
A Lagrangian Relaxation for Golomb Rulers

Marla R. Slusky1 and Willem-Jan van Hoeve2

1 Department of Mathematical Sciences, Carnegie Mellon University
mslusky@andrew.cmu.edu

2 Tepper School of Business, Carnegie Mellon University
vanhoeve@andrew.cmu.edu

Abstract. The Golomb Ruler Problem asks to position n integer marks
on a ruler such that all pairwise distances between the marks are dis-
tinct and the ruler has minimum total length. It is a very challenging
combinatorial problem, and provably optimal rulers are only known for
n up to 26. Lower bounds can be obtained using Linear Programming
formulations, but these are computationally expensive for large n. In this
paper, we propose a new method for finding lower bounds based on a
Lagrangian relaxation. We present a combinatorial algorithm that finds
good bounds quickly without the use of a Linear Programming solver.
This allows us to embed our algorithm into a constraint programming
search procedure. We compare our relaxation with other lower bounds
from the literature, both formally and experimentally. We also show that
our relaxation can reduce the constraint programming search tree con-
siderably.

1 Introduction

For some positive integer n, let x1, . . . , xn represent the integer positions of n
marks on a ruler. We can assume that xi < xj for all 1 ≤ i < j ≤ n and that
x1 = 0. A Golomb ruler has pairwise distinct distances between the marks, i.e.,
xj − xi for all 1 ≤ i < j ≤ n are distinct. Given n, the Golomb ruler problem
asks to find a Golomb ruler with minimum length xn .

Practical applications of the Golomb ruler problem include radio communi-
cations, X-ray crystallography, coding theory, and radio astronomy [1, 2, 3, 4].
The problem continues to be very difficult to solve in practice, although it is
still unknown whether it is NP-hard. Optimal Golomb rulers are only known
up to n = 26. The optimality of rulers of 24, 25 and 26 marks was proven by
a massively parallel search coordinated by distributed.net/ogr. The 27-mark
search started in March 2009, and as of October 2012, only 65% of this project
is complete.3

The Golomb ruler problem is a popular benchmark for discrete optimization,
and for constraint programming methods in particular (it is problem prob006
in CSPLib). Several exact methods based on constraint programming have been

3 See http://stats.distributed.net/projects.php?project_id=27

proposed in the literature, (e.g., [5, 6]). Other solution methods include al-
gebraic methods (affine and projective plane constructions, [7, 8]), evolutionary
algorithms [9], and hybrid methods combining constraint programming and local
search [10, 11].

A crucial component of exact solution methods is producing lower bounds,
which appears to be more challenging than providing upper bounds (feasible
rulers). Lower bounds can help to dramatically prune an exhaustive search, but
only if they can be found quickly enough. Lower bounds based on linear pro-
gramming formulations were proposed in [12, 13, 14]. These three formulations
were proved equivalent in [15]. Another bound was discussed in [6] and applied
within a constraint programming approach for solving the problem. This bound
is weaker than the LP bound, but it can be computed more quickly.

In this paper, we propose a new method for producing lower bounds, based
on a Lagrangian relaxation of the problem. We show that our relaxation gener-
alizes the bounds proposed in [6], and can produce a bound that is equivalent
to the LP bound. Furthermore, we present an algorithm that allows solving the
relaxation in O(n2 log n) time for fixed Lagrangian multipliers. This allows us to
efficiently approximate the LP bound using a subgradient optimization method,
and apply our bound within a constraint programming search procedure. We
experimentally demonstrate that in practice our method can produce bounds
almost as strong as the LP bound much faster than existing methods. More-
over, we demonstrate that it can decrease the search tree size up to 91%, which
translates into a solving time reduction of up to 78%.

We note that Lagrangian relaxations have been applied before in the con-
text of CP, see for example [16, 17, 18, 19, 20, 21, 22, 23]. Our results further
strengthen the idea that Lagrangian relaxations are a particularly useful method
from operations research for enhancing the inference process of constraint pro-
gramming. In particular, Lagrangian relaxations can help improve the represen-
tation of integrating arithmetic constraints into the alldifferent constraint, which
is a challenging issue in constraint programming [24].

