
Submitted to
manuscript

Multivalued Decision Diagrams for
Sequencing Problems

Andre A. Cire, Willem-Jan van Hoeve
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{acire,vanhoeve}@andrew.cmu.edu

Sequencing problems are among the most prominent problems studied in operations research, with primary

application in, e.g., scheduling and routing. We propose a novel approach to solving generic sequencing prob-

lems using multivalued decision diagrams (MDDs). Because an MDD representation may grow exponentially

large, we apply MDDs of limited size as a discrete relaxation to the problem. We show that MDDs can be

used to represent a wide range of sequencing problems with various side constraints and objective functions,

and demonstrate how MDDs can be added to existing constraint-based scheduling systems. Our computa-

tional results indicate that the additional inference obtained by our MDDs can speed up a state-of-the art

solver by several orders of magnitude, for a range of different problem classes.

Key words : sequencing, single machine scheduling, networks/graphs, programming, decision diagrams

History : Submitted December, 2012. Revised May, 2013 (minor revision).

1. Introduction

Sequencing problems are among the most widely studied problems in operations research. Spe-

cific variations of sequencing problems include single machine scheduling, the traveling salesman

problem with time windows, and precedence-constrained machine scheduling. Sequencing problems

are those where the best order for performing a set of tasks must be determined, which in many

cases leads to an NP-hard problem (Garey and Johnson 1979, Section A5). Sequencing problems

are prevalent in manufacturing and routing applications, including production plants where jobs

should be processed one at a time in an assembly line, and in mail services where packages must

be scheduled for delivery on a vehicle. Industrial problems that involve multiple facilities may also

be viewed as sequencing problems in certain scenarios, e.g. when a machine is the bottleneck of

a manufacturing plant (Pinedo 2008). Existing methods for sequencing problems either follow a

dedicated heuristic for a specific problem class, or utilize a generic solving methodology such as

integer programming or constraint programming. Given the practical importance and computa-

tional hardness, understanding how sequencing problems can be solved more effectively is an active

research area.

1

Cire and van Hoeve: MDDs for Sequencing Problems
2 Article submitted to ; manuscript no.

In this work we propose a new approach for solving sequencing problems based on multivalued

decision diagrams (MDDs). Decision diagrams are compact graphical representations of Boolean

functions, originally introduced for applications in circuit design by Lee (1959), and widely studied

and applied in computer science. They have been recently used to represent the feasible set of

discrete optimization problems, as demonstrated in Becker et al. (2005) and Bergman et al. (2011,

2012). This is done by perceiving the constraints of a problem as a Boolean function f(x) rep-

resenting whether a solution x is feasible. Nonetheless, such MDDs can grow exponentially large,

which makes any practical computation prohibitive in general.

To circumvent this issue, Andersen et al. (2007) introduced the concept of a relaxed MDD,

which is a diagram of limited size that represents instead an over-approximation of the feasible

solution set of a problem. We argue in this paper that such MDDs can be particularly useful as a

discrete relaxation of the feasible set of sequencing problems. In particular, a relaxed MDD can be

embedded within a complete search procedure such as branch and bound for integer programming

or backtracking search for constraint programming (Andersen et al. 2007, Hoda et al. 2010).

We focus on a broad class of sequencing problems where jobs should be scheduled on a single

machine and are subject to precedence and time window constraints, and in which setup times can

be present. It generalizes a number of single machine scheduling problems and variations of the

traveling salesman problem (TSP). The relaxation provided by the MDD, however, is suitable to

any problem where the solution is defined by a permutation of a fixed number of tasks, and it does

not directly depend on particular constraints or on the objective function.

The main contributions of this work are as follows. We propose a novel formulation of the feasible

set of a sequencing problem as an MDD, and show how it can be relaxed so that its size is limited

according to a given parameter. We present how the MDD can be used to compute bounds on

typical objective functions in scheduling, such as the makespan and total tardiness. Moreover, we

demonstrate how to derive more structured sequencing information from the relaxed MDD, in

particular a valid set of precedence relations that must hold in any feasible solution.

We also propose a number of techniques for strengthening the MDD relaxation, which take into

account the precedence and time window constraints. We demonstrate that these generic techniques

can be used to derive a polynomial-time algorithm for a particular TSP variant introduced by

Balas (1999) by showing that the associated MDD has polynomial size.

To demonstrate the use of relaxed MDDs in practice, we apply our techniques to constraint-based

scheduling (Baptiste et al. 2001). Constraint-based scheduling plays a central role as a general-

purpose methodology in complex and large-scale scheduling problems. Examples of commercial

applications that apply this methodology include yard planning of the Singapore port and gate

allocation of the Hong Kong airport (Freuder and Wallace 2000), Brazilian oil-pipeline scheduling

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 3

(Lopes et al. 2010), and home health care scheduling (Rendl et al. 2012). We show that, by using

the relaxed MDD techniques described here, we can improve the performance of the state-of-the-art

constraint-based schedulers by orders of magnitude on single machine problems without losing the

generality of the method. In particular, we were able to close three open TSPLIB instances for the

sequencing ordering problem.

The paper is organized as follows. Section 2 presents a brief overview of related literature.

Section 3 defines the general sequencing problem that will be considered throughout the paper,

and Section 4 shows how its feasible set is represented with an MDD. Section 5 describes relaxed

MDDs and the basic operations for strengthening its representation. Sections 6 and 7 present

detailed methods to filter and refine relaxed MDDs. In Section 8, we present an efficient procedure

to deduce precedence relations from the relaxation. Section 9 demonstrates how the techniques can

be used to obtain a polynomial-size MDD that exactly represents the feasible set of a particular

TSP variant. Finally, Section 10 presents the application of MDDs to constraint-based scheduling,

and concluding remarks are given in Section 11.

2. Related Work

Relaxed MDDs were first introduced by Andersen et al. (2007) as a discrete relaxation for arbitrary

constraint satisfaction problems. They were proposed as an alternative to the domain store relax-

ation that is commonly used in constraint programming techniques. Following that work, Hadzic

et al. (2008) and Hoda et al. (2010) developed generic methods for systematically compiling relaxed

MDDs. The fundamental idea of their approaches is to construct the diagram in an incremental

fashion, associating a particular state information with the MDD nodes so as to indicate how new

nodes and arcs should be added to the diagram. Bergman et al. (2011, 2012) propose similar tech-

niques for the purpose of obtaining bounds for combinatorial optimization problems, which were

shown to be superior to their corresponding continuous relaxations for a wide range of instances.

The application of relaxed MDDs to disjunctive scheduling was first proposed by Hoda et al.

(2010), and studied in the context of constraint-based propagators by Cire and van Hoeve (2012).

Our work expands on the ideas presented in these previous papers, showing new theoretical prop-

erties and improved techniques that are applicable to arbitrary sequencing problems.

The techniques we develop here are based on associating a state information with the nodes of

the MDD, as in Hoda et al. (2010). By doing so, our method is closely related to that of state-

space relaxations by Christofides et al. (1981) for routing problems. A similar idea was exploited

by Hernádvölgyi (2003), which considers a branch-and-bound algorithm based on homomorphic

abstractions of the search space for the sequential ordering problem. In our case, the state-space

relaxation is implicitly represented by the nodes of the MDD, which allow us to accommodate

Cire and van Hoeve: MDDs for Sequencing Problems
4 Article submitted to ; manuscript no.

multiple constraints more easily in the relaxation. Moreover, we are able to work with different

state relaxations simultaneously; namely, one from a top-down perspective of the diagram, and

another from a bottom-up perspective, as will become clear in later sections.

Lastly, decision diagrams have also been considered in other areas of optimization, e.g., cut

generation in integer programming (Becker et al. 2005) and 0-1 vertex and facet enumeration

(Behle and Eisenbrand 2007).

3. Problem Definition

In this work we focus on generic sequencing problems, presented here in terms of ‘unary machine’

scheduling. Note that a machine may refer to any resource capable of handling at most one activity

at a time.

Let J = {j1, . . . , jn} be a set of n jobs to be processed on a machine that can perform at most

one job at a time. Each job j ∈ J has an associated processing time pj, which is the number of

time units the job requires from the machine, and a release date rj, the time from which job j is

available to be processed. For each pair of distinct jobs j, j′ ∈J a setup time tj,j′ is defined, which

indicates the minimum time that must elapse between the end of j and the beginning of j′ if j′

is the first job processed after j finishes. We assume that jobs are non-preemptive, i.e. we cannot

interrupt a job while it is being processed on the machine.

We are interested in assigning a start time sj ≥ rj for each job j ∈ J such that job processing

intervals do not overlap, the resulting schedule observes a number of constraints, and an objective

function f is minimized. Two types of constraints are considered in this work: precedence con-

straints, requiring that sj ≤ sj′ for certain pairs of jobs (j, j′)∈J ×J , which we equivalently write

j ≪ j′; and time window constraints, where the completion time cj = sj +pj of each job j ∈J must

be such that cj ≤ dj for some deadline dj. Furthermore, we study three representative objective

functions in scheduling: the makespan, where we minimize the completion time of the schedule,

or maxj∈J cj; the total tardiness, where we minimize
∑

j∈J (max{0, cj − δj}) for given due dates

δj; and the sum of setup times, where we minimize the value obtained by accumulating the setup

times tj,j′ for all consecutive jobs j, j′ in a schedule. Note that for these objective functions we can

assume that jobs should always be processed as early as possible (i.e., idle times do not decrease

the value of the objective function).

Since jobs are processed one at a time, any solution to such scheduling problem can be equiva-

lently represented by a total ordering π= (π1, π2, . . . , πn) of J . The start time of the job j implied

by π is given by sj = rj if j = π1, and sj = max{rj, sπi−1
+ pπi−1

+ tπi−1,j} if j = πi for some

i ∈ {2, . . . , n}. We say that an ordering π of J is feasible if the implied job times observe the

precedence and time window constraints, and optimal if it is feasible and minimizes f .

