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Abstract. In case a CSP is over-constrained, it is natural to allow some
constraints, called soft constraints, to be violated. We propose a generic
method to soften global constraints that can be represented by a flow in
a graph. Such constraints are softened by adding violation arcs to the
graph and then computing a minimum-weight flow in the extended graph
to measure the violation. We present efficient propagation algorithms,
based on different violation measures, achieving domain consistency for
the alldifferent constraint, the global cardinality constraint, the regular
constraint and the same constraint.

1 Introduction

Many real-life problems are over-constrained. In personnel rostering problems
for example, people often have conflicting preferences. To such problems there
does not exist a feasible solution that respects all preferences. However, we still
want to find some solution, preferably one that keeps conflicts to a minimum.
In the case of the personnel rostering example, we may want to construct a
roster in which the number of respected preferences is spread equally among the
employees.

In constraint programming, we seek an (optimal) feasible solution to a given
problem. Hence, we cannot apply constraint programming directly to over-con-
strained problems because it finds no solution. As a remedy several methods have
been proposed. Most of these methods introduce so-called soft constraints that
are allowed to be violated. Constraints that are not allowed to be violated are
called hard constraints. Most methods then try to find a solution that minimizes
the number of violated constraints, or some other measure of constraint violation.

Global constraints are often key elements in successfully modeling and solv-
ing real-life applications with constraint programming. For many soft global con-
straints, however, no efficient propagation algorithm was available, up to very
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recently. In this paper we distinguish two main objectives with respect to soft
global constraints: useful violation measures and efficient propagation algorithms.

In many cases we can represent a solution to a global constraint as a property
in some graph representation of the constraint. For example, a solution to the
alldifferent constraint corresponds to a matching in a particular graph; see
[22]. There exists a large class of such global constraints, see for example [4] for
a collection. In this paper, we focus on global constraints for which a solution
can be represented by a flow in a graph.

Our method adds wviolation arcs to the graph representation of a global con-
straint. To these arcs we assign a cost, corresponding to some violation measure
of the constraint. Each tuple in the constraint has an associated cost of viola-
tion. If the tuple satisfies the constraint, the corresponding flow does not use any
violation arc, and the cost is 0. If the tuple does not satisfy the constraint, the
corresponding flow must use violation arcs, whose costs sum up to the violation
cost of this tuple.

This approach allows us to define and implement useful violation measures
for soft global constraints. Moreover, we present an efficient generic propagation
algorithm for soft global constraints, making use of flow theory. We apply our
method to several global constraints that are well-known to the constraint pro-
gramming community: the alldifferent, the gcc, the regular, and the same
constraints, which will be recalled in turn. To each of these global constraints
we apply several violation measures, some of which are new.

This paper is organized as follows. In Section 2 we give an overview of related
literature. Section 3 provides some background on constraint programming and
flow theory. Then our method to soften global constraints is presented in Sec-
tion 4. We first discuss the general concepts of constraint softening and violation
measures. Then we describe the addition of violation arcs to the graph repre-
sentation and present the generic domain consistency propagation algorithm.
The next four sections apply our method to the four global constraints men-
tioned above. For each constraint we present new or existing violation measures
and the corresponding graph representations. We also analyze the correspond-
ing propagation algorithms to achieve domain consistency. Finally, in Section 9
a conclusion is given.

2 Related Literature

The best-known framework to handle soft constraints is the Partial-CSP frame-
work [14]. This framework includes the Maz-CSP framework that tries to maxi-
mize the number of satisfied constraints. Since in this framework all constraints
are either violated or satisfied, the objective is equivalent to minimizing the num-
ber of violated constraints. It has been extended to the Weighted-CSP framework
in [17] and [18], associating a degree of violation (not just a boolean value) to each
constraint and minimizing the sum of all weighted violations. The Possibilistic-
CSP framework in [29] associates a preference to each constraint (a real value
between 0 and 1) representing its importance. The objective of the framework



is the hierarchical satisfaction of the most important constraints, i.e. the mini-
mization of the highest preference level for a violated constraint. The Fuzzy-CSP
framework in [11], [12] and [28] is somewhat similar to the Possibilistic-CSP but
here a preference is associated to each tuple of each constraint. A preference
value of 0 means the constraint is highly violated and 1 stands for satisfaction.
The objective is the maximization of the smallest preference value induced by
a variable assignment. The last two frameworks are different from the previous
ones since the aggregation operator is a min/maz function instead of addition.
With valued-CSPs [30] and semi-rings [8] it is possible to encode Max-CSP,
weighted CSPs, Fuzzy CSPs, and Possibilistic CSPs.

Another approach to model and solve over-constrained problems was pro-
posed in [26] and refined in [7]. The idea is to identify with each soft constraint
S a “cost” variable z, and replace the constraint S by the disjunction

(SA(z=0)) V (SA(z>0))
where S is a constraint of the type z = u(S) for some violation measure yu(S)
depending on S. The newly defined problem is not over-constrained anymore.
If we ask to minimize the (weighted) sum of violation costs, we can solve the
problem with a traditional constraint programming solver. A similar approach,
specifically designed for over-constrained scheduling problems, was introduced
by [3].

This approach also allows us to design specialized filtering algorithms for
soft global constraints. Namely, if we treat the soft constraints as “optimization
constraints” (see for example [13,25,32]), we can apply cost-based propagation
algorithms. Constraint propagation algorithms for soft constraints based on this
method were given in [21] and [15]. We follow the same method in this paper.
Note that in this way we don’t need to introduce new theory as we interpret
certain optimization constraints as being soft constraints.

3 Background

3.1 Constraint Programming

We first introduce basic constraint programming concepts. For more information
on constraint programming we refer to [2] and [10].

Let x be a variable. The domain of x is a set of values that can be assigned
to z. In this paper we only consider variables with finite domains.

Let X = z1,%9,...,2; be a sequence of variables with respective domains
Dy, D,,...,Dy. We denote Dx = |J;<;<,, Di- A constraint C on X is defined
as a subset of the Cartesian product of the domains of the variables in X, i.e.
C C Dy x Dy x --- x Dg. A tuple (dy,...,d;) € C is called a solution to C.
We also say that the tuple satisfies C. A value d € D; for some i = 1,...,k is
inconsistent with respect to C' if it does not belong to a tuple of C, otherwise
it is consistent. C' is inconsistent if it does not contain a solution. Otherwise,
C is called consistent. A constraint is called a binary constraint if it is defined



on two variables. If it is defined on more than two variables, we call C' a global
constraint.

Sometimes a constraint C' is defined on variables X together with a certain
set of parameters p, for example a set of cost values. In such cases, we denote
the constraint as C'(X, p) for syntactical convenience.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence
of variables X = x1,xo,...,%, with respective domains D = Dy, Ds,...,D,,
together with a finite set of constraints C, each on a subsequence of X. This
is written as P = (X,D,C). The goal is to find an assignment z; = d; with
d; € D; for i = 1,...,n, such that all constraints are satisfied. This assignment
is called a solution to the CSP. A constraint optimization problem problem is a
CSP together with an objective function on X’ that has to be optimized.