The rest of the paper is organized as follows. In Section 2 we present formal
models of the Golomb ruler problem. In Section 3 we present the Lagrangian
formulation, our efficient algorithm to solve the relaxation, and the subgradient
optimization method. Section 4 discusses exact methods to solve the Lagrangian
relaxation and relates our formulation to the formulations in [13], [15], and [6].
Section 5 contains the computational results comparing our new formulation
to the formulations in [13] and [14], the current state of the art. In Section 6
we present our search algorithm and demonstrate the benefit provided by the
Lagrangian relaxation bound.

2 Exact Models for the Golomb Ruler Problem

We first present a formal model of the Golomb ruler problem. In the following,
we will assume that the marks take their position from a range {1, . . . , L} for
some appropriate upper bound L.

Rather than taking the marks x1, . . . , xn to be our variables, we will take the
(

n

2

)

-many segment lengths dij := xj − xi to be our variables. Then the Golomb
ruler problem can be expressed as the following constraint programming (CP)
model:

min

n−1
∑

k=1

dk,k+1

s.t. alldifferent(d12, d13, . . . , dn−1,n)

dij =

j−1
∑

k=i

dk,k+1 for all 2 ≤ i+ 1 < j ≤ n.

(1)

We can alternatively express this CP model as an integer programming (IP)
model, by representing the alldifferent constraint explicitly as a bipartite match-
ing problem. That is, we introduce a vertex set corresponding to the pairs of
marks {(i, j) | 1 ≤ i < j ≤ n}, a vertex set corresponding to the possible lengths
{1, 2, . . . , L}, and we define the complete bipartite graph between these two ver-
tex sets. Clearly, a maximum matching in this graph corresponds to a solution
to alldifferent [25]. For our IP model, we introduce a binary ‘edge’ variable such
that eijv = 1 when the pair (i, j) induces a distance v ∈ {1, . . . , L} and eijv = 0
otherwise. The model thus becomes:

min
n−1
∑

k=1

dk,k+1

s.t.

L
∑

v=1

eijv = 1 for all 1 ≤ i < j ≤ n,

∑

i<j

eijv ≤ 1 for all v = 1, . . . , L,

L
∑

v=1

v · eijv = dij for all 1 ≤ i < j ≤ n,

j−1
∑

k=i

dk,k+1 = dij for all 2 ≤ i+ 1 < j ≤ n,

eijv ∈ {0, 1} for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(2)

In this model, the first two constraints represent the bipartite matching. The
third constraint establishes the relationship between the variables eijv and dij .
The fourth is the requirement that each larger segment is made up of the smaller
segments it contains. We note that model (2) corresponds to the formulation
suggested in [12]. We will refer to it as the matching formulation and to its
objective value as zmatching. We will derive our Lagrangian relaxation from this
model.

3 Lagrangian Relaxation

In this section, we first present the Lagrangian formulation, which provides a
relaxation for any fixed set of Lagrangian multipliers. We then show that each
such relaxation can be solved efficiently. In order to find the best relaxation (cor-
responding to the LP lower bound), we lastly present a subgradient optimization
method that approximates the optimal Lagrangian multipliers.

3.1 Formulation

We create a Lagrangian relaxation from model (2) as follows. For every pair of
non-consecutive marks, that is, for all i, j such that 2 ≤ i + 1 < j ≤ n, we
choose a coefficient λij ∈ R and consider the LP resulting from moving the last
constraint of the matching formulation to the objective function:

min

n−1
∑

k=1

dk,k+1 +
∑

i+1<j

λij

(

dij −

j−1
∑

k=i

dk,k+1

)

s.t.

L
∑

v=1

eijv = 1 for all 1 ≤ i < j ≤ n,

∑

i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L
∑

v=1

v · eijv for all 1 ≤ i < j ≤ n,

eijv ≥ 0 for all 1 ≤ i < j ≤ n, v = 1, . . . , L.

