
Open Constraints in a Closed World

Willem-Jan van Hoeve1 and Jean-Charles Régin2?

1 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
vanhoeve@cs.cornell.edu

2 ILOG Sophia Antipolis, Les Taissounières HB2, 1681 route des Dolines,
06560 Valbonne, France

regin@ilog.fr

Abstract. We study domain filtering algorithms for open constraints,
i.e., constraints that are not a priori defined on specific sets of variables.
We present an efficient filtering algorithm, achieving set-domain consis-
tency, for open global cardinality constraints. We extend this result to
conjunctions of them, in case they are defined on disjoint sets of vari-
ables. We also analyze the case when the sets of variables may overlap.
As establishing set-domain consistency is NP-complete in that case, we
propose a weaker, though efficient, filtering algorithm instead. Finally,
we extend our results to conjunctions of similar open constraints.

1 Introduction

Traditionally, constraint programming has focused on solving problems in closed-
world scenarios: all variables and constraints are fixed from the beginning. In
many real-life applications, however, the scope of a constraint may not be defined
a priori. Instead, the variables on which the constraints are defined may only
be revealed during the solution process. This happens very often in scheduling
applications and other distributed settings.

For example, consider a set of activities and suppose that each activity can
be processed either on the factory line 1 formed by the set of unary resources
R1, or on the factory line 2 formed by the set of unary resources R2. Thus, at
the beginning, the set of resources that will be used by an activity is not known.
Also the set of activities that will be processed by a resource is not known.
However, it is useful to express that the activities that will be processed on each
line must be pairwise different. This can be done by defining two alldifferent

constraints, involving the start variables of each activity, and by stating that a
start variable will be involved in exactly one alldifferent constraint. Initially,
each alldifferent constraint is defined on a set of variables formed by all start
variables. Then this set will be modified when it can be proved that a variable
cannot be a member of an alldifferent constraint (i.e., the corresponding
activity cannot be processed on the corresponding factory line), or that a start
variable (activity) will be processed on the specific factory line.

? A large part of this work was carried out while the author was at Cornell University.

Constraints of this nature are called dynamic constraints [2] or open con-
straints [4, 5]. For instance, the above alldifferent constraints are examples
of open constraints. In this case, they live in a closed world, because the set of
possible variables is explicitly known. The extension of constraint programming
with open constraints is called open constraint programming [4, 5].

The use of efficient domain filtering algorithms is a key element in solving
problems with constraint programming. This is particularly true when the fil-
tering is based on a global constraint, i.e., a constraint that encapsulates and
exploits a substructure of the problem. Efficient filtering algorithms for open
global constraints therefore have high potential to improve the solution process
of open constraint programming, together with its rich application area. Never-
theless, such filtering algorithms have not yet been proposed, until now.

In this work we study the problem of filtering open global constraints in a
closed world. We focus in particular on conjunctions of open global cardinality
constraints, or gccs, because of their practical applicability and generality. We
present an efficient filtering algorithm, obtaining “set-domain” consistency, when
the scopes of the gccs are restricted to non-overlapping sets of variables. We also
analyze the case when the scopes of the gccs are allowed to share variables. In
that case obtaining domain consistency is NP-complete. Hence we propose a
weaker, though efficient, filtering algorithm.

Our filtering algorithms are based on techniques from flow theory. In fact,
we are able to generalize the techniques used in the filtering algorithm for the
original (closed) global cardinality constraint to conjunctions of open global car-
dinality constraints. It furthermore allows us to filter the domains of the set
variables that underly the open global cardinality constraints. Finally, we ex-
tend our results to conjunctions of arbitrary flow-based open global constraints.
Due to the application of efficient flow theoretic techniques, our algorithms are
also efficient.