The solution process of constraint programming interleaves constraint propa-
gation, or propagation in short, and search. The search process essentially consists
of enumerating all possible variable-value combinations, until we find a solution
or prove that none exists. We say that this process constructs a search tree. To re-
duce the exponential number of combinations, constraint propagation is applied
to each node of the search tree: Given the current domains and a constraint C,
remove domain values that do not belong to a solution to C. This is repeated
for all constraints until no more domain value can be removed.

In order to be effective, constraint propagation algorithms should be efficient,
because they are applied many times during the solution process. Further, they
should remove as many inconsistent values as possible. If a constraint propa-
gation algorithm for a constraint C' removes all inconsistent values from the
domains with respect to C, we say that it makes C' domain consistent. More
formally:

Definition 1 (Domain consistency, [19]). A constraint C' on the variables
Z1,..., T with respective domains Dy, ..., Dy is called domain consistent if for
each variable x; and each value d; € D; (i = 1,...,k), there exist a value d; € D;
for all j # i such that (dy,...,d;) € C.

In the literature, domain consistency is also referred to as hyper-arc consistency
or generalized-arc consistency.

In this paper our goal is to find efficient propagation algorithms for soft global
constraints with useful violation measures, that achieve domain consistency.

3.2 Flow Theory

We present some concepts of flow theory that are necessary to understand this
paper. For more information on flow theory we refer to [1] and [31, Chapters
6-15).

Let G = (V, A) be a directed graph, or digraph, with vertex set V' and arc
set A. We denote m = |A|. Let s,t € V. A function f : A — R is called a flow
from s tot, or an s —t flow, if (i) f(a) > 0 for each a € A, and (i) f(6°"(v)) =
(6™ (v)) for each v € V' \ {s,t}, where §'"(v) and §°**(v) denote the multiset of



arcs entering and leaving v, respectively. Here f(S) =" . f(a) for all S C A.
Property (i7) ensures flow conservation, i.e. for a vertex v # s,t, the amount of
flow entering v is equal to the amount of flow leaving v. The value of an s — ¢
flow f is defined as value(f) = f(6°%*(s)) — f(6(s)). In other words, the value
of a flow is the net amount of flow leaving s. This is equal to the net amount of
flow entering t¢.

Let d: A > Ry and ¢: A — Ry be a “demand” function and a “capac-
ity” function, respectively?. We say that a flow f is feasible if d(a) < f(a) <
c(a) foreacha € A. Let w : A — R be a “weight” function. We often also
refer to such function as a “cost” function. For a directed path P in G we define
w(P) = ) ,cpw(a). Similarly for a directed circuit. The weight of any function
f:A— Ris defined as weight(f) = 3, 4 w(a)f(a). A feasible flow is called a
minimum-weight flow if it has minimum weight among all feasible flows with the
same value. Given a graph G = (V, A) with s,¢t € V and a number ¢ € R;, the
minimum-weight flow problem is: find a minimum-weight s — ¢ flow with value
0.

A feasible s — t flow in G with value ¢ and minimum weight can be found
using the successive shortest path algorithm [31, p. 175-176]. It can be proved
that for integer demand and capacity functions it finds an integer s —t flow with
minimum weight. The time complexity of the algorithm is O(¢ - SP), where SP
is the time to compute a shortest directed path in G. Although faster algorithms
exist for general minimum-weight flow problems, this algorithm suffices when
applied to our problems. This is because in our case the value of any flow is
bounded above by the number of variables in the constraint.

Given a minimum-weight s — ¢ flow, we want to compute the additional
weight when an unused arc is forced to be used. In order to do so we need the
following notation. Let f be an s — ¢t flow in G. The residual graph of f (with
respect to d and c) is defined as Gy = (V, Ay) where Ay = {a | a € A, f(a) <
c@)}U{atl]|ae€ A, f(a) >da)}. Here a=! = (v,u) if a = (u,v). We extend
wto A~! = {a! | a € A} by defining w(a™!) = —w(a) for each a € A. Any
directed circuit C' in Gy gives an undirected circuit in G = (V, A). We define
x¢ € R4 by

1if C traverses a,
x(a) = { —1if C traverses a—!,
1

0 if C traverses neither a nor a=",

for a € A. We have the following result.

Theorem 1. Let f be a minimum-weight s — t flow of value ¢ in G = (V, A)
with f(a) = 0 for some a € A. Let C be a directed circuit in Gy with a € C,
minimizing w(C). Then f' = f+ex©, where ¢ is subject to d < f+ex® < ¢, has
minimum weight among all s —t flows g in G with value(g) = ¢ and g(a) =¢. If
C' does not exist, f' does not exist. Otherwise, weight(f') = weight(f)+e-w(C).

* Here Ry denotes {x € R | z > 0}. Similarly for Q.



The proof of Theorem 1 relies on the fact that for a minimum-weight flow f in
G, the residual graph Gy does not contain directed circuits with negative weight;
see also [1, p. 337-339].

Finally a digraph G = (V, E) is strongly connected if for any two vertices
u,v € V there is a directed path from u to v. A maximally strongly connected
non-empty subgraph of a digraph G is called a strongly connected component
of G.

4 Qutline of Method

In this section we first define how we soften global constraints, and define some
general violation measures. Then we present a generic constraint propagation
algorithm for a class of soft global constraints: those that can be represented by
a flow in a graph.

4.1 Constraint Softening and Violation Measures

As stated before, the idea of the scheme in [26] is as follows. To each soft con-
straint are associated a violation measure and a cost variable that measures
this violation. Then the CSP (or COP) is transformed into a COP where all
constraints are hard, and the (weighted) sum of cost variables is minimized.
Let X = x1,...,x, be variables with respective finite domains Dy, ..., D,,.

Definition 2 (Violation measure). A violation measure of a constraint C(x1,
ey Xn) 08 a function p: Dy X --- x D, = Q4 defined over the possible tuples of
C with the property that u(dy,...,d,) =0 if and only if (di,...,d,) € C.

Definition 3 (Constraint softening). Let z be a variable with finite domain
D, and C(z1,...,%,) a constraint with a violation measure p. Then

soft_ C(x1,...,Tn,2, 1) =
{(dl,...,dn,d) | dz S Di,de Dz; /J,(dh,dn) S d}

is the soft version of C' with respect to p.

Thus z is a “cost” variable that represents the measure of violation of C' —
max D, and min D, respectively represent the maximum and minimum value
of violation that is allowed, given the current state of the solution process.® It
should be noted that z does not equal the measure of violation, because we only
consider its bounds. The reason for this is that the current definitions allows us
to establish domain consistency on soft constraints efficiently. If we would define
u(dy,...,d,) = d instead, it would make that task NP-complete.

There may be several natural ways to evaluate the degree to which a global
constraint is violated and these are usually not equivalent. Two general measures
are the wvariable-based violation measure and the decomposition-based violation
measure.

® We assume that cost variable z is being minimized.



Definition 4 (Variable-based violation measure, [21]). Let C be a con-
straint on the variables x1,...,x, and let di,...,d, be an instantiation of vari-
ables such that d; € D; for i = 1,...,n. The variable-based violation measure
Uvar Of C is the minimum number of variables that need to change their value in
order to satisfy C.

For the decomposition-based violation measure we make use of the binary
decomposition of a constraint.

