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Motivation

Benefits of CP
• Modeling power
• Inference methods
• Advanced search
• Exploits local structure

Benefits of OR
• Optimization algorithms
• Relaxation methods
• Duality theory
• Exploits global structure

Integrated methods can combine these 
complementary strengths

Can lead to several orders of magnitude of 
computational advantage
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Some additional references

• Conference series CPAIOR
– integration of techniques from CP, AI, and OR
– http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
– online master classes/tutorials
– book ‘Hybrid Optimization’ [Van Hentenryck&Milano, 2011]

• Other tutorials
– CP summer school 2011: ‘Integrating CP and 

mathematical programming’ [John Hooker]

– http://ba.gsia.cmu.edu/jnh/slides.html

• Success stories
– http://moya.bus.miami.edu/~tallys/integrated.php
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Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders 
– column generation
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Propagation with Network Flows 

J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In 
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 209-215, 
1996. 5



Network Flows

Let G=(V,A) be a directed graph with vertex set V and arc set A. To each arc 
a∈A we assign a capacity function [d(a),c(a)] and a weight function w(a).

Let s,t ∈ V. A function f: A→ R is called an s-t flow (or a flow) if

• f(a) ≥ 0 for all a∈A
• ∑a enters v f(a) = ∑a leaves v f(a) for all v∈V (flow conservation)
• d(a) ≤ f(a) ≤ c(a) for all a∈A

Define the cost of flow f as ∑a∈A w(a)f(a). A minimum-cost flow is a flow with 
minimum cost.
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Example: Network flow for alldifferent

Fact: matching in bipartite graph ⇔
integer flow in directed bipartite graph

Step 1: direct edges from X to D(X)
Step 2: add a source s and sink t
Step 3: connect s to X, and D(X) to t
Step 4: add special arc (t,s)

all arcs have capacity [0,1] and weight 0
except arc (t,s) with capacity [0, min{|X|,|D(X)|}]
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Cardinality constraints

• The global cardinality constraint restricts the number 
of times certain values can be taken in a solution

• Example: We need to assign 75 employees to shifts. 
Each employee works one shift. For each shift, we 
have a lower and upper demand.

shift 1 2 3 4 5 6

min 10 12 16 10 6 4

max 14 14 20 14 12 8

D(xi) = {1, 2, 3, 4, 5, 6} for i = 1, 2,…, 75

gcc( x1,…,x75, min, max )
8



Propagation for cardinality constraints

Definition: Let X be a set of variables with D(x) ⊆ V for all x∈X
(for some set V). Let L and U be vectors of non-negative 
integers over V such that L[v] ≤ U[v] for all v∈V.                   
The constraint gcc(X, L, U) is defined as the conjunction

∧v∈V ( L[v] ≤ ∑x∈X (x=v) ≤ U[v] )

Questions:
1. Can we determine in polynomial time whether the 

constraint is consistent (satisfiable)?
2. Can we establish domain consistency (remove all 

inconsistent domain values) in polynomial time?
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Network representation

• Lemma [Regin, 1996]: Solution to gcc is equivalent to 
particular network flow
– similar to bipartite network for alldifferent
– node set defined by variables and domain values, one 

source s and one sink t
– define arc (x,v) for all x∈X, v∈D(x) with capacity [0,1]
– define arcs from s to x for all x∈X with capacity [1,1]
– define arcs from v to t for all v∈V with capacity [L[v],U[v]]

• Feasible integer flow corresponds to solution to gcc
• Note: If L[v]=0, U[v]=1 for all v∈V then gcc is 

equivalent to alldifferent
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Example

gcc network


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Domain consistency for gcc

• Determining consistency: compute network flow
– Using Ford & Fulkerson’s augmenting path algorithm, this 

can be done in O(mn) time for (n is number of variables, 
m is number of edges in the graph)

– Can be improved to O(m√n) [Quimper at al., 2004]

• Naïve domain consistency
– Fix flow of each arc to 1, and apply consistency check. 

