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Abstract. Fixed-width MDDs were introduced recently as a more re-
fined alternative for the domain store to represent partial solutions to
CSPs. In this work, we present a systematic approach to MDD-based
constraint programming. First, we introduce a generic scheme for con-
straint propagation in MDDs. We show that all previously known prop-
agation algorithms for MDDs can be expressed using this scheme. More-
over, we use the scheme to produce algorithms for a number of other
constraints, including Among, Element, and unary resource constraints.
Finally, we discuss an implementation of our MDD-based CP solver, and
provide experimental evidence of the benefits of MDD-based constraint
programming.

1 Introduction

The domain store is a fundamental tool for constraint programming (CP), be-
cause it propagates the results of individual constraint processing. It allows the
reduced domains obtained for one constraint to be passed to the next constraint
for further filtering. A weakness of the domain store, however, is that it trans-
mits a limited amount of information. It accounts for no interaction among the
variables, because any solution in the Cartesian product of the current domains
is consistent with it. This restricts the ability of the domain store to pool the
results of processing individual constraints and provide a global view of the
problem.

To address this shortcoming, Andersen, Hadzic, Hooker, and Tiedemann [1]
proposed replacing the domain store with a richer data structure, namely a mul-
tivalued decision diagram (MDD). In their approach, domain filtering algorithms
are replaced or augmented by algorithms that refine and update the MDD to
reflect each constraint. It was found that MDD-based propagation can lead to
substantial speedups in the solution of multiple AllDifferent constraints. The
idea was extended to equality constraints by Hadzic et al. [4]. A unified node-
splitting scheme for refining the MDD was proposed by Hadzic et al. [3] and
applied to certain configuration problems. For this reason, we will mainly focus
on filtering algorithms in this work.

MDDs have been applied before in CP. For example, in [6] and [2] MDDs are
applied to perform inferences (domain filtering) based on individual constraints.
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In [5], this is taken one step further, by passing structural information from one
constraint to the next. The key difference is that in these approaches, an MDD
is built and maintained for each individual constraint, whereas in MDD-based
constraint programming, the MDD is the information that is passed from one
constraint to the next. In other words, multiple constraints process the same
MDD, instead of each constraint processing its individual MDD.

The contributions of this work are threefold. First, we introduce a systematic
scheme for constraint propagation in MDDs, and we show that all previously
proposed filtering algorithms for MDD-based CP can be viewed as instantiations
of our scheme. Second, we apply our scheme to introduce new filtering algorithms
for other constraints; we present such algorithms for the Among, Element, and
unary resource constraints as an illustration of the versatility of the approach.
Third, we present computational results for the first pure MDD-based CP solver,
showing that i) this approach can scale up to realistic problem sizes, and ii)
enormous savings (in terms of time as well as search tree size) can be realized
when compared to solvers relying on the traditional domain store.

The remainder of the paper is organized as follows. In Section 2 we provide
the necessary background on MDDs and MDD-based constraint programming.
In Section 3 we present and discuss a systematic scheme for constraint propaga-
tion in MDDs. We apply our scheme to a variety of constraints in Section 4. In
Section 5 we provide a brief description of our MDD-based constraint program-
ming system. Experimental results using this system are reported in Section 6.
Finally, we conclude in Section 7.

2 MDDs and MDD-Based Constraint Solving

In this work, an ordered Multivalued Decision Diagram (MDD) is a directed
acyclic graph whose nodes are partitioned into n (possibly empty) subsets or
layers L1, . . . , Ln+1, where the layers L1, . . . , Ln correspond respectively to vari-
ables x1, . . . , xn. L1 contains a single top node T, and Ln+1 contains two bottom
nodes 0 and 1. The width of the MDD is the maximum number of nodes in
a layer, or maxn

i=1{|Li|}. In MDD-based CP, the MDDs typically have a given
fixed maximum width.

All edges of the MDD are directed from an upper to a lower layer; that is,
from a node in some Li to a node in some Lj with i < j. For our purposes it is
convenient to assume (without loss of generality) that each edge connects two
adjacent layers. Let L(s) denote the layer of the node s, and var(s) the variable
associated with L(s). Each edge out of layer i is labeled with an element of the
domain D(xi) of xi. The set E(s, t) of edges from node s to node t may contain
multiple edges, and we denote each with its label. Let Ein(s) denote the set of
edges coming into s, and Eout(s) the set of edges leaving s. For an edge e, tail(e)
is the tail of e and head(e) the head.