The outline of this paper is as follows. In Section 2, we present definitions
and other preliminaries. In Section 3 we outline the general problem and give a
motivating example. Section 4 describes our main result, the filtering algorithm
for conjunctions of open global cardinality constraints on non-overlapping sets
of variables. In Section 5 we consider the case where the sets of variables may
overlap. In Section 6 we present a filtering algorithm for the set variables that
underly the open constraints. In Section 7 we extend our results to conjunctions
of similar open global constraints. Finally, we conclude in Section 8.

2 Background

2.1 Constraint Programming

Let x be a variable. The domain of x is a finite set of elements (also called
domain values) that can be assigned to x. It is denoted by D(x). For a set of
variables X we define D(X) = ∪x∈XD(x).

A set variable is a variable whose domain values are sets. We often represent
the domain of a set variable S by an “interval” [L, U], where L and U are sets,
such that D(S) = {s | L ⊆ s ⊆ U}. For example, let V be a set, and let S be a
set variable with domain D(S) = [∅, V]. Then D(S) is the power set of V , i.e.,
it contains all possible subsets of V .

Let X = {x1, x2, . . . , xk} be a set of variables. A constraint C on X is defined
as a subset of the Cartesian product of the domains of the variables in X , i.e.,
C ⊆ D(x1) × D(x2) × · · · × D(xk). We say that X is the scope of C. A tuple
(d1, . . . , dk) ∈ C is called a solution to C. We also say that the tuple satisfies
C. C is inconsistent if it does not contain a solution. Otherwise, C is called
consistent.

Sometimes a constraint C is defined on variables X together with a certain set
of parameters p. In such cases, we denote the constraint as C(X, p) for syntactical
convenience, while admissible tuples are still of size |X |.

Next we introduce open constraints. For the purpose of this paper, we define a
constraint to be open when its scope is the domain of a set variable whose domain
values are sets of variables. The explicit representation of the domain of this set
variable reflects that the constraint lives in a closed world. For example, let X

be a set of variables and let S be a set variable with domain D(S) = [∅, X]. The
constraint C(D(S)) is an open constraint, whose scope depends on the actual
instantiation of S. We also write C(S) as a shorthand for C(D(S)), if there is
no confusion.

A constraint satisfaction problem, or a CSP, is defined by a finite set of vari-
ables X , together with a finite set of constraints C, each on a subset of X . The
goal is to find an assignment x = d with d ∈ D(x) for all x ∈ X , such that all
constraints are satisfied simultaneously. This assignment is called a solution to
the CSP. Note that by using set variables to define the scope of open constraints,
we maintain this common definition of a CSP.

The solution process of constraint programming interleaves constraint prop-
agation, and search. The search process essentially consists in enumerating all
possible combinations of variable domain values, until we find a solution to the
CSP or prove that none exists. We say that this process constructs a search tree.
To reduce the exponential number of combinations, we filter the domains of the
variables and propagate this information through all constraints:

Given the current domains and a constraint C, remove domain values
that do not belong to a solution to C. This is repeated for all constraints
until no more domain values can be removed.

We typically apply constraint propagation at each node in the search tree. In
order to be effective, filtering algorithms should be efficient, because they are
applied many times during the solution process. Furthermore, they should re-
move as many domain values that are not part of a solution as possible. If a
filtering algorithm for a constraint C removes all such values from the domains
with respect to C, we say that it makes C domain consistent:

Definition 1 (domain consistency). A constraint C on the variables x1, x2,

. . . , xk is called domain consistent if for each variable xi and each domain value
di ∈ D(xi) (i = 1, . . . , k), there exists a domain value dj ∈ D(xj) for all j 6= i

such that (d1, . . . , dk) ∈ C.

In the literature, domain consistency is also referred to as hyper-arc consistency
or generalized-arc consistency. Note that domain consistency does only guarantee
that each individual constraint contains a solution; it does not guarantee that
the CSP has a solution.