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 5

Job Parameters

Job Release (rj) Deadline (dj) Processing (pj)

j1 2 20 3
j2 0 14 4
j3 1 14 2

Setup Times

j1 j2 j3

j1 - 3 2
j2 3 - 1
j3 1 2 -

(a) Instance data.

..r.

u1

.

u2

.

u3

.

u4

.

u5

.

t

.

j2

.

j3

.

j1

.

j3

.

j2

.

j1

.

j3

.

j1

.

j2

.

π1

.

π2

.

π3

(b) MDD.

Figure 1 Example of an MDD for a scheduling problem.

4. MDD Representation

For the purpose of this work, an MDD M is a directed acyclic graph whose paths represent the

feasible orderings of J . The set of nodes of M are partitioned into n+1 layers L1, . . . ,Ln+1, where

layer Li corresponds to the i-th position πi of the feasible orderings encoded by M, for i= 1, . . . , n.

Layers L1 and Ln+1 are singletons representing the root r and the terminal t, respectively. An arc

a= (u, v) of M is always directed from a source node u in some layer Li to a target node v in the

subsequent layer Li+1, i ∈ {1, . . . , n}. We write ℓ(a) to indicate the layer of the source node u of

the arc a (i.e., u∈Lℓ(a)).

With each arc a of M we associate a label val(a) ∈ J that represents the assignment of the

job val(a) to the ℓ(a)-th position of the orderings identified by the paths traversing a. Hence, an

arc-specified path (a1, . . . , an) from r to t identifies the ordering π= (π1, . . . , πn), where πi = val(ai)

for i= 1, . . . , n. Every feasible ordering is identified by some path from r to t in M, and conversely

every path from r to t identifies a feasible ordering.

Example 1. We provide an MDD representation for a sequencing problem with three jobs j1,

j2, and j3. The instance data is presented in Figure 1a, and the associated MDD M is depicted in

Figure 1b. No precedence constraints are considered. There are 4 feasible orderings in total, each

identified by a path from r to t in M. In particular, the path traversing nodes r, u2, u4, and t

represents a solution where jobs j3, j2, and j1 are performed in this order. The completion times

for this solution are cj1 = 15, cj2 = 9, and cj3 = 3. Note that we can never have a solution where j1

is first on the machine, otherwise either the deadline of j2 or j3 would be violated. Hence, there is

no arc a with val(a) = j1 directed out of r. �

Cire and van Hoeve: MDDs for Sequencing Problems
6 Article submitted to ; manuscript no.

Some additional notation follows. The incoming arcs at a node u are denoted by in(u), and

the outgoing arcs leaving u by out(u). The width of a layer Li is |Li|, and the width of M is the

maximum width among all layers. The MDD in Figure 1b has a width of 3.

Two nodes u, v on the same layer in an MDD are equivalent (or belong to the same equivalence

class) if the set of u-t paths is equal to the set of v-t paths. That is, for any u-t arc-specified

path (a1, a2, . . . , ak) there exists a v-t arc-specified path (a′
1, a

′
2, . . . , a

′
k) such that val(a1) = val(a′

1),

val(a2) = val(a′
2), . . . , val(ak) = val(a′

k), and vice-versa. An MDD M is reduced if no two nodes in

any layer are equivalent. This is the case, for example, for the MDD in Figure 1b. A standard result

in decision diagram theory is that there exists a unique reduced MDD representing the feasible

orderings of J , provided that we do not change the mapping between the layers Li of M and

the ordering positions πi; see, e.g, Wegener (2000). The reduced MDD also has the smallest width

among the MDDs encoding the feasible orderings of J .

We next show how to compute the orderings that yield the optimal makespan and the optimal

sum of setup times in polynomial time in the size of M. For the case of total tardiness and other

similar objective functions, we are able to provide a lower bound on its optimal value also in

polynomial time in M.

• Makespan. For each arc a in M, define the earliest completion time of a, or ecta, as the

minimum completion time of the job val(a) among all orderings that are identified by the paths

in M containing a. If the arc a is directed out of r, then a assigns the first job that is processed

in such orderings, thus ecta = rval(a) + pval(a). For the remaining arcs, recall that the completion

time cπi
of a job πi depends only on the completion time of the previous job πi−1, the setup time

tπi−1,πi
, and on the specific job parameters; namely, cπi

=max{rπi
, cπi−1

+ tπi−1,πi
}+pπi

. It follows

that the earliest completion time of an arc a= (u, v) can be computed by the relation

ecta =max{rval(a), min{ecta′ + tval(a′),val(a) : a
′ ∈ in(u)}}+ pval(a). (1)

The minimum makespan is given by mina∈in(t) ecta, as the arcs directed to t assign the last job

in all orderings represented by M. An optimal ordering can be obtained by recursively retrieving

the minimizer arc a′ ∈ in(u) in the “min” of (1).

• Sum of Setup Times. The minimum sum of setup times is computed analogously: For an arc

a= (u, v), let sta represent the minimum sum of setup times up to job val(a) among all orderings

that are represented by the paths in M containing a. If a is directed out of r, we have sta = 0;

otherwise,

sta =min{sta′ + tval(a′),val(a) : a
′ ∈ in(u)}. (2)

The minimum sum of of setup times is given by mina∈in(t) sta.

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 7

• Total Tardiness. The tardiness of a job j is defined by max{0, cj − δj} for some due date

δj. Unlike the previous two cases, the tardiness value that a job attains in an optimal solution

depends on the sequence of all activities, not only on its individual contribution or the value of

its immediate predecessor. Nonetheless, as the tardiness function for a job is non-decreasing in

its completion time, we can utilize the earliest completion time as follows. For any arc a= (u, v),

the value max{0, ecta − δval(a)} yields a lower bound on the tardiness of the job val(a) among all

orderings that are represented by the paths in M containing a. Hence, a lower bound on the total

tardiness is given by the length of the shortest path from r to t, where the length of an arc a is

set to max{0, ecta − δval(a)}. Observe that this bound is tight if the MDD is composed by a single

path.

We remark that valid bounds for many other types of objective in the scheduling literature can

be computed in an analogous way as above. For example, suppose the objective is to minimize∑
j∈J fj(cj), where fj is a function defined for each job j and which is non-decreasing on the

completion time cj. Then, as in total tardiness, the value fval(a)(ecta) for an arc a= (u, v) yields

a lower bound on the minimum value of fval(a)(cval(a)) among all orderings that are identified by

the paths in M containing a. Using such bounds as arc lengths, the shortest path from r to t

represents a lower bound on
∑

j∈J fj(cj). This bound is tight if fj(cj) = cj, or if M is composed by

a single path. Examples of such objectives include weighted total tardiness, total square tardiness,

sum of (weighted) completion times, and number of late jobs.

Example 2. In the instance depicted in Figure 1, we can apply the recurrence relation (1)

to obtain ectr,u1
= 4, ectr,u2

= 3, ectu1,u3
= 10, ectu1,u4

= 7, ectu2,u4
= 9, ectu2,u5

= 7, ectu3,t = 14,

ectu4,t = 11, and ectu5,t = 14. The optimal makespan is min{ectu3,t, ectu4,t, ectu5,t}= ectu4,t = 11;

it corresponds to the path (r, u1, u4, t), which identifies the optimal ordering (j2, j3, j1). The same

ordering also yields the optimal sum of setup times with a value of 2.

Suppose now that we are given due dates δj1 = 13, δj2 = 8, and δj3 = 3. The length of an arc a

is given by la =max{0, ecta − δval(a)}, as described earlier. We have lu1,u4
= 4, lu2,u4

= 1, lu3,t = 11,

and lu5,t = 6; all remaining arcs a are such that la = 0. The shortest path in this case is (r, u2, u4, t)

and has a value of 1. The minimum tardiness, even though it is given by the ordering identified by

this same path, (j3, j2, j1), has a value of 3.

The reason for this gap is that the ordering with minimum tardiness does not necessarily coincide

with the schedule corresponding to the earliest completion time. Namely, we computed lu4,t = 0

considering ectu4,t = 11, since the completion time of the job val(u4, t) = j1 is 11 in (j2, j3, j1).

However, in the optimal ordering (j3, j2, j1) for total tardiness, the completion time of j1 would be

15; this solution yields a better cost than (j2, j3, j1) due to the reduction on the tardiness of j3. �

Cire and van Hoeve: MDDs for Sequencing Problems
8 Article submitted to ; manuscript no.

..r.

u1

.

u2

.

t

.

j1

.

j2

.

j3

.

j1

.

j2

.

j3

.

j1

.

j2

.

j3

.

π1

.

π2

.

π3

(a) 1-width relaxation.

..r.

u1

.

u2

.

u3

.

u4

.

t

.

j2

.

j3

.

j1

.

j3

.

j2

.

j1

.

j3

.

j2

.

j1

.

π1

.

π2

.

π3

(b) 2-width relaxation.

Figure 2 Two relaxed MDDs for the sequencing problem in Figure 1.

5. Relaxed MDDs

A relaxed MDD is an MDD M that represents a superset of the feasible orderings of J ; i.e., every

feasible ordering is identified by some path in M, but not necessarily all paths in M identify a

feasible ordering. We construct relaxed MDDs by limiting the size to a fixed maximum allowed

width W . Thus, the strength of the relaxed MDD can be controlled by increasing W ; we obtain

an exact MDD by setting W to infinity.

Figures 2a and 2b present two examples of a relaxed MDD with maximum width W = 1 and W =

2, respectively, for the problem depicted in Figure 1. In particular, the MDD in Figure 2a encodes

all the orderings represented by permutations of J with repetition, hence it trivially contains the

feasible orderings of any sequencing problem. It can be generally constructed as follows: We create

one node ui for each layer Li and connect the pair of nodes ui and ui+1, i = 1, . . . , n, with arcs

a1, . . . , an such that val(al) = jk for each job jk.

It can also be verified that the MDD in Figure 2b contains all the feasible orderings of the

instance in Figure 1. However, the right-most path going trough nodes r, u2, u4, and t identifies

an ordering π= (j3, j1, j1), which is infeasible as job j1 is assigned twice in π.