An edge with label v leaving a node in layer i represents an assignment
xi = v. Each path in the MDD from T to 0 or 1 can be denoted by the edge
labels v1, . . . , vn on the path and is identified with the assignment (x1, . . . , xn) =
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Fig. 1. Refining and filtering an MDD of width one (a) for x1 6= x2 (b), x2 6= x3 (c),
and x1 6= x3 (d), yielding the MDD in (e). Dashed lines mark filtered values.

(v1, . . . , vn). For our purposes, it is convenient to generate only the portion of an
MDD that contains paths from T to 1. A path v1, . . . , vn is feasible for a given
constraint C if setting (x1, . . . , xn) = (v1, . . . , vn) satisfies C. Constraint C is
feasible on an MDD if the MDD contains a feasible path for C.

A constraint C is called MDD consistent on a given MDD if every edge of
the MDD lies on some feasible path. Thus MDD consistency is achieved when
all redundant edges (i.e., edges on no feasible path) have been removed. Domain
consistency for C is equivalent to MDD consistency on an MDD of width one that
represents the variable domains. That is, it is equivalent to MDD consistency on
an MDD in which each layer Li contains a single node si, and E(si, si+1) = D(xi)
for i = 1, . . . , n.

Typically, MDD-based constraint programming starts with simple MDD (of
width one) that permits all solutions represented by the Cartesian product of
the domains. This MDD is then refined each time a constraint is processed.
Refinement is accomplished by adding some nodes and edges to the MDD so
as to exclude solutions that violate the constraint. Example 1 below gives an
illustration of this (see also Figure 1).

The basic operation of refinement is node-splitting, in which the edges enter-
ing a given node are partitioned into equivalence classes, and ideally the node
is split into one copy for each equivalence class. The set of outgoing edges for
each copy is the same as the set of outgoing edges of the original node. We note
that determining the equivalence classes may be costly to compute in practice,
in which case an approximation of equivalence is used. We take care that the
width of the MDD (maximum number of nodes in a layer) remains within a fixed
bound. When splitting a node we merge equivalence classes when necessary in
order to respect this restriction. The resulting MDD is a relaxation in the sense
that it may fail to exclude all assignments that violate the constraint, but it is
a much stronger relaxation than a domain store. A principled approach to node
refinement in MDDs is introduced by Hadzic et al. [3].

We also update the MDD by deleting infeasible edges, an operation that
generalizes conventional domain filtering. We will refer to this operation as MDD
filtering. This can lead to further reduction of the MDD, if after the removal of
the edge some other edges no longer have a path to 1 or can no longer be
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reached by a path from the root. An MDD-based constraint solver is based on
propagation and search just as traditional CSP solvers, but the domain filtering
process at each node of the search tree is replaced (or supplemented) by an MDD
refinement and filtering process.

Example 1. Consider a CSP with variables x1 ∈ {0, 1}, x2 ∈ {0, 1, 2}, and x3 ∈
{1, 2}, and constraints x1 6= x2, x2 6= x3, and x1 6= x3. All domain values are
domain consistent (even if we were to apply the AllDifferent propagator on
the conjunction of the constraints), and the domain store defines the relaxation
{0, 1} × {0, 1, 2} × {1, 2}, which includes infeasible solutions such as (1, 1, 1).

The MDD-based approach starts with the MDD of width one in Figure 1(a),
in which multiple arcs are represented by a set of corresponding domain values for
clarity. We refine and filter each constraint separately. Starting with x1 6= x2,
we refine the MDD by splitting the node at layer 2, resulting in Figure 1(b).
This allows us to filter two domain values, based on x1 6= x2, as indicated in the
figure. In Figure 1(c) and (d) we refine and filter the MDD for the constraints
x2 6= x3 and x1 6= x3 respectively, until we reach the MDD in Figure 1(e). This
MDD represents all three solutions to the problem, and provides a much tighter
relaxation than the domain store.

