
Constraints manuscript No.
(will be inserted by the editor)

New Filtering Algorithms for Combinations of Among

Constraints

Willem-Jan van Hoeve · Gilles Pesant ·
Louis-Martin Rousseau · Ashish Sabharwal

Received: date / Accepted: date

Abstract Several combinatorial problems, such as car sequencing and rostering, fea-

ture sequence constraints, restricting the number of occurrences of certain values in

every subsequence of a given length. We present three new filtering algorithms for the

sequence constraint, including the first that establishes domain consistency in poly-

nomial time. The filtering algorithms have complementary strengths: One borrows

ideas from dynamic programming; another reformulates it as a regular constraint;

the last is customized. The last two algorithms establish domain consistency, and the

customized one does so in polynomial time. We provide experimental results that

demonstrate the practical usefulness of each. We also show that the customized al-

gorithm applies naturally to a generalized version of the sequence constraint that

allows subsequences of varied lengths. The significant computational advantage of

using a single generalized sequence constraint over a semantically equivalent col-

lection of among or sequence constraints is demonstrated empirically.

Keywords sequence constraint · domain consistency · polynomial time filtering ·
car sequencing · regular

W.-J. van Hoeve

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Former address: Dept. of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A.

E-mail: vanhoeve@andrew.cmu.edu

G. Pesant · L.-M. Rousseau

École Polytechnique de Montréal, Montreal, Canada

Centre for Research on Transportation (CRT), Université de Montréal, Montreal, H3C 3J7, Canada

E-mail: {pesant,louism}@crt.umontreal.ca

L.-M. Rousseau

Oméga Optimisation Inc.

A. Sabharwal

Dept. of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A.

E-mail: sabhar@cs.cornell.edu

2 Willem-Jan van Hoeve et al.

1 Introduction

The sequence constraint appears in several combinatorial problems such as car man-

ufacturing and rostering. It can be regarded as a collection of among constraints that

must hold simultaneously. An among constraint restricts the number of variables that

can be assigned a value from a specific subset of domain values. For example, con-

sider a nurse-rostering problem in which each nurse can work at most 2 night shifts

during every 7 consecutive days. The among constraint specifies the 2-out-of-7 re-

striction, while the sequence constraint imposes such a constraint for every subse-

quence of 7 days.

The sequence constraint has been a topic of study in the constraint program-

ming community since 1988, when the car sequencing problem was first introduced

[7]. Initially, the various among constraints underlying the sequence constraint were

treated individually. Beldiceanu and Contejean [3] first proposed to view them to-

gether as one global sequence constraint. The constraint is also referred to as

among seq [4].

Beldiceanu and Carlsson [2] proposed a filtering algorithm for the sequence

constraint, while Régin and Puget [13] presented a filtering algorithm for the se-

quence constraint in combination with a global cardinality constraint [12] for a car

sequencing application. Neither approach, however, establishes domain consistency.

As the constraint is inherent in many real-life problems, improved filtering can have

a substantial industrial impact.

In this work we present three novel filtering algorithms for the sequence con-

straint. The first is based on dynamic programming concepts and runs in polynomial

time, but does not establish domain consistency. The second algorithm is based on

the regular constraint [10] and establishes domain consistency. It needs exponential

time in the worst case, but in many practical cases it is very efficient. Our third algo-

rithm establishes domain consistency in polynomial time and is the first to do so. It

can be applied to a generalized version of the sequence constraint in which the sub-

sequences considered may be of varied length. Moreover the number of occurrences

may also vary per subsequence. Each algorithm has advantages over the others, either

in terms of (asymptotic) running time or in terms of filtering.

Our experimental results demonstrate that our newly proposed algorithms sig-

nificantly improve the state of the art. On individual sequence constraints, these

algorithms are much faster than the standard (partial) filtering implementations avail-

able in the Ilog Solver library; they often reduce the number of backtracks from over

a hundred thousand to zero or near-zero. On the car sequencing problem benchmark,

these algorithms are able to solve more instances or achieve substantial speed-up (ei-

ther on their own or as a redundant constraint added to the Ilog sequence constraint).

Finally, when certain more complex combinations of among constraints are present,

such as in the rostering example above, our generalized sequence constraint im-

plementation is able to treat them all as a single global constraint, and reduces the

filtering time from around half an hour to just a few seconds.

The rest of the article is structured as follows. Section 2.1 presents some back-

ground and notation on constraint programming, while Section 2.2 recalls and dis-

cusses the among and sequence constraints. Sections 3, 4, and 5 describe our three

New Filtering Algorithms for Combinations of Among Constraints 3

new filtering algorithms for the sequence constraint. Section 6 compares the algo-

rithms experimentally. Finally, Section 7 summarizes the contributions of the work

and discusses possible extensions.

2 Background

We first introduce basic constraint programming concepts and then discuss in de-

tail the two constraints of interest: among and sequence. For more information on

constraint programming we refer the reader to [1] and [5].

2.1 Constraint Programming Preliminaries

Let x be a variable. The domain of x is the set of values that can be assigned to x

and is denoted by D(x). In this work we only consider variables with finite domains.

Let X = x1,x2, . . . ,xk be a sequence of variables. We denote D(X) =
⋃

1≤i≤k D(xi). A

constraint C on X is defined as a subset of the Cartesian product of the domains of

the variables in X , i.e. C ⊆ D(x1)×D(x2)× ·· ·×D(xk). A tuple (d1, . . . ,dk) ∈ C is

called a solution to C. We also say that the tuple satisfies C. A value d ∈ D(xi) for

some i = 1, . . . ,k is inconsistent with respect to C if it does not belong to a tuple of C,

otherwise it is consistent. C is inconsistent if it does not contain a solution. Otherwise,

C is called consistent.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence of

variables X = x1,x2, . . . ,xn, together with a finite set of constraints C , each on a

subsequence of X . The goal is to find an assignment xi = di with di ∈ D(xi) for

i = 1, . . . ,n, such that all constraints are satisfied. This assignment is called a solution

to the CSP.

The solution process of constraint programming interleaves constraint propaga-

tion, or propagation in short, and search. The search process essentially consists

of enumerating all possible variable-value combinations, until we find a solution or

prove that none exists. We say that this process constructs a search tree. To reduce

the exponential number of combinations, constraint propagation is applied to each

node of the search tree: Given the current domains and a constraint C, remove domain

values that do not belong to a solution to C. This is repeated for all constraints until

no more domain value can be removed. The removal of inconsistent domain values

is called filtering.

In order to be effective, filtering algorithms should be efficient, because they are

applied many times during the solution process. Further, they should remove as many

inconsistent values as possible. If a filtering algorithm for a constraint C removes

all inconsistent values from the domains with respect to C, we say that it makes C

domain consistent. Formally:

Definition 1 (Domain consistency, [9]) A constraint C on variables x1, . . . ,xk is

called domain consistent if for each variable xi and each value di ∈ D(xi) (i =
1, . . . ,k), there exist a value d j ∈ D(x j) for all j 6= i such that (d1, . . . ,dk) ∈C.