(3)

In this formulation we do not enforce
∑j−1

k=i dk,k+1 = dij , but we do incur a
penalty, weighted by λij , if we do not satisfy that constraint. Note that the
optimal solution for the matching formulation is still feasible in this relaxation,
and gives the same objective value. Therefore, the optimal value here is at most

zmatching.

We can simplify our model further by rearranging the objective function to
become

∑

i+1<j

λijdij +
n−1
∑

k=1

dk,k+1

1−
∑

i≤k<j
i+1 6=j

λij

. (4)

Also, recall that we did not choose λk,k+1 for any k earlier, so let us take

λk,k+1 := 1−
∑

i≤k<j
i+1 6=j

λij . (5)

Then for any fixed (λij) satisfying equation (5), we have the simpler LP:

min
∑

i<j

λijdij

s.t.

L
∑

v=1

eijv = 1 for all 1 ≤ i < j ≤ n,

∑

i<j

eijv ≤ 1 for all v = 1, . . . , L,

dij =

L
∑

v=1

v · eijv for all 1 ≤ i < j ≤ n,

(6)

This is the LP we will refer to as the Lagrangian relaxation, and we will
refer to its objective value as zLR. Note that the dij variables are simply an
intermediate calculation. If we replace the dij in the objective function with
∑L

v=1 v·eijv, then we can eliminate the third constraint, and so this LP represents
a matching problem. This ensures that this LP has an integer solution.

Proposition 1. For any fixed (λij) we have zLR ≤ zmatching, and there exists

(λij) for which zLR = zmatching.

Proof. The proposition follows from choosing (λij) to be the dual variables of
the last equation in (2). (see, e.g., [26]). ⊓⊔

3.2 A Combinatorial Algorithm for Solving the Relaxation

Proposition 2. For any fixed (λij), the Lagrangian relaxation can be solved in

O(n2 log n) time.

Proof. What the Lagrangian relaxation LP actually represents is a matching
problem where we are matching each λij with a number in {1, . . . , L}, and we
are trying to minimize the sum of the product of the pairs. It is clear that if
λij ≥ 0 for all i < j, then to minimize the objective value we must match the
largest λij with 1, the next largest λij with 2, etc. (If we have some λij < 0 then
we will just take dij as large as possible making our objective value −∞.) Thus
our method for solving the Lagrangian relaxation will be as follows.

1 Sort (λij) into decreasing order.

2 Let dij be the location of λij in the sorted list.

Since our algorithm for solving the Lagrangian relaxation reduces to sorting
(

n

2

)

elements, we can solve it in O(n2 log n) time. ⊓⊔

3.3 Subgradient Optimization Method

In order to find (close to) optimal values for (λij), we designed an iterative
local search scheme similar to subgradient optimization methods as applied in,
e.g., [27, 28]. To approximate good values for (λij), recall that λij is a penalty

for not satisfying the constraint
∑j−1

k=i dk,k+1 = dij . Therefore, if we solve the
Lagrangian relaxation and do not satisfy the constraint for pair (i, j), we should
increase the penalty λij . Our algorithm is as follows:

1 Choose initial stepsize

2 Choose initial values for λij with i+ 1 < j (for example, all 0)

3 Set λk,k+1 := 1−
∑

i<k<j λij for all k ∈ {1, . . . , n− 1}

4 Repeat until some stopping criterion {

5 Solve the Lagrangian relaxation

6 For each i < j do

7 λij := λij +

(

dij −

j−1
∑

k=i

dk,k+1

)

stepsize

n2

8 Adjust stepsize if necessary

9 }

The performance of this algorithm highly depends on the choice and adjust-
ment of the stepsize parameter. In our implementation, we start with a stepsize
of 1 (in line 1). When an iteration results in negative values for some λij , we
divide the stepsize in half to refine the search. Otherwise, after each 5 iterations
of decreasing values for zLR, we multiply the stepsize by 0.999 (line 8).

Unfortunately, this algorithm does not have a natural stopping condition
based on optimality of the solution. In fact, even if we use the optimal (λij) as
initial data, one iteration will return different values. Nevertheless, this algorithm
produces very good approximations of zmatching very quickly, as we will see in
Section 5.

