
Optimal Multi-Agent Scheduling with Constraint Programming∗

Willem-Jan van Hoeve1, Carla P. Gomes1, Michele Lombardi2, and Bart Selman1

1 Dept. of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853
2 DEIS, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy

{gomes,vanhoeve,selman}@cs.cornell.edu, mlombardi@lompa.it

Abstract

We consider the problem of computing optimal sched-
ules in multi-agent systems. In these problems, actions
of one agent can influence the actions of other agents,
while the objective is to maximize the total ‘quality’
of the schedule. More specifically, we focus on multi-
agent scheduling problems with time windows, hard
and soft precedence relations, and a nonlinear objec-
tive function. We show how we can model and effi-
ciently solve these problems with constraint program-
ming technology. Elements of our proposed method
include constraint-based reasoning, search strategies,
problem decomposition, scheduling algorithms, and a
linear programming relaxation. We present experimen-
tal results on realistic problem instances to display the
different elements of the solution process.

Introduction
Multi-agent planning and scheduling problems arise in many
contexts such as supply chain management, coordinating
space missions, or configuring and executing military sce-
narios. In these situations, the agents usually need to per-
form certain tasks in order to achieve a common goal. Often
the agents need to respect various restrictions such as tempo-
ral constraints and interdependency relations. Furthermore,
depending on the application at hand, these problems may be
subject to several uncertainties, for example the actual out-
come and duration of executing a task, and changing envi-
ronmental conditions. Multi-agent planning and scheduling
problems are among the most difficult problems in Artifical
Intelligence. While the centralized deterministic version is
already NP-hard, the non-deterministic distributed version is
even NEXP-complete (Bernstein et al. 2002).

In this work we present an efficient method to compute
provably optimal solutions for deterministic multi-agent
scheduling problems. Our method can be applied either in
a centralized or in a distributed multi-agent setting. For ex-
ample, one can use our method to compute an initial optimal
centralized schedule for all agents together. In a distributed
setting, it can be applied as a local scheduler to compute al-
ternative schedules for individual agents, in which case ‘op-
timality’ is restricted to the local view of each agent. Fi-

∗This version (January 24, 2007) has been submitted and is un-
der review.

nally, our solver may be applied in an experimental setting
to evaluate distributed approaches with respect to an optimal
solution.

Our approach is based on constraint programming tech-
nology. This has several advantages. First, it allows us to
specify the problem in a rich modeling language, and to
apply the corresponding default constraint-based reasoning.
As we will see below, our model is very close to the origi-
nal representation of the problem. Second, in the constraint
programming framework we can specify detailed search
heuristics, tailored to the specific needs of the problem. In
addition, we have implemented a problem decomposition
scheme to further improve our search process. Third, we
have implemented an “optimization constraint”, based on a
linear programming relaxation of the problem, to strengthen
the optimization reasoning. Fourth, we optionally apply ad-
vanced scheduling algorithms, such as the edge-finding al-
gorithm. The constraint-based structure of constraint pro-
gramming allows us to implement all these technologies ef-
ficiently in one system.

In the following section we provide a detailed description
of the problem class that is the subject of this paper. There-
after, we present our constraint programming model. This
is followed by a description of the solution process. Finally,
we present extensive computational results.

Problem Description
The problems that we consider in this work consist of a set
of agents that may execute certain methods. Each executed
method contributes an amount of quality to a hierarchical
objective function. Furthermore, the problems contain tem-
poral constraints and interdependence relations that need to
be respected. The goal is to find for each agent a schedule of
methods to execute at a certain time, such that the total qual-
ity is maximized. To represent these problems, we make use
of the modeling language TAEMS: a framework for Task
Analysis, Environment Modeling, and Simulation (Horling
et al. 1999). In fact, we consider a subset of this framework,
called cTAEMS, which is particularly suitable to represent
coordination problems (Boddy et al. 2007).

In cTAEMS, a problem is represented by tasks and meth-
ods, which are linked to each other in a hierarchical way. An
example is depicted in Figure 1, consisting of 9 tasks and
13 methods. A method i is owned by a single agent A[i].