3 A Systematic Scheme for MDD Propagation

In the literature, MDD propagation algorithms (in the sense of Section 2) have
been proposed for the following three constraint types: (one-sided) inequality
constraints [1], AllDifferent [1], and equality constraints [3]. The reasoning
used for designing propagation algorithms for each of these constraints seemed
to be ad-hoc. In this section we will present and analyze a systematic scheme
for designing MDD propagation algorithms. In the following section we use this
procedure to express the existing MDD propagation algorithms and introduce
new algorithms for the Among, Element, and unary resource constraints.

3.1 The General Scheme

Our scheme is based on the idea of ‘local information’ I(s) stored for each con-
straint at each node s. We will show that all MDD propagation schemes so far
introduced, and others as well, can be viewed as based on local information.
The precise nature of the local information depends on the propagation scheme,
which is characterized in part by what kind of local information is required to
apply it.

More precisely, the decision as to whether to delete an edge in E(s, t) is
based solely on I(s) and I(t)—that is, on local information stored at either end
of the edge. Furthermore, the local information can be accumulated by a single
top-down pass and a single bottom-up pass through the MDD.

It is convenient to regard I(s) as a pair (I↓(s), I↑(s)) consisting of the infor-
mation I↓(s) accumulated during the top-down pass, and the information I↑(s)
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accumulated during the bottom-up pass. I↓(s) and I↑(s) can take several forms,
such as a set of domain values or parameters related to the constraint, or a tuple
of such sets. What is common to all the schemes is that I↓(s) is computed solely
on the basis of local information at the opposite end of edges coming into s, and
I↑(s) on the basis of local information at the opposite end of edges leaving s.

Formally, we introduce an operation ⊗ that processes information when
traversing an edge during a top-down or bottom-up pass. When traversing an
edge e ∈ E(s, t) during the top-down pass, the information I↓(s) at node s is
combined with edge e to obtain updated information I↓(s)⊗e. We view this up-
dated information as an object I having the same form as I↓(s). When several
edges enter node t, we use an operation ⊕ to combine the information obtained
by traversing the incoming edges. The top-down information at t is therefore

I↓(t) =
⊕

e∈Ein(t)

I↓(tail(e)) ⊗ e

Similarly, the bottom-up information at s is

I↑(s) =
⊕

e∈Eout(s)

I↑(head(e)) ⊗ e

Several examples of this scheme appear in the following sections.
Since a top-down (bottom-up) pass of the MDD visits each edge exactly once,

the passes themselves involve an amount of work that is linear in the size of the
MDD (modulo the work required to compute ⊕ and ⊗ at each node).

The operators ⊗ and ⊕ can be implemented as high-level macros that are in-
stantiated differently for each constraint type. Our MDD-based CP solver follows
this idea very closely.

3.2 MDD Consistency

The scheme above can sometimes achieve MDD consistency in polynomial time.
In particular, if it can determine in polytime whether any particular assign-
ment xj = v is consistent with the MDD, then it achieves MDD consistency in
polytime due to the following theorem.

Theorem 1. Suppose that the feasibility of xj = v for a given constraint C on
a given MDD M can be determined in O(f(M)) time and space for any variable
xj in C and any v ∈ D(xj). Then we can achieve MDD consistency for C in
time and space at most O(poly(M)f(M)).

The proof is a straightforward shaving argument. For each edge e of M we
consider the MDD Me that consists of all the T–to–1 paths in M containing e.
Then e can be removed from M if and only if xj = e is inconsistent with C and
Me, where j = L(tail(e)). This can be determined in time and space at most
O(f(Me)) ≤ O(f(M)). By repeating this operation poly(M) times (i.e., on each
edge of M) we obtain the theorem.



6

To establish MDD consistency, the goal is to efficiently compute information
that is strong enough to apply Theorem 1. In the sequel, we will see that this can
be done for inequality constraints and Among constraints in polynomial time, and
in pseudo-polynomial time for two-sided inequality constraints. Furthermore, we
have the following result.

Corollary 1. For binary constraints that are given in extension, our scheme
can be applied to achieve MDD consistency in polynomial time (in the size of
the constraint and the MDD).