4 Relationship with Other Formulations

In this section we investigate the relationship of our Lagrangian relaxation with
other, existing, formulations for obtaining lower bounds. Throughout this section

we will use λ to mean (λij) ∈ R
(n2); S(n2)

to be the set of all permutations of the

numbers {1, 2, . . . ,
(

n

2

)

} indexed by pairs (i, j) with i < j; σ = (σij) ∈ S(n2)
; and

λ · σ =
∑

1≤i<j≤n λijσij .

4.1 Permutation Formulation

Our goal in the last section was

min
σ

λ · σ

for a fixed λ, because this gives us a lower bound for the length of a Golomb
ruler. However, our overall goal is to strengthen this bound, that is

max
λ

min
σ

λ · σ

or, expressed as an LP,

max z

s.t.
∑

i≤k<j

λij = 1 for all k = 1, . . . , n− 1,

z ≤
∑

i<j

λij · σij for all σ ∈ S(n2)
.

(7)

We will refer to this model as the permutation formulation. This formulation
was also given in [13] and [15].

The correspondence between model (7) and our Lagrangian relaxation is
that by solving model (7) we obtain optimal values for λ with respect to the
Lagrangian relaxation, and both models will provide the same objective value.
Unfortunately, solving the permutation model directly is non-trivial; we have
about

(

n

2

)

! constraints. However, we can apply Proposition 2 to solve it more
quickly. We will iterate solving model (7) for a subset of constraints C ⊂ S(n2)

:

max z

s.t.
∑

i≤k<j

λij = 1 for all k = 1, . . . ,m− 1,

z ≤
∑

i<j

λij · σij for all σ ∈ C.

(8)

Our algorithm is as follows:

1 Choose any initial C

2 Solve (8) and let z be the objective value

3 Sort λ into decreasing order

4 For i < j let σij = (the position of λij in sorted order)

5 If (z = λ · σ)

6 Then terminate

7 Else {

8 C := C ∪ {σ}

9 Goto 2

10 }

The sorting algorithm and the restricted permutation model provide lower
and upper bounds, respectively; optimality is proved when these bounds meet
(line 5). This can serve as a systematic alternative approach to our local search.

4.2 Equation Sums Bound

We next study the relationship of the Lagrangian relaxation with the lower
bounds proposed in [6]. For this, we consider the constraint

∑

i≤k<j λij = 1 in
models (7) and (8). We assign a coefficient λij to each segment of the ruler, but
why should we have them summing to 1 in this way? Before we answer that
question, we recall the lower bounds given in [6] by illustration with an example.

Let n = 5, for which the length of the ruler is given by d15. If we want to
bound d15, we can first divide this segment into sub-segments in different ways:

d15 = d12 + d23 + d34 + d45

d15 = d13 + d35

d15 = d12 + d24 + d45

Multiplying each equation by 1
3 and adding them together gives

d15 =
2

3
(d12 + d45) +

1

3
(d23 + d34 + d13 + d24 + d35) .

Since all these numbers will be distinct naturals, we get

d15 ≥
2

3
(1 + 2) +

1

3
(3 + 4 + 5 + 6 + 7)

d15 ≥ 10.333

There are, of course, many ways we can write out d1n as a sum of smaller
segments, and [6] proposes some heuristics. We will refer to bounds of this form
as equation sums bounds. Another option we have is to weight the equations
differently. For example, we could have given the first two equations weights of
0.4 and the last equation a weight of 0.2 instead of giving them all a weight of
1
3 . This would result in the equation

d15 = 0.6(d12 + d45) + 0.4(d23 + d34 + d13 + d35) + 0.2(d24)

and the corresponding bound

d15 ≥ 0.6(1 + 2) + 0.4(3 + 4 + 5 + 6) + 0.2(7)

d15 ≥ 10.4

We will refer to bounds of this form as generalized equation sums bounds.

Proposition 3. The generalized equation sums bounds are equivalent to zLR for

an appropriate choice of λ.