If we make an open constraint C(S) domain consistent, we should remove
from the domain of S all sets s of variables for which C(s) has no solution. As
set variables are only represented by an interval, we use bounds consistency for
this purpose instead:

Definition 2 (bounds consistency). An open constraint C on the set vari-
ables S1, S2, . . . , Sk is called bounds consistent if for each Si and each si ∈
{min Si, max Si} (i = 1, . . . , k), there exist sets sj ∈ [min Sj , maxSj] for all
j 6= i such that C(s1, . . . , sk) has a solution.

Rather than filtering the domain of the set variable S, however, we would
like to filter the domain of the actual variables that appear in any instantiation
of S. Hence, we next introduce a slight variant of domain consistency for open
constraints that captures exactly this:

Definition 3 (set-domain consistency). An open constraint C(S) is called
set-domain consistent if for each variable x ∈ {y | y ∈ s, s ∈ D(S)} and all
domain values d ∈ D(x) there exists a set s′ ∈ D(S) with x ∈ s′ such that x = d

belongs to a solution of C(s′).

By introducing this notion of set-domain consistency, we separate the filtering of
the set variable S and the variables that appear in its domain. An open constraint
C(S) can hence be made set-domain consistent, while C(S) itself may not be
bounds consistent.

2.2 Flow Theory

In this section we present some concepts of flow theory that are necessary to
understand this paper. For more information on flow theory we refer to [1].

Let G = (V, A) be a directed graph, or digraph, with vertex set V and arc
set A. Let s, t ∈ V . A function f : A → R is called a flow from s to t, or an s-t
flow, if

(i) f(a) ≥ 0 for each a ∈ A, and
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t},

where δin(v) and δout(v) denote the multiset of arcs entering and leaving v,
respectively. Here f(S) =

∑
a∈S f(a) for all S ⊆ A. Property (ii) ensures flow

conservation, i.e., for a vertex v 6= s, t, the amount of flow entering v is equal to
the amount of flow leaving v.

As we will always consider s-t flows in this paper, we will often speak of
a flow instead of s-t flow, for convenience. Furthermore, we say that an arc a

belongs to a flow if f(a) > 0.
Let d : A → R+ and c : A → R+ be a “demand” function and a “capacity”

function, respectively3. We say that a flow f is feasible if d(a) ≤ f(a) ≤ c(a) for
each a ∈ A.

Let f be an s-t flow in G. The residual graph of G with respect to f, c and d

is defined as Gf = (V, Af) where for each (u, v) ∈ A,

if f(u, v) < c(u, v) then (u, v) ∈ Af with residual demand max{d(u, v) −
f(u, v), 0} and residual capacity c(u, v) − f(u, v), and

if f(u, v) > d(u, v) then (v, u) ∈ Af with residual demand 0 and residual
capacity f(u, v) − d(u, v).

Finally, a digraph G = (V, A) is strongly connected if for any two vertices
u, v ∈ V there is a directed path from u to v. A maximally strongly connected
non-empty subgraph of a digraph G is called a strongly connected component
of G.

3 Open Global Cardinality Constraints

A global cardinality constraint (gcc) on a set of variables specifies for each domain
value in the union of their domains an upper and lower bound to the number of
variables that are assigned to this value:

Definition 4 (global cardinality constraint). Let X = {x1, . . . , xn} be a set
of variables, and let ld, ud ∈ N for all d ∈ D(X). Then

gcc(X, l, u) = {(d1, . . . , dn) | ∀i ∈ {1, . . . , n} di ∈ D(xi),
∀d ∈ D(X) ld ≤ |{di | di = d}| ≤ ud}.

A special case of the gcc is the alldifferent constraint, which specifies that
all variables should be pairwise different. If we set ld = 0 and ud = 1 for all
d ∈ D(X), the gcc is equal to the alldifferent constraint. A filtering algorithm
for the gcc, establishing domain consistency, was developed in [7], making use
of network flows.

3.1 A Single Open Global Cardinality Constraint

We first consider the case of a single open gcc. In order to filter this constraint,
we compute a flow in a particular graph, similar to the filtering of the original
(closed) gcc [7].

