
Improving the Held and Karp Approach with

Constraint Programming⋆

Pascal Benchimol1, Jean-Charles Régin2,
Louis-Martin Rousseau1, Michel Rueher2, Willem-Jan van Hoeve3

1 CIRRELT,École Polytechnique de Montréal
2 Université de Nice - Sophia Antipolis / CNRS

3 Tepper School of Business, Carnegie Mellon University

1 Introduction

Held and Karp have proposed, in the early 1970s, a relaxation for the Travel-
ing Salesman Problem (TSP) as well as a branch-and-bound procedure that can
solve small to modest-size instances to optimality [4, 5]. It has been shown that
the Held-Karp relaxation produces very tight bounds in practice, and this relax-
ation is therefore applied in TSP solvers such as Concorde [1]. In this short paper
we show that the Held-Karp approach can benefit from well-known techniques
in Constraint Programming (CP) such as domain filtering and constraint prop-
agation. Namely, we show that filtering algorithms developed for the weighted
spanning tree constraint [3, 8] can be adapted to the context of the Held and Karp
procedure. In addition to the adaptation of existing algorithms, we introduce a
special-purpose filtering algorithm based on the underlying mechanisms used
in Prim’s algorithm [7]. Finally, we explored two different branching schemes
to close the integrality gap. Our initial experimental results indicate that the
addition of the CP techniques to the Held-Karp method can be very effective.

The paper is organized as follows: section 2 describes the Held-Karp approach
while section 3 gives some insights on the Constraint Programming techniques
and branching scheme used. In section 4 we demonstrate, through preliminary
experiments, the impact of using CP in combination with Held and Karp based
branch-and-bound on small to modest-size instances from the TSPlib.

2 The Held-Karp Approach

Let G = (V,E) be a complete graph with vertex set {1, 2, . . . , n}. We let cij
denote the cost of edge (i, j) ∈ E. The cost function extends to any subset of
edges by summing their costs. The Traveling Salesman Problem (TSP) asks for
a closed tour in G, visiting each vertex exactly once, with minimum cost.

Held and Karp [4, 5] introduced the so-called 1-tree as a relaxation for the
TSP. A 1-tree is defined as a tree on the set of vertices {2, . . . , n}, together with

⋆ This work was partially supported by the European Community’s 7th Framework
Programme (FP7/2007-2013). It was started when L.-M. Rousseau and W.-J. van
Hoeve were visiting the University of Nice-Sophia Antipolis (June/July 2009).



two distinct edges incident to vertex 1. The degree of a vertex is the set of edges
in the 1-tree incident to that vertex, and we denote it by deg(i) for i ∈ V . To
see that the 1-tree is a relaxation for the TSP, observe that every tour in the
graph is a 1-tree, and if a minimum-weight 1-tree is a tour, it is an (optimal)
solution to the TSP. Note that the 1-tree is a tour if and onlng y if all the degree
of vertices is two.

The iterative approach proposed by Held and Karp [4, 5], uses Lagrangian re-
laxation to produce a sequence of connected graphs which increasingly resemble
tours. We start by computing an initial minimum-weight 1-tree, by computing
a minimum-spanning tree on G \ {1}, and adding the two edges with lowest cost
incident to vertex 1. If the optimal 1-tree is a tour, we have found an optimal
tour. Otherwise, the degree constraint one some of the vertices must be violated,
i.e., it is not equal to two. In that case, we proceed by penalizing the degree of
such vertices to be different from two by perturbing the edge costs of the graph,
as follows. For each vertex i ∈ V , a ‘node potential’ πi is introduced, Then, for
each edge (i, j) ∈ E, the edge weight c̃ij is defined as c̃ij = cij + πi + πj . Held
and Karp [4] show that the optimal TSP tour is invariant under these changes,
but the optimal 1-tree is not. Once choice for the node potentials is to define
πi = (2−deg(i)) ·C, for a fixed constant C. The Held-Karp procedure re-iterates
by solving the 1-tree problem and perturbing the edge costs until it reaches a
fixed point or meets a stopping criterion. The best lower bound, i.e., the maxi-
mum among all choices of the node potentials, is known as the Held-Karp bound
and will be denoted by HK.

The overall Held-Karp approach solves the TSP through branch-and-bound,
a technique that has been widely used on this problem (see [2] for a survey).
A good upper bound, UB, can be computed easily with any of the popular
heuristics that have been devised for this problem, e.g., [6].