Q: 8
D: 6

A: John

Method5

Q: 6
D: 4

Method6

A: Mary

Q: 5
D: 3

Method7

A: Mary

Task2

QAF: max
TW: [7,12]

Task5

QAF: max

Q: 6
D: 4

Method8

A: Mary

Q: 6
D: 4

Method9

A: Peter

Q: 6
D: 6

Method3

A: John

Q: 5
D: 4

Method4

A: Peter
Q: 8
D: 7

Method11

A: Mary

Q: 3
D: 2

Method10

A: John

Task7

QAF: max

Task6

QAF: max

Q: 4
D: 3

Method13

A: Peter

Q: 9
D: 8

Method12

A: John

Task8

QAF: max

QAF: sync_sum
TW: [11,19]

Task3

QAF: sum

Task1

QAF: min
TW: [1,10]

Task4

QAF: max

Method1

A: John
Q: 7
D: 6

Method2

A: Mary
Q: 5
D: 4

TaskGroup1

en
ab

le

enable

Figure 1: Example of a cTAEMS task structure. QAF stands for quality accumulation function, TW for time window, A for
agent, Q for quality, and D for duration.

Method11

Method12

Method9

Method6

Method4

10 15 200

Mary:

Peter:

John:

5time

Method1

Figure 2: The optimal schedule for the agents corresponding
to the problem of Figure 1, with total quality 34.

Each agent is restricted to execute at most one method at a
time. If a method i is executed, it generates a certain qual-
ity Q[i], while its execution takes a duration D[i]. A task is
not owned by an agent, but serves to accumulate quality via
its subtasks (or submethods). This is done via a quality ac-
cumulation function, or QAF. The possible QAFs are: min,
max, sum, sync-sum, exactly-one, and sum-and. Here min,
max, and sum represent the minimum, maximum, or sum,
respectively. The sync-sum represents the sum of all sub-
tasks (or submethods) that are synchronized, i.e., starting at
the same time. The exactly-one restricts at most one sub-
task (or submethod) to have positive quality. The sum-and
requires all subtasks (or submethods) to have positive qual-
ity, or none. The accumulation of quality only takes place
after a method has been completed. The total quality of the
problem is represented by the root task (called TaskGroup1
in Figure 1). The goal is to execute certain methods such
that the quality of the root task is maximized. For exam-
ple, Figure 2 presents an optimal solution for the problem in
Figure 1.

The execution of a method takes place from its start time

until its end time. The integer time representation is such
that the duration includes the start and end time. For exam-
ple, in Figure 2, Method6 starts at time 7, ends at time 10,
and has a duration of 4. The start and end time of a task are
inherited recursively by the start and end time of its children.
Both methods and tasks may be subject to a time window,
representing the earliest start time and latest end time (de-
noted by TW in Figure 1). Time windows also apply to the
tasks and methods underneath a task. Hence, the time win-
dow of a method is defined by the intersection of the time
windows of all tasks on the path from the method to the root
task of the hierarchy.

Finally, there may exist precedence relations between
tasks and/or methods. The possible precedence relations are:
enable, disable, facilitate, and hinder. A precedence rela-
tion influences the execution of the target, proportional to
the quality of the source at the time of execution of the tar-
get. An enable relation states that we may only execute the
target from the moment that the source has positive quality.
For example, in Figure 1 we may execute Method11 after
Task2 has accumulated (some) positive quality. A disable
relation forbids the execution of the target from the moment
that the source has positive quality. The facilitate and hinder
relation are ‘soft’ enabling or disabling relations, and have a
coefficient 0 ≤ c ≤ 1. Suppose the source can maximally
accumulate maxQ quality. If the source has accumulated
quality q at the time of execution of the target, the facilitate
relations decreases the duration, and increases the quality, of
the target with a factor c · q/maxQ. For a hinder relation,
this factor is used to increase the duration and to decrease
the quality of the target. By definition, facilitate and hin-
der relations only affect the duration of methods, while the



‘duration’ of a task is undefined.
As a final remark, cTAEMS allows the data to be speci-

fied by means of probability distributions rather than fixed
numbers. In this work we restrict ourselves to deterministic
data, however. If necessary, we replace the distributions by
their minimum, maximum, or expected value.

Related Work

In the last decade there has been an increasing interest in
centralized and distributed approaches to solve multi-agent
planning and scheduling problems. In the context of dis-
tributed multi-agent systems representable with cTAEMS,
several approaches have been developed. In those ap-
proaches, the main target is the coordination problem under
changing environmental conditions. Naturally, each of the
approaches also includes a ‘scheduler’ to compute and eval-
uate alternative solutions.