Let X be a set of variables, and let S be a set variable with domain [L, U],
such that L ⊆ U ⊆ X . Let gcc(S, l, u) be the open gcc under consideration. We
build the following graph. The vertex set of the graph is composed of U , D(U),
a source s, and a sink t. The arc set is composed of:

3 Here R+ denotes {x ∈ R | x ≥ 0}.

x3

x2

x4

1x

t

0

s

1

3

2(0,1)

(1
,1)

(1,1)

(0,1)

Fig. 1. Graph representation for the gcc of Example 1. For the (s, xi) arcs, the demand
d and capacity c is explicitly given as (d, c). All other arcs have demand 0 and capacity 1.

– Arcs (s, x) for all x ∈ U with capacity 1. If x ∈ L, then this arc has demand
1, otherwise its demand is 0.

– Arcs (x, d) for all x ∈ U , d ∈ D(x) with demand 0 and capacity 1,

– Arcs (d, t) for all d ∈ D(U), with demand ld and capacity ud.

Call the resulting graph Gsingle. We have the following result:

Theorem 1. A feasible integer flow in Gsingle corresponds to a solution to gcc(S,

l, u) and vice versa.

Proof. Let f be a feasible integer flow in Gsingle. We construct a solution to
gcc(S, l, u) by defining S = {x | f(s, x) = 1} and x = d for all x ∈ S, d ∈ D(x)
with f(x, d) = 1.

Conversely, given a solution to gcc(S, l, u) we construct a feasible integer flow
f in Gsingle by defining

for all x ∈ U : f(s, x) = 1 if x ∈ S, and f(s, x) = 0 otherwise,

for all x ∈ U and d ∈ D(x): f(x, d) = 1 if x = d, and f(x, d) = 0 otherwise,

for all d ∈ D(U): f(d, t) = |{x | x ∈ S, x = d}|.

�

Example 1. Let X = {x1, x2, x3, x4} be a set of variables with integer domains:
x1 ∈ {0, 1}, x2 ∈ {0, 1, 2}, x3 ∈ {1, 2}, and x4 ∈ {1, 2, 3}. Let S ∈ [{x1, x2}, X]
be a set variable. Furthermore, let ld = 0 and ud = 1 for all d ∈ {0, 1, 2, 3}.

The graph representation for the constraint gcc(S, l, u) is presented in Fig-
ure 1. In fact, this gcc corresponds to an alldifferent constraint for this choice
of l and d. Note that the demand of the arcs (s, x1) and (s, x2) is 1, because S

must include {x1, x2}.

By applying Theorem 1, we get the following result:

Corollary 1. The constraint gcc(S, l, u), where S ∈ [L, U], is set-domain con-
sistent if and only if for all x ∈ U and d ∈ D(x), there exists an arc (x, d) with
d ∈ D(x) that belongs to a feasible integer flow in Gsingle.

The proof is immediate because there is a one to one correspondence between a
solution of gcc(S, l, u) and a feasible flow in Gsingle.

Corollary 1 gives rise to a set-domain consistency algorithm, similar to the
original (closed) gcc. First, we compute an initial feasible integer flow f in Gsingle.
This can be done in O(nm) time, where n = |U | and m =

∑
x∈U D(x). If f does

not exist, the constraint is not consistent. Otherwise, we identify and remove all
arcs (x, d) that do not belong to any feasible integer flow. As indicated by [7],
inconsistent arcs are exactly those that do not belong to a strongly connected
component in the residual graph (Gsingle)f . Computing the strongly connected
components of (Gsingle)f can be done in O(n + m) time [9], where n and m are
defined as above. Moreover, our algorithm is incremental. When k variables have
changed their value, we can recompute the flow in O(km) time and re-establish
domain consistency in O(n + m) time.

3.2 The Conjunction of Open Global Cardinality Constraints

Next we consider a more general problem; the conjunction of several open gccs.
First, consider the following motivating example.