4 Willem-Jan van Hoeve et al.

In the literature, domain consistency is also referred to as hyper-arc consistency

or generalized-arc consistency.

Establishing domain consistency for binary constraints (constraints defined on

two variables) is inexpensive. For higher arity constraints this is not necessarily the

case since the naı̈ve approach requires time that is exponential in the number of vari-

ables. Nevertheless the underlying structure of a constraint can sometimes be ex-

ploited to establish domain consistency much more efficiently.

2.2 The Among and Sequence Constraints

The among constraint restricts the number of variables that can be assigned a value

from a specific subset of domain values:

Definition 2 (Among constraint, [3]) Let X = x1,x2, . . . ,xq be a sequence of vari-

ables and let S be a set of domain values. Let 0≤ ℓ≤ u≤ q be constants. Then

among(X ,S, ℓ,u) = {(d1, . . . ,dq) | ∀i ∈ {1, . . . ,q} di ∈ D(xi),

ℓ≤ |{i ∈ {1, . . . ,q} : di ∈ S}| ≤ u}.

Establishing domain consistency for the among constraint is not difficult. Sub-

tracting from ℓ, u, and q the number of variables that must take their value in S, and

subtracting further from q the number of variables that cannot take their value in S,

we are in one of four cases:

1. u < 0 or ℓ > q: the constraint is inconsistent;

2. u = 0: remove values in S from the domain of all remaining variables, making the

constraint domain consistent;

3. ℓ = q: remove values not in S from the domain of all remaining variables, making

the constraint domain consistent;

4. u > 0 and ℓ < q: the constraint is already domain consistent.

The sequence constraint applies the same among constraint on every q consecu-

tive variables:

Definition 3 (Sequence constraint, [3]) Let X = x1,x2, . . . ,xn be an ordered se-

quence of variables (according to their respective indices) and let S be a set of domain

values. Let 1≤ q≤ n and 0≤ ℓ≤ u≤ q be constants. Then

sequence(X ,S,q, ℓ,u) =
n−q+1

∧

i=1

among(si,S, ℓ,u),

where si represents the subsequence xi, . . . ,xi+q−1.

In words, the sequence constraint states that at least ℓ and at most u values in S are

assigned to every subsequence of q consecutive variables. Note that working on each

among constraint separately, and hence locally, is not as powerful as reasoning glob-

ally. In particular, as the following example shows, establishing domain consistency

on each among of the conjunction does not ensure domain consistency for sequence.

New Filtering Algorithms for Combinations of Among Constraints 5

Example 1 Let X = x1,x2,x3,x4,x5,x6,x7 be an ordered sequence of variables with

domains D(xi) = {0,1} for i ∈ {3,4,5,7}, D(x1) = D(x2) = {1}, and D(x6) = {0}.
Consider the constraint sequence(X ,{1} ,5,2,3), i.e., every sequence of five consec-

utive variables must account for two or three 1’s. Each individual among is domain

consistent but it is not the case for sequence: value 0 is unsupported for variable x7.

(x7 = 0 forces at least two 1’s among {x3,x4,x5}, which brings the number of 1’s for

the leftmost among to at least four.)

Establishing domain consistency for the sequence constraint is not nearly as

easy as for among. The algorithms proposed so far in the literature may miss such

global reasoning. For instance, the filtering algorithm proposed by Régin and Puget

[13] and implemented in Ilog Solver does not filter out 0 from D(x7) in Example 1.

Remark 1 When ℓ equals u, domain consistency can in fact be established in lin-

ear time. Specifically, if there is a solution, then xi must equal xi+q because of the

constraints ai + ai+1 + · · ·+ ai+q−1 = ℓ and ai+1 + · · ·+ ai+q = ℓ. Hence, if one di-

vides the sequence up into n/q consecutive subsequences of size q each, they must

all look identical. Thus, establishing domain consistency now amounts to propagat-

ing the “settled” variables (i.e. xi for which D(xi) ⊆ S or D(xi)∩ S = ∅) to the first

subsequence and then applying the previously described algorithm for among. Two

of the filtering algorithms we describe in this article establish domain consistency in

the general case, i.e., when ℓ does not necessarily equal u.

Without loss of generality, we shall consider instances of sequence in which

S = {1} and the domain of each variable is a subset of {0,1}. Indeed, using the

element(x, t,x′) constraint, which states that x′ is equal to the value in table t that

is indexed by x, we can define t to map every value in S to 1 and every other value

(i.e., D(X) \ S) to 0, yielding an equivalent instance on new variables. For exam-

ple, let D(x) = {1,2,3,4,5} for some variable x and S = {1,2,4}. The constraint

element(x, [1,1,0,1,0],x′) yields D(x′) = {0,1} and x′ = 1 if and only if x ∈ S. An

among or sequence constraint restricting the number of times x takes values in S

can thus be equivalently represented by a constraint restricting the number of times

x′ takes the value 1.

3 A Graph-Based Filtering Algorithm

We first propose a filtering algorithm that considers the individual among constraints

of which the sequence constraint is composed. It begins by filtering the among con-

straints for each sequence of q consecutive variables si, similar to the dynamic pro-

gramming approach taken by Trick [14] to filter knapsack constraints. It then filters

the conjunction of every pair of consecutive sequences si and si+1. This is presented

as SUCCESSIVELOCALGRAPH (SLG) in Algorithm 1, and discussed below.

3.1 Filtering Individual among Constraints

The individual among constraints are filtered with the algorithm FILTERLOCAL-

GRAPH. For each sequence si = xi, . . . ,xi+q−1 of q consecutive variables in X =

6 Willem-Jan van Hoeve et al.

x1, . . . ,xn, we build a directed graph Gsi
= (Vi,Ai) as follows. The vertex set and

the arc set are defined as

Vi =
{

v j,k | j ∈ {i−1, . . . , i+q−1} ,k ∈ {0, . . . , j}
}

,

Ai =
{

(v j,k,v j+1,k) | j ∈ {i−1, . . . , i+q−2} ,k ∈ {0, . . . , j} ,D(x j+1)\S 6= /0
}

⋃

{

(v j,k,v j+1,k+1) | j ∈ {i−1, . . . , i+q−2} ,k ∈ {0, . . . , j} ,D(x j+1)∩S 6= /0
}

.

In words, the arc (v j,k,v j+1,k+1) in the graphs represents variable x j+1 taking its

value in S, while the arc (v j,k,v j+1,k) represents variable x j+1 not taking its value in

S. The index k in v j,k represents the number of variables in xi, . . . ,x j that take their

value in S.

For each local graph Gsi
, we define a set of goal vertices as

{

vi+q−1,k | ℓ≤ k ≤ u
}

.

We then have the following immediate result:

Lemma 1 A solution to the among constraint on sequence si corresponds to a di-

rected path from vi−1,0 to a goal vertex in Gsi
, and vice versa.

Next we apply Lemma 1 to make individual among constraints domain consistent.