The procedures in Section 4 for computing the optimal makespan and the optimal sum of setup

times now yield a lower bound on such values when applied to a relaxed MDD, since all feasible

orderings of J are encoded in the diagram. Moreover, the lower bounding technique for total

tardiness remains valid.

Considering that a relaxed MDD M can be easily constructed for any sequencing problem (e.g.,

the 1-width relaxation of Figure 2a), we will now present techniques to modify M in order to

strengthen the relaxation it provides while observing the maximum width W . These are based on

the compilation procedures developed by Hadzic et al. (2008) and Hoda et al. (2010) for general

constraint satisfaction systems. Under certain conditions, we obtain the reduced MDD representing

exactly the feasible orderings of J , provided that W is sufficiently large.

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 9

Namely, we modify a relaxed MDD M by applying the operations of filtering and refinement,

which aim at approximating M to an exact MDD, i.e., one that exactly represents the feasible

orderings of J . They are described as follows.

• Filtering. We write that an arc a is infeasible if all the paths in M containing a represent

orderings that are not feasible. Filtering consists of identifying infeasible arcs and removing them

from M, which would hence eliminate one or more infeasible orderings that are encoded in M. We

will provide details on the filtering operation in Section 6.

• Refinement. A relaxed MDD can be intuitively perceived as a diagram obtained by merging

non-equivalent nodes of an exact MDD for the problem. Refinement consists of identifying these

nodes in M that are encompassing multiple equivalence classes, and splitting them into two or

more new nodes to represent such classes more accurately (as long as the maximum width W is not

violated). In particular, a node u in layer Li can be split if there exist two partial orderings π′
1, π

′
2

identified by paths from r to u such that, for some π∗ = (πi, . . . , πn), (π
′
1, π

∗) is a feasible ordering

while (π′
2, π

∗) is not. If this is the case, then the partial paths in M representing such orderings

must end in different nodes of the MDD, which will be necessarily non-equivalent by definition.

We will provide details on the refinement operation in Section 7.

Observe that if a relaxed MDD M does not have any infeasible arcs and no nodes require

splitting, then by definition M is exact. However, it may not necessarily be reduced.

Filtering and refinement are independent operations that can be applied to M in any order that

is suitable for the problem at hand. In this work we assume a top-down approach: We traverse

layers L2, . . . ,Ln+1 one at a time in this order. At each layer Li, we first apply filtering to remove

infeasible arcs that are directed to the nodes in Li. After the filtering is complete, we perform

refinement to split the nodes in layer Li as necessary, while observing the maximum width W .

Example 3. Figure 3 illustrates the top-down application of filtering and refinement for layers

L2 and L3. Assume a scheduling problem with three jobs J = {j1, j2, j3} and subject to a single

precedence constraint stating that job j2 must precede job j1. The initial relaxed MDD is an

1-width relaxation depicted in Figure 3a. Our maximum width is set to W = 2.

We start by processing the incoming arcs at layer L2. The filtering operation detects that the

arc a∈ in(u) with val(a) = j1 is infeasible, otherwise we will have an ordering starting with job j1,

violating the precedence relation. Refinement will split node u into nodes u1 and u2, since for any

feasible ordering starting with job j2, i.e. (j2, π
′) for some π′, the ordering (j3, π

′) is infeasible as it

will necessarily assign job j3 twice. The resulting MDD is depicted in Figure 3b. Note that when

a node is split, we replicate its outgoing arcs to each of the new nodes.

We now process the incoming arcs at layer L3. The filtering operation detects that the arc with

label j2 directed out of u1 and the arc with label j3 directed out of u2 are infeasible, since the

Cire and van Hoeve: MDDs for Sequencing Problems
10 Article submitted to ; manuscript no.

..r.

u

.

v

.

t

..

j1

.

j2

.

j3

.

j1

.

j2

.

j3

.

j1

.

j2

.

j3

.

π1

.

π2

.

π3

.L1

.

L2

.

L3

.

L4

(a) Initial relaxation.

..r.

u1

.

u2

.

v

.

t

.

j2

.

j3

.

j3

..

j2

.

j1

..

j3

.

j2

..

j1

.

j1

.

j2

.

j3

(b) After processing L2.

..r.

u1

.

u2

.

v1

.

v2

.

t

.

j2

.

j3

.

j1

.

j3

.

j2

.

j1

.

j2

.

j3

.

j3

.

j2

.

j1

(c) After processing L3.

Figure 3 Example of filtering and refinement. The scheduling problem is such that job j2 must precede j1 in all

feasible orderings. Shaded arrows represent infeasible arcs detected by the filtering.

corresponding paths from r to v would yield orderings that assign some job twice. The arc with

label j1 leaving node u2 is also infeasible, since we cannot have any ordering with prefix (j3, j1).

Finally, refinement will split node v into nodes v1 and v2; note in particular that the feasible

orderings prefixed by (j2, j3) and (j3, j2) have the same completions, namely (j1), therefore the

corresponding paths end at the same node v1. The resulting MDD is depicted in Figure 3c. �

6. Filtering

In this section we apply a methodology derived from Andersen et al. (2007) and Hoda et al. (2010)

to identify necessary conditions for the infeasibility of an arc in M. This is done as follows. For

each constraint type C, we equip the nodes and arcs of M with a state information SC. Each state

SC is then considered separately to identify conditions that deem an arc as infeasible according to

the particular structure of C. Note that, in general, we are not able to derive efficient infeasibility

conditions that are necessary and sufficient for all constraints of the problem (if P ̸=NP), since it

is NP-hard to decide if there is a feasible solution to a scheduling problem with arbitrary release

dates and deadlines.

The tests presented here can be computed in polynomial-time in the size of the relaxed MDD

M. Namely, we restrict our state definitions to those with size O(|J |) and that satisfy a Markovian

property, in that they only depend on the states of the nodes and arcs in the adjacent layers. Thus,

the states can be computed simultaneously with the filtering and refinement operations during the

top-down approach described in Section 5. We also describe additional states that are obtained

through an extra bottom-up traversal of the MDD and that, when combined with the top-down

states, lead to stronger tests.

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 11

6.1. Filtering invalid permutations

The feasible orderings of any sequencing problem are permutations of J without repetition, which

can be perceived as an implicit constraint to be observed. To identify conditions that indicate when

all orderings identified by paths having an arc a always assign some job more than once, we define

the states introduced by Andersen et al. (2007) and Hoda et al. (2010) for AllDifferent constraints

in the area of constraint programming.

Let us associate two states All↓u ⊆J and Some↓
u ⊆J to each node u of M. The state All↓u is the

set of arc labels that appear in all paths from the root node r to u, while the state Some↓
u is the

set of arc labels that appear in some path from the root node r to u. For example, in Figure 3b

without the shaded arcs, All↓v = {j2} and Some↓
v = {j1, j2, j3} for node v.

We trivially have All↓r = Some↓
r = ∅. Furthermore, it follows from the definitions that All↓v and

Some↓
v for some node v ̸= r can be recursively computed through the relations

All↓v =
∩

a=(u,v)∈in(v)

(All↓u ∪{val(a)}), (3)

Some↓
v =

∪
a=(u,v)∈in(v)

(Some↓
u ∪{val(a)}). (4)

Lemma 1. An arc a= (u, v) is infeasible if any of the following conditions holds:

val(a)∈All↓u, (5)

|Some↓
u|= ℓ(a) and val(a)∈ Some↓

u. (6)

Proof. The proof argument follows from Andersen et al. (2007). Let π′ be any partial ordering

identified by a path from r to u that does not assign any job more than once. In condition (5),

val(a)∈All↓u indicates that val(a) is already assigned to some position in π′, therefore appending

the arc label val(a) to π′ will necessarily induce a repetition. For condition (6), notice first that

the paths from r to u are composed of ℓ(a) arcs, and therefore π′ represents an ordering with ℓ(a)

positions. If |Some↓
u|= ℓ(a), then any j ∈ Some↓

u is already assigned to some position in π′, hence

appending val(a) to π′ also induces a repetition. �
We are also able to obtain stronger tests by equipping the nodes with additional states that can

be derived from a bottom-up perspective of the MDD. Namely, as in Hoda et al. (2010), we define

two new states All↑u ⊆J and Some↑
u ⊆J for each node u of M. They are equivalent to the states

All↓u and Some↓
u, but now they are computed with respect to the paths from t to u instead of the

paths from r to u. As before, they are recursively obtained through the relations

All↑u =
∩

a=(u,v)∈out(u)

(All↑v ∪{val(a)}), (7)

Some↑
u =

∪
a=(u,v)∈out(u)

(Some↑
v ∪{val(a)}), (8)

which can be computed by a bottom-up breadth-first search before the top-down procedure.

Cire and van Hoeve: MDDs for Sequencing Problems
12 Article submitted to ; manuscript no.

Lemma 2. An arc a= (u, v) is infeasible if any of the following conditions holds:

val(a)∈All↑v, (9)

|Some↑
v|= n− ℓ(a) and val(a)∈ Some↑

v, (10)

|Some↓
u ∪{val(a)}∪Some↑

v|<n. (11)

Proof. The proofs for conditions (9) and (10) follow from an argument in Hoda et al. (2010)

and are analogous to the proof of Lemma 1. Condition (11) implies that any ordering identified by

a path containing a will never assign all jobs J . �

6.2. Filtering precedence constraints

Suppose now we are given a set of precedence constraints, where we write j ≪ j′ if a job j should

precede job j′ in any feasible ordering. We assume the precedence relations are not trivially infea-

sible, i.e. there are no cycles of the form j ≪ j1 ≪ · · · ≪ jm ≪ j. We can apply the same states

defined in Section 6.1 for this particular case.