Definition 5 (Binary decomposition, [9]). Let C be a constraint on the
variables ©1,...,T,. A binary decomposition of C is a minimal set of binary
constraints Caec = {C1,...,Cr} (for integer k > 0) on the variables z1,...,%,
such that the solution set of C equals the solution set of ﬂle C;.

Note that we can extend the definition of binary decomposition by defining the

. . - . - k
constraints in Cgec On arbitrary variables, such that the solution set of A;_; C;
is mapped to the solution set of C' and vice versa, as proposed in [27]. In this
paper this extension is not necessary, however.

Definition 6 (Decomposition-based violation measure, [21]). Let C be
a constraint on the variables x1,...,z, for which o binary decomposition Cgec
erists and let dy,...,d, be an instantiation of variables such that d; € D; for
i =1,...,n. The decomposition-based violation measure pgec of C is the number
of violated constraints in Cgec-

In [21], the decomposition-based violation measure is referred to as primal graph
based violation cost.

Alternative measures exist for specific constraints. For the soft gcc and the
soft regular constraint, we introduce new violation measures that are likely to
be more effective in practical applications.

After we have assigned a violation measure to each soft constraint, we can
recast our problem. Consider a CSP (or COP) of the form P = (X, D, Chara U
Csoft), where Charg and Cyopy denote the set of hard and soft constraints of P,
respectively. We soften each constraint C; € Csop using the violation measure

it has been assigned and a cost variable z; with domain D, (i =1,.. .z|CLsoftJ)
that represents this measure. Then we transform P into the COP P = (X, D, ()
where X = X U {z1,...,2|c...|}, D contains their corresponding domains, and

C contains Charq and the soft version of each constraint in Cyqg-

4.2 Propagation of Soft Constraints

We assume from now on that constraint C(z1,...,%,) can be represented by
a directed graph G = (V, A) with capacity function ¢ : A — N that has the
following properties:

— a pair (z;,d) is represented by at least one arca € Afori=1,...,n and all
d € D;, and ¢(a) =1,



— a tuple (di,...,d,) € C is represented by a feasible flow f of value ¢ € Ry
in G such that f(a) = 1 for an arc a representing the pair (z;,d;) for i =
1,...,n, and f(a) = 0 for all arcs a representing the pair (z;,d) with d # d;
fori=1,...,n.

In case the constraint C is violated, it is impossible to find a flow with
the above mentioned properties in the corresponding digraph G. We propose
to extend G with certain arcs, such that it becomes possible to find a feasible
flow corresponding to a solution. We call these arcs wiolation arcs, and they
are denoted by A. Violation arcs may appear anywhere in the graph. The only
restriction we impose on them is that after their addition, there exists a feasible
flow in G = (V, AU A) that represents a solution to C.

There is no set recipe for the way violation arcs should be added, as their
introduction greatly varies from one constraint to another and even between
violation measures of the same constraint. The intuition is to consider all the
properties imposed by a given graph and decide which ones should be relaxed
and which ones should still be enforced. Then, violation arcs are added so that
solutions exhibiting a relaxed property now constitute feasible flows.

The next step is to make a connection with the violation measures for a
constraint. This is done by applying a “cost” function w : AU A5 QtoGin
the following way. For all arcs a € A we define w(a) = 0, while w(a) > 0 for all
arcs a € A. Then each flow f in G has an associated cost

acAUA acA

After the addition of violation arcs, a solution to C' corresponds to a feasible
flow in G with an associated cost. If the flow does not use any violation arcs,
this cost is 0. Otherwise, the cost of the flow depends on the costs we impose on
the violation arcs. Hence we can define a violation measure as follows. For each
solution to C' we define its cost of violation as the minimum-weight flow in G
that represents this solution. Conversely, for many existing violation measures
it is possible to choose a particular set of violation arcs and associated costs,
such that a minimum-weight flow in G representing a solution is exactly the
cost of violation of that solution. In the following sections we provide several
examples for different constraints and different violation measures. We often de-
note the extended digraph GasG  to indicate its dependence on some violation
measure U.

In other words, if C is represented by the digraph G = (V, A) and we can find
violation arcs A and a cost function w : AUA — Q.. that represent violation mea-
sure p, then the soft version of C' with respect to u, i.e. soft_C(z1,...,%n, 2, ),
is represented by the digraph G, = (V, AU A) with cost function w. By con-
struction, we have the following result:

Theorem 2. The constraint soft_ C(x1,...,%n,2, 1) is domain consistent if
and only if



Algorithm 1 domain consistency for soft_C(X, z, u)

set minimum = oo
construct G, = (V, AU A)
for z; € X do
for d € D; do
compute a minimum-weight flow f in G, that represents a solution to soft_C,
with f(a) =1 for some a € A that represents (z;, d)
if cost(f) > max D, then
remove d from D;
if cost(f) < minimum then
set minimum = cost(f)
if min D, < minimum then
set min D, = minimum

i) for all i € {1,...,n} and all d € D; there is an arc a € A representing
(@;,d) such that there ezists a feasible flow f in G, representing a solution
to soft_C with f(a) =1 and cost(f) < maxD,,

1) the minimum cost of all such flows f is not larger than min D, .

Theorem 2 gives rise to the following propagation algorithm, presented as
Algorithm 1. For a sequence of variables X = xi,...,Z,, and a constraint
soft_C(X,z, u) the algorithm first builds the digraph G, that represents the
constraint. Then, for all variable-value pairs (z;,d) we check whether the pair
belongs to a solution, i.e. whether there exists a flow in G, that represents a
solution containing z; = d, with cost at most max D,. If this is not the case, we
can remove d from D;. Finally, we update min D,, if necessary.

The time complexity of this algorithm is O(ndK) where d is the maximum
domain size and K is the time complexity to compute a flow in G, corresponding
to a solution to soft_C. However, we can improve the efficiency by applying
Theorem 1.

The resulting, more efficient, algorithm is as follows. We first compute an
initial minimum-weight flow f in G, representing a solution. Then for all arcs
a = (u,v) representing (z;,d) with f(a) = 0, we compute a minimum-weight
directed path P from v to u in the residual graph (G,)s. Together with a, P
forms a directed circuit. Provided that ¢(b) > 1 for all arcs b € P, we reroute
the flow over the circuit and obtain a flow f'. Then cost(f') = cost(f) + cost(P),
because w(a) = 0 for all a € A. If cost(f') > maxD, we remove d from the
domain of z;.

This reduces the time complexity of the algorithm to O(K + nd - SP) where
SP denotes the time complexity to compute a minimum-weight directed path in
G- Tt should be noted that a similar algorithm was first applied in [24,25] to
make the “cost-gcc” domain consistent.