Proof. The weights of the equations in the generalized equation sums bound
must always be distributed so that they sum to 1. This way d1n always gets a
coefficient of 1, and we always end up with a bound of the form d1n ≥

∑

µijdij
for some coefficients µij . Note that in each equation for each k = 1, . . . , n − 1,
there is some term that encapsulates the segment (k, k + 1). That is, there is

some dij such that i ≤ k < j. Since the weights on each equation sum to one,
the coefficients that encapsulate the pair (k, k + 1) should sum to 1. That is:
∑

i≤k<j µij = 1. Then to find the minimum value of
∑

i<j dijµij we simply sort
(µ) into decreasing order and assign each dij the corresponding value. This is
precisely what we did in Proposition 2. ⊓⊔

This shows that although the bound from [6] is weaker than the LP bound, it
can be generalized to be as strong as the LP bound, and it gives a nice intuition
for our constraint on λ.

5 Computational Results for Approximating the LP

Bound

The purpose of our experimental results is twofold. First, we would like to gain
insight in the performance of our approximate local search scheme relative to the
systematic iterative scheme based on the permutation formulation for solving the
Lagrangian relaxation. Second, we wish to evaluate our Lagrangian relaxation
with the state of the art for solving the LP relaxation.

5.1 Subset Formulation

The current fastest method for solving the LP relaxation for the Golomb ruler
problem was proposed by [15]. It is based on the following formulation of the
lower bound, proposed in [14]. Let S = {(i, j) : i < j}.

min d1n

s.t.

j−1
∑

k=i

dk,k+1 = dij for all 1 ≤ i < j ≤ n,

∑

(i,j)∈R

dij ≥
1

2
|R| · (|R|+ 1) for all R ∈ P(S).

(9)

We will call this the subset formulation. Again, this LP is too big to solve

as stated since it has O(2(
n

2)) constraints. However, [15] proposes an iterative
solving method in which we only include the second constraint above for some
subset T ⊂ P(S).

1 Let T = {{i} : 1 ≤ i ≤ n} ∪ {{1, . . . , n}}

2 Solve (9)

3 Sort (dij)

4 For 1 ≤ k ≤
(

n

2

)

{

5 Let T = {(i, j) : dij is in within the first k positions}

6 If (
∑

(i,j)∈T dij <
(

k

2

)

) then

7 T := T ∪ {T}

8 }

This approach is the currently best known algorithm for finding the LP
bound, and we will compare our proposed algorithm to this.

5.2 Implementation and Results

We implemented the Lagrangian relaxation and the subgradient method in C++,
following the description in Section 3.3. It was run using C++ on an Intel core
i3 processor (2.13 GHz). The times reported are the number of seconds elapsed
between when the program started running and when that lower bound was
found.

We implemented both the subset formulation and the permutation formula-
tion in AIMMS. The AIMMS implementations were run on the same Intel core
i3 processor. The times reported are the sums of the solve times for each call to
CPLEX, i.e., we eliminate the overhead that AIMMS may add).

We ran the cases n = 30, 40, 50, and 60 to completion, and n = 130 for 600
seconds. In each case we can see from the figures that although the Lagrangian
relaxation does not achieve the LP bound, it gets close to it before the subset
formulation does. We also show, for reference, the constant functions y = UB,
where UB is the best known upper bound (length of the shortest known ruler4)
and y = LB where LB is the value of the LP bound (the final value of z in all
our formulations).

 400

 450

 500

 550

 600

 650

 700

 0 0.5 1 1.5 2

B
es

t L
ow

er
 B

ou
nd

 F
ou

nd

Time (s)

n = 30

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Permutation (CPLEX)

Fig. 1. Speed comparison between the permutation, subset, and Lagrangian formula-
tions. How quickly can each find the lower bound when n = 30?

4 See http://www.research.ibm.com/people/s/shearer/grtab.html for the list of
shortest known rulers.

 800

 900

 1000

 1100

 1200

 1300

 0 2 4 6 8 10

B
es

t L
ow

er
 B

ou
nd

 F
ou

nd

Time (s)

n = 40

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Fig. 2. Speed comparison between the subset and Lagrangian formulations. How
quickly can each find the lower bound when n = 40?