Example 2. Let X = {x1, x2, x3, x4, x5} be a set of variables with integer do-
mains: x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}, x4 ∈ {0, 1} and x5 ∈ {0, 1, 2, 3, 4, 5}.
Let S1 ∈ [∅, X] and S2 ∈ [∅, X] be set variables. We define the following con-
junction of constraints:

alldifferent(S1) ∧
alldifferent(S2) ∧
(S1 ∪ S2) = X ∧
(S1 ∩ S2) = ∅.

(1)

Here alldifferent(S1) and alldifferent(S2) are open constraints, as they are
defined on the domain of set variables whose domain values are sets of variables.

From conjunction (1) we are able to deduce that

2 ≤ |S1| ≤ 3,

2 ≤ |S2| ≤ 3,

x5 ∈ {2, 3, 4, 5}.

Namely, as x1, x2, x3 and x4 all have domain {0, 1}, no more than two of them can
appear in one alldifferent constraint. Since we need to include all variables
into both constraints, we have that 2 ≤ |S1| ≤ 3 and 2 ≤ |S2| ≤ 3. Moreover, each
alldifferent constraint will involve exactly two variables from {x1, x2, x3, x4},
and the variables x1, x2, x3 and x4 will saturate the values 0 and 1 in both all-

different constraints. Hence those values are removed from the domain of x5.

Our general problem is the conjunction of k open gccs. Let X be a set of
variables, and let S1, S2, . . . , Sk be set variables, with respective domains [Li, Ui],
such that Li ⊆ Ui ⊆ X (i = 1, . . . , k). The conjunction of k open gccs is defined
as: ⋂

1≤i≤k

gcc(Si, l
i, ui), (2)

where lid, u
i
d ∈ N for all d ∈ D(X) and i = 1, . . . , k.

If the set variables S1, S2, . . . , Sk are not constrained, there is not much that
can be deduced. We know that, for 1 ≤ i ≤ k,

∑

d∈D(X)

lid ≤ |Si| ≤
∑

d∈D(X)

ui
d,

but in general this is not sufficient to make further deductions with respect to
the domains of the variables. Hence, we impose additional constraints on the set
variables. In particular we distinguish the following four cases and combinations
thereof:

(
⋃

1≤i≤k

Si) = X, (3)

(
⋃

1≤i≤k

Si) ⊂ X, (4)

∀1≤i<j≤k Si ∩ Sj = ∅, (5)

∃1≤i<j≤k Si ∩ Sj 6= ∅. (6)

For example, the combination of (3) and (5) restricts the set variables to be a
partition of X . In the remainder of this paper we will study filtering algorithms
for the conjunction of k open gccs, in combination with one or more of the
constraints (3) up to (6).

4 Disjoint Set Variables

In this section, we present an efficient set-domain consistency filtering algorithm
for k open gccs together with restriction (5), i.e., all set variables should be
pairwise disjoint. Our work is based on the domain consistency filtering algorithm
for the single gcc as developed in [7], and an extension of the algorithm presented
above for a single open gcc.

Again, we base our algorithm on finding a flow in a particular graph. The key
observation is that for each open gcc, one duplicates the corresponding variables
and domain values, and associates the corresponding lower and upper bounds
to each domain value. This allows us to build a graph similar to the graph of
a single gcc, and also to apply similar efficient flow algorithms to establish set-
domain consistency.

2X 2()XD

kt

2t

1X 1()XD 1t

kX k()XD

. . .

. . .

. . .

s tX

Fig. 2. Schematic graph representation for the conjunction of k open gccs.