One approach, introduced by (Musliner et al. 2006), rep-
resents the non-deterministic cTAEMS problem as a Markov
decision process (MDP). When computing a schedule (in
fact a policy), the MDP is only partially ‘unrolled’ in order to
keep the computational complexity under control. Another
approach, proposed by (Szekely et al. 2006), applies a se-
lective combination of different heuristic solution methods,
including a partially-centralized solution repair, and locally
optimized resource allocation. Finally, (Smith et al. 2006)
represent cTAEMS problems as Simple Temporal Networks,
and apply constraint-based reasoning to compute a solution
to the deterministic version of the problem. However, also
the latter method does not compute provably optimal solu-
tions.

Although the non-deterministic cTAEMS problem can
in theory be solved to optimality, for example by using
Markov decision processes, in practice there exists no scal-
able such solver (to the best of our knowledge). For the
non-deterministic cTAEMS problem, several methods ex-
ists, none of which is able to compute optimal solutions ef-
ficiently. A main contribution of this work is to present the
first scalable solver that efficiently computes optimal solu-
tions for the deterministic cTAEMS problem.

Constraint Programming Model

Variables

For each method i, we introduce the following decision vari-
ables: a binary variable xi representing whether or not i is
executed, and an integer variable starti representing the start
time of i. Together, they determine any potential schedule.

Furthermore, we make use of the following auxiliary
variables. For each task i we introduce an integer vari-
able starti, representing its starting time. For each task or
method i we introduce an integer variable endi representing
the end time of i, and a floating-point variable quali repre-
senting the quality of i. For each method i we further intro-
duce a floating point variable duri representing its duration.
Finally, for each precedence relation r we introduce a float-
ing point variable factorr representing the factor of r.

Temporal Constraints
The temporal constraint are expressed as follows. For each
method i with with duration D[i] and time window [L, U ]:

duri = D[i] · xi, (1)
starti + duri − 1 = endi, (2)

starti ≥ L, (3)
endi ≤ U. (4)

In case method i is the target of precedence relations, we
need to augment equation (1), which is described below.

Resource Constraints
The resource constraints ensure that the methods of an agent
do not overlap (the agents correspond to a unary resource).
For each agent a and each two different methods i and j with
A[i] = A[j] = a, we state:

(starti > endj) ∨ (startj > endi).

Alternatively, we can group together all non-overlapping
constraints for each agent in one UnaryResource constraint.
This allows to reason over all disjunctions together, for ex-
ample using the edge-finding algorithm (Carlier & Pinson
1994; Vilim 2004). For each agent a, we then state

UnaryResource(Sa, Ea, Ra),

where Sa = {starti | A[i] = a} represents the start vari-
ables, Ea = {endi | A[i] = a} the end variables, and
Ra = {xi | A[i] = a} the “requirement” variables of meth-
ods i with A[i] = a.

Quality Accumulation
Next we consider the constraints to link together the quality
of the tasks and the methods. For each method i with quality
Q[i] we state:

quali = Q[i] · xi. (5)
For each task t with subtasks s1, . . . , sk and quality accu-
mulation function f ∈ {min, max, sum} we state:

qualt = fi=1,...,k qualsi
. (6)

If the quality accumulation function is sync-sum we state:
qualt =

∑
i=1,...,k qualsi

, (7)
(xsi

= 1) ⇒ (startsi
= startt). (8)

If the quality accumulation function is exactly-one we state:
qualt = maxi=1,...,k qualsi

, (9)
(xs1

= 1) + . . . + (xsm
= 1) ≤ 1. (10)

Finally, if the quality accumulation function is sum-and we
state:

qualt =
∑

i=1,...,k qualsi
, (11)

((xs1
= 1) ∧ . . . ∧ (xsm

= 1)) ∨ (qualt = 0). (12)
In case the method or the task is the target of precedence

relations, we need to augment the corresponding quality
constraints. This is described below.

The objective function value is represented by the quality
of the root of the search tree, qual

root
. Hence, to maximize

its quality, we add the ‘constraint’:
maximize qual

root
.



Precedence Relations
First we model the effect of precedence relations to the qual-
ity variables. If method i is the target of precedence relations
r1, . . . , rm, we replace equation (5) by:

quali = factorr1
· . . . · factorrm

· Q[i] · xi.

If task t is the target of precedence relations r1, . . . , rm, and
has a quality accumulation function f , we replace the corre-
sponding quality constraint (6), (7), (9), or (11) by:

qualt = factorr1
· . . . · factorrm

· fi=1,...,kqualsi
.

The duration variables are similarly updated. If method i is
the target of facilitate and/or hinder relations r1, . . . , rm, we
replace equation (1) by:

duri = factorr1
· . . . · factorrm

· D[i] · xi.

