighted CSP. In

G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth International Joint Conference

on Artificial Intelligence, pages 239–244. Morgan Kaufmann, 2003.

J.-L. Lauriere. A language and a program for stating and solving combinatorial problems. Artificial

Intelligence, 10(1):29–127, 1978.

J.H.M. Lee and K.L. Leung. Towards Efficient Consistency Enforcement for Global Constraints

in Weighted Constraint Satisfaction. In C. Boutilier, editor, Proceedings of the Twenty-first In-

ternational Joint Conference on Artificial Intelligence (IJCAI), pages 559–565, 2009. Available

online at http://ijcai.org/.

D. Lesaint, D. Mehta, B. O’Sullivan, L. Quesada, and N. Wilson. A Soft Global Precedence Con-

straint. In C. Boutilier, editor, Proceedings of the Twenty-first International Joint Conference

on Artificial Intelligence (IJCAI), pages 566–571, 2009. Available online at http://ijcai.org/.

M.J. Maher. SOGgy Constraints: Soft Open Global Constraints. In I.P. Gent, editor, Proceedings

of the 15th International Conference on Principles and Practice of Constraint Programming

(CP), volume 5732 of Lecture Notes in Computer Science, pages 584–591. Springer, 2009a.

M.J. Maher. Open Contractible Global Constraints. In C. Boutilier, editor, Proceedings of the

Twenty-first International Joint Conference on Artificial Intelligence (IJCAI), pages 578–583,

2009b. Available online at http://ijcai.org/.

M.J. Maher, N. Narodytska, C.-G. Quimper, and T. Walsh. Flow-Based Propagators for the SE-

QUENCE and Related Global Constraints. In P.J. Stuckey, editor, Proceedings of the 14th

International Conference on Principles and Practice of Constraint Programming (CP), volume

5202 of Lecture Notes in Computer Science, pages 159–174. Springer, 2008.

J.-P. Métivier, P. Boizumault, and S. Loudni. Σ -AllDifferent: Softening AllDifferent in Weighted

CSPs. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intel-

ligence (ICTAI), pages 223–230. IEEE, 2007.

J.-P. Métivier, P. Boizumault, and S. Loudni. Softening Gcc and Regular with preferences. In

Proceedings of the 2009 ACM symposium on Applied Computing (SAC), pages 1392–1396.

ACM, 2009a.

J.-P. Métivier, P. Boizumault, and S. Loudni. Solving Nurse Rostering Problems Using Soft Global

Constraints. In I.P. Gent, editor, Proceedings of the 15th International Conference on Principles

and Practice of Constraint Programming (CP), volume 5732 of Lecture Notes in Computer

Science, pages 73–87. Springer, 2009b.

L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Local Search. In Pro-

ceedings of the ACM Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA), pages 101–110, 2002.

L. Michel and P. Van Hentenryck. Localizer. Constraints, 5:43–84, 2000.

L. Michel and P. Van Hentenryck. Localizer: A Modeling Language for Local Search. In

G. Smolka, editor, Proceedings of the Third International Conference on Principles and Prac-

tice of Constraint Programming (CP), volume 1330 of Lecture Notes in Computer Science,

pages 237–251. Springer, 1997.

A. Nareyek. Using global constraints for local search. In Constraint Programming and Large Scale

Discrete Optimization: DIMACS Workshop Constraint Programming and Large Scale Discrete

Optimization, September 14-17, 1998, DIMACS Center, volume 54 of DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science, pages 9–28. American Mathematical

Society, 2001.

6 Over-Constrained Problems 35

G. Pesant. A Regular Language Membership Constraint for Finite Sequences of Variables. In

M. Wallace, editor, Proceedings of the Tenth International Conference on Principles and Prac-

tice of Constraint Programming (CP), volume 3258 of Lecture Notes in Computer Science,

pages 482–495. Springer, 2004.

G. Pesant and J.-C. Régin. Spread: A balancing constraint based on statistics. In P. van Beek, editor,

Proceedings of the 11th International Conference on Principles and Practice of Constraint Pro-

gramming (CP), volume 3709 of Lecture Notes in Computer Science, pages 460–474. Springer,

2005.

T. Petit. Modélisation et Algorithmes de Résolution de Problèmes Sur-Contraints. PhD thesis,

Université Montpellier II, 2002. In French.