3 Improving the Approach Using CP

In this section we describe the different refinements introduced to the original
Held-Karp approach [4, 5], which consist of two filtering procedures based on the
weighted minimum spanning tree (or 1-tree), and one based on the underlying
structure of Prim’s algorithm.

In the following procedures let T be a minimum 1-tree of G computed by the
Held and Karp relaxation described above. For a subset of edges S ⊆ E, we let
w(S) denote

∑
e∈S ce and T (e) be the minimum 1-tree where e is forced into T .

We note that the filtering in subsection 3.1 has been applied to the weighted
minimum spanning tree constraint in [3, 8], and the filtering in subsection 3.2
has been applied to the weighted minimum spanning tree constraint in [3].

3.1 Removing Edges Based on Marginal Costs

The marginal cost of an edge e in T is defined as c′e = w(T (e)) − w(T ), that is,
the marginal increase of the weight of the minimum 1-tree if e is forced in the
1-tree.



The following algorithm can compute, in O(mn), the marginal costs for edges
e 6∈ T . Each non-tree edge e = (i, j) links two nodes i, j, and defines a unique i-j
path, say P e, in T . The replacement cost of (i, j) is defined by ce −max(ca|a ∈
P e), that is the cost of (i, j) minus the cost of largest edge on the path from i to
j in the 1-tree T . Finding P e can be achieved through DFS in O(n) for all the
O(m) edges not in T . If HK + c′e > UB, then e can be safely removed from E.

3.2 Forcing Edges Based on Replacement Costs

Conversely, it is possible to compute the replacement cost of an edge e ∈ T as
the increase the Held-Karp bound would incur if e would be removed from E,
which we define by cre = w(T \ e)− w(T ) .

This computation can be performed for all edges e ∈ T , with the following
algorithm: a) set all cre = ∞ ∀e ∈ T b) for all e = (i, j) 6∈ T identify the i-j
path P e in T which joins the end-points of e. Update all edges a ∈ P e such
that cra = min(cra, ce − ca). This computation can be performed in O(mn), or,
at no extra cost if performed together with the computation of marginal costs.
If HK + cre − ce > UB, then e is a mandatory edge in T .

We note that such filtering has been applied to the weighted minimum span-
ning tree constraint by [3, 8].

3.3 Forcing Edges Based During MST Computation

Recall that Prim’s algorithm computes the minimum spanning tree in G (which
is easily transformed into a 1-tree) in the following manner. Starting from any
node i, it first partitions the graph into disjoints subsets S = {i} and S̄ = V \ i
and creates an empty tree T . Then it iteratively adds to T the minimum edge
(i, j) ∈ (S, S̄), defined as the set of edges where i ∈ S and j ∈ S̄, and moves j
from S̄ to S.

Since we are using MST computations as part of a Held-Karp relaxation to
the TSP, we know that there should be at least 2 edges in each possible (S, S̄)
of V (this property defines one of well known subtour elimination constraints of
the TSP). Therefore, whenever we encounter a set (S, S̄) that contains only two
edges during the computation of the MST with Prim’s algorithm, we can force
these edges to be mandatory in T .

3.4 Tuning the Propagation Level

The proposed filtering procedures are quite expensive computationally, therefore
it is interesting to investigate the amount of propagation that we wish to impose
during the search. A first implementation consists in calling each filtering algo-
rithm (as defined in sections 3.1, 3.2 and 3.3) only once before choosing a new
branching variable. A second approach would be to repeat these rounds of prop-
agation until none of these procedures is able to delete nor force any edge, that
is reaching a fixed point. Finally, if reaching a fixed point allows to reduce the
overall search effort, a more efficient propagation mechanism could be developed
in order to speed up its computation.



3.5 Choosing the Branching Criterion

Once the initial Held-Karp bound has been computed and the filtering has been
performed it is necessary to apply a branching procedure in order to identify the
optimal TSP solution. We have investigated two orthogonal branching schemes,
both based on the 1-tree associated to the best Held-Karp bound, say T . These
strategies consist in selecting, at each branch-and-bound node, one edge e and
splitting the search in two subproblems, one where e is forced in the solution and
one where it is forbidden. In the strategy out we pick e ∈ T and first branch on
the subproblem where it is forbidden while in the strategy in we choose e 6∈ T

and first try to force it in the solution.
Since there are O(n) edges in T and O(n2) edges not in T , the first strategy

will tend to create search trees which are narrower but also deeper than the
second one. However, since the quality of the HK improves rapidly as we go down
the search tree, it is generally possible to cut uninteresting branches before we
get to deep. Preliminary experiments, not reported here, have confirmed that
strategy out is generally more effective than strategy in.