Remove arc if no solution. O(m2√n) time.

• More efficient algorithm: use residual network
– similar to SCCs for alldifferent
– domain consistency in O(m) time
– maintain residual network incrementally
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Optimization Constraints

• In the CP literature, ‘optimization’ constraints refer to 
constraints that represent a structure commonly 
identified with optimization
– usually linked to the objective function (e.g., minimize cost)
– sometimes stand-alone structure (budget limit, risk level, 

etc.)
– for example, knapsack constraint

• For any constraint, a weighted version can be 
obtained by applying a weight measure on the variable 
assignments, and restricting the total weight to be 
within a threshold
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GCC with costs

• The classical weighted version of the gcc is obtained 
by associating a weight w(x,v) to each pair x∈X, v∈V. 
Let z be a variable representing the total weight. Then 

cost_gcc(X, L, U, z, w) = 

gcc(X,L,U) ∧ ∑x∈X, x=v w(x,v) ≤ z

• In other words, we restrict the solutions to those that 
have a weight at most max(D(z))
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Domain filtering for weighted gcc

1. Determine consistency of the constraint
2. Remove all domain values from X that do not belong 

to a solution with weight ≤ max(D(z))
3. Filter domain of z

– i.e., increase min(D(z)) to the minimum weight value over 
all solutions, if applicable
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Determining consistency of cost_gcc

• Once again, we can exploit the correspondence with a 
(weighted) network flow [Regin 1999, 2002]:
A solution to cost_gcc corresponds to a weighted 
network flow with total weight ≤ max(D(z))

• We can test consistency of the cost_gcc by computing 
a minimum-cost flow
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Example

gcc network

w(x,v)
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Time complexity

• A minimum-cost flow can be found with the classical ‘successive 
shortest paths’ algorithm of Ford & Fulkerson
– The flow is successively augmented along the shortest path in the 

residual network
– Finding the shortest path takes O(m + n log n) time (for m edges, n 

variables)
– In general, this yields a pseudo-polynomial algorithm, as it depends on 

the cost of the flow. However, we compute at most n shortest paths 
(one for each variable)

– Overall running time is O(n(m + n log n)) time

• Naïve domain consistency in O(nm(m + n log n))
• Can be improved to O(min{n,|V|}(m + n log n))

– all shortest paths in residual graph
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Other constraints

• Network flows have been applied to several other 
global constraints
– soft alldifferent
– soft cardinality constraint
– soft regular constraint
– cardinality constraints in weighted CSPs
– sequence constraint [Maher et al. 2008] [Downing et al. 2012]

– resource scheduling [Baptiste et al. 2001] [Lombardi&Milano, 2012] 
[Bessiere et al. 2014]

– …

• Very powerful and generic technique for handling 
global constraints

[v.H. “Over-Constrained 
Problems”, 2011]
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Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders 
– column generation
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Linear Programming

• LP model is restricted to linear constraints and continuous 
variables

• Linear programs can be written in the following standard form:

or, using matrix notation:
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Benefits of Linear Programming

• Solvable in polynomial time
– very scalable (millions of variables and constraints)

• Many real-world applications can be modeled and 
solved using LP
– from production planning to data mining

• LP models are very useful as relaxation for integer 
decision problems
– LP relaxation can be strengthened by adding constraints 

(cuts) based on integrality

• Well-understood theoretical properties
– e.g., duality theory
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LP-based domain filtering

• Suppose we have a LP relaxation available for our problem

• We could establish “LP bounds consistency” on the domains of 
the variables:

For each variable xi 

change objective to min xi and solve LP: lower bound LBi

change objective to max xi and solve LP: upper bound UBi

xi ϵ [LBi , UBi]

• Time-consuming (although it can pay off, e.g., in nonlinear 
programming problems)
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LP-based domain filtering

• Instead of min/max of each variable, exploit reduced costs as 
more efficient approximation
– marginal impact on objective for each variable