To see how this is accomplished, suppose C is a binary constraint containing
variables xi, xj for i < j (the argument for j < i is similar). We let I↓(s) contain
all the values assigned to xi in some path from T to s, and I↑(t) contain all
the values assigned to xj in some path from s to 1. Then we can delete edge
e ∈ E(s, t) from M if and only if (a) L(s) = j and (xi, xj) = (v, e) satisfies C

for no v ∈ I↓(s), or (b) L(s) = i and (xi, xj) = (e, v) satisfies C for no v ∈ I↑(t).
Because |I↓(s)| and |I↑(t)| are polynomial in the size of M , we can perform this
check in time that is polynomial in the size of M and C. Also, we can compute
the local information by defining the ⊕ operator

I↓(s) ⊗ e =

{

{e} if L(s) = i

I↓(s) otherwise

I↑(t) ⊗ e =

{

{e} if L(s) = j

I↑(t) otherwise

with I↓(T) = I↑(1) = ∅, and the ⊕ operator

I ⊕ I ′ = I ∪ I ′

The top-down and bottom-up passes clearly require time that is polynomial in
the size of M . The corollary then follows from Theorem 1.

4 Specialized Propagators

We now present several MDD propagation algorithms that rely on local informa-
tion obtained as above. The filtering may not be as strong as for a conventional
domain store, in the sense that when specialized to an MDD of width one, it
may not remove as many values as a conventional filter would. However, a ‘weak’
filtering algorithm can be very effective when applied to the richer information
content of an MDD.

If one prefers not to design a filter specifically for MDDs, there is also the
option of using a conventional domain filter by adapting it to MDDs. This can
be done in a generic fashion that turns out to be yet another application of the
above scheme. Section 4.8 explains how this is done.
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4.1 Equality and Not-Equal Constraints

We first illustrate MDD propagation of the constraints xi = xj and xi 6= xj .
Because these are binary constraints, by Corollary 1 the scheme presented in
Section 3.2 achieves MDD consistency in polytime. If we compute I↓ as described
in that section, we can achieve MDD consistency for xi = xj by deleting an edge
e ∈ E(s, t) whenever (a) L(s) = j and e 6∈ I↓(s) or (b) L(s) = i and e 6∈ I↑(t). We
can achieve MDD consistency for xi 6= xj by deleting e whenever (a) L(s) = j

and I↓(s) = {e} or (b) L(s) = i and I↑(t) = {e}.
We note that this scheme generalizes directly to propagating fi(xi) = fj(xj)

and fi(xi) 6= fj(xj) for functions fi and fj . The scheme can also be applied
to constraints xi < xj . However, in this case we only need to maintain bound
information instead of sets of domain values, which leads to an even more efficient
implementation.

4.2 Propagating Linear Inequalities

We next focus on the filtering algorithm for general inequalities, as proposed
in [1]. That is, we want to propagate an inequality over a separable function of
the form:

∑

j∈J

fj(xj) ≤ b (1)

We can propagate such constraint on an MDD by performing shortest-path com-
putations.

Recall that each edge e ∈ E(s, t) is identified with a value assigned to var(s).
Supposing that var(s) = xj , we let the length of edge e be fj(e) when j ∈ J and
zero otherwise. Thus the length of a T–to–1 path is the left-hand side of (1).

We let I↓(s) be the length of a shortest path from T to s, and I↑(s) the
length of a shortest path from s to 1. Then we delete an edge e ∈ E(s, t) when
L(s) ∈ J and every path through e is longer than b; that is,

I↓(s) + fL(s)(e) + I↑(t) > b

It is easy to compute local information in the form of shortest path lengths,
because we can define for e ∈ E(s, t)

I↓(s) ⊗ e =

{

I↓(s) + fL(s)(e) if L(s) ∈ J

I↓(s) otherwise

I↑(t) ⊗ e =

{

I↑(t) + fL(s)(e) if L(s) ∈ J

I↑(t) otherwise

with I↓(T) = I↑(1) = 0. We also define

I ⊕ I ′ = min{I, I ′}

This inequality propagator achieves MDD consistency as an edge e is always
removed unless there exists a feasible solution to the inequality that supports
it [1].
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4.3 Propagating Two-sided Inequality Constraints

In this section, we present a generalization of the equality propagator described
by Hadzic et al. [3]. It extends the inequality propagator of Section 4.2, but now
we store all path lengths instead of only the shortest and longest paths.