Lemma 3. An arc a= (u, v) is infeasible if any of the following conditions hold:

∃ j ∈ (J \Some↓
u) s.t. j ≪ val(a), (12)

∃ j ∈ (J \Some↑
v) s.t. val(a)≪ j. (13)

Proof. Let π′ be any partial ordering identified by a path from r to u, and consider (12). By

definition of Some↓
u, we have that any job j in the set (J \Some↓

u) is not assigned to any position

in π′. Thus, if any of such jobs j must precede val(a), then all orderings prefixed by (π′, val(a)) will

violate this precedence constraint, and the arc is infeasible. The condition (13) is the symmetrical

version of (12). �

6.3. Filtering time window constraints

Consider now that a deadline dj is imposed for each job j ∈ J . With each arc a we associate the

state ecta as defined in Section 4: It corresponds to the minimum completion time of the job in the

ℓ(a)-th position among all orderings that are identified by paths in M containing the arc a. As in

relation (1), the state ecta for an arc a= (u, v) is given by the recurrence

ecta =

{
rval(a) + pval(a) if a∈ out(r),
max{rval(a), min{ecta′ + tval(a′),val(a) : a

′ ∈ in(u), val(a) ̸= val(a′)}}+ pval(a) otherwise,

where we added the trivial condition val(a) ̸= val(a′) to strengthen the bound on the time above.

We could also include the condition val(a) ̸≪ val(a′) if precedence constraints are imposed over

val(a).

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 13

We next consider a symmetrical version of ecta to derive a necessary infeasibility condition for

time window constraints. Namely, with each arc a we associate the state lsta, which represents the

latest start time of a: For all orderings that are identified by paths in M containing the arc a, the

value lsta corresponds to an upper bound on the maximum start time of the job in the ℓ(a)-th

position so that no deadlines are violated in such orderings. The state lsta for an arc a= (u, v) is

given by the following recurrence, which can be computed through a single bottom-up traversal

of M:

lsta =

{
dval(a) − pval(a) if a∈ in(t),
min{dval(a), max{lsta′ − tval(a),val(a′) : a

′ ∈ out(v), val(a) ̸= val(a′)}}− pval(a) otherwise.

Lemma 4. An arc a= (u, v) is infeasible if

ecta > lsta + pval(a). (14)

Proof. The value lsta + pval(a) represents an upper bound on the the maximum time the job

val(a) can be completed so that no deadlines are violated in the orderings identified by paths in

M containing a. Since ecta is the minimum time that job val(a) will be completed among all such

orderings, no feasible ordering identified by a path traversing a exists if rule (14) holds. �

6.4. Filtering objective function bounds

Let z∗ be an upper bound of the objective function value (e.g., corresponding to the best feasible

solution found during the search for an optimal solution). Given z∗, an arc a is infeasible with

respect to the objective if all paths in M that contain a have objective value greater than z∗. How-

ever, the associated filtering method depends on the form of the objective function. For example,

if the objective is to minimize makespan, we can replace the deadline dj by d′j =min{dj, z∗} for all

jobs j and consider the same infeasibility condition in Lemma 4.

If z∗ corresponds to an upper bound on the sum of setup times, we proceed as follows. For each

arc a= (u, v) in M, let st↓a be the minimum possible sum of setup times incurred by the partial

orderings represented by paths from r to v that contain a. We have

st↓a =

{
0, if a∈ out(r),

min{tval(a′),val(a) + st↓a′ : a
′ ∈ in(u), val(a) ̸= val(a′)}, otherwise.

Now, for each arc a= (u, v) let st↑a be the minimum possible sum of setup times incurred by the

partial orderings represented by paths from u to t that contain a. The state st↑a is given below,

computed through a bottom-up traversal of M:

st↑a =

{
0, if a∈ in(t),

min{tval(a),val(a′) + st↑a′ : a
′ ∈ out(v), val(a) ̸= val(a′)}, otherwise.

Cire and van Hoeve: MDDs for Sequencing Problems
14 Article submitted to ; manuscript no.

Lemma 5. An arc a is infeasible if

st↓a + st↑a > z∗. (15)

Proof. It follows directly from the definitions of st↓a and st↑a. �
To impose an upper bound z∗ on the total tardiness, assume ecta is computed for each arc a.

We define the length of an arc a as la =max{0, ecta− δval(a)}. For a node u, let sp↓
u and sp↑

u be the

shortest path from r to u and from t to u, respectively, with respect to the lengths la. That is,

sp↓
u =

{
0, if u= r,
min{la + sp↓

v : a= (v,u)∈ in(u)}, otherwise.

and

sp↑
u =

{
0, if u= t,
min{la + sp↑

v : a= (u, v)∈ out(u)}, otherwise.

Lemma 6. A node u should be removed from M if

sp↓
u + sp↑

u > z∗, (16)

Proof. Length la represents a lower bound on the tardiness of job val(a) with respect to solutions

identified by r-t paths that contain a. Thus, sp↓
u and sp↑

u are a lower bound on the total tardiness

for the partial orderings identified by paths from r to u and t to u, respectively, since the tardiness

of a job is non-decreasing on its completion time. �

7. Refinement

Recall from Section 5 that a relaxed MDD can be strengthened by a refinement operation. Ideally,

refinement should modify a layer so that each of its nodes exactly represents a particular equivalence

class. However, as it may be necessary to create an exponential number of nodes to represent all

equivalence classes, we apply in this section a heuristic refinement procedure that observes the

maximum width W when creating new nodes in a layer.

Our goal is to be as precise as possible with respect to the equivalence classes that refer to

jobs with a higher priority, where the priority of a job is defined according to the problem data.

More specifically, we will develop a refinement heuristic that, when combined with the infeasibility

conditions for the permutation structure described in Section 6.1, yields a relaxed MDD where the

jobs with a high priority are represented exactly with respect to that structure; that is, these jobs

are assigned to exactly one position in all orderings encoded by the relaxed MDD.

Thus, if higher priority is given to jobs that play a greater role in the feasibility or optimality

of the sequencing problem at hand, the relaxed MDD may represent more accurately the feasi-

ble orderings of the problem, providing, e.g., better bounds on the objective function value. For

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 15

example, suppose we wish to minimize the makespan on an instance where certain jobs have a

very large release date and processing times in comparison to other jobs. If we construct a relaxed

MDD where these longer jobs are assigned exactly once in all orderings encoded by the MDD,

the bound on the makespan would be potentially tighter with respect to the ones obtained from

other possible relaxed MDDs for this same instance. Examples of job priorities for other objective

functions are presented in Section 10.

To achieve this property, the refinement heuristic we develop is based on the following theorem,

which we will prove constructively later. Note that it takes into account the maximum width W .

Theorem 1. Let W > 0. There exists a relaxed MDD M where at least ⌊log2W ⌋ jobs are

assigned to exactly one position in all orderings identified by M.

Let us represent the job priorities by defining a ranking of jobs J ∗ = {j∗1 , . . . , j∗n}, where jobs

with smaller index in J ∗ have a higher priority. We can thus achieve the desired property of our

heuristic refinement by constructing the relaxed MDD M based on Theorem 1, where we ensure

that the jobs exactly represented in M are those with a higher ranking.

Before proving Theorem 1, we first identify conditions on when a node violates the desired

refinement property and needs to be modified. To this end, let M be any relaxed MDD. Assume

the states All↓u and Some↓
u as described in Section 6.1 are computed for all nodes u in M, and no

arcs satisfy the infeasibility conditions (5) to (11). We have the following Lemma.

Lemma 7. A job j is assigned to exactly one position in all orderings identified by M if and

only if j ̸∈ Some↓
u \All

↓
u for all nodes u∈M.

Proof. Suppose first that a job j is assigned to exactly one position in all orderings identified

by M, and take a node u in M such that j ∈ Some↓
u. From the definition of Some↓

u, there exists

a path from r to u with an arc labeled j. This implies by hypothesis that all paths from u to t

do not have any arcs labeled j, otherwise we will have a path that identifies an ordering where j

is assigned more than once. But then, also by hypothesis, all paths from r to u must necessarily

have some arc labeled j, thus j ∈All↓u, which implies j ̸∈ Some↓
u \All

↓
u.

Conversely, suppose j ∈ Some↓
u \All

↓
u for all nodes u in M. Then a node u can only have an

outgoing arc a with val(a) = j if j ̸∈ Some↓
u, which is due to the filtering rule (5). Thus, no job

is assigned more than once in any ordering encoded by M. Finally, rule (11) ensures that j is

assigned exactly once in all paths. �
We now provide a constructive proof for Theorem 1.

Proof of Theorem 1 Let M be an 1-width relaxation. We can obtain the desired MDD applying

filtering and refinement on M in a top-down approach as described in Section 5. For filtering,

Cire and van Hoeve: MDDs for Sequencing Problems
16 Article submitted to ; manuscript no.

remove all arcs satisfying the infeasibility rules in Section 6. For refining a particular layer Li,

apply the following procedure: For each job j = j1, . . . , jn in this order, select a node u ∈ Li such

that j ∈ Some↓
u \All

↓
u. Create two new nodes u1 and u2, and redirect the incoming arcs at u to u1

and u2 as follows: if the arc a= (v,u) is such that j ∈ (All↓v ∪{val(a)}), redirect it to u1; otherwise,

redirect it to u2. Replicate all the outgoing arcs of u to u1 and u2, remove u, and repeat this until

the maximum width W is met, there are no nodes satisfying this for j, or all jobs were considered.

We now show that this refinement procedure suffices to produce a relaxed MDD satisfying

the conditions of the Theorem. Observe first the conditions of Lemma 7 are satisfied by any job

at the root node r, since Some↓
r = ∅. Suppose, by induction hypothesis, that the conditions of

Lemma 7 are satisfied for some job j at all nodes in layers L1, . . . ,Li′ , i
′ < i, and consider we

created nodes u1 and u2 from some node u ∈ Li such that j ∈ Some↓
u \All

↓
u as described above.

By construction, any incoming arc a = (v,u2) at u2 satisfies j ̸∈ (All↓v ∪ {val(a)}); by induction

hypothesis, j ̸∈ Some↓
v, hence j ̸∈ Some↓

u2
\All↓u2

by relation (3). Analogously, we can show j ∈All↓u1
,

thus j ̸∈ Some↓
u1

\All↓u1
.