[Focacci, Lodi, and Milano, 1999, 2002]

• In the following, we consider ‘optimization constraints’ again:
– associate a weight c(x,v) to each pair x∈X, v∈D(x)
– z is a variable representing the total weight

cost_C(X, z, c) = C(X) ∧ ∑x∈X, x=v w(x,v) ≤ z
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Creating a generic LP relaxation

• Create mapping between linear model and CP model by 
introducing binary variables yij for all i∈{1,…,n} and j∈D(xi)
such that

• To ensure that each variable xi is assigned a value, we add the 
following constraints to the linear model:

• The objective is naturally stated as

25



LP relaxation (cont’d)

• The next task is to represent the actual constraint, and this 
depends on the combinatorial structure

• For example, if the constraint contains a permutation structure 
(such as the alldifferent), we can add the constraints:

• (Note that specific cuts known from MIP may be added to 
strengthen the LP)

• After the linear model is stated, we obtain the natural LP 
relaxation by removing the integrality condition on yij :
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Reduced-cost based filtering

• The output of the LP solution is an optimal solution value z*, a 
(fractional) value for each variable yij, and an associated 
reduced cost 

• Recall that        represents the marginal change in the objective 
value when variable yij is forced in the solution
– e.g., if yij = 1 then z* increases by 

• But yij represents            

• Reduced-cost based filtering:

(This is a well-known technique in OR, called ‘variable fixing’)
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Pros and Cons

• Potential drawbacks:
– The filtering power depends directly on the quality of the LP relaxation, 

and it may be hard to find an effective relaxation
– Solving a LP using the simplex method may take much more time than 

propagating the constraint using a combinatorial filtering algorithm

• Potential benefits:
– It’s very generic; it works for any LP relaxation of a single constraint, a 

combination of constraints, or for the entire problem
– Can be generated automatically from CP model (Xpress-Kalis)
– New insights in MIP/LP solving can have immediate impact 
– For several constraint types, there exist fast and incremental 

combinatorial techniques to solve the LP relaxation
– This type optimality-based filtering complements nicely the feasibility-

based filtering of CP; several applications cannot be solved with CP 
otherwise
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Example Application: TSP

• CP model
• LP relaxation

– Assignment Problem

• Impact of reduced-cost based filtering

Graph G = (V,E) with vertex 
set V and edge set E

|V| = n

w(i,j): distance between i and j

29



CP models for the TSP

• Permutation model
– variable posi represents the i-th city to be visited
– (can introduce dummy node posn+1 = pos1)

min ∑i w(posi, posi+1)
s.t. alldifferent(pos1, …, posn)

• Successor model
– variable nexti represents the immediate successor of city i

min ∑i w(i, nexti)
s.t. alldifferent(next1, …, nextn)

path(next1, …, nextn)

both models decouple the 
objective and the circuit

(Hamiltonian Path, not always 
supported by the CP solver) 30



More CP models

• Combined model (still decoupled)

• Integrated model

min z
s.t. alldifferent(next1, …, nextn) [redundant]

WeightedPath(next, w, z)

(Note: most CP solvers do not support this constraint)

[Focacci et al., 1999, 2002]
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Relaxations for TSP

• An integrated model using WeightedPath(next, w, z) allows to 
apply an LP relaxation and perform reduced-cost based filtering

• Observe that the TSP is a combination of two constraints
– The degree of each node is 2
– The solution is connected (no subtours)

• Relaxations:
– relax connectedness: Assignment Problem
– relax degree constraints: 1-Tree Relaxation 3

2
4

5

6

1
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Assignment Problem

Binary variable yij represents whether the tour goes from i to j
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Benefits of AP relaxation
• Continuous relaxation provides 

integer solutions (total 
unimodularity)

• Specialized O(n3) algorithm 
(Hungarian method)

• Incremental O(n2) running time
• Reduced costs come for free
• Works well on asymmetric TSP