6 CP Implementation

We implemented a CP search program that, given n and L, finds all n-mark
Golomb rulers of length L. It is implemented as a set constraint problem [29]
concerning two set variables: X, the set of marks in the ruler, and D, the set
of distances measured by the ruler. We apply the standard subset + cardinality
domain ordering, whereby we maintain a lower bound of mandatory elements
(denoted by X− and D−) and an upper bound of possible elements (denoted by
X+ and D+). Our constraints are as follows.

X = {x1, x2, . . . , xn} ∈ [{0, L}, {0, . . . , L}]
|X| = n

D ∈ [{L}, {1, . . . , L}]
|D| =

(

n

2

)

d ∈ D ⇐⇒ ∃xi, xj ∈ X s.t. xj − xi = d

x2 − x1 < xn − xn−1

(10)

Our branching procedure is described in Figure 6. Line 18 ensures that between
any ruler and its mirror image only one is found by this program, reflecting the
last constraint in model (10).

The search strategy considers each distance d ∈ {1, . . . , L} in decreasing
order and decides where and if d will be measured in the ruler.

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35 40

B
es

t L
ow

er
 B

ou
nd

 F
ou

nd

Time (s)

n = 50

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Fig. 3. Speed comparison between the subset and Lagrangian formulations. How
quickly can each find the lower bound when n = 50?

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

B
es

t L
ow

er
 B

ou
nd

 F
ou

nd

Time (s)

n = 60

y=UB
y=LB

Lagrangian
Subset (CPLEX)

Fig. 4. Speed comparison between the subset and Lagrangian formulations. How
quickly can each find the lower bound when n = 60?

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 0 100 200 300 400 500 600

B
es

t L
ow

er
 B

ou
nd

 F
ou

nd

Time (s)

n = 130, run for 600 seconds

y=UB
Lagrangian

Subset (CPLEX)

Fig. 5. Speed comparison between the subset and Lagrangian formulations. How
quickly can each find the lower bound when n = 130?

1 define branch(X−, X+, D−, D+){

2 if (|X−| = n)

3 return X−

4 if (|D+| <
(

n
2

)

)

5 return 0

6

7 D− := {xj − xi : xi, xj ∈ X−}

8 for (x ∈ X− and d ∈ D−){

9 if(x − d ∈ X+ \ X−)

10 X+ := X+ \ {x − d}

11 if(x + d ∈ X+ \ X−)

12 X+ := X+ \ {x + d}

13 }

14 for (x, y ∈ X− with x ≡ y mod 2)

15 X+ := X+ \ {
x+y
2

}

16

17 d+ := max(D+ \ D−)

18 if (|X−| > 2)

19 if (d+ ∈ X+ \ X−)

20 branch(X− ∪ {d+}, X+, D−, D+)

21 X+ := X+ \ {d+}

22 if (L − d+ ∈ X+ \ X−)

23 branch(X− ∪ {L − d+}, X+, D−, D+)

24 X+ := X+ \ {L − d+}

25 branch(X−, X+, D−, D+ \ {d+})

26 }

Fig. 6. Our branching algorithm for finding Golomb Rulers

baseline LR1 LR2
n L C/F nodes time nodes time nodes time

10 54 C 60,554 0.51 10,377 0.15 4,984 0.11
10 55 F 4,492 0.04 4,179 0.07 3,512 0.07

11 71 C 2,993,876 27.09 2,402,590 28.45 2,055,429 37.29
11 72 F 5,581 0.05 5,412 0.08 5,343 0.11

12 84 C 10,298,716 103.62 4,143,356 57.40 2,773,734 59.04
12 85 F 7,103,301 70.84 5,618,338 76.41 4,698,798 96.17

13 105 C 445,341,835 4782 323,717,500 5533 273,340,407 6618
13 106 F 205,714,305 2187 191,016,739 3309 177,429,879 4278

Table 1. The performance of the CP search (baseline), the Lagrangian relaxation
applied at a third of the search nodes (LR1), and the Lagrangian relaxation applied at
each search node (LR2). C or F denotes whether we are reporting the time/nodes to
program Completion or the time/nodes to Find a ruler. We report the total number of
search nodes and the solving time in seconds.