We build our graph as follows; see Figure 2 for a schematic representation. In
order to distinguish variables in different open gccs, we duplicate every variable
x ∈ Ui as xi, for i ∈ {1, . . . , k}, and denote the respective set of variables by
X i. We also duplicate the domain values D(X) as D1(X), . . . , Dk(X). Then the
vertex set of the graph is composed of X , X1, . . . , Xk, D1(X), . . . , Dk(X), a
source s, “intermediate sinks” t1, . . . tk and a sink t. The arc set is composed of:

– arcs (s, x) for all x ∈ X , with demand 0 and capacity 1,
– arcs (x, xi) for all i ∈ {1, . . . , k} and x ∈ Li, with demand 1 and capacity 1,
– arcs (x, xi) for all i ∈ {1, . . . , k} and x ∈ Ui \ Li, with demand 0 and capac-

ity 1,
– arcs (xi, d) for all i ∈ {1, . . . , k}, x ∈ Ui and d ∈ Di(x), with demand 0 and

capacity 1,
– arcs (d, ti) for all i ∈ {1, . . . , k} and d ∈ Di(X), with demand lid and capac-

ity ui
d,

– arcs (ti, t) for all i ∈ {1, . . . , k}, with demand |Li| and capacity |Ui|.

Call the resulting graph G. Note that we may actually omit arcs (x, xi) if x ∈
Lj for some j 6= i. This follows from the disjointness of the set variables. We
nevertheless prefer the above description, because it can be easily extended to
the non-disjoint case, as we will see in Section 5.

We have the following result:

Theorem 2. A feasible integer flow in G corresponds to a solution to the con-
junction of (2) and (5) and vice versa.

Proof. Let f be a feasible integer flow in G. We construct a solution to the
conjunction of (2) and (5) by defining Si = {x | f(x, xi) = 1} (1 ≤ i ≤ k) and
x = d for all x ∈ X, d ∈ D(x) with f(xi, d) = 1 for some i ∈ {1, . . . , k}.

Conversely, given a solution to the conjunction of (2) and (5), we construct
a feasible integer flow f in G by defining

for all x ∈ X : f(s, x) = 1 if x ∈ Si for some i ∈ {1, . . . , k}, and f(s, x) = 0
otherwise,

for all x ∈ X and i ∈ {1, . . . , k}: f(x, xi) = 1 if x ∈ Si, and f(x, xi) = 0
otherwise,

for all x ∈ X , i ∈ {1, . . . , k} and d ∈ Di(x): f(xi, d) = 1 if (x = d) ∧ (x ∈ Si),
and f(xi, d) = 0 otherwise,

for all i ∈ {1, . . . , k} and d ∈ Di(X): f(d, ti) = |{x | x ∈ Si, x = d}|,
for all i ∈ {1, . . . , k}: f(ti, t) = |{x | x ∈ Si}|.

�

Notice that if Li ∩Lj 6= ∅ for some i 6= j, there is no feasible flow in G, because
the demand requirements on the arcs involving Si and Sj cannot be fulfilled.

An illustration applied to Example 2 is given in Figure 3. In Figure 3.a we
present the graph G corresponding to this example. In Figure 3.b we present a
feasible flow in G, corresponding to the solution S1 = {x1, x2, x5}, S2 = {x3, x4},
x1 = 0, x2 = 1, x3 = 0, x4 = 1 and x5 = 5.

By applying Theorem 2, we get the following result.

Corollary 2. The conjunction of (2) and (5) is set-domain consistent if and
only if for all x ∈ X and d ∈ D(x), there exists an arc (xi, d) with d ∈ Di(x)
for some 1 ≤ i ≤ k, that belongs to a feasible integer flow in G.

The proof follows from the one to one correspondence between a solution of the
conjunction of (2) and (5), and a feasible flow in G. Note that Theorem 2 does
not consider the set variables on which the gccs are defined. We will deal with
them in Section 6.

Similar to the above single open gcc, we apply Corollary 2 to design a set-
domain consistency algorithm. First, we compute an initial feasible integer flow f

in G. This can be done in O(nm) time, where n = |X | and m = k ·
∑

x∈X D(x).
If f does not exist, the conjunction is not consistent. Otherwise, we identify
and remove all arcs (xi, d) that do not belong to any feasible integer flow. Note
however, that one arc (xi, d) with d ∈ Di(x) for some 1 ≤ i ≤ k is already
sufficient to make d ∈ D(X) consistent. Again, inconsistent arcs are exactly
those that do not belong to a strongly connected component in the residual
graph Gf . Computing the strongly connected components of Gf can again be
done in O(n+m) time, where n and m are defined as above. Also this algorithm
is incremental. When l variables have changed their value, we can recompute the
flow in O(lm) time and re-establish domain consistency in O(n + m) time.