Assignment Problem

Binary variable yij represents whether the tour goes from i to j
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Computational results for TSP-TW
Dyn.Prog. Branch&Cut CP+LP
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Langrangean Relaxation

Move subset (or all) of constraints into the objective with ‘penalty’ 
multipliers μ:

Weak duality: for any choice of μ, Lagrangean L(μ) provides a 
lower bound on the original LP

Goal: find optimal μ (providing the best bound) via
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Motivation for using Lagrangeans

• Lagrangean relaxations can be applied to nonlinear 
programming problems (NLPs), LPs, and in the context of 
integer programming

• Lagrangean relaxation can provide better bounds than LP 
relaxation

• The Lagrangean dual generalizes LP duality
• It provides domain filtering analogous to that based on LP 

duality [Sellmann, CP 2004]

• Lagrangean relaxation can dualize ‘difficult’ constraints
– Can exploit the problem structure, e.g., the Lagrangean relaxation may 

decouple, or L(μ) may be very fast to solve combinatorially

• Next application: Lagrangean relaxation for TSP
37



Recall: Relaxations for TSP

• An integrated model using WeightedPath(next, w, z) allows to 
apply an LP relaxation and perform reduced-cost based filtering

• Observe that the TSP is a combination of two constraints
– The degree of each node is 2
– The solution is connected (no sub tours)

• Relaxations:
– relax connectedness: Assignment Problem
– relax degree constraints: 1-Tree Relaxation 3

2
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6
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The 1-Tree Relaxation for TSP

• Relaxation of the degree constraints [Held&Karp, 1970, 1971]

• A minimum spanning tree gives such a relaxation
• A 1-tree is a stronger relaxation, which can be 

obtained by:
– Choosing any node v (which is called the 1-node)
– Building a minimum spanning tree T on G = (V\{v}, E)
– Adding the smallest two edges linking v to T

• For n vertices, a 1-tree contains n edges

P.S. an MST can be found in
O(m α(m,n)) time 39



The Held and Karp bound for TSP

The 1-tree can be tightened through the use of Lagrangean
relaxation by relaxing the degree constraints in the TSP model:

Let binary variable xe represent whether edge e is used
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The Held and Karp bound for TSP

Lagrangean relaxation with multipliers π (penalties for node 
degree violation):

How to find the best penalties π?
• In general, subgradient optimization
• But here we can exploit a 

combinatorial interpretation
• No need to solve LP
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Held-Karp iteration

• Solve 1-tree w.r.t. updated edge weights w’(i,j) = w(i,j) – πi – πj

• Optimal 1-tree T gives lower bound: cost(T) + 2 ∑i πi

• If T is not a tour, then we iteratively update the penalties as
πi += (2-degree(i) )*β (step size β different per iteration)

and repeat

π2

π4

π3

π1

w’(2,4) = w(2,4) – π2 – π4
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Example

0

0

0

0

5

0

-5

0

β = 5

β = 3

1010

10

5

5

5

55

10

10

5

10

Cost = 25

5

0

-5

0

Cost = 25

55

10

10

5

10

88

10

7

5

7

2

0

-2

0

Cost = 30

43



How can we exploit 1-tree in CP?

• We need to reason on the graph structure
– manipulate the graph, remove costly edges, etc.

• Not easily done with ‘next’ and ‘pos’ variables
– e.g., how can we enforce that a given edge e=(i,j) is 

mandatory?
– (nexti = j or nextj = i) ?
– (posk = i) ⇒ ((posk+1 = j) or (posk-1 = j)) ?