Suppose we are given an inequality constraint l ≤
∑

j∈J fj(xj) ≤ u, where

l and u are numbers such that l ≤ u. Let I↓(s) be the set of all path lengths
from T to s, and I↑(s) the set of all path lengths from s to 1. We delete an edge
e ∈ E(s, t) when

v + e + v′ 6∈ [l, u], for all v ∈ I↓(s), v′ ∈ I↑(t)

The local information is computed by defining for e ∈ E(s, t)

I↓(s) ⊗ e =

{
{

v + e
∣

∣ v ∈ I↓(s)
}

if L(s) ∈ J

I↓(s) otherwise

I↑(t) ⊗ e =

{

{

v + e
∣

∣ v ∈ I↑(t)
}

if L(s) ∈ J

I↑(t) otherwise

with I↓(T) = I↑(1) = ∅. Also I ⊕ I ′ = I ∪ I ′.
When we delete an edge, the information stored at all predecessors and suc-

cessors becomes ‘stale’, and the information for these nodes must be recomputed
to guarantee MDD consistency. However, we will achieve MDD consistency if,
every time we delete an edge, we update the node information for all prede-
cessors and successors and repeat this filtering and updating until we reach a
fixed point. This follows because the filtering condition above is both necessary
and sufficient for an edge to be supported by a feasible solution. Observing that
the information can be computed in pseudo-polynomial time, by Theorem 1 this
algorithm runs in pseudo-polynomial time (see also [3]).

4.4 Propagating the AllDifferent Constraint

The constraint AllDifferent(xi, i ∈ J) requires that the variables xi for i ∈ J

take pairwise distinct values. We can frame the AllDifferent propagator pre-
sented in Andersen et al. [1] in terms of our scheme. Let I↓(s) = (A↓(s), S↓(s))
and I↑(s) = (A↑(s), S↑(s)). Here A↓(s) is the set of values that appear on all
paths from T to s—that is, the set of values v such that on all T–s paths, xj = v

for some j ∈ J . S↓(s) is the set of values v that appear on some T–s path. A↑(s)
and S↑(s) are defined similarly.

We can delete edge e ∈ E(s, t) for L(s) ∈ J when e ∈ A↓(s) ∪ A↑(t). We can
also delete e when the variables above s, or the variables below s, form a Hall
set. To make this precise, let X↓

s = {xj | j ∈ J, j < L(s)} be the set of variables

in the AllDifferent constraint above s, and X
↑
t = {xj | j ∈ J, j > L(s)} the

set of variables below s. Then if |X↓(s)| = |S↓(s)| (that is, X↓
s is a Hall set), the
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values in S↓(s) cannot be assigned to any variable not in X↓(s). So we delete e

if e ∈ S↓(s). Similarly, if X↑(t) is a Hall set, we delete e if e ∈ S↑(t).
Finally, we compute the local information by defining for e ∈ E(s, t)

I↓(s) ⊗ e =

{

I↓(s) ∪ ({e}, {e}), if L(s) ∈ J

I↓(s), otherwise

I↑(t) ⊗ e =

{

I↑(t) ∪ ({e}, {e}), if L(s) ∈ J

I↑(t), otherwise

where the unions are taken componentwise and I↓(T) = I↑(1) = (∅, ∅). Also we
define

I ⊕ I ′ = (A ∩ A′, S ∪ S′).

4.5 Propagating the Among Constraint

The Among constraint restricts the number of variables that can be assigned a
value from a specific subset of domain values. Formally, if X = (x1, . . . , xq) is
a sequence of variables, S a set of domain values, and ℓ, u, q are constants with
0 ≤ ℓ ≤ u ≤ q, then Among(X, S, ℓ, u) requires that

ℓ ≤ |{i ∈ {1, . . . , q} | vi ∈ S}| ≤ u

We can reduce propagating Among(X, S, ℓ, u) to propagating a two-sided sep-
arable inequality constraint,

ℓ ≤
∑

xi∈X

fi(xi) ≤ u,

where

fi(v) =

{

1, if v ∈ S

0, otherwise.