5 Soft Alldifferent Constraint

5.1 Definitions

The alldifferent constraint on a sequence of variables specifies that all vari-
ables should be pairwise different. To the alldifferent constraint we apply
two measures of violation: the variable-based violation measure p, and the
decomposition-based violation measure pigec-

Let X = z1,...,2, be a sequence of variables with respective finite domains
D,,...,D,. For alldifferent(zy,...,z,) we have

Pvar(T1, -+, Tn) = D 4ep, max (|{i | z: = d}| - 1,0),
tdec(Z1,---,2n) = |{(¢,7) | z: = z;, fori < j}|
Example 1. Consider the following over-constrained CSP:
z1 € {a,b},zs € {a,b}, x5 € {a,b},z4 € {b,c},
alldifferent(xy, s, T3, Tq).
We have piyar (b, b, b,b) = 3 and pigec(b, b, b, b) = 6. a

If we apply Definition 3 to the alldifferent constraint using the measures
Jvar and figec, we obtain soft_alldifferent(xy,...,Tn, 2, thvar) and soft_all-
different(zy,...,%n, 2, tdec)- Each of the violation measures pyar and pigec
gives rise to a different domain consistency propagation algorithm. Before we
present them, we introduce the graph representation of the alldifferent con-
straint in terms of flows.

5.2 Graph Representation

A solution to the alldifferent constraint corresponds to a flow in a particular
graph:

Theorem 3. [22] A solution to alldifferent(xy,...,x,) corresponds to an
integer feasible s —t flow of value n in the digraph A = (V, A) with vertex set

V =XUDxU{s,t}
and arc set A= A;UAx U A,
As ={(s,z;) |i € {1,...,n}},
where Ax = {(zi,d) |d € D;,i € {1,...,n}},

Ay = {(dat) | de DX}a
with capacity function c(a) =1 for all a € A.
Proof. With an integer feasible s — ¢t flow f of value n in A we associate the
assignment x; = d for all arcs a = (z;,d) € Ax with f(a) = 1. Because c(a) =1
for all a € Ay U A4, this is indeed a solution to the alldifferent constraint. As

value(f) = n, all variables have been assigned a value. Similarly, each solution
to the alldifferent gives rise to a corresponding appropriate flow in A. |

Figure 1 gives the corresponding graph representation for the CSP of Exam-
ple 1.



Fig. 1. Graph representation for the alldifferent constraint. For all arcs the capacity
is 1.

5.3 Variable-Based Violation Measure

The results in this section are originally due to [21]. We state their result in
terms of our method, by adding violation arcs to the graph representing the
alldifferent constraint.

To graph A of Theorem 3 we add the violation arcs 4; = {(d,t) |d € Dx}}
(in fact, A; is a copy of Ay), with capacity c(a) = |6i“(d)| — 1 for all arcs
a=(d,t) € A,. Further, we apply a cost function w as described in Section 4.2,
with a uniform cost of 1 for violation arcs. Let the resulting digraph be denoted
by Avar (see Figure 2 for an illustration on Example 1).

The intuition is to add violation arcs that capture the fact that more than
one variable can be assigned to the same value. For example, in Figure 2.b four
variables are assigned to the same value b. To make this possible, there are three
units of flow on the corresponding violation arc, while one unit of flow can use
the arc without violation cost. Indeed, we should change the value of at least
three variables in order to satisfy the alldifferent constraint.

Corollary 1. The constraint soft_alldifferent(xy,..., Ty, 2, var) i domain
consistent if and only if

i) for every arc a € Ax there exists an integer feasible s —t flow f of value n
in Avar with f(a) =1 and weight(f) < maxD,, and

#1) minD, > weight(f) for a feasible minimum-weight s — t flow f of value n
m Ayar.

Proof. The weights on the arcs in A; are chosen such that the weight of a
minimum-weight flow of value n is exactly pyar for the corresponding solution.
The result follows from Theorem 2. O

The constraint soft_alldifferent(z1,...,Zn, 2, var) can now be made do-
main consistent in the following way. First we compute a minimum-weight flow
fin Ayar in O(m+/n) time, using the algorithm in [16]. If weight(f) > max D,



Fig. 2. a) Graph representation for the variable-based soft_alldifferent constraint.
For all arcs the capacity ¢ = 1, unless specified otherwise. Dashed arcs indicate the
inserted weighted arcs with weight w = 1. b) Example: arcs and associated flows used
in solution 1 = 2 = x3 = x4 = b of weight 3.

or min D, > weight(f) the constraint is inconsistent. Otherwise, we distinguish
two situations: either weight(f) < max D, or weight(f) = max D, .

Forcing a flow to use an unused arc in Ax can only increase weight(f) by 1.
Hence, if min D, < weight(f) < max D,, all arcs in Ax are consistent.

If min D, < weight(f) = max D,, an unused arc a = (z;,d) in Ax is con-
sistent if and only if there exists a d — z; path in (Avar)s with weight 0. We
can find these paths in O(m) time by breadth-first-search. Finally, we update
minD, = n — |M| if minD, < n — |M|. Then, by Corollary 1, the soft_all-
different(zi,...,%n, 2, var) iS domain consistent.

5.4 Decomposition-Based Violation Measure

The results in this section are originally presented in [15]. For the decomposition-
based soft_alldifferent constraint, we add the following violation arcs to the
graph representing the alldifferent constraint.

In the graph A of Theorem 3 we replace the arc set A; by A; = {(d,1) |
d € D;,i =1,...,n}, with capacity c(a) = 1 for all arcs a € A;. Note that A,
contains parallel arcs if two or more variables share a domain value. If there
are k parallel arcs (d,t) between some d € Dx and t, we distinguish them by
numbering the arcs as (d,t)o, (d,t)1,--.,(d,t)g—1 in a fixed but arbitrary way.
One can view the arcs (d, t)o to be the original arc set A;.

We apply a cost function w : AU A, — N as follows. If a € A, so a = (d, t);
for some d € Dx and integer i, the value of w(a) = i. Otherwise w(a) = 0. Let
the resulting digraph be denoted by Agec (see Figure 3 for an illustration on
Example 1).

The decomposition-based violation measure captures the amount of violation
a solution presents with respect to the binary decomposition of the constraint.
For example, in Figure 3.b four variables are assigned to the same value b. To
make this possible, there are three units of flow that need to use a violation arc,
while one unit of flow can use the arc without violation cost. Indeed, for the



Fig. 3. a) Graph representation for the decomposition-based soft_alldifferent con-
straint. For all arcs the capacity ¢ = 1. Dashed arcs indicate the inserted weighted
arcs with weight w as specified. b) Example: arcs and associated flows used in solution
Z1 = T2 = x3 = x4 = b of weight 6.

first variable assigned to b, say z;, there is no violated binary constraint and the
corresponding unit of flow may use the arc without violation cost. The second
variable assigned to b, say x2, violates one binary constraint, namely x; # .
Indeed it uses the violation arc with the next lowest possible cost, i.e. 1. The
following variable assigned to b, say 3, violates two binary constraints (involving
z1 and z5), which corresponds to using the violation arc with cost 2. Finally,
the fourth variable assigned to b, z4, violates three binary constraints and uses
the violation arc with cost 3.