• Ideally, we want to have access to the graph rather 
than local successor/predecessor information
– modify definition of global constraint
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One more CP model for the TSP

Integrated model based on graph representation

min z

s.t. weighted-circuit(X, G, z)

• G=(V,E,w) is the graph with vertex set V, edge set E, weights w

• X is a set variable representing the set of edges that will form 
the circuit
– Domain D(X) = [ L(X), U(X) ], with fixed cardinality |V| in this case
– Lower bound L(X) is set of mandatory edges
– Upper bound U(X) is set of possible edges

• z is a variable representing the total edge weight

[Benchimol et al., 2012]
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Domain Filtering

• Given constraint

weighted-circuit( X, G=(V,E,w), z)

• Apply the 1-tree relaxation to
– remove sub-optimal edges from U(X)
– force mandatory edges into L(X)
– update bounds of z

• For simplicity, the presentation of the algorithms are restricted 
to G = (V\{1}, E)
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Removing non-tree edges

• The marginal cost of a non-tree edge e is the additional cost of 
forcing e in the solution:

c’e = cost(T(e)) − cost(T)
• Given a current best solution UB, edge e can be removed if   

cost(T(e)) > UB, or
c’e + cost(T) > UB 

Replacement cost of
• (1,2) is 4 - 2 = 2
• (6,7) is 5 - 5 = 0
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Computing marginal costs

Basic algorithm for computing marginal edge costs:
• For each non-tree edge e=(i,j)

– find the unique i-j path Pe in the tree
– the marginal cost of e is ce − max(ca|a ∈ Pe)

Complexity: O(mn), since Pe can be found in O(n) time by DFS

Can be further improved 
to O(m + n + n log n) 

[Regin, 2008]
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Impact of edge filtering

upper bound = 700 upper bound = 675

st70 from TSPLIB
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Forcing tree edges

• The replacement cost of a tree edge e is the additional cost 
when e is removed from the tree:

cr
e = cost(T \ e) − cost(T)

• Given a current best solution UB, edge e is mandatory if      
cost(T \ e) > UB, or    cr

e + cost(T) > UB

Replacement cost of (1,4)?
we need to find the cheapest 
edge to reconnect: 3 - 1 = 2
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Computing replacement costs

1. Compute minimum spanning tree T in G
2. Mark all edges in T as ‘unmarked’
3. Consider non-tree edges, ordered by non-decreasing weight:

• For non-tree edge (i,j), traverse the i-j path in T
• Mark all unmarked edges e on this path, and assign cr

e = cij - ce

4. Basic time complexity O(mn), or, at no extra cost if performed 
together with the computation of marginal costs

non-tree edge mark edge replacement cost
(3,4) (1,4) 3 - 1 = 2

(1,3) 3 - 2 = 1

(1,2) (2,4) 4 - 2 = 2

(edge (1,4) already marked)
...
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Improving the time complexity

• We can improve this complexity by ‘contracting’ the marked 
edges (that is, we merge the extremities of the edge)
– First, root the minimum spanning tree
– Apply Tarjan’s ‘path compression’ technique during the algorithm
– This leads to a time complexity of O(mα(m,n))

1

3

5

7

9

4

2

8

6
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Impact of filtering

previous CP approaches could handle 100 cities maximum (if at all)

randomly generated symmetric TSPs, time limit 1800s
average over 30 instances per size class
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Comparison with ILOG CPO

Instances from TSPLIB, time limit 1800s
bayg29 was the largest instance for which CPO could find a solution

This relaxation-based filtering now allows CP to scale up to 
rbg443 (asymmetric TSP), resp. a280 (symmetric TSP)      [Fages & Lorca, 2012] 54



Outline

• Global constraint propagation
– network flows
– optimization constraints

• Integrating relaxations
– Linear Programming relaxation
– Lagrangean relaxation

• Decomposition methods
– logic-based Benders 
– column generation
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Motivation

• Many practical applications are composed of several 
subproblems
– facility location: assign orders to facilities with minimum 

cost, but respect facility constraints
– vehicle routing: assign pick-up locations to trucks, while 

respecting constraints on truck (capacity, driver time, …)

• By solving subproblems separately we can
– be more scalable (decrease solving time)
– exploit the subproblem structure

• OR-based decomposition methods can preserve 
optimality
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Motivation for integrated approach