For the among constraint on sequence si, we remove all arcs that are not on any path

from vi−1,0 to a goal vertex in Gsi
. This can be done in linear time (in the size of the

graph, Θ(q2)) by breadth-first search starting from the goal vertices. If the filtered

graph contains no arc (v j,k,v j+1,k) for all k, we remove S from D(x j+1). Similarly,

we remove D(X)\S from D(x j+1) if it contains no arc (v j,k,v j+1,k+1) for all k.

Example 2 Let X = x1,x2,x3,x4,x5,x6 be an ordered sequence of variables with do-

mains D(xi) = {0,1} for i ∈ {1,2,3,4,6} and D(x5) = {1}. Let S = {1}. Consider

the constraint sequence(X ,S,4,2,2). The filtered local graphs of this constraint are

depicted in Figure 1.

¬S

x3 x4 x2 x3 x4 x5 x3 x4x1 x5 x6

S

x2

Fig. 1 Filtered Local Graphs of Example 2

New Filtering Algorithms for Combinations of Among Constraints 7

SUCCESSIVELOCALGRAPH(X ,S,q, ℓ,u) begin
build a local graph Gsi

for each sequence si (1≤ i≤ n−q)

for i = 1, . . . ,n−q do
FILTERLOCALGRAPH(Gsi

)

for i = 1, . . . ,n−q−1 do
COMPARE(Gsi

,Gsi+1)

for i = n−q−1, . . . ,1 do
COMPARE(Gsi

,Gsi+1)

end

sub FILTERLOCALGRAPH(Gsi
) begin

mark all arcs of Gsi
“invalid”.

by breadth-first search, mark every arc on a path from vi−1,0 to a goal vertex “valid”

remove all invalid arcs
end

sub COMPARE(Gsi
,Gsi+1

) begin
mark all arcs in Gsi

and Gsi+1
“invalid”

for k = 0,1 do
project Gsi+1

onto vertex vi,k of Gsi

by breadth-first search, mark all arcs on a path from vi−1,0 to a goal vertex in Gsi+1

“valid”

remove all invalid arcs
end

Algorithm 1: A graph-based filtering algorithm for the sequence constraint

3.2 Filtering a Sequence of among Constraints

We next filter the conjunction of two “consecutive” among constraints. Our algorithm

has a “forward” phase and a “backward” phase. In the forward phase, we compare the

among on si with the among on si+1 for increasing i, using the algorithm COMPARE

(see Algorithm 1). This is done by projecting Gsi+1
onto Gsi

such that corresponding

variables overlap. Doing so, the projection keeps only arcs that appear in both original

local graphs. We can either project vertex vi+1,0 of Gsi+1
onto vertex vi+1,0 of Gsi

, or

onto vertex vi+1,1 of Gsi
. We consider both projections separately, and label all arcs

“valid” if they belong to a path from vertex vi,0 to goal vertex in Gsi+1
in at least

one of the composite graphs. All other arcs are labeled “invalid”, and are removed

from both the original graphs, Gsi
and Gsi+1

. In the backward phase, we compare the

among on si with the among on si+1 for decreasing i, similar to the forward phase.

3.3 Analysis

The time complexity of SUCCESSIVELOCALGRAPH is polynomial since the local

graphs are all of size O(q · u). Hence FILTERLOCALGRAPH runs in O(q · u) time,

which is called n−q times. The algorithm COMPARE similarly runs for O(q ·u) steps

and is called 2(n− q) times. Thus, the filtering algorithm runs in O((n− q) · q · u)
time. As u≤ q, it follows that the algorithm runs in O(nq2) time.

As mentioned earlier, SUCCESSIVELOCALGRAPH does not establish domain

consistency for the sequence constraint. We illustrate this with the following example.

8 Willem-Jan van Hoeve et al.

Example 3 Let X = x1,x2, . . . ,x10 be an ordered sequence of variables with domains

D(xi) = {0,1} for i ∈ {3,4,5,6,7,8} and D(xi) = {0} for i ∈ {1,2,9,10}. Let S =
{1}. Consider the constraint sequence(X ,S,5,2,3), i.e., every sequence of 5 con-

secutive variables must take between 2 and 3 values in S. The first among constraint

imposes that at least two variables out of {x3,x4,x5} must be 1. Hence, at most one

variable out of {x6,x7} can be 1, by the third among. This implies that x8 must be 1

(from the last among). Similarly, we can deduce that x3 must be 1. This is, however,

not deduced by our algorithm, as can be readily verified.

The problem occurs in the COMPARE method, when we merge the valid arcs

coming from the different projections. Up until that point there is a direct equivalence

between a path in a local graph and a support for the constraint. However the union

of the two projections breaks this equivalence and thus prevents this algorithm from

establishing domain consistency.

4 Reaching Domain Consistency Through regular

The regular constraint [10], defining the set of allowed tuples for a sequence of

variables as the language recognized by a given automaton, admits an incremental

filtering algorithm establishing domain consistency. In this section, we give an au-

tomaton recognizing the tuples of the sequence constraint whose number of states is

potentially exponential in q. Through that automaton, we can express sequence as a

regular constraint, thereby obtaining domain consistency.

The idea is to record in a state the last q values encountered, keeping only the

states representing valid numbers of 1’s for a sequence of q consecutive variables

and adding the appropriate transitions between those states. Let Q
q
k denote the set

of strings of length q featuring exactly k 1’s and q− k 0’s; there are
(

q
k

)

such strings.

Given the constraint sequence(X ,{1} ,q, ℓ,u), we create states for each of the strings

in
⋃u

k=ℓ Q
q
k . By a slight abuse of notation, we will refer to a state using the string it

represents. Consider a state d1d2 . . .dq in Q
q
k , ℓ ≤ k ≤ u. We add a transition on 0 to

state d2d3 . . .dq0 if and only if d1 = 0∨ (d1 = 1∧ k > ℓ). We add a transition on 1 to

state d2d3 . . .dq1 if and only if d1 = 1∨ (d1 = 0∧ k < u).
We must add some other states to encode the first q− 1 values of the sequence:

one for the initial state, two to account for the possible first value, four for the first

two values, and so forth. There are at most 2q− 1 of those states, considering that

some should be excluded because the number of 1’s does not fall within [ℓ,u]. More

precisely, we will have states

q−1
⋃

i=0

min(i,u)
⋃

k=max(0,ℓ−(q−i))

Qi
k.

We define transitions from a state d1 . . .di in Qi
k to state d1 . . .di0 in Qi+1

k on value 0

and to state d1 . . .di1 in Qi+1
k+1 on value 1, provided such states are part of the automa-

ton. Every state in the automaton is considered a final (accepting) state. Figure 2 illus-

trates the automaton that would be built for the constraint sequence(X ,{1} ,4,1,2).