Proposition 4. If we have already decided if and where to measure the lengths

{d + 1, . . . , L}, and we have not decided if and where to place d, then the only

place d can be measured is from 0 to d or from L− d to L.

Proof. Without loss of generality, suppose there is x, x+ d ∈ X+ with 0 < x <

L− d. Then since we have decided if and where to place the distance x+ d, and
we know 0 will be a mark in our ruler, we already know whether we are including
the mark x + d. Similarly, since d < L − x, we already know if and where we
are including the distance L− x and since we are including the mark L, we also
know whether we are including the mark x. If we had decided to include both x

and x+ d, then we would not need to decide on the distance d. Thus if d is the
largest distance we have not decided whether or not to include, we only need to
consider three possibilities: the mark d is in the ruler, the mark L − d is in the
ruler, or the distance d is not measured by the ruler. ⊓⊔

We ran three programs to test our algorithm, and the results are in Table 1.
The baseline program just calls the procedure above. The other two programs
start by running 2000 iterations of our subgradient optimization procedure, thus
fixing our values for λ, and then call a modified version of the branch procedure,
which, at line 7, uses proposition 2 to check if we have violated the LP bound.
LR1 performs this check when |X−| ≡ 1 mod 3, and LR2 performs this check at
every node.

Our algorithm always reduces the size of the search tree, sometimes by as
much as 91% as in Table 2. The Lagrangian relaxation does not appear to speed
up the algorithm when we are searching for a ruler, but it can speed up the
algorithm when we are trying to prove a ruler does not exist. Interestingly, it
appears the strength of this method is correlated with the strength of the LP
bound.

LR1 LR2
n L C/F LB

UB
nodes time nodes time

10 54 C 98% 82% 70% 91% 78%
10 55 F 98% 6% -75% 21% -75%

11 71 C 93% 19% -5% 31% -37%
11 72 F 93% 3% -60% 4% -120%

12 84 C 96% 59% 44% 73% 43%
12 85 F 96% 20% -7% 33% -35%

13 105 C 92% 27% -15% 38% -38%
13 106 F 92% 7% -51% 13% -95%

Table 2. Percent improvement of the Lagrangian relaxation applied at a third of the
search nodes (LR1) and at each search node (LR2) over the CP search (baseline). C
or F denotes whether we are reporting the time/nodes to program Completion or the
time/nodes to Find a ruler. We also provide, for reference, the strength of the LP

bound as LB

UB
= LP bound

Optimal Ruler Length
.

7 Conclusion

We have presented a new way to approximate the LP bound for Golomb Rulers.
We have demonstrated its relationship to existing methods, and shown that we
can compute the LP bound much faster using combinatorial methods.

We then used this fast computation in a search procedure, demonstrating
that we can use this bound to reduce the size of the search tree and, in cases
where the LP bound is strong enough, reduce the search time as well.

Bibliography

[1] Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs.
Proceedings of the IEEE 65(4) (1977) 562–570

[2] Moffet, A.T.: Minimum-redundancy linear arrays. IEEE Transactions on
Anntennas and Propagation AP-16(2) (1968) 172–175

[3] Gagliardi, R., Robbins, J., Taylor, H.: Acquisition sequences in PPM com-
munications. IEEE Transactions on Information Theory IT-33(5) (1987)
738–744

[4] Robinson, J.P., Bernstein, A.J.: A class of binary recurrent codes with
limited error propagation. IEEE Transactions on Information Theory IT-

13(1) (1967) 106–113
[5] Smith, B., Stergiou, K., Walsh, T.: Modelling the Golomb ruler problem.