Example: airline crew rostering
• Crew members are assigned a schedule from a huge list of 

possible schedules
– this is a ‘set covering’ problem: relatively easy for IP/LP

• New schedules are added to the list as needed
– many challenging scheduling constraints – difficult for MIP, but 

doable for CP

• Integrated OR/CP 
decompositions broaden the 
applicability to more complex 
and larger applications
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Benders Decomposition

When fixing variables x, the 
resulting problem may 
become much simpler:

Example: multi-machine scheduling
• variables x assign tasks to machines
• variables y give feasible/optimal schedules per machine
• when fixing x, the problem decouples into independent 

single-machine scheduling problems on y

Benders decomposition can 
be applied to problems of the 
form:
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Benders Decomposition (cont’d)

Iterative process
• Master problem: search over variables x

– optimal solution xk in iteration k

• Subproblems: search over variables y, given fixed xk

– optimal objective value vk

• Add Benders cut to master problem 
v ≥ Bk(x) (such that Bk(xk) = vk )

Bounding
• Master is relaxation: gives lower bound
• Subproblem is restriction: gives upper bound
• Process repeats until the bounds meet
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Logic-based Benders

• Original Benders decomposition applies to LP and NLP 
problems
– Based on duality theory to obtain Benders cuts

• However, the concept is more general
– Logic-based Benders: generalizes LP-based Benders to other 

types of inference methods, using ‘inference duality’
– Also allows additional types of ‘feasibility’ cuts (nogoods)
– Moreover, CP can be applied to solve the subproblems

[Jain & Grossmann, 2001] [Hooker & Ottoson, 2003]
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Example: Task-Facility Allocation

task 1

ri dipi

task 2

task 3

task n

Facility 1

Facility 2

Facility m

task 1 task 3

task 2 task n

task 4

… …

Makespan
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Logic-Based Benders Scheme

Find schedule
for each facility f 

(CP)

Assign tasks to 
facilities (MIP)

min    Makespan

s.t. ∑f xif = 1, for all i

Makespan ≥ (∑i Lif xif) /Capacity(f), for all f

xif in {0,1}
task assign-

ments T(f)
Benders 
cuts

min    Max( EndOf(T(f)) )
s.t. ParallelSchedule( T(f), Capacity(f) )

[Hooker, 2007]

Benders cuts; LBs and feasibility

Cumulative Resource
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Pros and Cons

• Benefits of Logic-based Benders
– reported orders of magnitude improvements in solving time 

w.r.t. CP and MILP [Jain & Grossmann, 2001], [Hooker, 2007]

– CP models very suitable for more complex subproblems
such as scheduling, rostering, etc.

• Potential drawbacks
– finding good Benders cuts for specific application may be 

challenging
– feasible solution may be found only at the very end of the 

iterative process
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Column Generation

• One of the most important techniques for solving very large 
scale linear programming problems
– perhaps too many variables to load in memory

cTx

Ax b≥

min

s.t.

• Delayed column generation (or variable generation):
– start with subset of variables (‘restricted master problem’)
– iteratively add variables to model until optimality condition is met

x ≥ 0
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Column Generation (cont’d)

Column generation process:
• Solve for subset of variables S (assume feasible)
• This gives shadow prices λ for the constraints
• Use reduced costs to price the variables not in S

• If < 0, variable xi may improve the solution: 

add xi to S and repeat

• Otherwise, we are LP-optimal (since all reduced costs are 
nonnegative)

How can we find the best variable to add?
65



Pricing Problem

• Solve optimization problem to find the variable (column) with 
the minimum reduced cost:

• In many cases, columns of A can be described using a set of 
(complicated) constraints

• Remarks:
– any negative reduced cost column suffices (need not be optimal)
– CP can be suitable method for solving pricing problem
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Application: Capacitated Vehicle Routing

• Set of clients V, depot d
• Set of trucks (unlimited, equal)