Next we describe how we model the factor variables. Re-
call that the precedence relations depend on the quality of
the source at the start time of the target. For a precedence
relation r from source i to target j (if applicable with coef-
ficient cr), we state:

factorr = (QExpr(i, startj) > 0) (enable),
factorr = 1 + (cr · QExpr(i, startj)/maxQi) (facilitate),
factorr = 1 − (QExpr(i, startj) > 0) (disable),
factorr = 1 − (cr · QExpr(i, startj)/maxQi) (hinder),

where QExpr(i, startj) is a recursive expression represent-
ing the quality of i at the start time of j, and maxQi

is the maximum possible quality of i. The expression
QExpr(i, startj) contains both temporal conditions and
quality accumulation functions following from the subtree
rooted at the source of the relation. For example, if r is an
enable relation from method i to method j, we have

factorr = ((endi ≥ startj) > 0).

Linear Programming Constraint
The objective function is composed of the functions min,
max, sum, and complex nonlinear expressions following
from the precedence relations. In order to potentially im-
prove the optimization reasoning of the constraint program-
ming solver, we have additionally implemented a redundant
optimization constraint, based on a linear programming re-
laxation of the problem. We state the constraint as:

LP-constraint(x, start, end, qual
root

),

where x, start and end are shorthands for the arrays con-
sisting of the variables xi, starti and endi for all methods i,
and qual

root
represents the quality variable of the root task.

Each time the LP-constraint is invoked, it builds an internal
linear programming model, taking into account the whole
cTAEMS problem structure. Based on the continuous solu-
tion of this model, the upper bound of qual

root
is potentially

improved. Furthermore, we apply reduced-cost based filter-
ing to remove inconsistent values from the domains of the
variables xi (Focacci, Lodi, & Milano 1999).

Solution Techniques
Search Strategy
In constraint programming, the variable and value selection
heuristics determine the shape of the search tree, which is
usually traversed in a depth-first order. We have experi-
mented with several different heuristics, and report here the
most effective strategy, following from our experiments.

Our model consist of two sets of decision variables; the
assignment variables xi and the start variables starti for
each method i. We apply a two-phase depth-first search,
consisting of a selection phase and a scheduling phase. In
the selection phase, we assign all assignment variables. For
this we use a greedy variable selection heuristic, i.e. choose
first the variable xi (for method i) for which the quality Q[i]
is highest (ties are broken lexicographically). As a value se-
lection heuristic, we first choose value 0, and then value 1.
Using this strategy, we start with an empty schedule that is
gradually augmented with methods of high quality. If in-
stead we would have chosen value 1 first, we often cannot
schedule all selected methods.

In the scheduling phase we assign the start variables. As
variable selection heuristic we choose first the variable with
the smallest domain size (ties are again broken lexicograph-
ically). As value selection heuristic we choose first the min-
imum value in the domain.

Problem Decomposition
When certain parts of a problem are independent, one can
decompose the problem and solve the parts independently.
In constraint programming, independent subproblems are
usually detected by means of the constraint (hyper-)graph.
In the constraint graph of a model, the nodes represent the
variables, while relations between variables (the constraints)
are represented by (hyper-)edges. Independent subproblems
are equivalent to connected components in the constraint
graph, which thus represent distinct subsets of variables and
their corresponding constraints. As the connected compo-
nents can be found in linear time (in the size of the graph),
problem decomposition can be very effective.

In our case, it suffices to build the constraint graph on the
decision variables xi and starti for all methods i. In fact,
we can simply group them together and create one node for
each method i. We add an edge between two nodes i and j if
there is a constraint involving method i and j. For example,
if methods i and j belong to the same agent, and their time
windows overlap, the non-overlapping constraint will place
an edge between the nodes representing i and j. Naturally,
at most one edge needs to be maintained for each pair of
nodes.