Because each fi(·) ∈ {0, 1}, we can compute the information in polynomial
time, and by Theorem 1 MDD consistency can be achieved in polynomial time
for Among constraints.

However, this filtering is too slow in practice. Instead, we propose to propa-
gate bounds information instead. That is, we can use the inequality propagator
for the pair of inequalities separately, and reason on the shortest and longest
path lengths, as in Section 4.2.

4.6 Propagating the Element Constraint

We next consider constraints of the form Element(xi, (a1, . . . , am), xj), where
the ak are constants. This means that the variable xj must take the xth

i value
in the list (a1, . . . , am); that is, xj = axi

.
Because this is a binary constraint, we can achieve MDD consistency in

polytime by defining I↓(s), I↑(t) as in the proof of Corollary 1. Supposing that
i < j, we delete an edge e ∈ E(s, t) when (a) L(s) = j and e = ak for no
k ∈ I↓(s), or (b) L(s) = i and ae 6∈ I↑(t).
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4.7 Propagating the Unary Resource Constraint

We consider unary resource constraints of the following form. We wish to sched-
ule a set A of activities on a single resource (non-preemptively). Each activity
a ∈ A has a given release time ra, deadline da, and processing time pa. We model
the problem using variables X = (x1, . . . , x|A|), where xi = a implies that activ-

ity a is the ith activity to consume the resource. That is, we to find the order in
which to process the activities, from which the start times can be immediately
derived.

First, observe that in our representation the variables encode a permutation
of A, which means that we can immediately apply the AllDifferent propagator
from Section 4.4.

To enforce the time windows, let I↓(s) be the earliest start time of the activity
in position L(s) of the sequence, given the previous activities in the sequence.
Let I↑(t) be latest completion time of the activity in position L(t)−1, given the
subsequent activities. Then we can delete edge e ∈ E(s, t) if the time window is
too small to complete activity e; that is, if

max{I↓(s), re} + pe > min{I↑(t), de}

The local information is computed

I↓(s) ⊗ e = max
{

I↓(s) + pe, re + pe

}

I↑(t) ⊗ e = min
{

I↑(t) − pe, de − pe

}

with I↓(T) = −∞ and I↑(1) = ∞. Also I ⊕ I ′ = (min{I↓, I↓
′
}, max{I↑, I↑

′
}).

4.8 Using Conventional Domain Filters

An existing domain filter can be adapted to MDD propagation on the basis
of local information. However, the resulting propagator may not achieve MDD
consistency even when it achieves domain consistency.

The adaptation goes as follows. Following Andersen et al. [1], we define the
induced domain relaxation D×(M) of an MDD M to be a tuple of domains
(D×

1 (M), . . . , D×
n (M)) where each D×

i (M) contains the values that appear on
level i of M . That is,

D×
i (M) =

⋃

s, t
L(s) = i = L(t) − 1

E(s, t)

We can perhaps delete edges from a given level i of M by selecting a node s on
level i and applying the conventional filter to the domains

D×
1 (Ms), . . . , D

×
i−1(Ms), E

out(s), D×
i+1(Ms), . . . , D

×
n (Ms) (2)

where Ms is the portion of M consisting of all paths through node s. We remove
values only from the domain of xi, that is from Eout(s), and delete the corre-
sponding edges from M . This can be done for each node on level i and for each
level in turn.
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To compute D×(Ms), we can regard it as local information I↓(s) (bottom-up
information I↑(s) is not needed). Then for e ∈ E(s, t)

I↓(s) ⊗ e = I↓(s) ∪ (∅, . . . , ∅, {e}, ∅, . . . , ∅)

where {e} is component L(s) of the vector, and the union is taken component-
wise. Also I ⊕ I ′ = I ∪ I ′.

This leads to the following lemma.

Lemma 1. The induced domain relaxation D×(Ms) can be computed for all
nodes s of a given MDD M in polynomial time (in the size of the MDD).