• Parameters:
– distance matrix D
– load wj for each client j in V (unsplittable)
– truck capacity Q

• Goal: 
– find an allocation of clients to trucks
– and a route for each truck
– respecting all constraints
– with minimum total distance
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Problem Formulation: Restricted Master

• Let R be (small) set of feasible individual truck routes
– parameter arj = 1 if client j is on route r ϵ R
– parameter cr represent the length of route r ϵ R

• Let binary variable xr represent whether we use route r ϵ R

• Set covering formulation:

continuous LP relaxation

shadow price λj for all j
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Pricing Problem

• Truck route similar to TSP, but 
– not all locations need to be visited
– there is a capacity constraint on the trucks

• We can solve this problem in different ways
– shortest path problem in a layered graph
– single machine scheduling problem
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Pricing as shortest path

i

j

... ... ...

depot

Binary variable yijk: travel from location i to j in step k
Constraints:
• variables yijk must represent a path from and to the depot 
• we can visit each location at most once
• total load cannot exceed capacity Q

This model can be solved by IP (or dedicated algorithms)

distance D(i,j) - λj

client 1

client 2

client |V|

…
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Benefit of using CP

• We can use CP to solve the pricing problem:
– represent the constrained shortest path as CP model,
– or we can view the pricing problem as a single machine scheduling 

problem

• A major advantage is that CP allows to add many more side 
constraints:
– time window constraints for the clients
– precedence relations due to stacking requirements
– union regulations for the drivers
– …

• In such cases, other methods such as IP may no longer be 
effective
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From TSP to machine scheduling

• Vehicle corresponds to ‘machine’ or ‘resource’
• Visiting a location corresponds to ‘activity’

D

1

2

3

4

5

D time

• Sequence-dependent setup times
 Executing activity j after activity i induces setup time Dij (distance) 

• Minimize ‘makespan’ (or sum of the setup times)
• Activities cannot overlap (disjunctive resource)

D35

makespan
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CP Model

• Activities (or interval variables):
– Optional activity visit[j] for each client j  (duration: 0)
– StartAtDepot
– EndAtDepot

• Transition times between two activities i and j
– T[i,j] = D(i,j) – λj
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CP Model (cont’d)

minimize EndAtDepot.end – ∑ j λj(Visit[j].present)

s.t. DisjunctiveResource(
Activities: Visit[j], StartAtDepot, EndAtDepot
Transition: T[i,j]
First: StartAtDepot
Last: EndAtDepot )

∑ j wj(Visit[j].present) ≤ Q

• Observe that this model naturally allows to add time windows 
(on Visit[j]), precedence relations, etc
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Demo
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Discussion

• Benefits of column generation
– A small number of variables may suffice to prove optimality 

of a problem with exponentially many variables
– Complicated constraints can be moved to subproblem
– Can stop at any time and have feasible solution (not the case 

with Benders)

• Potential drawbacks / challenges
– LP-based column generation still fractional: need branch-

and-price method to be exact (can be challenging)
– For degenerate LPs, shadow prices may be non-informative
– Difficult to replace single columns: need sets of new 

columns which are hard to find simultaneously
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Summary

• Various ways to integrate CP and OR
– Global constraint propagation (e.g., network flows)
– Integrating relaxations (LP, Lagrangian, SDP)
– Decomposition methods (Benders, column generation)

• Very active research area
– SCIP solver [Achterberg et al. 2007-]

– CP/OR + local search [Michel&Van Hentenryck 2005-] [Benoist et al, 2011]

– SAT and CP reasoning in MIP solving [Achterberg et al. 2013]

– SAT+CP in Lazy Clause Generation [Ohrimenko, Stuckey, et al., 2007-]

– SAT+OR techniques for MaxSAT problems [Davies 2013]

– CP+machine learning [Bartolini et al. 2011] [Lombardi&Milano, 2013]

– …many more examples by Hadrien Cambazard tomorrow
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