New Filtering Algorithms for Combinations of Among Constraints 9

1100

1001

0011

0110

1010

0101

1

1

0

1

0

0

1000

0010

0001

0100

0

0

1

1

1

0

1

0 0

0

000

001

010

011

100

101

110

00

01

10

11

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

0001

0010

0011

0100

0101

0110

1000

1001

1010

1100

1

1

0

1

1

0

0

0

0

0

Q1
0∪Q1

1

Q4
1 Q4

2

Q0
0 Q2

0∪Q2
1∪Q2

2 Q3
0∪Q3

1∪Q3
2

Fig. 2 Automaton for sequence(X ,{1} ,4,1,2)

The filtering algorithm for regular guarantees domain consistency provided that

the automaton recognizes precisely the solutions of the constraint. By construction,

the states Q
q
⋆ of the automaton represent all the valid configurations of q consecutive

values and the transitions between them imitate a shift to the right over the sequence

of values. In addition, the states Qi
⋆, 0≤ i < q are linked so that the first q values reach

a state that encodes them. All states are accepting states so the sequence of n values

is accepted if and only if the automaton completes the processing. Such a completion

corresponds to a successful scan of every subsequence of length q, precisely our

solutions.

The resulting algorithm runs in time linear in the size of the underlying graph,

which has O(n2q) vertices and arcs in the worst case. Nevertheless, in many practical

problems q is much smaller than n. Note also that subsequent calls to the algorithm

run in time proportional to the number of updates in the graph and not to the size of

the whole graph.

5 Reaching Domain Consistency in Polynomial Time

The filtering algorithms we considered thus far apply to sequence constraints with

fixed among constraints for the same q, ℓ, and u. In this section we present a poly-

nomial-time algorithm that achieves domain consistency in a more generalized set-

ting, where we have m arbitrary among constraints over sequences of consecutive

variables in X . These m constraints may have different ℓ and u values, be of different

length, and overlap in an arbitrary fashion. However, they must be defined using the

same set of values S. A conjunction of k sequence constraints over the same ordered

set of variables, for instance, can be expressed as a single generalized sequence con-

straint. We define the generalized sequence constraint, gen-sequence, formally as

follows:

Definition 4 (Generalized sequence constraint) Let X = x1, . . . ,xn be an ordered

sequence of variables (according to their respective indices) and S be a set of domain

10 Willem-Jan van Hoeve et al.

values. For 1≤ j ≤ m, let s j be a sequence of consecutive variables in X ,
∣

∣s j

∣

∣ denote

the length of s j, and integers ℓ j and u j be such that 0 ≤ ℓ j ≤ u j ≤
∣

∣s j

∣

∣. Let Σ =
{s1, . . . ,sm} ,L = {ℓ1, . . . , ℓm} , and U = {u1, . . . ,um}. Then

gen-sequence(X ,S,Σ ,L,U) =
m
∧

j=1

among(s j,S, ℓ j,u j).

For simplicity, we will identify each s j ∈ Σ with the corresponding among con-

straint on s j. As before, we will assume without loss of generality that D(xi)⊆ {0,1}
and S = {1}. The basic structure of the filtering algorithm for the gen-sequence

constraint is presented as Algorithm 2. The main loop, COMPLETEFILTERINGGS, is

based on the standard shaving process, which works as follows. If a variable-value

pair is yet unsupported, we temporarily make the corresponding variable assignment

and check its consistency via procedure CHECKCONSISTENCY. If this assignment

makes the constraint inconsistent, we remove the value from the domain of the vari-

able under consideration; otherwise we (implicitly) mark this variable-value pair as

supported.

Procedure CHECKCONSISTENCY is the heart of the algorithm. It finds one so-

lution to the gen-sequence constraint, or proves that none exists. It uses a single

array y of length n+1, such that y[0] = 0 and y[i] represents the number of 1’s among

x1, . . . ,xi. The invariant for y maintained throughout is that y[i + 1]− y[i] is either 0

or 1. Initially, we start with the lowest possible array, in which y is filled according to

the lower bounds of the variables in X .

For clarity, let L j and R j denote the left and right end-points, respectively, of the

among constraint s j ∈ Σ ; note that R j = L j +
∣

∣s j

∣

∣− 1. As an example, for the usual

sequence constraint with among constraints of size q, L j would be j and R j would

be j+q−1. The value of s j is computed using the array y: value(s j) = y[R j]−y[L j−
1]. In other words, value(s j) counts exactly the number of 1’s in the sequence s j.

Hence, the constraint s j is satisfied if and only if ℓ j ≤ value(s j) ≤ u j. In order to

find a solution, we consider all among constraints s j ∈ Σ . Whenever a constraint s j is

violated, we make it consistent by “pushing up” either y[R j] or y[L j−1]:

if value(s j) < ℓ j , then push up y[R j] with value ℓ j− value(s j),
if value(s j) > u j, then push up y[L j−1] with value value(s j)−u j.

Such a “push up” may result in the invariant for y being violated. We therefore

repair y in a minimal fashion to restore its invariant as follows. Let y[idx] be the entry

that has been pushed up. We first push up its neighbors on the left side (from idx

downward), starting with idx− 1. In case xidx−1 is fixed to 0, we push up y[idx− 1]
to the same level y[idx]. Otherwise, we push it up to y[idx]− 1. This continues until

the difference between all neighbors to the left of idx is at most 1 and respects the

values of the fixed variables. Whenever y[i] > i for some i during this process, this

indicates that we need more 1’s than there are variables up to i, and we therefore

report an immediate failure. Repairing the array on the right side of idx is done in a

similar manner. Here, in case xidx+1 is fixed to 1, we push up y[idx+1] to y[idx]+1.

Otherwise, we push it up to the same level y[idx]. The process continues to the right

as far as necessary.

New Filtering Algorithms for Combinations of Among Constraints 11

COMPLETEFILTERINGGS(X ,S = {1} ,Σ ,L,U) begin

for xi ∈ X do

for d ∈ D(xi) do

if CHECKCONSISTENCY(xi,d) = false then
D(xi)← D(xi)\{d}

end

sub CHECKCONSISTENCY(xi,d) begin
fix xi = d, i.e., temporarily set D(xi) = {d}
y[0]← 0

for ℓ← 1, . . . ,n do
y[ℓ]← number of forced 1’s among x1, . . . ,xℓ

while a constraint s j ∈ Σ is violated, i.e., value(s j) < ℓ j or value(s j) > u j do

if value(s j) < ℓ j then
idx← right end-point of s j

PUSHUP(idx, ℓ j− value(s j))

else
idx← left end-point of s j

PUSHUP(idx,value(s j)−u j)

if s j still violated then
return false

return true
end

sub PUSHUP(idx,v) begin
y[idx]← y[idx]+ v

if y[idx] > idx then return false

// repair y on the left

while (idx>0)∧ ((y[idx]− y[idx−1] > 1)∨ ((y[idx]− y[idx−1] = 1)∧ (1 /∈ D(xidx−1)))) do

if 1 /∈ D(xidx−1) then
y[idx−1]← y[idx]

else
y[idx−1]← y[idx]−1

if y[idx−1] > idx−1 then
return false

idx← idx−1

// repair y on the right

while (idx < n)∧ ((y[idx]− y[idx+1] > 0)∨ ((y[idx]− y[idx+1] = 0)∧ (0 /∈ D(xidx)))) do

if 0 /∈ D(xidx) then
y[idx+1]← y[idx]+1

else
y[idx+1]← y[idx]

idx← idx+1

end

Algorithm 2: Complete filtering algorithm for the gen-sequence constraint

Example 4 Consider the constraint sequence(X ,S,3,2,2) with X =
{x1,x2,x3,x4,x5,x6}, D(xi) = {0,1} for i ∈ {1,2,3,4,6}, D(x5) = {1}, and

S = {1}. The four among constraints are over s1 = {x1,x2,x3}, s2 = {x2,x3,x4},
s3 = {x3,x4,x5}, and s4 = {x4,x5,x6}. We apply CHECKCONSISTENCY to find

the “minimum” solution to this constraint. (We defer a formal discussion of the

minimum solution to next subsection.) The various steps are depicted in Figure 3.