Since the jobs J are processed in the same order for all layers, we just need now to compute the

minimum number of jobs for which all nodes violating Lemma 7 were split when the maximum

width W was attained. Just observe that, after all the nodes were verified with respect to a job, we

at most duplicated the number of nodes in a layer (since each split produces one additional node).

Thus, if m jobs were considered, we have at most 2m nodes in a layer, thus at least ⌊log2W ⌋ nodes

will be exactly represented in M. �
We can utilize Theorem 1 to guide our top-down approach for filtering and refinement, following

the refinement heuristic based on the job ranking J ∗ described in the proof of Theorem 1. Namely,

we apply the following refinement at a layer Li: For each job j∗ = j∗1 , . . . , j
∗
n in the order defined

by J ∗, identify the nodes u such that j∗ ∈ Some↓
u \All

↓
u and split them into two nodes u1 and u2,

where an incoming arc a= (v,u) is redirected to u1 if j∗ ∈ (All↓v ∪ {val(a)}) or u2 otherwise, and

replicate all outgoing arcs for both nodes. Moreover, if the relaxed MDD is a 1-width-relaxation,

then we obtain the bound guarantee on the number of jobs that are exactly represented.

This procedure also yields a reduced MDD M for certain structured problems. The following

corollary, stated without proof, is directly derived from Lemma 7 and Theorem 1.

Corollary 1. Assume W =+∞. For a sequencing problem having only precedence constraints,

the relaxed MDD M that results from the constructive proof of Theorem 1 is a reduced MDD that

exactly represents the feasible orderings of this problem.

Lastly, recall that equivalence classes corresponding to constraints other than the permutation

structure may also be taken into account during refinement. Therefore, if the maximum width

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 17

W is not met in the refinement procedure above, we assume that we will further split nodes by

arbitrarily partitioning their incoming arcs. Even though this may yield false equivalence classes,

the resulting M is still a valid relaxation and may provide a stronger representation.

8. Inferring Precedence Relations from Relaxed MDDs

Given a set of precedence relations to a problem (e.g., that were possibly derived from other relax-

ations), we can use the filtering rules (12) and (13) from Section 6.2 to strengthen a relaxed MDD.

In this section, we show that a converse relation is also possible. Namely, given a relaxed MDD

M, we can deduce all precedence relations that are satisfied by the partial orderings represented

by M in polynomial time in the size of M. To this end, assume that the states All↓u, All
↑
u, Some↓

u,

and Some↑
u as described in Section 6.1 are computed for all nodes u in M. We have the following

results.

Theorem 2. Let M be an MDD that exactly identifies all the feasible orderings of J . A job j

must precede job j′ in any feasible ordering if and only if (j′ ̸∈All↓u) or (j ̸∈All↑u) for all nodes u

in M.

Proof. Suppose there exists a node u in layer Li, i ∈ {1, . . . , n+ 1}, such that j′ ∈ All↓u and

j ∈All↑u. By definition, there exists a path (r, . . . , u, . . . , t) that identifies an ordering where job j′

starts before job j. This can only be true if and only if job j does not precede j′ in any feasible

ordering. �

Corollary 2. The set of all precedence relations that must hold in any feasible ordering can

be extracted from M in O(n2 |M|).

Proof. Construct a digraph G∗ = (J ,E∗) by adding an arc (j, j′) to E∗ if and only if there

exists a node u in M such that j′ ∈All↓u and j ∈All↑u. Checking this condition for all pair of jobs

takes O(n2) for each node in M, and hence the time complexity to construct G∗ is O(n2|M|).

According to Theorem 2 and the definition of G∗, the complement graph of G∗ contains an edge

(j, j′) if and only if j ≪ j′. �
As we are mainly interested in relaxed MDDs, we derive an additional corollary of Theorem 2.

Corollary 3. Given a relaxed MDD M, an activity j must precede activity j′ in any feasible

solution if (j′ ̸∈ Some↓
u) or (j ̸∈ Some↑

u) for all nodes u in M.

Proof. It follows from the state definitions that All↓u ⊆ Some↓
u and All↑u ⊆ Some↑

u. Hence, if the

conditions for the relation j ≪ j′ from Theorem 2 are satisfied by Some↓
u and Some↑

v, they must

be also satisfied by any MDD which only identifies feasible orderings. �

Cire and van Hoeve: MDDs for Sequencing Problems
18 Article submitted to ; manuscript no.

By Corollary 3, the precedence relations implied by the solutions of a relaxed MDD M can be

extracted by applying the algorithm in Corollary 2 to the states Some↓
v and Some↑

v. Since M has

at most O(nW) nodes and O(nW 2) arcs, the time to extract the precedences has a worst-case

complexity of O(n3W 2) by the presented algorithm. These precedences can then be used for guiding

search or communicated to other methods or relaxations that may benefit from them.

9. Encoding Size for Structured Precedence Relations

The actual constraints that define a problem instance greatly impact the size of an MDD. If these

constraints carry a particular structure, we may be able to compactly represent that structure in

an MDD, perhaps enabling us to bound its width.

In this section we present one of such cases for a problem class introduced by Balas (1999), in

which jobs are subject to discrepancy precedence constraints: For a fixed parameter k ∈ {1, . . . , n},

the relation jp ≪ jq must be satisfied for any two jobs jp, jq ∈ J if q ≥ p + k. This precedence

structure was motivated by a real-world application in steel rolling mill scheduling. The work

by Balas and Simonetti (2000) also demonstrates how solution methods to this class of problems

can serve as auxiliary techniques in other cases, for example as heuristics for the traveling salesman

problem and vehicle routing with time windows.

We stated in Corollary 1 that we are able to construct the reduced MDDM when only precedence

constraints are imposed and a sufficiently large W is given. We have the following results for M if

the precedence relations satisfy the discrepancy structure for a given k.

Lemma 8. For a node v ∈Lm+1, m= 1, . . . , n, we have All↓v ⊆ {j1, . . . , jmin{m+k−1, n}}.

Proof. If m+ k − 1 > n we obtain the redundant condition All↓u ⊆ J , therefore assume m+

k− 1≤ n. Suppose there exists jl ∈All↓v for some v ∈Lm+1 such that l >m+ k− 1. Then, for any

i= 1, . . . ,m, we have l− i≥m+ k− i≥m+ k−m= k. This implies {j1, . . . , jm} ⊂All↓v, since job

jl belongs to a partial ordering π only if all jobs ji for which l− i≥ k are already accounted in π.

But then |All↓v| ≥m+ 1, which is a contradiction since v ∈ Lm+1 implies that |All↓v|=m, as any

partial ordering identified by a path from r to v must contain m distinct jobs. �

Theorem 3. The width of M is 2k−1.

Proof. Let us first assume n ≥ k + 2 and restrict our attention to layer Lm+1 for some m ∈

{k, . . . , n− k+1}. Also, let F := {All↓u : u ∈ Lm+1}. It can be shown that if M is reduced, no two

nodes u, v ∈Lm+1 are such that All↓u =All↓v. Thus, |F|= |Lm+1|.

We derive the cardinality of F as follows. Take All↓v ∈ F for some v ∈ Lm+1. Since |All↓v|=m,

there exists at least one job ji ∈All↓v such that i≥m. According to Lemma 8, the maximum index

of a job in All↓v is m+ k− 1. So consider the jobs indexed by m+ k− 1− l for l= 0, . . . , k− 1; at

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 19

least one of them is necessarily contained in All↓v. Due to the discrepancy precedence constraints,

jm+k−1−l ∈All↓v implies that any ji with i≤m− l− 1 is also contained in All↓v (if m− l− 1> 0).

Now, consider the sets in F which contain a job with index m+ k− 1− l, but do not contain

any job with index greater than m+ k− 1− l. Any of such set All↓u contain the jobs j1, . . . , jm−l−1

according to Lemma 8. Hence, the remaining m − (m − l − 1) − 1 = l job indices can be freely

chosen from m− l, . . . ,m+ k− l− 2. Notice there are no imposed precedences on these remaining

m+ k− l− 2− (m− l)+ 1= k− 1 elements; thus, there exist
(
k−1
l

)
of such subsets. But these sets

define a partition of F . Therefore

|F|= |Lm+1|=
k−1∑
l=0

(
k− 1

l

)
=

(
k− 1

0

)
+ · · ·+

(
k− 1

k− 1

)
= 2k−1.

We can use an analogous argument for the layers Lm+1 such that m< k or m> n− k + 1, or

when k = n− 1. The main technical difference is that we will have less than k− 1 possibilities for

the new combinations, and hence the maximum number of nodes is strictly less than 2k−1 for these

cases. The width of M is therefore 2k−1. �
According to Theorem 3, M has O(n2k−1) nodes as it contains n+ 1 layers. Since arcs only

connect nodes in adjacent layers, the MDD contains O(n22k−2) arcs (assuming a worst-case scenario

where all nodes in a layer are adjacent to all nodes in the next layer, yielding at most 2k−1.2k−1 =

22k−2 arcs directed out of a layer). Using the recursive relation (2) in Section 4, we can compute,

e.g., the minimum sum of setup times in worst-case time complexity of O(n2 22k−2). The work by

Balas (1999) provides an algorithm that minimizes this same function in O(nk2 2k−2), but that is

restricted to this particular objective.

10. Application of Relaxed MDDs to Constraint-based Scheduling

We added the techniques described here to ILOG CP Optimizer (CPO), the current state-of-

the-art general-purpose scheduler. Given a sequencing problem as considered in this work, CPO

applies a depth-first branch-and-bound search where jobs are recursively appended to the end of a

partial ordering until no jobs are left unsequenced. At each node of the branching tree, a number

of sophisticated propagators are used to reduce the possible candidate jobs to be appended to the

ordering. Examples of such propagators include edge-finding, not-first/not-last rules, and deductible

precedences; details can be found in Baptiste et al. (2001) and Viĺım (2004).