T. Petit and E. Poder. Global Propagation of Practicability Constraints. In L. Perron and M.A.

Trick, editors, Proceedings of the 5th International Conference on the Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR),

volume 5015 of Lecture Notes in Computer Science, pages 361–366. Springer, 2008.

T. Petit, J.-C. Régin, and C. Bessière. Meta constraints on violations for over constrained problems.

In Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI), pages 358–365. IEEE, 2000.

T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-Constrained Prob-

lems. In T. Walsh, editor, Proceedings of the Seventh International Conference on Principles

and Practice of Constraint Programming (CP), volume 2239 of Lecture Notes in Computer

Science, pages 451–463. Springer, 2001.

C.-G. Quimper and T. Walsh. Decomposing Global Grammar Constraints. In F. Benhamou, editor,

Proceedings of the Twelfth International Conference on Principles and Practice of Constraint

Programming (CP), volume 4204 of Lecture Notes in Computer Science, pages 751–755, 2006.

C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved Algorithms for the Global

Cardinality Constraint. In M. Wallace, editor, Proceedings of the Tenth International Confer-

ence on Principles and Practice of Constraint Programming (CP), volume 3258 of Lecture

Notes in Computer Science, pages 542–556. Springer, 2004.

J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In Proceedings of the

Twelfth National Conference on Artificial Intelligence (AAAI), volume 1, pages 362–367. AAAI

Press, 1994.

J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications

of Artificial Intelligence Conference (AAAI / IAAI), volume 1, pages 209–215. AAAI Press/The

MIT Press, 1996.

J.-C. Régin. Global Constraints and Filtering Algorithms. In M. Milano, editor, Constraint

and Integer Programming - Toward a Unified Methodology, volume 27 of Operations Re-

search/Computer Science Interfaces, chapter 4. Kluwer Academic Publishers, 2003.

J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An Original Constraint Based Approach for

Solving over Constrained Problems. In R. Dechter, editor, Proceedings of the Sixth Interna-

tional Conference on Principles and Practice of Constraint Programming (CP), volume 1894

of Lecture Notes in Computer Science, pages 543–548. Springer, 2000.

J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. New Lower Bounds of Constraint Violations for

Over-Constrained Problems. In T. Walsh, editor, Proceedings of the Seventh International Con-

ference on Principles and Practice of Constraint Programming (CP), volume 2239 of Lecture

Notes in Computer Science, pages 332–345. Springer, 2001.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction problems. In Pro-

ceedings of the 9th European Conference on Artificial Intelligence (ECAI), pages 550–556,

1990.

F. Rossi, P. Van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,

2006.

Z. Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the First IEEE Conference on Evolu-

tionary Computing, pages 542–547, 1994.

36 Willem-Jan van Hoeve

P. Schaus. Solving Balancing and Bin-Packing problems with Constraint Programming. PhD

thesis, Université catholique de Louvain, 2009.

P. Schaus, Y. Deville, and P. Dupont. Bound-Consistent Deviation Constraint. In C. Bessiere,

editor, Proceedings of the 13th International Conference on Principles and Practice of Con-

straint Programming (CP), volume 4741 of Lecture Notes in Computer Science, pages 620–634.

Springer, 2007a.

P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. The Deviation Constraint. In P. Van Hentenryck

and L.A. Wolsey, editors, Proceedings of the 4th International Conference on the Integration

of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-

lems (CPAIOR), volume 4510 of Lecture Notes in Computer Science, pages 260–274. Springer,

2007b.

T. Schiex. Possibilistic Constraint Satisfaction Problems or “How to handle soft constraints?”.

In D. Dubois and M.P. Wellman, editors, Proceedings of the Eighth Annual Conference on

Uncertainty in Artificial Intelligence, pages 268–275. Morgan Kaufmann, 1992.

T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems: Hard and Easy

Problems. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-

gence, pages 631–639. Morgan Kaufmann, 1995.

A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

M. Sellmann. The Theory of Grammar Constraints. In F. Benhamou, editor, Proceedings of the

Twelfth International Conference on Principles and Practice of Constraint Programming (CP),

volume 4204 of Lecture Notes in Computer Science, pages 530–544, 2006.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1:146–160,

1972.

P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press, 2005.

W.-J. van Hoeve. A Hyper-Arc Consistency Algorithm for the Soft Alldifferent Constraint. In

M. Wallace, editor, Proceedings of the Tenth International Conference on Principles and Prac-

tice of Constraint Programming (CP), volume 3258 of Lecture Notes in Computer Science,

pages 679–689. Springer, 2004.