12 Willem-Jan van Hoeve et al.

x2 x3 x4 x5 x6

y0 y1 y3 y5 y6y2 y4

x1 x2 x3 x4 x5 x6

y0 y1 y3 y5 y6y2 y4

x1

y3y0 y5 y6y2 y4y1

x1 x2 x3 x4 x5 x6

Fig. 3 Finding a minimum solution to Example 4

We start with y = [0,0,0,0,0,1,1] because x5 is forced to be 1, and then evaluate

the different among constraints to check whether any of them is violated. We first

consider s1, which is violated: value(s1) = y[3]−y[0] = 0−0 = 0, while it should be

at least 2. Hence, we push up y[3] by 2 units, and obtain y = [0,0,1,2,2,3,3] after

repairs. Note that we push up y[5] to 3 because x5 is fixed to 1. Next we consider

s2 with value y[4]− y[1] = 2, which is not violated. We continue with s3 with value

y[5]−y[2] = 2, which is not violated. Then we consider s4 with value y[6]−y[3] = 1,

which is violated as it should be at least 2. Hence, we push up y[6] by 1, and obtain

y = [0,0,1,2,2,3,4]. As there are no more violated among constraints, we conclude

consistency, with minimum solution x1 = 0,x2 = 1,x3 = 1,x4 = 0,x5 = 1,x6 = 1.

The basic procedure in Algorithm 2 can be optimized in several ways; our imple-

mentation includes these optimizations. The main loop of COMPLETEFILTERINGGS

is improved by maintaining a support for all domain values. Specifically, one call

to CHECKCONSISTENCY (with a positive response) yields a support for n domain

values. This immediately reduces the number of calls to CHECKCONSISTENCY by

half, while in practice the cumulative reduction is even more. A second improve-

ment is achieved by starting out COMPLETEFILTERINGGS with the computation of

the “minimum” and the “maximum” solutions to gen-sequence, in a manner very

similar to the computation in CHECKCONSISTENCY but without restricting the value

of any variable. This defines bounds ymin and ymax within which y must lie for all

subsequent consistency checks (details are presented in the following section). As

we will shortly see, this is further generalized to maintaining one minimum and one

maximum solution for each variable-value pair, yielding an improvement in the cu-

mulative time complexity of the algorithm from the root of the search tree to any

leaf.

5.1 Analysis

A solution to a gen-sequence constraint can be thought of as the corresponding

binary sequence given by the x array or, equivalently, as the cumulative y array. This y

array representation has a useful property which we use for analyzing the correctness

and the complexity of the algorithm. Let y and y′ be two solutions. Define array y⊕y′

to be the smaller of y and y′ at each point, i.e., (y⊕ y′)[i] = min(y[i],y′[i]).

Lemma 2 If y,y′ are solutions to a gen-sequence constraint, then so is y⊕ y′.

New Filtering Algorithms for Combinations of Among Constraints 13

Proof Suppose for the sake of contradiction that y∗ = y⊕ y′ violates an among con-

straint s of the gen-sequence constraint. Let L and R denote the left and right end-

points of s, respectively. Suppose y∗ violates the ℓ constraint, i.e., y∗[R]−y∗[L−1] <
ℓ(s). Since y and y′ satisfy s, it must be that y∗ agrees with y on one end-point of

s and with y′ on the other. W.l.o.g., assume y∗[L− 1] = y′[L− 1] and y∗[R] = y[R].
By the definition of y∗, it must be that y[L− 1] ≥ y′[L− 1], so that y[R]− y[L− 1] ≤
y[R]− y′[L− 1] = y∗[R]− y∗[L− 1] < ℓ(s). In other words, y itself violates s, a con-

tradiction. A similar reasoning works when y∗ violates the u constraint of s. ⊓⊔

As a consequence of this property, we can unambiguously define an absolute

minimum solution for gen-sequence as the one whose y value is the point-wise

lowest over all solutions. Denote this solution by ymin; we have that for all solutions

y and for all i, ymin[i] ≤ y[i]. Similarly, define the absolute maximum solution, ymax.

For clarity, we will only focus on the minimum solution, which suffices for the proofs

that follow; our implementation uses both the minimum and the maximum solutions

to reduce the running time in practice.

Lemma 3 The procedure CHECKCONSISTENCY constructs the minimum solution

to the sequence constraint and the gen-sequence constraint, or proves that none

exists, in time O(n2) and O(n3), respectively.

Proof CHECKCONSISTENCY reports success only when no among constraint in

gen-sequence is violated by the current y values maintained by it, i.e., y is a so-

lution. Hence, if there is no solution, this fact is detected. We will argue that if there

is a solution, CHECKCONSISTENCY reports success and its current y array exactly

equals ymin.

We first show by induction that y never goes above ymin at any point, i.e., y[i] ≤
ymin[i],0≤ i≤ n throughout the procedure. For the base case, y[i] is clearly initialized

to a value not exceeding ymin[i], and the claim holds trivially. Assume inductively that

the claim holds after processing t ≥ 0 among constraint violations. Let s be the t +1st

violated constraint processed. We will show that the claim still holds after processing

s.

Let L and R denote the left and right end-points of s, respectively. First consider

the case that the ℓ constraint was violated, i.e., y[R]−y[L−1] < ℓ(s), and index R was

pushed up so that the new value of y[R], denoted ŷ[R], became y[L−1]+ ℓ(s). Since

this was the first time a y value exceeded ymin, we have y[L−1]≤ ymin[L−1], so that

ŷ[R] = y[L− 1] + ℓ(s) ≤ ymin[L− 1] + ℓ(s) ≤ ymin[R]. Therefore, ŷ[R] itself does not

exceed ymin[R]. It may, in principle, still be the case that the resulting repair on the

left or the right causes a ymin violation. However, the repair operations only lift up y

values barely enough to be consistent with the possible domain values of the relevant

variables. In particular, repair on the right “flattens out” y values to equal ŷ[L− 1]
(forced 1’s being exceptions) as far as necessary to “hit” the solution again. It follows

that since ŷ[R]≤ ymin[R], all repaired y values must also not go above ymin. A similar

argument works when instead the u constraint is violated. This finishes the inductive

step.