As an example, consider again Figure 3. In Figure 3.c we show the residual
graph with respect to the flow given in Figure 3.b. Figure 3.d shows the graph
after filtering, i.e., all inconsistent arcs are removed.

0

1

2

3

4

5

t

1t

1
L

(|
| , |U

1 |)

2L
(|

| ,
 |

U 2
|)0

1

2

3

4

5

x2
1

1
1x

x3
1

x4
1

x5
1

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

2t

a. Graph representation.

t

1t

0

1

2

3

4

5

0

1

2

3

4

5

x2
1

1
1x

x3
1

x4
1

x5
1

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

2t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 3

2

1

1

1

1

1

b. Feasible flow.

t

1t

0

1

2

3

4

5

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

x2
1

1
1x

x3
1

x4
1

x5
1

2t

s

0

1

2

3

4

5

(0
,1

)

(0,1)

c. Residual graph.

0

1

2

3

4

5

t

1t

1
L

(|
| , |U

1 |)

2L
(|

| ,
 |

U 2
|)0

1

2

3

4

5

x2
2

2
1x

x3
2

x4
2

x5
2

x2

x3

x4

x5

1x

s

x2
1

1
1x

x3
1

x4
1

x5
1

2t

d. Graph after filtering.

Fig. 3. Graph representation for the conjunction of alldifferent(S1) and alldiff-

erent(S2) on disjoint set variables S1 and S2, where S1 ∪ S2 = {x1, x2, x3, x4, x5}
(following Example 2). Arcs (t1, t) and (t2, t) have demand and capacity determined
by the cardinality of the lower bounds L1, L2 and upper bounds U1, U2 of the respective
set variables. All other arcs have demand 0 and capacity 1.

5 Non-Disjoint Set Variables

We next study the conjunction of k open gccs together with restriction (6), i.e.,
the set variables are allowed to be non-disjoint.

Unfortunately, establishing set-domain consistency in this case is an NP-
complete problem. Namely, in [3], it is proved that establishing domain consis-
tency on the conjunction of alldifferent constraints on overlapping sets of
variables is NP-complete. As the alldifferent constraint is a special case of

the gcc, their result immediately implies that our task is NP-complete. To over-
come the NP-completeness, we propose to relax the requirement of establishing
set-domain consistency.

We use the same graph representation as in the previous section, with one
modification. In the previous section, the graph representation does not allow
a variable to appear in several gccs. Namely, because the capacity of the arcs
(s, x) for x ∈ X is 1, each variable can be assigned to at most one value in
D1(X), . . . , Dk(X). This means that each variable can only occur in a single
open gcc. We relax this by defining the capacity of the arcs (s, x) to be k. On
the positive side, this allows a variable to occur in several open gccs at the same
time, which yields a filtering method for the non-disjoint case. On the negative
side, a variable may take different values in different gccs, which is likely to
weaken the filtering. With this modification, however, we can apply the same
efficient algorithm as in the previous section.

6 Filtering the Set Variables

In this section we consider the filtering of the set variables on which the open
constraints are defined. As stated earlier, we would like to establish bounds
consistency with respect to these variables.

Consider again the conjunction of k open gccs (2) and restriction (5), i.e.,
the constraints are defined on disjoint sets of variables. We can use the graph G
to establish bounds consistency on the set variables S1, . . . , Sk as well. To this
end, we apply the following three rules for all 1 ≤ i ≤ k:

i) when there is no arc between xi and Di(X), then x is removed from Si, i.e.,
Ui := Ui − x,

ii) when there are only arcs between xi and Di(X), and f(x, xi) = 1 for all
feasible flows f , then x is added to Si, i.e., Li := Li + x,

iii) |Li| ≥ min{f(ti, t) | f feasible flow} and |Ui| ≤ max{f(ti, t) | f feasible flow}.