Again following Andersen et al. [1], we can strengthen the filtering by noting
which values can be deleted from the domains D×

j (Ms) for j 6= i when (2) is

filtered. If v can be deleted from D×
j (Ms), we place the nogood xj 6= v on each

edge in Eout(s). Then we move the nogoods on level i toward level j. If j > i,
for example, we filter (2) for each node on level i and then note which nodes on
level i + 1 have the property that all incoming edges have the nogood xj 6= v.
These nodes propagate the nogood to all their outgoing edges, and so forth until
level j is reached, where all edges with nogood xj 6= v and label v are deleted.

5 Implementation Issues

We have implemented a C++ system for MDD-Based Constraint Programming.
For a detailed description of the system, we refer to [7]. We next highlight some
of the most important design decisions we have made.

Even though MDDs can grow exponentially large to represent a given con-
straint perfectly, the basis of MDD-based constraint programming is to control
the size of the MDD by specifying a maximum width k. A MDD of width one is
equivalent to the conventional domain store, while increasing values of k allow
the MDD to converge to a perfect representation of the solution space. An MDD
on n variables therefore contains O(nk) nodes. Furthermore, by aggregating the
domain values corresponding to multiple (parallel) edges between two nodes, the
MDD contains O(nk2) edges. Therefore, for fixed k, all bottom-up and top-down
passes take linear time.

In our system, we do not propagate the constraints until a fixed point. In-
stead, by default we allocate one bottom-up and top-down pass to each con-
straint. The bottom-up pass is used to compute the information I↑. The top-
down pass processes the MDD a layer at a time, in which we first compute I↓,
then refine the nodes in the layer, and finally apply the filtering conditions based
on I↑ and I↓.

Our outer search procedure is currently implemented using a priority queue,
in which the search nodes are inserted with a specific weight. This allows to easily
encode depth-first search or best-first search procedures. Each search tree node
contains a copy of the MDD of its parent, together with the associated branch-
ing decision. When applying a depth-first search strategy, the total amount of
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space required to store all MDDs is polynomial, namely O(n2k2). We note that
‘recomputation’ strategies that are common in conventional CP systems, cannot
be easily applied in this context, because the MDD may change from parent to
child node, due to the node refinement procedure.

6 Experimental Results

In this section, we provide detailed experimental evidence to support the claim
that MDD-based constraint programming can be a viable alternative to con-
straint programming based on the domain store. All the experiments are per-
formed using a 2.33GHz Intel Xeon machine with 8GB memory, using our MDD-
based CP solver. For comparison reasons, our solver applies a depth-first search,
using a static lexicographic-first variable selection heuristic, and a minimum-
value-first value selection heuristic. We vary the maximum width of the MDD,
while keeping all other settings the same.

Multiple Among Constraints We first present experiments on problems
consisting of multiple Among constraints. Each instance contains 50 (binary)
variables, and each Among constraint consists of 5 variables chosen at random,
from a normal distribution with a uniform-random mean (from [1..50]) and stan-
dard deviation σ = 2.5, modulo 50. As a result, for these Among constraints the
variable indices are near-consecutive, a pattern encountered in many practical
situations. Each Among has a fixed lower bound of 2 and upper bound of 3, spec-
ifying the number of variables that can take value 1. In our experiments we vary
the number of Among constraints (from 5 to 200, by steps of 5) in each instance,
and we generate 100 instances for each number. We note that these instances
exhibit a sharp feasibility phase transition, with a corresponding hardness peak,
as the number of constraints increases. We have experimented with several other
parameter settings, and we note that the reported results are representative for
the other parameter settings; see Hoda [7] for more details.

In Figure 2, we provide a scatter plot of the running times for width 1 versus
width 4, 8 , and 16, for all instances. Note that this is a log-log plot. Points on the
diagonal represent instances for which the running times, respectively number
of backtracks, are equal. For points below the diagonal, width 4, 8, or 16 has a
smaller search tree, respectively is faster, than width 1, and the opposite holds
for points above the diagonal.

We can observe that width 4 already consistently outperforms the domain
store, in some cases up to six orders of magnitude in terms of search tree size
(backtracks), and up to four orders of magnitude in terms of computation time.
For width 8, this behavior is even more consistent, and for width 16, all instances
can be solved in under 10 seconds, while the domain store needs hundreds or
thousands of seconds for several of these instances.