This shows that by performing repeated PUSHUP operations, one can never ac-

cidentally “go past” the solution ymin at any point. Further, since each PUSHUP in-

14 Willem-Jan van Hoeve et al.

creases y in at least one place, repeated calls to it will eventually “hit” ymin as a

solution.

For the time complexity of CHECKCONSISTENCY, note that y[i] ≤ i. Since we

monotonically increase the y values, we can do so at most ∑
n
i=1 i = O(n2) times. The

cost of each PUSHUP operation can be charged to the y values it changes because the

while loops in it terminate as soon as they find a y value that need not be changed.

Finally, we discuss the detection of the violated among constraints during

CHECKCONSISTENCY. For this, we maintain a stack of indices, corresponding to

(possibly) violated constraints. When processing a constraint, we remove it from the

stack, and potentially push up some indices to make it consistent. Whenever we push

up yi, we insert all violated among constraints that have i as a left or right endpoint.

In the case of the normal sequence constraint, we check in constant time whether si

or si+1−q should be added to the stack. This yields the desired overall time complex-

ity of O(n2). Notice that the stack is of size O(n2), because we only insert pushed-

up indices, of which there are at most O(n2) during the process. In the case of the

gen-sequence constraint, we maintain additionally two vectors indicating for each

index i the among constraints that start, respectively end, at i. Notice that at most n

constraints can start or end at an index i. Using this representation, the detection of vi-

olated among constraints for pushed up index i takes at most O(n) time, which results

in a net worst-case time complexity of O(n3) for the gen-sequence constraint. ⊓⊔

Theorem 1 Algorithm COMPLETEFILTERINGGS establishes domain consistency

on the gen-sequence constraint. Further, it can be implemented such that along

every path from the root to a leaf of the search tree, it takes time O(n3) for the se-

quence constraint and O(n4) for the gen-sequence constraint.

Proof Lemma 3 and the simple loop structure of COMPLETEFILTERINGGS together

imply that we obtain domain consistency (or prove inconsistency) each time the algo-

rithm is invoked. To obtain the desired time complexity from the root to a leaf of the

search tree, we maintain for every variable-value pair a minimum y solution. There

are O(n) such minimum solutions, each of size n. When checking consistency of such

a pair, we start from the corresponding minimum y solution and update it if we find

a new one at this point in the search tree. As we proceed from the root to a leaf in the

search tree, these minimum solutions can only (point-wise) increase. Moreover, the

number of push-ups is at most O(n2) for each variable-value pair from the root to a

leaf, following the same reasoning as in the proof of Lemma 3. It follows that for all

n variables, we obtain a time complexity of O(n3) for the sequence constraint, and

O(n4) for the gen-sequence constraint, along every path from the root to a leaf in

the search tree. ⊓⊔

6 Experimental Results

To evaluate the different filtering algorithms presented, we used three sets of bench-

mark problems. The first is a very simple model, constructed with only one sequence

constraint, allowing us to isolate and evaluate the performance of each method sep-

arately. We then report the results of a series of experiments on the well-known car

New Filtering Algorithms for Combinations of Among Constraints 15

Table 1 Comparison on instances with n = 100,d = 10

q ∆
IB IE SLG REG GS

BT CPU BT CPU BT CPU BT CPU BT CPU

5 1 — — 33,976.9 18.210 0.2 0.069 0 0.009 0 0.014

6 2 361,770 54.004 19,058.3 6.390 0 0.078 0 0.018 0 0.013

7 1 380,775 54.702 113,166.0 48.052 0 0.101 0 0.020 0 0.012

7 2 264,905 54.423 7,031.0 4.097 0 0.129 0 0.039 0 0.016

7 3 286,602 48.012 0 0.543 0 0.129 0 0.033 0 0.015

9 1 — — 60,780.5 42.128 0.1 0.163 0 0.059 0 0.010

9 3 195,391 43.024 0 0.652 0 0.225 0 0.187 0 0.016

sequencing problem. Finally, we consider a combination of sequence constraints of

varied lengths, to evaluate the gen-sequence constraint.

In the following, Successive Local Graph (SLG), regular-based implementation

(REG), and Generalized Sequence (GS) are compared with the sequence constraint

implementation provided in the Ilog Solver library in both basic (IB) and extended

(IE) propagation modes. Experiments were run with Ilog Solver 6.2 on a dual proces-

sor Intel Xeon HT 2.8Ghz machine with 3GB RAM.

6.1 A Single Sequence Constraint

To evaluate the filtering both in terms of domain reduction and efficiency, we build

a very simple model consisting of only one sequence constraint. The instances are

generated in the following manner. All instances contain n variables of domain size d

and the set S is composed of the first d/2 elements. We generate a family of instances

by varying the sequence size q and the difference between ℓ and u, ∆ = u−ℓ. For each

family we try to generate 10 challenging instances by randomly filling the domain of

each variable and by enumerating all possible values of ℓ. These instances are then

solved using a random choice for both variable and value selection, keeping only

the ones that are solved with more than 10 backtracks by method IB. All runs were

stopped after one minute of computation. The runtimes in seconds (CPU) and the

number of backtracks (BT) are reported as the average over various instances with

the same parameters.

Table 1 reports on instances with a fixed number of variables (n = 100) and vary-

ing q and ∆ . Table 2 reports on instances with a fixed ∆ (= 1) and a growing number

n of variables.

These results demonstrate that the new filtering algorithms are very efficient. Both

REG and GS require no backtracks because they achieve domain consistency. The

average number of backtracks for SLG is also typically very low. As predicted by

its time complexity, GS is very stable for fixed n in the first table but becomes more

time consuming as n grows in the second table. The performance of SLG and REG

decreases as q grows but REG remains competitive throughout these tests. We expect

that the latter would suffer with still larger values of q and ∆ but it proved difficult to

generate challenging instances in that range—they tended to be loose enough to be

easy for every algorithm.

16 Willem-Jan van Hoeve et al.

Table 2 Comparison on instances with ∆ = 1,d = 10

q ∆
IB IE SLG REG GS

BT CPU BT CPU BT CPU BT CPU BT CPU

5 50 459,154 18.002 22,812 18.019 0.4 0.007 0 0.001 0 0.001

5 100 192,437 12.008 11,823 12.189 1.0 0.041 0 0.005 0 0.005

5 500 48,480 12.249 793 41.578 0.7 1.105 0 0.023 0 0.466

5 1000 942 1.111 2.3 160.000 1.1 5.736 0 0.062 0 4.374

7 50 210,107 12.021 67,723 12.309 0.2 0.015 0 0.006 0 0.001

7 100 221,378 18.030 44,963 19.093 0.4 0.059 0 0.010 0 0.005

7 500 80,179 21.134 624 48.643 2.8 2.115 0 0.082 0 0.499

7 1000 30,428 28.270 46 138.662 588.5 14.336 0 0.167 0 3.323

9 50 18,113 1.145 18,113 8.214 0.9 0.032 0 0.035 0 0.001

9 100 3,167 0.306 2,040 10.952 1.6 0.174 0 0.087 0 0.007

9 500 48,943 18.447 863 65.769 2.2 4.311 0 0.500 0 0.485

9 1000 16,579 19.819 19 168.624 21.9 16.425 0 0.843 0 3.344

6.2 Car Sequencing

In order to evaluate our algorithms in a more realistic setting, we turned to the car

sequencing problem (see prob001 of CSPLib [8] for a detailed description). We ran

experiments using the first set of 78 instances on CSPLib. Table 3 compares and

contrasts the effectiveness of the following combinations of among constraints. IE, as

before, is the extended IloSequence constraint available in the ILOG Solver library.