Corollary 2. The constraint soft_alldifferent(x1,...,Zn, 2, ldec) IS domain
consistent if and only if

i) for every arc a € Ax there exists an integer feasible s —t flow f of value n
in Agec with f(a) =1 and weight(f) < max D, and

#1) minD, > weight(f) for a feasible minimum-weight s — t flow f of value n
m Adec-

Proof. The weights on the arcs in A; are chosen such that the weight of a
minimum-weight flow of value n is exactly pgec. Namely, the first arc entering
a value d € Dx causes no violation and chooses outgoing arc with weight 0.
The k-th arc that enters d causes k — 1 violations and chooses outgoing arc with
weight & — 1. The result follows from Theorem 2. |

The constraint soft_alldifferent(zy,..., Ty, 2, idec) Can be made domain
consistent by applying Algorithm 1. We first compute a minimum-weight flow f
in Agec- We do this by computing n shortest s — ¢ paths in the residual graph.
Because there are only weights on arcs in A, each shortest path takes O(m) time
to compute. Hence we can compute f in O(nm) time. If weight(f) > max D,
we know that the constraint is inconsistent.

To identify the arcs a = (z;,d) € Ax that belong to a flow g with value(g) =
n and weight(g) < max D, we apply Theorem 1. Thus, we search for a shortest



d — z; path in (Agec)s that together with a forms a directed circuit C. We can
compute all such shortest paths in O(m) time, using the following result:

Theorem 4. [15] Let soft_alldifferent(zy,...,%n, 2, idec) be consistent and
let f be an integer feasible minimum-weight flow in Agec of value n. Then
soft_alldifferent(x1,...,Tn, 2, Udec) can be made domain consistent in O(m)
time.

Proof. The complexity of the filtering algorithm depends on the computation
of the minimum-weight d — z; paths in (Agec)s for arcs (z;,d) € Ax. We make
use of the fact that only arcs a € A; contribute to the cost of such path.

Consider the strongly connected components of the graph (/Idec) ¢ which is a
copy of (Agec)s where s and ¢ and all their incident arcs are removed. Let P be
a minimum-weight d — z; path P in A;. If P is equal to d,z; then f(z;,d) =1
and cost(P) = 0. Otherwise, either z; and d are in the same strongly connected
component of (Agec) ¢, or not. In case they are in the same strongly connected
component, P can avoid ¢t in Ay, and cost(P) = 0. In case ; and d are in different
strongly connected components, P must visit ¢, and we do the following.

Split ¢ into two vertices t* and t°"* such that 6 (#") = §'®(t), 6°%(¢") = @,
and §17(t°Ut) = @, §OUt(tout) = §°ut(¢). For every vertex v € X U Dx we can
compute the minimum-weight path from v to #® and from ¢°"* to v in total
O(m) time.

The strongly connected components of (Agec) s can be computed in O(n+m)
time, following [33]. Hence the total time complexity of achieving domain con-
sistency is O(m), as n < m. O

Hence, we update D; = D; \ {d} if weight(f) + weight(C) > max D,. Finally,
we update min D, = weight(f) if min D, < weight(f). Then, by Corollary 2,
the soft_alldifferent(z1,...,%n, 2, ldec) i domain consistent.

6 Soft Global Cardinality Constraint

6.1 Definitions

A global cardinality constraint (gcc) on a sequence of variables specifies for each
value in the union of their domains an upper and lower bound to the number
of variables that are assigned to this value. A domain consistency propagation
algorithm for the gcc was developed in [23], making use of network flows.

Let lg,uq € N with Ig <wug foralld € Dx.

Definition 7 (Global cardinality constraint, [23]).
gcc(X,l,u) = {(dl,.. .,dn) | d; € D;,l; < |{d, | d; = d}| <wugVde Dx}.

Note that the gcc is a generalization of the alldifferent constraint. If we
set lg = 0 and ug = 1 for all d € Dx, the gcc is equal to the alldifferent
constraint.



In order to define measures of violation for the gcc, it is convenient to intro-
duce for each domain value a “shortage” function s : D; X ---x D, x Dx —» N
and an “excess” function e : Dy x --- x D, x Dx — N as follows:

_ Jla—{zi |z = d}| if {zi|zi=d}| <la,
s(Xd) = { 0 otherwise.

_JHzilzi=d}| —uq if [{z;i |z =d}| > ug,
e(X,d) = { 0 otherwise,

To the gcc we apply two measures of violation: the variable-based violation
measure [,y and the value-based violation measure i, that we will define in
this section. The next lemma expresses fivar in terms of the shortage and excess
functions.

Lemma 1. For gce(X,l,u) we have

pvar(X)=max< z s(X,d), Z e(X,d)>

deDx deDx

provided that

D l<IX[< ) ua (1)

deDx deDx

Proof. Note that if (1) does not hold, there is no variable assignment that
satisfies the gcc, and 4, cannot be applied.

Applying piyar corresponds to the minimal number of re-assignments of vari-
ables until both ), ., s(X,d)=0and ), ., e(X,d)=0.

Assume ), . 8(X,d) > >, p, €(X,d). Variables assigned to values d' €
Dx with s(X,d’) > 0 can be assigned to values d' € Dx with e(X,d") > 0,
until 37, e(X,d) = 0. In order to achieve }_,.,, s(X,d) = 0, we still need
to re-assign the other variables assigned to values d' € Dx with s(X,d") > 0.
Hence, in total we need to re-assign exactly ), p  s(X,d) variables.

Similarly when we assume ) ;. $(X,d) <> ,cp, €(X,d). Then we need
to re-assign exactly ;. p, €(X,d) variables. O

We introduce the following violation measure for the gcc, which can also be
applied when assumption (1) does not hold.

Definition 8 (Value-based violation measure). For gcc(X,l,u) the value-
based violation measure is

pal(X) = ) (s(X,d) +e(X,d)) .
deDx



Fig. 4. Graph representation for the gcc. Demand and capacity are indicated between
parentheses for each arc a as (d(a),c(a)).

6.2 Graph Representation

The gcc has the following graph representation:

Theorem 5. [23] A solution to gce(X,l,u) corresponds to an integer feasible
s —t flow of value n in the digraph G = (V, A) with vertezr set

V =XUDxU{s,t}

and arc set A= A;UAx UA,;,

A, ={(8,Z‘i)|i€ {1,...,”}},
where Ax = {(mz;d) | de Dzal € {1,...,”}},
At:{(dat) | dGDx},

1 ifa€ A,

with demand function d(a) =< 0 if a € Ay,
lgif a=(d,t) € A,

1 if a € Ay,
and capacity function c(a) =< 1 if a € Ay,
ug if a = (d,t) € A

Example 2. Consider the following CSP:

z1 € {1,2}, 20 € {1}, 23 € {1,2},24 € {1},
gCC(.’L‘l,JIQ,.’L'g,.ZC4,[1,3],[2,5]).

In Figure 4 the corresponding graph representation of the gcc is presented. O



Fig. 5. a) Graph representation for the variable-based soft_gcc. Demand and capacity
are indicated between parentheses for each arc a as (d(a),c(a)). Dashed arcs indicate
the inserted weighted arcs with weight w = 1. b) Example: arcs and associated flows
used in solution x1 = x2 = x4 = 1,23 = 2 of weight 2.

6.3 Variable-Based Violation Measure

For the variable-based violation measure, we adapt the graph G of Theorem 5
in the following way. We add the violation arcs

A ={(di,d;) | di,d; € Dx,i # j},

with demand d(a) = 0, capacity ¢(a) = n and weight w(a) = 1 for all arcs a € A.
Let the resulting digraph be denoted by Gyar (see Figure 5 for an illustration on
Example 2). The objective of the variable-based violation measure is to count the
variables which need to change value in order for a solution to be feasible with
respect to the original gcc. Here the intuition is immediate: if a variable needs
to change its value, it uses the violation arc from its current value to its desired
value. Each such change induces an additional weight of 1 to the variable-based
violation measure.