Unfortunately, all decision variables are linked together
via the objective function and the quality constraints. Hence,
the constraint graph consists of one connected component,
which prevents the application of problem decomposition.
We have circumvented this restriction by decomposing the
objective function more carefully. Namely, as we are maxi-
mizing, the arguments of the functions sum and max may be
evaluated (and maximized) independently, while preserving
optimality. For the min function this is not the case, because



base no decomposition LP constraint disjunctions best known
optimal solutions 100% 98.8% 100% 100% 74.7% *
average time (s) 0.028 0.636 1.275 0.030
median time (s) 0.02 0.02 0.43 0.02
average backtracks 83.4 7114.1 77.0 82.4
median backtracks 59 103 59 59

* no proof of optimality

Table 1: Computational results on problem set I. The base settings of our solver are: apply problem decomposition, omit the
LP-constraint, and apply the UnaryResource constraint. Time limit is set to 300 seconds. The ‘best known’ column refers to
the previously best known solutions.

its arguments are dependent in case of maximization. Con-
sequently, while building the constraint graph, we consider
the quality accumulation functions of the objective function
individually. When this function is a min, sync-sum, exactly-
one, or sum-and, we add an edge between all methods un-
derneath this function. We don’t add any edges when the
function is a sum or a max. Doing so, we are able to effec-
tively decompose the problem in many cases.

Experimental Results
Our model is implemented in ILOG CP Solver 6.3, and
uses the default constraints and corresponding domain fil-
tering algorithms, where applicable. We have implemented
our two-phase search strategy, the problem decomposition,
and the LP-constraint within ILOG CP Solver 6.3. For the
LP-constraint we use ILOG CPLEX 10.1 to solve the lin-
ear programming relaxation. The UnaryResource constraint
applies the edge-finding algorithm of ILOG Scheduler 6.3.
In all experiments, we apply a time limit of 300 seconds per
instance.

We have performed experiments on problem instances
originating from the DARPA program COORDINATORs.
They represent realistic problem scenarios that are designed
to evaluate all the different components of the problem.
Problem set I consists of 2550 small to medium-sized in-
stances, containing 8 to 64 methods (up to 128 decision vari-
ables), and 2 to 9 agents. We have used this set to evaluate
the performance of our different solution strategies. Table 1
presents the computational results for this problem set, ag-
gregating the results over all 2550 instances. We report the
median and average time and number of backtracks, and the
percentage of problems that could be optimally solved. We
compare our results with the previously best known solu-
tions, computed by a heuristic solver developed by Global
InfoTek, Inc.1 (unfortunately we were not able to determine
the corresponding running times).

The column ‘base’ represents the results for our base
settings: apply problem decomposition, omit the LP-con-
straint, and apply the UnaryResource constraint. With these
settings we obtain the best results: all problems are solved
to optimality, in the fastest time. The column ‘no decompo-
sition’ shows the results if we omit the problem decompo-
sition. In that case, only 98.8% of the instances are solved
optimally (within the time limit of 300 seconds), while the

1http://www.globalinfotek.com/

time and number of backtracks increase drastically. The
next column, ‘LP constraint’ shows the results when we ac-
tivate the LP-constraint. Although we can solve all prob-
lems within the time limit, and the number of backtracks
slightly decreases, the application of this constraint is too
costly in terms of running time, for these instances. Finally,
column ‘disjunctions’ shows the results when we replace the
UnaryResource constraint with the disjunctive representa-
tion. In other words, the edge-finding algorithm is replaced
with individual non-overlapping constraint. The results in-
dicate that the two approaches are comparable for these in-
stances.

The results in Table 1 indicate that the LP-constraint is not
effective when applied to problem set I. We suspected that
this is due to the relatively small number of sum functions
in these problem instances. Hence, to investigate this fur-
ther, we adapted problem set I by uniform-randomly replac-
ing min and max quality accumulation functions by a sum.
To avoid excessive problem decomposition we have also
slightly increased the time windows (with a factor 0.15). The
resulting problem set II has been solved with and without
the LP-constraint. The computational results are presented
in Table 2, indictating the benefit of the LP-constraint under
the new circumstances. With the additional LP-constraint
we can solve more problems optimally, provide better upper
bounds, while the running time decreases.

with LP without LP
optimal solutions 84.8% 81.2%
best lowerbound 99.8% 92.1%
all instances:
average time (s) 52.14 60.84
median time (s) 0.98 0.04
average backtracks 346,934 498,937
median backtracks 184 220
instances optimally solved with LP only:
average time (s) 23.01 300.00
median time (s) 3.12 300.00
average backtracks 55,496 3,137,852
median backtracks 875 3,259,144

Table 2: Computational results on problem set II. ‘Without
LP’ corresponds to our base settings, while ‘with LP’ adds
to our base settings the LP-constraint. Time limit is 300
seconds.