4 Experimental Results

To evaluate the benefits of using CP within the Held-Karp branch-and-bound
algorithm, we ran experiments on several instances of the TSPlib. We report
both the number of branching nodes and CPU time required solve each instance,
with different propagation levels: no propagation (‘original HK’), calling each
filtering algorithm once (‘1-round’), and propagation until we reach a fixed point
(‘fixpoint’). To eliminate the impact of the upper bound can have on search tree,
we ran these experiments using the optimal value of each instance as its UB.

Table 1 clearly shows the impact of CP filtering techniques on the original
Held-Karp algorithm. In fact the reduction of the graph not only considerably
reduces the search effort (BnB nodes) but also sufficiently accelerates the com-
putation of 1-trees inside the Held-Karp relaxation to completely absorb the
extra computations required by the filtering mechanisms. This can be seen as
the proportional reduction in CPU times largely exceeds the reduction in search
nodes.

Finally, we cannot conclude that the extra effort required to reach the fixed
point is worthwhile, as it is sometimes better and sometimes worse than a single
round of filtering. Results on these preliminary tests seem to show that more
than one round of computation is most often useless, as the first round of filter-
ing was sufficient to reach the fixed point in about 99.5% of the search nodes.
More tests are thus required before investigating more sophisticated propagation
mechanisms.

Bibliography

[1] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman

Problem: A Computational Study. Princeton University Press, 2006.



original HK 1-round fixpoint

time BnB time BnB time BnB

burma14 0.1 28 0 0 0 0
ulysses16 0.16 32 0 0 0 0
gr17 0.14 34 0 0 0.01 0
gr21 0.16 42 0 0 0.01 0
ulysses22 0.19 0 0 0 0.01 0
gr24 0.23 44 0.01 0 0.03 0
fri26 0.36 48 0.01 2 0.01 2
bayg29 0.35 54 0.04 6 0.07 6
bays29 0.33 88 0.05 10 0.1 10
dantzig42 0.65 92 0.09 4 0.17 4
swiss42 0.79 112 0.09 8 0.09 8
att48 1.7 140 0.21 18 0.23 15
gr48 94 13554 5.18 2481 7.38 3661
hk48 1.37 94 0.17 4 0.16 4
eil51 15.9 2440 0.39 131 0.84 426
berlin52 0.63 80 0.02 0 0.02 0
brazil58 13 878 1.09 319 1.02 296
st70 236 13418 1.21 183 1.1 152
eil76 15 596 1.03 125 0.88 99
rat99 134 2510 5.44 592 4.88 502
kroD100 16500 206416 11 7236 50.83 4842
rd100 67 782 0.76 0 0.73 0
eil101 187 3692 8.17 1039 9.59 1236
lin105 31 204 1.81 4 1.85 4
pr107 41 442 4.65 45 4.49 48

Table 1. Results on TSPlib instances

[2] E. Balas and P. Toth. Branch and Bound Methods. In E.L. Lawler, J.K. Lenstra,
A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem:

A Guided Tour of Combinatorial Optimization, chapter 10. Wiley, 1985.
[3] G. Dooms and I. Katriel. The “not-too-heavy spanning tree” constraint. In CP-

AI-OR’07, volume 4510 of LNCS, pages 59–70. Springer, 2007.
[4] M. Held and R.M. Karp. The Traveling-Salesman Problem and Minimum Spanning

Trees. Operations Research, 18:1138–1162, 1970.
[5] M. Held and R.M. Karp. The Traveling-Salesman Problem and Minimum Spanning

Trees: Part II. Mathematical Programming, 1:6–25, 1971.
[6] K. Helsgaun. An Effective Implementation of the Lin-Kernighan Traveling Sales-

man Heuristic. European Journal of Operational Research, 126(1):106–130, 2000.
[7] R.C. Prim. Shortest connection networks and some generalizations. Bell System

Tech. J., 36:1389–1401, 1957.
[8] J.-C. Régin. Simpler and Incremental Consistency Checking and Arc Consistency

Filtering Algorithms for the Weighted Spanning Tree Constraint. In Proceedings of

CPAIOR, volume 5015 of LNCS, page 233. Springer, 2008.