We have implemented our techniques as a user-defined propagator, which maintains a relaxed

MDD and runs one round of top-down filtering and refinement when activated at each node of the

branching tree. In particular, the filtering operation takes into account the search decisions up to

that point (i.e., the jobs that are already fixed in the partial ordering) and possible precedence

constraints that are deduced by CPO. At the end of a round, we use the relaxed MDD to reduce

Cire and van Hoeve: MDDs for Sequencing Problems
20 Article submitted to ; manuscript no.

the number of candidate successor jobs (by analyzing the arc labels in the appropriate layers) and

to communicate new precedence constraints as described in Section 8, which may trigger additional

propagation by CPO. Our implementation follows the guidelines from ILOG (2012).

In this section we present computational results for different variations of single machine sequenc-

ing problems using the MDD-based propagator. Our goal is twofold. First, we want to analyze

the sensitivity of the relaxed MDD with respect to the width and refinement strategy. Second, we

wish to provide experimental evidence that combining a relaxed MDD with existing techniques for

sequencing problems can improve the performance of constraint-based solvers.

10.1. Experimental setup

Three formulations were considered for each problem: a CPO model with its default propagators,

denoted by CPO; a CPO model containing only the MDD-based propagator, denoted by MDD; and

a CPO model with the default and MDD-based propagators combined, denoted by CPO+MDD. The

experiments mainly focus on the comparison between CPO and CPO+MDD, as these indicate whether

incorporating the MDD-based propagator can enhance existing methods.

We have considered two heuristic strategies for selecting the next job to be appended to a partial

schedule. The first, denoted by lex search, is a static method that always tries to first sequence the

job with the smallest index, where the index of a job is fixed per instance and defined by the order in

which it appears in the input. This allows for a more accurate comparison between two propagation

methods, since the branching tree is fixed. In the second strategy, denoted by dynamic search,

the CPO engine automatically selects the next job according to its own state-of-the-art scheduling

heuristics. The purpose of the experiments that use this search is to verify how the MDD-based

propagator is influenced by strategies that are known to be effective for constraint-based solvers.

The dynamic search is only applicable to CPO and CPO+MDD.

We measure two performance indicators: the total solving time and the number of fails. The

number of fails corresponds to the number of times during search that a partial ordering was

detected to be infeasible, i.e., either some constraint is violated or the objective function is greater

than a known upper bound. The number of fails is proportional to the size of the branching tree

and, hence, to the total solving time of a particular technique.

The techniques presented here do not explore any additional problem structure that was not

described in this work, such as specific search heuristics, problem relaxations, or dominance cri-

teria (except only if such structure is already explored by CPO). More specifically, we used the

same MDD-based propagator for all problems, which dynamically determines what node state and

refinement strategy to use according to the input constraints and the objective function.

The experiments were performed on a computer equipped with an Intel Xeon E5345 at

2.33GHz with 8 Gb RAM. The MDD code was implemented in C++ using the CPO

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 21

callable library from the ILOG CPLEX Academic Studio V.12.4.01. We have set the follow-

ing additional CPO parameters for all experiments: Workers=1, to use a single computer core;

DefaultInferenceLevel=Extended, to use the maximum possible propagation available in CPO;

and SearchType=DepthFirst.

10.2. Impact of the MDD Parameters

We first investigate the impact of the maximum width and refinement on the number of fails

and total solving time for the MDD approaches. As a representative test case, we consider the

traveling salesman problem with time windows (TSPTW). The TSPTW is the problem of finding

a minimum-cost tour in a weighted digraph starting from a selected vertex (the depot), visiting

each vertex within a given time window, and returning to the original vertex. In our case, each

vertex is a job, the release dates and deadlines are defined according to the vertex time windows,

and travel distances are perceived as setup times. The objective function is to minimize the sum

of setup times.

We selected the instance n20w200.001 from the well-known Gendreau benchmark proposed by

Gendreau et al. (1998), as it represents the typical behavior of an MDD. It consists of a 20-vertex

graph with an average time window width of 200 units. The tested approach was the MDDmodel with

lex search. We used the following job ranking for the refinement strategy described in Section 7:

The first job in the ranking, j∗1 , was set as the first job of the input. The i-th job in the ranking,

j∗i , is the one that maximizes the sum of the setup times to the jobs already ranked, i.e. j∗i =

argmaxp∈J\{j∗1 ,...,j
∗
i−1}

{
∑i−1

k=1 tj∗k ,p} for the setup times t. The intuition is that we want jobs with

largest travel distances to be exactly represented in M.

The number of fails and total time to find the optimal solution for different MDD widths are

presented in Figure 4. Due to the properties of the refinement technique in Theorem 1, we consider

only powers of 2 as widths. We note from Figure 4a that the number of fails is decreasing rapidly

as the width increases, up to a point where it becomes close to a constant (from 512 to 1024). This

indicates that, at a certain point, the relaxed MDD is very close to an actual exact representation

of the problem, and hence no benefit is gained from any increment of the width. The number of

fails has a direct impact on the total solving time, as observed in Figure 4b. Namely, the times

decrease accordingly as the width increases. At the point where the relaxed MDD is close to be

exact, larger widths only introduce additional overhead, thus increasing the solving time.

To analyze the impact of the refinement, we generated 50 job rankings uniformly at random for

the refinement strategy described in Section 7. These rankings were compared with the structured

one for setup times used in the previous experiment. To make this comparison, we solved the

MDD model with lex search for each of the 51 refinement orderings, considering widths from 4 to

Cire and van Hoeve: MDDs for Sequencing Problems
22 Article submitted to ; manuscript no.

1e
+

02
1e

+
03

1e
+

04
1e

+
05

1e
+

06

MDD Width

N
um

be
r

of
 F

ai
ls

4 8 16 32 64 128 256 512 1024

(a) Number of fails.

2
5

10
20

50
10

0
20

0
50

0

MDD Width

T
im

e
(s

)

4 8 16 32 64 128 256 512 1024

(b) Time.

Figure 4 Impact of the MDD width on the number of fails and total time for the TSPTW instance n20w200.001

from the Gendreau class. The axes are in logarithmic scale.

4 8 16 32 64 128 256 512 1024

1
2

5
10

20
50

10
0

50
0

MDD Width

N
um

. o
f F

ai
ls

 R
an

do
m

 /
N

um
. o

f F
ai

ls
 S

tr
uc

tu
re

d

(a) Number of fails ratio.

4 8 16 32 64 128 256 512 1024

1
2

5
10

20
50

10
0

50
0

MDD Width

T
im

e
R

an
do

m
 /

T
im

e
S

tr
uc

tu
re

d

(b) Time ratio.

Figure 5 Performance comparison between random and structured refinement strategies for the TSPTW instance

n20w200.001. The axes are in logarithm scale.

1024. For each random order, we divided the resulting number of fails and time by the ones obtained

with the structured refinement for the same width. Thus, this ratio represents how much better

the structured refinement is over the random strategies. The results are presented in the box-

and-whisker plots of Figure 5. For each width the horizontal lines represent, from top to bottom,

the maximum observed ratio, the upper quartile, the median ratio, the lower quartile, and the

minimum ratio.

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 23

We interpret Figure 5 as follows. An MDD with very small width captures little of the jobs that

play a more important role in the optimality or feasibility of the problem, in view of Theorem 1.

Thus, distinct refinement strategies are not expected to differ much on average, as shown, e.g., in

the width-4 case of Figure 5a. As the width increases, there is a higher chance that these crucial

jobs are better represented by the MDD, leading to a good relaxation, but also a higher chance that

little of their structure is captured by a random strategy, leading in turn to a weak relaxation. This

yields a larger variance on the refinement performance. Finally, for sufficiently large widths, we end

up with an almost exact representation of the problem and the propagation is independent of the

refinement order (e.g., widths 512 and 1024 of Figure 5a). Another aspect we observe in Figure 5b

is that, even for relatively small widths, the structured refinement can be orders of magnitude

better than a random one. This emphasizes the importance of applying an appropriate refinement

strategy for the problem at hand.

10.3. Traveling Salesman Problem with Time Windows

We first evaluate the relative performance of CPO and CPO+MDD on sequencing problems with time

window constraints, and where the objective is to minimize the sum of setup times. We considered

a set of well-known TSPTW instances defined by the Gendreau, Dumas, and Ascheuer benchmark

classes, which were proposed by Gendreau et al. (1998), Dumas et al. (1995), and Ascheuer (1995),

respectively. We selected all instances with up to 100 jobs, yielding 388 test cases in total. The

CPO and the CPO+MDD models were initially solved with lex search, considering a maximum width

of 16. A time limit of 1,800 seconds was imposed to all methods, and we used the structured job

ranking described in Section 10.2.

The CPO approach was able to solve 26 instances to optimality, while the CPO+MDD approach

solved 105 instances to optimality. The number of fails and solution times are presented in the

scatter plots of Figure 6, where we only considered instances solved by both methods. The plots

provide a strong indication that the MDD-based propagator can greatly enhance the CPO inference

mechanism. For example, CPO+MDD can reduce the number of fails from over 10 million (CPO) to

less than 100 for some instances.

In our next experiment we compared CPO and CPO+MDD considering a maximum width of 1024

and applying instead a dynamic search, so as to verify if we could still obtain additional gains

with the general-purpose scheduling heuristics provided by CPO. A time limit of 1,800 seconds

was imposed to all approaches.

With the above configuration, the CPO approach solved to optimality 184 out of the 388 instances,

while the CPO+MDD approach solved to optimality 311 instances. Figure 7a compares the times for

instances solved by both methods, while Figure 7b depicts the performance plot. In particular, the

overhead introduced by the MDD is only considerable for small instances (up to 20 jobs). On the

majority of the cases, the CPO+MDD is capable of proving optimality much quicker.

Cire and van Hoeve: MDDs for Sequencing Problems
24 Article submitted to ; manuscript no.