Cornell best known
optimal solutions 59% 26% *
best lowerbound 76% 50%

Cornell best known
instance #methods #agents obj. value time (s) obj. value
big1001s 2250 100 2050.25 optimal 87.3 2050.25 *
big100EVA1 2250 100 2046.5 optimal 88.48 2046.50 *
big100EVA2 2250 100 2059.25 optimal 86.33 2059.25 *
big100EVA3 2250 100 2110 optimal 94.15 2110.00 *
big100EVA4 2250 99 2040.25 optimal 92.6 2040.25 *
big100EVA5 2250 99 2041.75 optimal 92.21 2041.75 *
big701s 1350 70 1314.12 lowerbound 300 1303.83
big70EVA1 1350 70 1312 optimal 83.51 1298.04
big70EVA2 1350 70 1310.81 lowerbound 300 1293.34
big70EVA3 1350 69 1321.87 lowerbound 300 1307.34
big70EVA4 1350 70 1309 lowerbound 300 1293.75
big70EVA5 1350 70 1298.38 optimal 259.05 1278.19

* no proof of optimality

Table 3: Computational results for problem set III. Columns ‘#methods’ and ‘#agents’ denote the number of columns and
agents, respectively. The three columns under ‘Cornell’ represent the objective function, optimality, and running time of our
method, respectively. The ‘best known’ column refers to the previously best known solutions. Time limit is set to 300 seconds.

Finally, we have tested our solver on large problem in-
stances to test its robustness and scalability. For this we
used problem set III, that consists of 46 medium-sized to
large instances, containing 135 to 2250 methods (up to 4500
decision variables), and 8 to 100 agents. We have solved
these problems with our base setting, and present the exper-
imental results in Table 3. The upper part of Table 3 shows
aggregated results over all instances, while the lower part
presents detailed results on the largest instances. We com-
pare our method with the previously best known solutions,
which were computed using the method proposed by (Smith
et al. 2006) (unfortunately we were not able to determine the
corresponding running times). In many cases our solver is
able to compute an optimal solution, and to improve or meet
the current best solution. Moreover, even for the largest in-
stances, our running times are often very fast. These results
indicate that are method is both robust, efficient and scal-
able.

Conclusion

We have presented an efficient and scalable method to com-
pute optimal solutions to multi-agent scheduling problems,
based on constraint programming. We have focussed in par-
ticular on problems that are representable by the cTAEMS
language. Our method can be applied to compute deter-
ministic centralized optimal schedules to such problems, or
it can be used as a local scheduler to compute alternative
schedules for individual agents in a distributed setting. At
the moment of writing, our solver is being used successfully
for both purposes by researchers at Harvard University, SRI
International, and Bar-Ilan University.

References
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S. 2002.
The Complexity of Decentralized Control of Markov Decision
Processes. Mathematics of Operations Research 27(4):819–840.
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent, R.;
Long, A.; Kohout, B.; and Maheswaran, R. 2007. C TAEMS
Language Specification — Version 2.03.
Carlier, J., and Pinson, E. 1994. Adjustment of Heads and Tails
for the Job-shop Problem. European Journal of Operational Re-
search 78:146–161.
Focacci, F.; Lodi, A.; and Milano, M. 1999. Cost-Based Domain
Filtering. In Proceedings of the Fifth International Conference
on Principles and Practice of Constraint Programming (CP ’99),
volume 1713 of LNCS, 189–203. Springer.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.; Zhang,
S.; Decker, K.; and Garvey, A. 1999. The Taems White Paper.
Musliner, D.; Durfee, E.; Wu, J.; Dolgov, D.; Goldman, R.; and
Boddy, M. 2006. Coordinated Plan Management Using Multi-
agent MDPs. In AAAI Spring Symposium on Distributed Plan
and Schedule Management, 73–80. AAAI Press.
Smith, S.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.; and
Rubinstein, Z. 2006. Multi-Agent Management of Joint Sched-
ules. In AAAI Spring Symposium on Distributed Plan and Sched-
ule Management, 128–135. AAAI Press.
Szekely, P.; Maheswaran, R.; Neches, R.; Rogers, C.; Sanchez,
R.; Becker, M.; Fitzpatrick, S.; Gati, G.; Hanak, D.; Karsai,
G.; and van Buskirk, C. 2006. An Examination of Criticality-
Sensitive Approaches to Coordination. In AAAI Spring Sympo-
sium on Distributed Plan and Schedule Management, 136–142.
AAAI Press.
Vilim, P. 2004. O(n log n) Filtering Algorithms for Unary Re-
source Constraint. In Proceedings of CPAIOR 2004, volume 3011
of LNCS, 319–334. Springer.