W.-J. van Hoeve and I. Katriel. Global constraints. In F. Rossi, P. Van Beek, and T. Walsh, editors,

Handbook of Constraint Programming, chapter 6. Elsevier, 2006.

W-J. van Hoeve and J-C. Régin. Open constraints in a closed world. In J.C. Beck and B.M. Smith,

editors, Proceedings of the Third International Conference on the Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR),

volume 3990 of Lecture Notes in Computer Science, pages 244–257. Springer, 2006.

W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming: Flow-based soft global

constraints. Journal of Heuristics, 12(4):347–373, 2006a.

W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. Revisiting the Sequence Con-

straint. In F. Benhamou, editor, Proceedings of the Twelfth International Conference on Princi-

ples and Practice of Constraint Programming (CP), volume 4204 of Lecture Notes in Computer

Science, pages 620–634, 2006b.

W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. New Filtering Algorithms for

Combinations of Among Constraints. Constraints, 14:273–292, 2009.

A. Zanarini, M. Milano, and G. Pesant. Improved Algorithm for the Soft Global Cardinality Con-

straint. In J.C. Beck and B.M. Smith, editors, Proceedings of the Third International Confer-

ence on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems (CPAIOR), volume 3990 of Lecture Notes in Computer Science, pages

288–299. Springer, 2006.

Index

alldifferent, 11

back-propagation, 6, 7

capacitated matching, 10

consistency

domain, 5

constraint

alldifferent, 11

deviation, 26

gcc, 15

global, 3

global cardinality, see gcc

optimization, 5

regular, 20

Σ-alldifferent, 28

Σ-gcc, 28

Σ-regular, 28

soft, 1, 5

soft global, 3, 9–30

soft global cardinality, see soft-gcc

soft open global, 29

soft-alldifferent, 8, 11

soft-ALLEQUAL, 26

soft-balance, 25

soft-CFG, 28

soft-cumulative, 24

soft-gcc, 15

soft-regular, 19

soft-same, 26

soft-sequence, 27

soft-slide, 27

softening, 6

spread, 26

Constraint Hierarchies, 2

constraint programming, 4

constraint propagation, 4

constraint softening, 6

constraint-based local search, 30

decomposition-based violation measure, 7, 27,

28, 30

soft-alldifferent, 13

deterministic finite automaton, 19

deviation, 26

domain consistency, 5

domain filtering, 4

domain filtering algorithm, 4

edit-based violation measure, 8, 20, 27, 28, 30

soft-regular, 23

Fuzzy-CSP, 2

gcc, 15

global cardinality constraint, see gcc

global constraint, 3, 4

graph properties-based violation measure, 8

matching, 9

capacitated, 10

Max-CSP, 2

global constraint, 29

meta-constraint framework, 3, 6

network flow, 10

object-based violation measure, 8

optimization constraint, 5

over-constrained problems, 1–32

Possibilistic-CSP, 2

refined variable-based violation measure, 8

regular, 20

residual graph, 10

37

38 Index

semi-ring CSP, 2

Σ-alldifferent, 28

Σ-gcc, 28

Σ-regular, 28

soft constraint, 1, 5

soft global cardinality constraint, see

soft-gcc

soft global constraint, 3, 9–30

open, 29

soft-alldifferent, 8, 11

decomposition-based, 13

variable-based, 11

soft-ALLEQUAL, 26

soft-balance, 25

soft-CFG, 28

soft-cumulative, 24

soft-gcc, 15

value-based, 18

variable-based, 17

soft-regular, 19

edit-based, 23

variable-based, 22

soft-same, 26

soft-sequence, 27

soft-slide, 27

spread, 26

value graph, 11

value-based violation measure, 8, 16, 18

soft-gcc, 18

Valued-CSP, 2

variable-based violation measure, 7, 16, 20,

25–28

soft-alldifferent, 11

soft-gcc, 17

soft-regular, 22

violation measure, 6

decomposition-based, 7, 13, 27, 28, 30

edit-based, 8, 20, 23, 27, 28, 30

graph properties-based, 8

object-based, 8

refined variable-based, 8

value-based, 8, 16

variable-based, 7, 11, 16, 17, 20, 22, 25–28

Weighted CSP, 2

soft global constraint, 28