Corollary 3. The constraint soft_gcc(X,l,u, 2, tivar) 18 domain consistent if
and only if

i) for every arc a € Ax there exists an integer feasible s —t flow f of value n
in Gyar with f(a) =1 and weight(f) < maxD,, and

#4) min D, > weight(f) for a feasible minimum-weight s —t flow f of value n
in Gyar.

Proof. An assignment x; = d corresponds to the arc a = (x;,d) with f(a) = 1.
By construction, all variables need to be assigned to a value and the cost func-
tion exactly measures the variable-based cost of violation. The result follows
from Theorem 2. O

The constraint soft_gcc(X,l,u, 2, tivar) can be made domain consistent by
applying Algorithm 1. We first compute a minimum-weight flow f in Gy, by



computing n shortest s — ¢ paths in the residual graph in O(n(m + nlogn))
time. In order to make the soft_gcc with respect to pyar domain consistent, we
need to check m — n arcs for consistency. Instead of computing m — n shortest
paths in the residual graph, we do the following; see [24,25]. We compute for
each (variable) vertex in X the distance to all other vertices in O(m + nlogn)
time. Alternatively, this may be done for all (value) vertices in Dx instead.
Hence we can check all arcs for consistency in O(A(m + nlogn)) time, where
A = min(n, |Dx|).

In [7] the variable-based violation measure is considered for a different version
of the soft gcc. Their version considers the parameters [ and u to be variables
too. Hence, the variable-based cost evaluation becomes a rather poor measure, as
we trivially can change [ and u to satisfy the gcc. They fix this by restricting the
set of variables to consider to be the set X, which corresponds to our situation.
However, they do not provide a propagation algorithm for that case.

6.4 Value-Based Violation Measure

For the value-based violation measure, we adapt the graph G of Theorem 5 in
the following way. We add the violation arcs

Ashortage = {(S;d) | de DX} and Aexcess = {(d; t) | de DX};

with demand d(a) = 0 for all a € Ashortage U Aexcess and capacity

_Jlgifa= (s,d) € Ashortage;
c(a) = { o0 if a € Aexcess-

We again apply a cost function w assigning unit cost to violation arcs. Let
the resulting digraph be denoted by G.a (see Figure 6 for an illustration on
Example 2).

This value-based violation measure is not concerned with variables but rather
tries to evaluate the amount of flow missing or exceeding the requirement of the
original gcc. As we are only interested with the demands and capacities stated on
values, we allow the flow to completely bypass the layer of nodes corresponding
to the variables.

Corollary 4. The constraint soft_gcc(X,l,u, 2, ival) is domain consistent if
and only if

i) for every arc a € Ax there exists an integer feasible s —t flow f of value n
in Gyl with f(a) =1 and weight(f) < maxD,, and

#1) min D, > weight(f) for a feasible minimum-weight s —t flow f of value n
in Gyal.-

Proof. Similar to the proof of Theorem 3. O



Fig. 6. a) Graph representation for the value-based soft_gcc. Demand and capacity
are indicated between parentheses for each arc a as (d(a),c(a)). Dashed arcs indicate
the inserted weighted arcs with weight w = 1. b) b) Example: arcs and associated flows
used in solution z1 = x2 = 3 = x4 = 1 of weight 5.

We design an efficient propagation algorithm for the value-based soft_gcc,
by applying again Algorithm 1 and Theorem 1. First, we compute a minimum-
weight feasible flow in Gy,1. For this we first need to compute n shortest paths
to satisfy the demand of the arcs in A;. In order to meet the demand of the arcs
in A;, we need to compute at most another k shortest paths, where k = |Dx|.
Hence the total time complexity is O((n + k)(m + nlogn)).

In order to make the soft_gcc with respect to pya domain consistent, we
need to check m — n arcs for consistency. Similar to the variable-based soft_gcc,
this can be done in O(A(m + nlogn)) time, where A = min(n, |Dx|).

When Iq = 0 for all d € Dx, the arc set Aghortage is empty. In that case, Gyal
has a particular structure, i.e. the costs only appear on arcs from Dx to t. Then,
similar to the reasoning for the soft_alldifferent constraint with respect to
[dec, We can compute a minimum-weight flow of value n in Gy, in O(mn) time
and achieve domain consistency in O(m) time.

7 Soft Regular Constraint

7.1 Definitions

The regular constraint was introduced in [20]. It is defined on a fixed-length
sequence of finite-domain variables and it states that the corresponding sequence
of values taken by these variables belongs to a given regular language. A domain
consistency propagation algorithm for this constraint was also provided in [20].
Particular instances of the regular constraint can for example be applied in
rostering problems or sequencing problems.

Before we introduce the regular constraint we need the following defini-
tions. A deterministic finite automaton (DFA) is described by a 5-tuple M =



Fig. 7. A representation of a DFA with each state shown as a circle, final states as a
double circle, and transitions as arcs.

(Q,X,0,q0, F) where @ is a finite set of states, X' is an alphabet, § : @ x X' — @
is a transition function, gy € @ is the initial state, and F' C (@ is the set of final
(or accepting) states. Given an input string, the automaton starts in the initial
state go and processes the string one symbol at the time, applying the transition
function d at each step to update the current state. The string is accepted if
and only if the last state reached belongs to the set of final states F'. Strings
processed by M that are accepted are said to belong to the language defined by
M, denoted by L(M). For example with M depicted in Figure 7, strings aaabaa
and cc belong to L(M) but not aacbba. The languages recognized by DFAs are
precisely regular languages.

Given a sequence of variables X = z1,%s,...,z, with respective finite do-
mains Dy, Ds, ..., D, C X, there is a natural interpretation of the set of possible
instantiations of X, i.e. D1 X Dy X --- x D,,, as a subset of all strings of length
n over X.

Definition 9 (Regular language membership constraint, [20]). Let M =
(Q, X,0,q0, F) denote a DFA and let X = z1,%2,...,%, be a sequence of vari-
ables with respective finite domains D1, Do, ..., D, C X. Then

regular(X,M) = {(d17" ;dn) | d; € Di,dldg ---dy € L(M)}

To the regular constraint we apply two measures of violation: the variable-
based violation measure p,r and the edit-based violation measure peqgit that we
will define in this section.

Let s;1 and sy be two strings of the same length. The Hamming distance
H(sy,s2) is the number of positions in which they differ. Associating with a
tuple (dy,ds, ..., d,) the string dids - - - d,,, the variable-based violation measure
can be expressed in terms of the Hamming distance:

fivar(X) = min{H(D, X) | D = dy - --d, € L(M)}.