When we apply these rules, we know by Theorem 2 that we have established
bounds consistency with respect to the set variables. The application of the
above three rules can be done in O(k2nm) time, by subsequently computing
minimum and maximum flows.

7 Extension

In the above, we have focused on conjunctions of gccs because of their generality
and applicability to real-life problems with open constraints. The results can
easily be extended to similar cases, however.

7.1 Optimization Constraints

A first extension is to apply our technique to optimization constraints. For exam-
ple, consider a conjunction of open weighted global cardinality constraints [8]. In

that case, a weight is assigned to each pair (x, d), for all x ∈ X and d ∈ D(X).
Then a solution to the problem induces a weight, defined by the sum of the
weight of the pairs (x, d) if x = d is in the solution. The aim is to find a solution
with minimum total weight.

We can handle this case similar to the original filtering algorithm for weighted
gccs [8]. With each arc (xi, d), for all x ∈ X i (i = 1, . . . , k) and d ∈ D(x) in G,
we associate a cost that is equal to the weight of this pair. Then a solution to
the conjunction of open weighted gccs corresponds to a minimum-cost feasible
flow in the graph. Hence, the cost-based version of our filtering algorithm is
immediate.

7.2 Soft Constraints

Soft constraints can be viewed as special optimization constraints. A number of
soft global constraints can be represented by a flow in a graph, similar to the
gcc, see [6]. In this case, rather than associating a cost to an arc (x, d), for all
x ∈ X i (i = 1, . . . , k) and d ∈ D(x), costs may appear on “any” arc in the graph.
We can again apply the same machinery as for the open weighted gccs to open
soft global constraints.

7.3 Mixture

Finally, it is also possible to apply our results to a mixture of open constraints,
provided that they are reasonably compatible. For example, we can group to-
gether open alldifferent constraints and open gccs in one conjunction. An-
other example is to join together open soft gccs and open weighted alldiffer-

ent constraints.

8 Conclusion

For the first time, we have proposed filtering algorithms for open global con-
straints. We have in particular studied open global cardinality constraints and
conjunctions of them. We have proposed an efficient filtering algorithm, based
on techniques from flow theory, establishing set-domain consistency, when the
constraints are defined on disjoint sets of variables. In case the constraints are
defined on non-disjoint sets of variables, this task becomes NP-complete. For
that case we have proposed a weaker, but efficient, filtering algorithm. We have
also presented a bounds consistency filtering algorithm for the set variables that
underly these open constraints. Finally, we have shown how to extend our results
to other conjunctions of open constraints, for example optimization constraints
and soft global constraints.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

2. R. Barták. Dynamic Global Constraints in Backtracking Based Environments. An-
nals of Operations Research, 118(1–4):101–119, 2003.

3. K. Elbassioni, I. Katriel, M. Kutz, and M. Mahajan. Simultaneous matchings. In
X. Deng and D. Du, editors, Proceedings of the 16th Annual International Sympo-
sium on Algorithms and Computation (ISAAC 2005), volume 3827 of LNCS, pages
106–115. Springer, 2005.

4. B. Faltings and S. Macho-Gonzalez. Open Constraint Satisfaction. In P. Van Hen-
tenryck, editor, Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), volume 2470 of LNCS, pages 356–
370. Springer, 2002.

5. B. Faltings and S. Macho-Gonzalez. Open Constraint Programming. Artificial
Intelligence, 161(1–2):181–208, 2005.

6. W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-Based
Soft Global Constraints. Journal of Heuristics, 2006. To appear.

7. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of AAAI/IAAI, volume 1, pages 209–215. AAAI Press/The MIT Press,
1996.

8. J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints. Con-
straints, 7:387–405, 2002.

9. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1:146–160, 1972.