1e+00 1e+02 1e+04 1e+06 1e+08

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

CPO − Number of Fails

C
P

O
+

M
D

D
 W

id
th

 1
6

−
 N

um
be

r
of

 F
ai

ls

(a) Number of fails.

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

CPO − Time (s)

C
P

O
+

M
D

D
 W

id
th

 1
6

−
 T

im
e

(s
)

(b) Time.

Figure 6 Performance comparison between CPO and CPO+MDD for minimizing sum of setup times on Dumas,

Gendreau, and Ascheuer TSPTW classes with lex search. The vertical and horizontal axes are in

logarithmic scale.

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

CPO − Time (s)

C
P

O
+

M
D

D
 W

id
th

 1
02

4
−

 T
im

e
(s

)

(a) Scatter plot.

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Time(s)

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

0 300 600 900 1200 1500 1800

CPO
CPO+MDD − Width 1024

(b) Performance plot.

Figure 7 Performance comparison between CPO and CPO+MDD for minimizing sum of setup times on Dumas,

Gendreau, and Ascheuer TSPTW classes using default depth-first CPO search. The horizontal and

vertical axes in (a) are in logarithmic scale.

10.4. Asymmetric Traveling Salesman Problem with Precedence Constraints

We next evaluate the performance of CPO and CPO+MDD on sequencing problems with precedence

constraints, while the objective is again to minimize the sum of setup times. As benchmark problem,

we consider the asymmetric traveling salesman problem with precedence constraints (ATSPP), also

known as sequential ordering problem. The ATSPP is a variation of the asymmetric TSP where

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 25

CPO CPO+MDD, width 2048
instance vertices bounds best time (s) best time (s)

br17.10 17 55 55 0.01 55 4.98
br17.12 17 55 55 0.01 55 4.56
ESC07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 [28175, 28480] 28545 TL 28480 279.18
p43.3 43 [28366, 28835] 28930 TL 28835 177.29
p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 [15220, 15805] 18209 TL 16561 TL
ry48p.2 48 [15524, 16666] 18649 TL 17680 TL
ry48p.3 48 [18156, 19894] 23268 TL 22311 TL
ry48p.4 48 [29967, 31446] 34502 TL 31446 96.91
ft53.1 53 [7438, 7531] 9716 TL 9216 TL
ft53.2 53 [7630, 8026] 11669 TL 11484 TL
ft53.3 53 [9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79

Table 1 Results on ATSPP instances. Values in bold represent instances solved for the first time.

precedence constraints must be observed. Namely, given a weighted digraph D= (V,A) and a set

of pairs P = V × V , the ATSPP is the problem of finding a minimum-weight Hamiltonian tour T

such that vertex v precedes u in T if (v,u)∈ P .

The ATSPP has been shown to be extremely challenging for exact methods. In particular, a

number of instances with less than 70 vertices from the well-known TSPLIB (2012) benchmark,

proposed initially by Ascheuer et al. (2000), are still open. We refer to the work of Anghinolfi et al.

(2011) for a more detailed literature review of exact and heuristic methods for the ATSPP.

We applied the CPO and CPO+MDD model with dynamic search and a maximum width of 2048

for 16 instances of the ATSPP from the TSPLIB benchmark. A time limit of 1,800 seconds was

imposed, and we used the structured job ranking described in Section 10.2. The results are reported

in Table 1. The column Best corresponds to the best solution found by the method and the column

Time corresponds to the time that the solution was proved optimal. A value TL indicates that

the time limit was reached. Since the TSPLIB results are not updated, we report updated bounds

obtained from Hernádvölgyi (2003), Gouveia and Pesneau (2006), and Anghinolfi et al. (2011).

We were able to close three of the unsolved instances with our generic approach, namely p43.2,

p43.3, and ry48p.4. In addition, instance p43.4 was solved before with more than 22 hours of CPU

time by Hernádvölgyi (2003) (for a computer approximately 10 times slower than ours), and by

more than 4 hours by Gouveia and Pesneau (2006) (for an unspecified machine), while we could

solve it in less than 90 seconds. The presence of more precedence constraints (indicated for these

instances by a larger suffix number) is more advantageous to our MDD approach, as shown in

Table 1. On the other hand, less constrained instances are better suited to MILP-based approaches;

instances p43.1 and ry48p.1 are solved by a few second in Ascheuer et al. (2000).

As a final observation, we note that the bounds for the p43.1-4 instances reported in the TSPLIB

are inconsistent. They do not match any of the bounds from existing works we are aware of and the

Cire and van Hoeve: MDDs for Sequencing Problems
26 Article submitted to ; manuscript no.

1
2

5
10

20
50

10
0

Importance of Setup Times (β)

C
P

O
 −

 N
um

. o
f F

ai
ls

 /
C

P
O

+
M

D
D

 W
id

th
 1

6
−

 N
um

. o
f F

ai
ls

0 0.5 1 1.5 2 2.5 3 3.5 4

α = 0.25
α = 0.50
α = 0.75

(a) Number of fails ratio.

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

Importance of Setup Times (β)

C
P

O
 −

 T
im

e
/ C

P
O

+
M

D
D

 W
id

th
 1

6
−

 T
im

e

0 0.5 1 1.5 2 2.5 3 3.5 4

α = 0.25
α = 0.50
α = 0.75

(b) Time ratio.

Figure 8 Comparison between CPO and CPO+MDD for minimizing makespan on three instances with randomly

generated setup times. The vertical axes are in logarithmic scale.

ones provided by Ascheuer et al. (2000), from where these problems were proposed. This includes

the instance p43.1 which was solved in that work.

10.5. Makespan Problems

Constraint-based solvers are known to be particularly effective when the objective function is

makespan, which is greatly due to specialized domain propagation techniques that can be used in

such cases; see, e.g., Baptiste et al. (2001).

In this section we evaluate the performance of CPO and CPO+MDD on sequencing problems with

time window constraints and where the objective is to minimize makespan. Our goal is to test the

performance of such procedures on makespan problems, and verify the influence of setup times on

the relative performance. In particular, we will empirically show that the MDD-based propagator

makes schedulers more robust for makespan problems especially when setup times are present.

To compare the impact of setup times between methods, we performed the following experiment.

Using the scheme from Chang et al. (1995), we first generated three random instances with 15

jobs. The processing times pi are selected uniformly at random from the set {1,100}, and release

dates are selected uniformly at random from the set {0, . . . , α
∑

i pi} for α ∈ {0.25,0.5,0.75}. No

deadlines are considered. For each of the three instances above, we generated additional random

instances where we add a setup time for all pairs of jobs i and j selected uniformly at random

from the set {0, . . . , (50.5)β}, where β ∈ {0,0.5,1, . . . ,4}. In total, 10 instances are generated for

each β. We computed the number of fails and total time to minimize the makespan using CPO and

CPO+MDD models with a maximum width of 16, applying a lex search in both cases. We then divided

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 27

1e+00 1e+02 1e+04 1e+06 1e+08

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

CPO − Number of Fails

C
P

O
+

M
D

D
 W

id
th

 1
6

−
 N

um
be

r
of

 F
ai

ls

(a) Number of fails.

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

CPO − Time (s)

C
P

O
+

M
D

D
 W

id
th

 1
6

−
 T

im
e

(s
)

(b) Time.

Figure 9 Performance comparison between CPO and CPO+MDD for minimizing makespan on Dumas and Gendreau

TSPTW classes. The vertical and horizontal axes are in logarithmic scale.

the CPO results by the CPO+MDD results, and computed the average ratio for each value of β. The

job ranking for refinement is done by sorting the jobs in decreasing order according to the value

obtained by summing their release dates with their processing times. This forces jobs with larger

completion times to have higher priority in the refinement.

The results are presented in Figure 8. For each value of α, we plot the ratio of CPO and CPO+MDD in

terms of the number of fails (Figure 8a) and time (Figure 8b). The plot in Figure 8a indicates

that the CPO+MDD inference becomes more dominant in comparison to CPO for larger values of β,

that is, when setup times become more important. The MDD introduces a computational overhead

in comparison to the CPO times (around 20 times slower for this particular problem size). This is

compensated as β increases, since the number of fails for the CPO+MDD model becomes orders of

magnitude smaller in comparison to CPO. The same behavior was observed on average for other

base instances generated under the same scheme.

To evaluate this on structured instances, we consider the TSPTW instances defined by the

Gendreau and Dumas benchmark classes, where we changed the objective function to minimize

makespan instead of the sum of setup times. We selected all instances with up to 100 jobs, yielding

240 test cases in total. We solved the CPO and the CPO+MDD models with lex search, so as to compare

the inference strength for these problems. A maximum width of 16 was set for CPO+MDD and a

time limit of 1,800 was imposed to both cases. The job ranking is the same as in the previous

experiment.

The CPO approach was able to solve 211 instances to optimality, while the CPO+MDD approach

solved 227 instances to optimality (including all the instances solved by CPO). The number of fails

Cire and van Hoeve: MDDs for Sequencing Problems
28 Article submitted to ; manuscript no.

and solving time are presented in Figure 9, where we only depict instances solved by both methods.

In general, for easy instances (up to 40 jobs or with a small time window width), the reduction

of the number of fails induced by CPO+MDD was not significant, and thus did not compensate the

computational overhead introduced by the MDD. However, we note that the MDD presented a

better performance for harder instances; the lower diagonal of the Figure 9b is mostly composed

by instances from the Gendreau class with larger time windows, for which the number of fails

was reduced by five and six orders of magnitude. We also note that the result for the makespan

objective is less pronounced than for the sum of setup times presented in Section 10.3.

10.6. Total Tardiness

Constraint-based schedulers are usually equipped with specific filtering techniques for minimizing

total tardiness, which are based on the propagation of a piecewise linear function as described

by Baptiste et al. (2001). For problems without any constraints, however, the existing schedulers

are only capable of solving small instances, and heuristics end up being more appropriate as the

propagators are not sufficiently strong to deduce good bounds.