Another distance function that is often used for two strings is the following.
Let s1 and s2 be two strings of the same length. The edit distance E(s1,s2) is the
smallest number of insertions, deletions, and substitutions required to change one
string into another. It captures the fact that two strings that are identical except



for one extra or missing symbol should be considered close to one another. Edit
distance is probably a better way to measure violations of a regular constraint.
Consider for example a regular language in which strings alternate between pairs
of a’s and b’s: the Hamming distance of string “abbaabbaab” is 5 (that is, n/2)
since changing either the first a to a b or the first b to an a has a domino effect;
the edit distance of the same string is 2 since we can insert an a at the beginning
and remove a b at the end. In this case, the edit distance reflects the number of
incomplete pairs whereas the Hamming distance is proportional to the length of
the string rather than to the amount of violation.

Definition 10 (Edit-based violation measure). For regular(X, M) the
edit-based violation measure is

Pedit(X) = min{E(D,X) | D = dy ---d, € L(M)}.
Example 3. Consider the CSP
T1 € {a7 ba C}7 T2 € {a7 ba C}7 T3 € {G’J b7 C}, T4 € {a7 ba C}7
regular(z, T2, L3, L4, M)
with M as in Figure 7. We have pyar(c, a,a,b) = 3, because we have to change
at least 3 variables. A corresponding valid string with Hamming distance 3 is for
example aaba. On the other hand, we have peqis(c, a, a,b) = 2, because we can

delete the value ¢ at the front and add the value a at the end, thus obtaining
the valid string aaba. |

7.2 Graph Representation

A graph representation for the regular constraint was presented in [20]. Recall
that M =(Q, X, 6,40, F).

Theorem 6. [20] A solution to regular(X, M) corresponds to an integer fea-
sible s — t flow of value 1 in the digraph R = (V, A) with vertex set

V=ViUWVU---UVpy1 U{s,t}
and arc set A=A;UA UAU---UA, U A,
where Vi=1{q. |q €Q} fori=1,...,n+1,
AS = {(S{Q(l)}’
and A; = {(q}c,ql“rl) | 6(qk,d) = q ford € D;} fori=1,...,n,
At = {(ql?—i_lat) | gk € F}7
with capacity function c(a) =1 for all a € A.
Proof. Each arc in A4; corresponds to a variable-value pair: there is an arc from
gj, to qu+1 if and only if there exists some d € D; such that §(gx,d) = ¢;. If an
arc belongs to an integer s — ¢t flow of value 1, it belongs to a path from g§ to a

member of F' in the last V,,11. Hence the assignment z; = d belongs to a solution
to the regular constraint. |

Figure 8 gives the corresponding graph representation of the regular con-
straint from Example 3.



Fig. 8. Graph representation for the regular constraint. For all arcs the capacity is 1.

7.3 Variable-Based Violation Measure

For the variable-based soft_regular constraint, we add the following violation
arcs to the graph representing the regular constraint.
To the graph R of Theorem 6 we add violation arcs

Ay = {(gk, ") | 6(qk,d) = q; for some d € X, i=1,...,n},

with capacity ¢(a) = 1 for all arcs a € Agyp. We apply the usual cost function w
with unit cost. Let the resulting digraph be denoted by Ryar (see Figure 9 for
an illustration on Example 3).

The input automaton of this constraint specifies the allowed transitions from
state to state according to different values. The objective here, in counting the
minimum number of substitutions, is to make these transitions value indepen-
dent. To do so, we add a violation arc between to states (q,i, ql”l) if there already
exists at least one valid arc between them. This means that a flow using a viola-
tion arc is in fact a solution where a variable takes a value outside of its domain.
The number of such variables thus constitutes a minimum on the number of

variables which need to change value.

Corollary 5. The constraint soft regular(X, M, z, fivar) is domain consistent
if and only if

i) for every arc a € Ay U---U A, there exists an integer feasible s —t flow f
of value 1 in Ryar with f(a) = 1 and weight(f) < maxD,, and
1) min D, > weight(f) for a minimum-weight s —t flow f of value 1 in Ryar-

Proof. The weight function measures exactly fivar. The result follows from The-
orem 2. 0
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Fig. 9. Graph representation for the variable-based soft_regular constraint. For all
arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with weight 1.
b) Example: arcs and associated flows used in solution z; = ¢,z2 = a,z3 = a,z4 = b
of weight 3, corresponding to three substitutions from valid string aaba.

Note that a minimum-weight s — t flow of value 1 is in fact a shortest s — ¢
path with respect to w. The constraint propagation algorithm thus must ensure
that all arcs corresponding to a variable-value assignment are on an s — ¢ path
with cost smaller than max D,. Computing shortest paths from the initial state
in the first layer to every other node and from every node to a final state in the
last layer can be done in O(n |§|) time through topological sorts because of the
special structure of the graph, as observed in [20]. Here |§| denotes the number of
transitions in the corresponding DFA. Hence, the algorithm runs in O(m) time,
where m is the number of arcs in the graph. The computation can also be made
incremental in the same way as in [20]. Note that this result has been obtained
independently in [5].

7.4 Edit-Based Violation Measure

For the edit-based soft_regular constraint, we add the following violation arcs
to the graph R representing the regular constraint. As in the previous sec-
tion, we add Agy, to allow the substitution of a value. To allow deletions and
insertions, we add violation arcs

Adar = {(gh> ") [=1,...,n}}\ A

and  Aipns = {(¢},q}) | 0(qx,d) = q; for some d € £,k #1,i=1,...,n+1}.

We set c(a) = 1 for each arc a € Agup U Agel U Ajns- We apply the usual cost
function w with unit cost for violation arcs.

Let the resulting digraph be denoted by Reqit (see Figure 10 for an illustration
on Example 3).

In this version we introduce three sets of violation arcs. The first one (Agyp)
corresponding to substitutions has already been explained in section 7.3. Dele-
tions are modeled with the arcs introduced in Age; which link equivalent states



T
® @ ©

<@ @

Fig. 10. a) Graph representation for the edit-based soft_regular constraint. For all
arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with weight 1.
b) Example: arcs and associated flows used in solution z1 = ¢, z2 = a,z3 = a,z4 = b of
weight 2, corresponding to one deletion (c in position 1) and one addition (a in position
4) from valid string aaba.

of successive layers. The intuition is that by using such an arc it is possible to
remain at a given state and simply ignore the value taken by the corresponding
variable. The arcs in A;, s allow a flow to make more than one transition at any
given layer. Since a layer corresponds to a variable and a transition is made
on a symbol of the string, this behavior is equivalent to inserting one or more
symbols. Of course one has to make sure only to allow transitions defined by the
automaton.

Corollary 6. The constraint soft regular(X,M,z, tiedis) 15 domain consis-
tent if and only if

i) for every arc a € Ay U---U A, there exists an integer feasible s —t flow f
of value 1 in Reqit with f(a) =1 and weight(f) < maxD,, and
1) min D, > weight(f) for a minimum-weight s —t flow f of value 1 in Regit-

Proof. The weight function measures exactly peqis- The result follows from The-
orem 2. O

For the propagation algorithm, we proceed slightly differently from the varia-
ble-based soft_regular constraint because the structure of the graph is not
the same: arcs within a layer may form (positive weight) directed circuits. We
compute once and for all the smallest cumulative weight to go from g}, to ¢} for
every pair of nodes and record it in a table. This can be done through breadth-
first-search from each node since every arc considered has unit weight. Notice
that every layer has the same “insertion” arcs — we may preprocess one layer
and use the result for all of them. In all, this initial step requires @(|Q| |d]) time.
Then we can proceed as before through topological sort with table lookups, in
O(n |8]) time. The overall time complexity is therefore O((n + |Q|) |d]) = O(m),
where m is the number of arcs in the graph. The last step follows from |Q| < n,
because otherwise some states would be unreachable.