Nurse Rostering Instances We next conduct experiments on a set of in-
stances inspired by nurse rostering problems, taken from [8]. The instances are
of three different classes, and combine constraints on the minimum and maxi-
mum number of working days for sequences of consecutive days of given lengths.
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Fig. 2. Scatter plots comparing width 1 versus width 4, 8, and 16 (from top to bottom)
in terms of backtracks (left) and computation time in seconds (right) on multiple Among
problems.

That is, class C-I demands to work at most 6 out of each 8 consecutive days
(max6/8) and at least 22 out of every 30 consecutive days (min22/30). For class
C-II these numbers are max6/9 and min20/30, and for class C-III these numbers
are max7/9 and min22/30. In addition, all classes require to work between 4 and
5 days per calendar week. The planning horizon ranges from 40 to 80 days.

The results are presented in Table 1. We report the total number of back-
tracks upon failure (BT) and computation time in seconds (CPU) needed by our
MDD solver for finding a first feasible solution, using widths 1, 2, 4, 8, 16, 32,
and 64. Again, the MDD of width 1 corresponds to a domain store. For all prob-
lem classes we observe a nearly monotonically decreasing sequence of backtracks
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instance width 1 width 2 width 4 width 8 width 16 width 32 width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 61,225 55.63 22,443 28.67 8,138 12.64 1,596 3.84 6 0.07 3 0.09 2 0.10

50 62,700 88.42 20,992 48.82 3,271 12.04 345 2.76 4 0.08 3 0.13 3 0.16

60 111,024 196.94 38,512 117.66 3,621 19.92 610 6.89 12 0.24 8 0.29 5 0.34

70 174,417 375.70 64,410 243.75 5,182 37.05 889 12.44 43 0.80 13 0.59 14 0.90

80 175,175 442.29 64,969 298.74 5,025 44.63 893 15.70 46 1.17 11 0.72 12 1.01

C-II 40 179,743 173.45 60,121 79.44 17,923 32.59 3,287 7.27 4 0.07 4 0.07 5 0.11

50 179,743 253.55 73,942 166.99 9,663 38.25 2,556 18.72 4 0.09 3 0.12 3 0.18

60 179,743 329.72 74,332 223.13 8,761 49.66 1,572 16.82 3 0.13 3 0.18 2 0.24

70 179,743 391.29 74,332 279.63 8,746 64.80 1,569 22.35 4 0.18 2 0.24 2 0.34

80 179,743 459.01 74,331 339.57 8,747 80.62 1,577 28.13 3 0.24 2 0.32 2 0.45

C-III 40 91,141 84.43 29,781 38.41 5,148 9.11 4,491 9.26 680 1.23 7 0.18 6 0.13

50 95,484 136.36 32,471 75.59 2,260 9.51 452 3.86 19 0.43 7 0.24 3 0.20

60 95,509 173.08 32,963 102.30 2,226 13.32 467 5.47 16 0.50 6 0.28 3 0.24

70 856,470 1,986.15 420,296 1,382.86 37,564 186.94 5,978 58.12 1,826 20.00 87 3.12 38 2.29

80 882,640 2,391.01 423,053 1,752.07 33,379 235.17 4,236 65.05 680 14.97 55 3.27 32 2.77

Table 1. The effect of the MDD width on time in seconds (CPU) and backtracks (BT)
when finding one feasible solution on nurse rostering instances.

and solution time as we increase the width up to 64. Furthermore, the rate of
decrease appears to be exponential in many cases, and again higher widths can
yield savings of several orders of magnitude. A typical result (the instance C-III
on 60 days) shows that where an MDD of width 1 requires 95,509 backtracks
and 173.08 seconds of computation time, an MDD of width 32 only requires 6
backtracks and 0.28 seconds of computation time to find a first feasible solution.

7 Conclusion

We have introduced a generic scheme for propagating constraints in MDDs, and
showed that all existing MDD-based constraint propagators are instantiations
of this scheme. Furthermore, our scheme can be applied to systematically design
propagators for other constraints, and we have illustrated this explicitly for the
Among, Element, and unary resource constraints. We further provide experimen-
tal results for the first pure MDD-based constraint programming solver, showing
that MDD-based constraint programming can yield savings of several orders of
magnitude in time and search space as compared to the conventional domain
store.
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