This constraint also allows one to specify individual cardinalities for values in the set

S, and is thus richer than our basic version of sequence. REG, again as before, is

the sequence constraint encoded as a regular constraint. cREG extends REG by

including a cost variable [6] that restricts the total number of cars with a particular

option. This is more expressive than the normal sequence constraint, but not as rich

as the IloSequence constraint IE. Finally, GSa is the gen-sequence constraint that

includes the normal sequence constraint along with an additional among constraint

restricting the total number of cars with a particular option, similar to cREG and again

not as rich as IE.

In addition to these constraints, we also consider the combinations IE+REG,

IE+cREG, and IE+GSa, where REG, cREG, and GSa, respectively, are added to the

IloSequence constraint as redundant constraints. We note that all versions were run

with two different search heuristics: the specialized ordering proposed by Régin and

Puget [13] for the car sequencing problems, and the min-domain ordering. In the ta-

ble, we report the best time (in seconds) for each version.1 The time out used for

these experiments was one hour.

Table 3 indicates that no single filtering method clearly dominates the others on

this relatively complex problem domain. On the positive side, it also shows that our

proposed algorithms can be very effective here, either applied solely or as a redundant

constraint in conjunction with IloSequence. Specifically, many of the instances can be

solved much faster with one of our algorithms than with IloSequence. For example,

on all instances that are solved by both GSa and IE, the GSa algorithm achieves a

1 Details of these experiments are available from the authors upon request.

New Filtering Algorithms for Combinations of Among Constraints 17

Table 3 Runtime comparison on car sequencing problems

instance IE REG cREG GSa IE+REG IE+cREG IE+GSa

carseq01 0.39 0.04 0.06 0.03 0.41 0.49 0.42

carseq02 83.83 — 19.92 19.63 95.99 19.92 18.57

carseq03 0.60 — 0.04 0.65 0.76 0.74 0.63

carseq07 112.97 — 18.24 27.70 138.19 114.98 93.38

carseq08 0.34 0.07 0.08 0.03 0.36 0.41 0.32

carseq09 18.74 2253.14 21.82 16.92 22.80 20.71 18.50

carseq10 — — 1361.94 912.00 — 4.06 3.64

carseq11 1.31 — 0.46 0.20 1.32 1.66 1.67

carseq12 24.36 — — — 23.93 38.75 48.80

carseq13 1.37 — 0.35 0.18 1.40 1.76 1.53

carseq14 2.93 — — — 2.92 3.16 3.11

carseq15 3.13 0.07 0.41 0.23 3.47 3.45 3.70

carseq16 87.09 — — — 105.28 3.50 2.84

carseq17 2.83 0.07 0.43 0.32 3.13 3.44 3.46

carseq19 — — 2.54 1.35 — — —

carseq20 — — 0.43 0.18 — 9.58 8.51

carseq21 1.54 — — — 1.56 1.92 1.69

carseq22 451.83 — 0.47 0.18 516.35 899.38 914.96

carseq23 1.58 — — — 1.53 1.92 1.85

carseq24 3.35 — — — 3.37 3.63 3.27

carseq30 — — 1774.50 1484.62 — — —

carseq31 1.70 71.91 0.48 0.18 1.71 2.09 1.95

carseq33 5.11 239.02 2.64 1.46 6.73 7.99 6.26

carseq34 3.75 — — — 3.79 4.20 3.94

carseq41 1.83 0.07 0.34 0.16 1.86 2.20 1.97

carseq43 4.69 137.48 28.75 12.78 4.83 5.46 5.24

carseq44 3.94 — — — 3.89 4.19 4.03

carseq48 4.04 0.46 3.88 3.07 4.14 4.12 4.29

carseq49 4.00 93.10 1928.90 659.18 4.01 4.60 4.28

carseq51 4.46 0.07 0.40 0.20 4.49 4.93 4.27

carseq53 4.35 — 0.58 0.35 4.90 4.71 4.64

carseq54 4.54 0.08 0.68 0.37 4.15 4.96 4.81

carseq55 4.46 0.06 0.40 0.23 4.13 4.41 4.70

carseq58 4.30 0.08 0.43 0.34 4.30 2.42 2.12

carseq59 4.15 0.06 0.35 0.23 4.23 4.53 4.41

carseq61 5.05 — — 5.19 5.40 5.26

carseq62 3.24 0.07 0.33 0.25 3.34 3.61 3.46

carseq63 4.98 1321.83 190.42 68.42 5.45 5.80 5.65

carseq65 5.07 — — 5.10 5.45 5.41

carseq67 3.08 0.12 1.25 0.61 3.72 3.52 2.93

carseq70 6.33 0.08 0.37 0.29 6.46 6.75 6.65

carseq72 202.28 — — — 213.92 180.55 154.64

carseq73 5.96 — — — 6.08 6.57 6.23

carseq74 5.92 0.06 0.50 0.33 6.02 6.26 6.24

carseq75 3.16 0.06 0.34 0.18 1.78 2.00 2.15

carseq76 7.03 2.02 4.38 2.38 7.00 7.50 7.30

carseq78 5.55 0.08 0.34 0.27 5.60 5.85 5.88

total solved 43 24 35 35 43 45 45

median speed-up of 11.3 times. Furthermore, there are 4 instances (namely, carseq10,

carseq19, carseq20, and carseq30) that cannot be solved using IloSequence alone

within a one hour time limit, while applying our algorithms cREG and GSa does

allow solving them. The most striking examples are carseq19 and carseq20, which

can now be solved in 0.18 and 1.35 seconds, respectively, by using the GSa algorithm.