8 Soft Same Constraint

8.1 Definitions

The same constraint is defined on two sequences of variables and states that
the variables in one sequence use the same values as the variables in the other
sequence. The constraint was introduced in [4]. One can also view the same con-
straint as demanding that one sequence is a permutation of the other. A domain
consistency algorithm for the same constraint was presented in [6], making use
of flow theory.

Definition 11 (Same constraint, [4]). Let X = 21,..., 2, andY =y1,...,yn
be sequences of variables with respective finite domains Dy, ...,D, and D1,...,
D!,. Then

same(X,Y) = {(dl,...,dn,d’l,...,d’n) | d; € D;,dj € D}, | J{di} = U{dg}}.
i=1 i=1
Note that in the above definition |J}_, {d;} and ], {d}} are multisets, in which
elements may occur more than once.
To the same constraint we apply the variable-based violation measure piys;-
Denote the symmetric difference of two multisets S and T' by SAT, i.e. SAT =
(S\T)u (T'\ S). For same(X,Y) we have

Nvar(Xa Y) = ‘ (U{-’m}) A (U{yz})

i=1

/2.

Example 4. Consider the following over-constrained CSP:

T € {a7 ba 0}71"2 € {Ca d76}7$3 € {C, dae}a
Y1 € {aab}ay2 € {a'a b}7y3 € {Ca d}7
same(1, T2, 23,Y1,Y2,Y3)-

We have pyar(a,c,c,a,b,¢) = 1 because {a,c,c}A{a,b,c} = {b,c}. This gives
[{b,c}l/2 = 1. 0
8.2 Graph Representation

The same constraint has the following graph representation:

Theorem 7. [6] A solution to same(X,Y) corresponds to an integer feasible
s —t flow of value n in the digraph S = (V, A) with vertezx set

V=XU(DxNDy)UY U/{s,t}

and arc set A=A;UAx UAy UA,



Fig. 11. Graph representation for the same constraint. For all arcs the capacity is 1.

where As = {(s,z;) |i € {1,...,n}},
Ax ={(zi,d)|d € D;N Dy,i € {1,...,n}},
Ay = {(d ,yz)|d€D'ﬂDX;i€{1,---,n}},
Ay = (yz,t)|Z€{1 n}}v

with capacity function c(a) =1 for all a € A.

Figure 11 gives the corresponding graph representation of the same constraint
from Example 4.

8.3 Variable-Based Violation Measure

To the graph § of Theorem 7 we add the arc sets
A'={(di,d)) | di,d; € Dx U Dy,i # j},

with capacity ¢(a) = n and weight w(a) = 1 for all arcs a € A. Let the resulting
digraph be denoted by S,.. (see Figure 12 for an illustration on Example 4).
The inserted violation arcs are similar to the violation arcs of the variable-based
soft_gcc. Again, if a variable needs to change its value, it uses the violation arc
from its current value to its desired value. The total induced weight corresponds
exactly to the variable-based violation measure.

Corollary 7. The constraint soft_same(X,Y, 2, fivar) s domain consistent if
and only if

i) for every arc a € Ax U Ay there ezists a feasible s —t flow f of value n in
Svar with f(a) =1 and weight(f) < max D, and
1) min D, > weight(f) for a minimum-weight s — t flow f of value n in Syar.

Proof. An assignment z; = d corresponds to the arc a = (z;,d) with f(a) =1
By construction, all variables need to be assigned to a value and the cost func-
tion exactly measures the variable-based cost of violation. The result follows



Fig. 12. a) Graph representation for the variable-based soft_same constraint. For all
arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with weight 1.
b) Example: arcs and associated flows used in solution 1 = a, z2 = ¢, 3 = ¢, y1 = a,
y2 = b, ys = c of weight 1.

from Theorem 2. O

The constraint soft_same(X,Y, z, tvar) can be made domain consistent by
applying Algorithm 1 and Theorem 1. Consistency can again be checked by
computing an initial flow in O(n(m+mnlogn)) time and, similar to the soft_gcc,
domain consistency can be achieved in O(A(m + nlogn)) time, where A =
min(n, |Dx]).

9 Conclusion

Many real-life problems are over-constrained; constraint programming deals with
the issue by softening constraints. In this paper we have proposed a generic
constraint propagation algorithm for soft versions of an important class of global
constraints; those that can be represented by a flow in a graph. To allow solutions
that were originally infeasible, we have added violation arcs to the graph, with
an associated cost. Hence, a flow that represents an originally infeasible solution
induces a cost. This cost corresponds to a violation measure of the soft global
constraint. We have applied our method to soften the alldifferent, the gcc, the
regular, and the same constraints, and described efficient domain consistency
algorithms for each of them. The results are summarized in Table 1.

We have used existing violation measures, but also introduced new measures
for the soft_gcc and the soft_regular constraint. For many of those violation
measures we applied in this paper, the cost function assigned unit penalties. The
framework makes it possible to use more varied costs, though. Namely, we may
even assign any convez cost function to the arcs without changing the complexity
of the algorithms; see [1, p. 543-565]. In fact, the cost function applied to the
decomposition-based soft_alldifferent constraint can be regarded as a convex
cost function on the aggregation of the parallel arcs. Such cost functions could
also be advantageous in other cases, for example to distinguish between insertions



constraint violation measure consistency check domain consistency

general case O(K) O(nd - SP)
soft_alldifferent variable-based O(m+/n) O(m) [21]
soft_alldifferent decomposition-based O(mn) O(m) [15]
soft_gcc variable-based O(n(m + nlogn)) O(A(m + nlogn))
soft_gcc value-based O((n+ k)(m +nlogn)) O(A(m + nlogn))
soft_regular variable-based O(m) O(m)

soft_regular edit-based O(m) O(m)

soft_same variable-based O(n(m + nlogn)) O(A(m + nlogn))

Table 1. Time complexity for soft global constraints on n variables with maximum
domain size d, and various violation measures. Here “consistency check” denotes the
time complexity to check that the constraint is consistent, while “domain consistency”
denotes the additional time complexity to make the constraint domain consistent, given
at least one solution. Each algorithm is based on a graph G with m arcs. K denotes
the time complexity to compute a minimum-weight flow in G, while SP denotes the
time to compute a minimum-weight path in G. Finally, kK = |Dx| and A = min(n, k).

and deletions in the soft_regular constraint. This could also be particularly
useful in application to personnel rostering problems, where one could penalize
differently (using soft_gcc) the over-usage of values associated to night shifts
or day shifts for instance.

The approach to soft constraints which we favored in this paper allows us
to restrict the amount of violation of individual (global) constraints and to use
that restriction to perform domain filtering in the spirit of cost-based filtering
for optimization constraints. Our results hopefully provide helpful ingredients
for modeling and solving real-life over-constrained problems efficiently with con-
straint programming.
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