In this section we evaluate the performance of CPO and CPO+MDD on sequencing problems where

the objective is to minimize the total tardiness. Since we are interested in evaluating the inference

strength of the objective function bounding mechanism, we do not take into account any additional

side constraints and we limit our problem size to 15 jobs. Moreover, jobs are only subject to a

release date, and no setup time is considered.

We have tested the total tardiness objective using random instances, again generated with the

scheme of Chang et al. (1995). The processing times pi are selected uniformly at random from

the set {1,10}, the release dates ri are selected uniformly at random from the set {0, . . . , α
∑

i pi},

and the due dates are selected uniformly at random from the set {ri+ pi, . . . , ri+ pi+β
∑

i pi}. To

generate a good diversity of instances, we considered α ∈ {0,0.5,1.0,1.5} and β ∈ {0.05,0.25,0.5}.

For each random instance generated, we create a new one with the same parameters but where

we assign tardiness weights selected uniformly at random from the set {1, . . . ,10}. We generated

5 instances for each configuration, hence 120 instances in total. A time limit of 1,800 seconds was

imposed to all methods. The ranking procedure for refinement is based on sorting the jobs in

decreasing order of their due dates.

We compared the CPO and the CPO+MDD models for different maximum widths, and lex search

was applied to solve the models. The results for unweighted total tardiness are presented in Fig-

ure 10a, and the results for the weighted total tardiness instances are presented in Figure 10b.

We observe that, even for relatively small widths, the CPO+MDD approach was more robust than

CPO for unweighted total tardiness; more instances were solved in less time even for a width of 16,

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 29

0
10

20
30

40
50

60

Time(s)

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

0 300 600 900 1200 1500 1800

CPO
CPO+MDD Width 16
CPO+MDD Width 32
CPO+MDD Width 64
CPO+MDD Width 128

(a) Total tardiness.

0
10

20
30

40
50

60

Time(s)

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

0 300 600 900 1200 1500 1800

CPO
CPO+MDD Width 16
CPO+MDD Width 32
CPO+MDD Width 64
CPO+MDD Width 128

(b) Weighted total tardiness.

Figure 10 Performance comparison between CPO and CPO+MDD for minimizing total tardiness on randomly gener-

ated instances with 15 jobs.

which is a reflection of a great reduction of the number of fails. On the other hand, for weighted

total tardiness CPO+MDD required larger maximum widths to provide a more significant benefit with

respect to CPO. We believe that this behavior may be due to a weaker refinement for the weighted

case, which may require larger widths to capture the set of activities that play a bigger role in the

final solution cost.

In all cases, a minimum width of 128 would suffice for the MDD propagation to provide enough

inference to solve all the considered problems.

11. Conclusion

We presented a novel generic approach to solving sequencing problems using multivalued decision

diagrams (MDDs). We introduced relaxed MDDs to represent an over-approximation of all feasible

solutions of a sequencing problem. We showed how these can be used to provide bounds on the

objective function value or to derive structured sequencing information, such as precedence relations

that must hold in any feasible solution. To strengthen the relaxed MDDs, we proposed a number of

techniques for a large class of scheduling problems where precedence and time window constraints

are imposed. We also showed that, for a TSP problem introduced by Balas (1999), the MDD that

exactly represents all its feasible solutions has a polynomial size in the number of cities. Lastly,

we have applied our MDD relaxations to constraint-based scheduling, and we showed that we can

improve the performance of a state-of-the-art solver by orders of magnitude. In particular, we were

able to close three open TSPLIB instances for the TSP with precedence constraints. Relaxed MDDs

thus provide a strong addition to existing generic approaches for solving constrained sequencing

problems.

Cire and van Hoeve: MDDs for Sequencing Problems
30 Article submitted to ; manuscript no.

References

Andersen, H. R., T. Hadzic, J. N. Hooker, P. Tiedemann. 2007. A constraint store based on multivalued deci-

sion diagrams. Proceedings of the 13th international conference on Principles and practice of constraint

programming . CP’07, Springer-Verlag, Berlin, Heidelberg, 118–132.

Anghinolfi, Davide, Roberto Montemanni, Massimo Paolucci, Luca Maria Gambardella. 2011. A hybrid

particle swarm optimization approach for the sequential ordering problem. Computers & Operations

Research 38(7) 1076 – 1085.

Ascheuer, Norbert. 1995. Hamiltonian path problems in the on-line optimization of flexible manufacturing

systems. Ph.D. thesis, Technische Universitt Berlin, Germany.

Ascheuer, Norbert, Michael Jnger, Gerhard Reinelt. 2000. A branch & cut algorithm for the asymmetric

traveling salesman problem with precedence constraints. Computational Optimization and Applications

17 2000.

Balas, E. 1999. New classes of efficiently solvable generalized traveling salesman problems. Annals of

Operations Research 86 529–558.

Balas, Egon, Neil Simonetti. 2000. Linear time dynamic-programming algorithms for new classes of restricted

tsps: A computational study. INFORMS J. on Computing 13 56–75.

Baptiste, Philippe, Claude Le Pape, Wim Nuijten. 2001. Constraint-Based Scheduling: Applying Constraint

Programming to Scheduling Problems. International Series in Operations Research and Management

Science, Kluwer.

Becker, B., M. Behle, F. Eisenbrand, R. Wimmer. 2005. BDDs in a branch and cut framework. S. Nikoletseas,

ed., Experimental and Efficient Algorithms, Proceedings of the 4th International Workshop on Efficient

and Experimental Algorithms (WEA 05), Lecture Notes in Computer Science, vol. 3503. Springer,

452–463.

Behle, M., F. Eisenbrand. 2007. 0/1 vertex and facet enumeration with BDDs. Proceedings of the Workshop

on Algorithm Engineering and Experiments (ALENEX). 158–165.

Bergman, David, Andre A. Cire, Willem-Jan van Hoeve, John N. Hooker. 2012. Variable ordering for the

application of bdds to the maximum independent set problem. Proceedings of the 9th international

conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems. CPAIOR’12, Springer-Verlag, Berlin, Heidelberg, 34–49.

Bergman, David, Willem-Jan van Hoeve, John Hooker. 2011. Manipulating MDD relaxations for combinato-

rial optimization. Tobias Achterberg, J. Beck, eds., Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6697.

Springer Berlin / Heidelberg, 20–35.

Chang, S., Q. Lu, G. Tang, W. Yu. 1995. On decomposition of the total tardiness problem. Operations

Research Letters 17(5) 221 – 229.

Cire and van Hoeve: MDDs for Sequencing Problems
Article submitted to ; manuscript no. 31

Christofides, Nicos, A. Mingozzi, P. Toth. 1981. State-space relaxation procedures for the computation of

bounds to routing problems. Networks 11(2) 145–164.

Cire, Andre A., Willem-Jan van Hoeve. 2012. MDD propagation for disjunctive scheduling. Twenty-Second

International Conference on Automated Planning and Scheduling, ICAPS . AAAI Press, 11–19.

Dumas, Yvan, Jacques Desrosiers, Eric Gelinas, Marius M. Solomon. 1995. An optimal algorithm for the

traveling salesman problem with time windows. Operations Research 43(2) 367–371.

Freuder, G., M. Wallace. 2000. Constraint technology and the commercial world. Intelligent Systems and

their Applications, IEEE 15(1) 20–23.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability - A Guide to the Theory of NP-

Completeness. Freeman.

Gendreau, Michel, Alain Hertz, Gilbert Laporte, Mihnea Stan. 1998. A generalized insertion heuristic for

the traveling salesman problem with time windows. Operations Research 46(3) 330–335.

Gouveia, L., P. Pesneau. 2006. On extended formulations for the precedence constrained asymmetric traveling

salesman problem. Networks 48(2) 77–89.

Hadzic, Tarik, John N. Hooker, Barry O’Sullivan, Peter Tiedemann. 2008. Approximate compilation of

constraints into multivalued decision diagrams. Proceedings of the 14th international conference on

Principles and Practice of Constraint Programming . CP ’08, Springer-Verlag, Berlin, 448–462.

Hernádvölgyi, István T. 2003. Solving the sequential ordering problem with automatically generated lower

bounds. Proceedings of Operations Research 2003 . Springer Verlag, 355–362.

Hoda, Samid, Willem-Jan Van Hoeve, J. N. Hooker. 2010. A systematic approach to MDD-based constraint

programming. Proceedings of the 16th international conference on Principles and practice of constraint

programming . CP’10, Springer-Verlag, Berlin, Heidelberg, 266–280.

ILOG. 2012. CPLEX Optimization Studio V12.4 Manual .

Lee, C. Y. 1959. Representation of switching circuits by binary-decision programs. Bell Systems Technical

Journal 38 985–999.

Lopes, Tony, Andre A. Cire, Cid de Souza, Arnaldo Moura. 2010. A hybrid model for a multiproduct pipeline

planning and scheduling problem. Constraints 15 151–189.

Pinedo, M. 2008. Scheduling: Theory, Algorithms and Systems. Third ed. Prentice Hall.

Rendl, Andrea, Matthias Prandtstetter, Gerhard Hiermann, Jakob Puchinger, Günther Raidl. 2012. Hybrid

heuristics for multimodal homecare scheduling. Proceedings of the 9th international conference on

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems. CPAIOR’12, Springer-Verlag, Berlin, Heidelberg, 339–355.

TSPLIB. 2012. Retrieved at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

on December 10, 2012.

Cire and van Hoeve: MDDs for Sequencing Problems
32 Article submitted to ; manuscript no.

Viĺım, Petr. 2004. O(n logn) filtering algorithms for unary resource constraint. Jean-Charles Régin, Michel

Rueher, eds., Proceedings of CP-AI-OR 2004 , Lecture Notes in Computer Science, vol. 3011. Springer-

Verlag, Nice, France, 335–347.

Wegener, I. 2000. Branching programs and binary decision diagrams: theory and applications. SIAM mono-

graphs on discrete mathematics and applications, Society for Industrial and Applied Mathematics.