18 Willem-Jan van Hoeve et al.

Table 4 gen-sequence constraint on sequences of varied lengths

instance gcc’s + sequence’s gen-sequence

characteristics size #solutions BT CPU BT CPU

40 2,284 185,287 216.49 0 0.77

50 4,575 186,408 369.12 0 2.09

max6/8-min22/30 60 6,567 188,242 621.99 0 3.60

70 2,810 195,697 840.52 0 1.88

80 730 198,091 1061.62 0 0.61

40 3 393,748 390.93 0 0.01

50 3 393,748 660.74 0 0.02

max6/9-min20/30 60 3 393,748 1074.26 0 0.03

70 3 393,748 1432.20 0 0.04

80 3 393,748 1786.62 0 0.05

40 137,593 328,376 417.63 0 34.43

50 388,726 456,937 1061.24 0 150.87

max7/9-min22/30 60 718,564 729,766 2822.09 0 339.89

70 105,618 1,743,518 5048.84 0 60.82

80 22,650 1,847,335 7457.36 0 15.41

6.3 Multiple Sequence Constraints of Varied Lengths

Table 4 evaluates the performance of the gen-sequence constraint on three families

of instances constructed so that they are challenging for a CP approach using pre-

viously known constraints. The instances specify restrictions for work/rest patterns

in individual schedules of rostering problems, inspired by contexts in which several

levels of time granularity (day, week, month, year) coexist [16]. Every instance re-

quires between 4 and 5 days worked per calendar week. Its identification, of the form

“maxA/B-minC/D”, indicates that at most A days are worked in any B consecutive

days but that at least C days are worked in any D consecutive days. Instance size,

i.e., the number of days in the scheduling horizon, varies from 40 to 80 within each

family. We wish to enumerate all the solutions. The “gcc’s + sequence’s” model

uses one gcc constraint per week and two separate sequence constraints for the A/B

and C/D restrictions. Note that the sequence constraints are implemented with our

customized algorithm. The “gen-sequence” model uses a single gen-sequence

constraint. Since we achieve domain consistency for this constraint and the whole

problem is captured by this one constraint, the number of backtracks is always zero.

These few experiments suffice to show that using the gen-sequence constraint in

the general setting can lead to computational savings of several orders of magnitude.

7 Discussion

We proposed, analyzed, and experimentally evaluated three new filtering algorithms

for the sequence constraint. They have different strengths that complement each

other well. The local graph approach of Section 3 does not guarantee domain consis-

tency but often results in a significant amount of filtering, as witnessed in the exper-

iments. Its asymptotic time complexity is O(nq2). The reformulation as a regular

New Filtering Algorithms for Combinations of Among Constraints 19

constraint, described in Section 4, establishes domain consistency but its asymptotic

time and space complexity are exponential in q, namely O(n2q). Nevertheless it per-

forms very well, partly due to its incremental nature, for small values of q, not un-

common in applications: in car sequencing, values between 2 and 5 are frequent;

in rostering, the shift assignment problem typically features values between 5 and 9

whereas the shift construction problem may require values up to 12. The customized

algorithm of Section 5 also establishes domain consistency on the sequence con-

straint. It has an asymptotic time complexity that is polynomial in n, namely O(n3)
along each path from the root to a leaf in the search tree. Also in practice this algo-

rithm performed very well, being often even faster than the local graph approach. It

should be noted that previously known algorithms did not establish domain consis-

tency.

In our experimental section, we demonstrated the advantages of our proposed

algorithms in practice. On single sequence constraints with various parameters, our

algorithms outperform the state of the art by several orders of magnitude. In more

realistic settings such as the car sequencing problem, we showed that our algorithms

allow solving more instances, or again can improve the state of the art significantly.

Finally, on more complex combinations of among constraints, our generalized se-

quence algorithm achieves computational savings of orders of magnitude.

Our contribution extends beyond the sequence constraint and into more general

combinations of among (-like) constraints. The algorithm of Section 5 also estab-

lishes domain consistency in O(n4) time on freer combinations of among constraints,

as long as each is defined on consecutive variables with respect to a fixed ordering. In

this context, it is worth recalling that not every combination of among constraints is

tractable—Régin proved that finding a solution to an arbitrary combination of among

constraints is NP-complete [11]. Another interesting extension for our first two algo-

rithms is that they lend themselves to a generalization of among in which the number

of occurrences is represented by a set (as opposed to an interval of values).

Acknowledgements The authors would like to thank Marc Brisson and Sylvain Mouret for their help

with some of the implementations and experiments.

A preliminary version of this article appeared at CP-06, the 12th International Conference on Princi-

ples and Practice of Constraint Programming, Nantes, France in September 2006 [15]. This work was

partially supported by the Canadian Natural Sciences and Engineering Research Council (Discovery

grant OGP0218028), the Intelligent Information Systems Institute (IISI) at Cornell University (AFOSR

grant FA9550-04-1-0151), and the Defense Advanced Research Projects Agency (DARPA; REAL grant

FA8750-04-2-0216, COORDINATORs grant FA8750-05-C-0033).

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

2. N. Beldiceanu and M. Carlsson. Revisiting the Cardinality Operator and Introducing the Cardinality-

Path Constraint Family. In P. Codognet, editor, Proceedings of the 17th International Conference on

Logic Programming (ICLP 2001), volume 2237 of LNCS, pages 59–73. Springer, 2001.

3. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal of Mathematical

and Computer Modelling, 20(12):97–123, 1994.

4. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global Constraint Catalog. Technical Report T2005-

08, SICS, 2005.

20 Willem-Jan van Hoeve et al.

5. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

6. S. Demassey, G. Pesant, and L.-M. Rousseau. A cost-regular based hybrid column generation ap-

proach. Constraints, 11:315–333, 2006.

7. M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem in constraint

logic programming. In Y. Kodratoff, editor, Proceedings of the European Conference on Artificial

Intelligence (ECAI), pages 290–295, 1988.

8. I. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical report, TR APES-09-

1999, 1999. Available at http://www.csplib.org.

9. R. Mohr and G. Masini. Good Old Discrete Relaxation. In European Conference on Artificial Intelli-

gence (ECAI), pages 651–656, 1988.

10. G. Pesant. A Regular Language Membership Constraint for Finite Sequences of Variables. In M. Wal-

lace, editor, Proceedings of the Tenth International Conference on Principles and Practice of Con-

straint Programming (CP 2004), volume 3258 of Lecture Notes in Computer Science, pages 482–495.

Springer, 2004.

11. J.-C. Régin. Combination of Among and Cardinality Constraints. In R. Barták and M. Milano, edi-

tors, Proceedings of the Second International Conference on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR 2005), volume 3524

of Lecture Notes in Computer Science, pages 288–303. Springer, 2005.

12. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In Proceedings of

the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of

Artificial Intelligence Conference (AAAI / IAAI), volume 1, pages 209–215. AAAI Press / The MIT

Press, 1996.

13. J.-C. Régin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Constraints. In G. Smolka,

editor, Proceedings of the Third International Conference on Principles and Practice of Constraint

Programming (CP97), volume 1330 of LNCS, pages 32–46. Springer, 1997.

14. M. Trick. A Dynamic Programming Approach for Consistency and Propagation for Knapsack Con-

straints. Annals of Operations Research, 118:73–84, 2003.

15. W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. Revisiting the sequence constraint.

In CP-06: 12th International Conference on Principles and Practice of Constraint Programming,

volume 4204 of Lecture Notes in Computer Science, pages 620–634, Nantes, France, Sept. 2006.

16. T. Zemmouri, P. Chan, M. Hiroux, and G. Weil. Multiple-level Models: an application to employee

timetabling. In E. K. Burke and M. Trick, editors, Proceedings of the 5th International Conference

on the Practice and Theory of Automated Timetabling (PATAT’04), pages 397–412, 2004.

	Introduction
	Background
	A Graph-Based Filtering Algorithm
	Reaching Domain Consistency Through regular
	Reaching Domain Consistency in Polynomial Time
	Experimental Results
	Discussion