In: IJCAI Workshop on Non-binary Constraints. (1999)
[6] Galinier, P., Jaumard, B., Morales, R., Pesant, G.: A constraint-based

approach to the Golomb ruler problem. In: Third International Work-
shop on the Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR). (2001)

A more recent version (June 11, 2007) can be downloaded from http:

//www.crt.umontreal.ca/~quosseca/pdf/41-golomb.pdf.
[7] Singer, J.: A theorem in finite projective geometry and some applications to

number theory. Transactions of the American Mathematical Society 43(3)
(1938) 377–385

[8] Drakakis, K., Gow, R., O’Carroll, L.: On some properties of costas arrays
generated via finite fields. In: Information Sciences and Systems, 2006 40th
Annual Conference on, IEEE (2006) 801–805

[9] Soliday, S.W., Homaifar, A., Lebby, G.L.: Genetic algorithm approach to
the search for Golomb rulers. In: 6th International Conference on Genetic
Algorithms (ICGA95, Morgan Kaufmann (1995) 528–535

[10] Prestwich, S.: Trading completeness for scalability: Hybrid search for cliques
and rulers. In: Third International Workshop on the Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR). (2001)

[11] Dotú, I., Van Hentenryck, P.: A simple hybrid evolutionary algorithm for
finding Golomb rulers. In: The IEEE Congress on Evolutionary Computa-
tion, IEEE (2005) 2018–2023

[12] Lorentzen, R., Nilsen, R.: Application of linear programming to the optimal
difference triangle set problem. IEEE Trans. Inf. Theor. 37(5) (2006) 1486–
1488

[13] Hansen, P., Jaumard, B., Meyer, C.: On lower bounds for numbered com-
plete graphs. Discrete Applied Mathematics 94(13) (1999) 205 – 225

[14] Shearer, J.B.: Improved LP lower bounds for difference triangle sets. Journal
of Combinatorics 6 (1999)

[15] Meyer, C., Jaumard, B.: Equivalence of some LP-based lower bounds for
the Golomb ruler problem. Discrete Appl. Math. 154(1) (2006) 120–144

[16] Sellmann, M., Fahle, T.: Constraint programming based Lagrangian relax-
ation for the automatic recording problem. Annals of Operations Research
118(1–4) (2003) 17–33

[17] Cronholm, W., Ajili, F.: Strong cost-based filtering for Lagrange decom-
position applied to network design. In: Proceedings of CP. Volume 3258 of
Lecture Notes in Computer Science., Springer (2004) 726–730

[18] Sellmann, M.: Theoretical foundations of CP-based Lagrangian relaxation.
In: Proceedings of CP. Volume 3258 of Lecture Notes in Computer Science.,
Springer (2004) 634–647

[19] Gellermann, T., Sellmann, M., Wright, R.: Shorter path constraints for the
resource constrained shortest path problem. In: Proceedings of CPAIOR.
Volume 3524 of Lecture Notes in Computer Science., Springer (2005) 201–
216

[20] Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining arc-consistency
and dual Lagrangean relaxation for filtering CSPs. In: Proceedings of
CPAIOR. Volume 3524 of Lecture Notes in Computer Science., Springer
(2005) 258–272

[21] Menana, J., Demassey, S.: Sequencing and counting with the multicost-
regular constraint. In: Proceedings of CPAIOR. Volume 5547 of Lecture
Notes in Computer Science., Springer (2009) 178–192

[22] Cambazard, H., O’Mahony, E., O’Sullivan, B.: Hybrid methods for the mul-
tileaf collimator sequencing problem. In: Proceedings of CPAIOR. Volume
6140 of Lecture Notes in Computer Science., Springer (2010) 56–70

[23] Benchimol, P., Hoeve, W.J.v., Régin, J.C., Rousseau, L.M., Rueher, M.:
Improved filtering for weighted circuit constraints. Constraints 17(3) (2012)
205–233

[24] Régin, J.C.: Solving problems with CP: Four common pitfalls to avoid. In:
Proceedings of CP. Volume 6876 of LNCS., Springer (2011) 3–11

[25] Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In:
Proceedings of AAAI, AAAI Press (1994) 362–367

[26] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization.
Wiley (1988)

[27] Held, M., Karp, R.M.: The travelling salesman problem and minimum
spanning trees. Operations Research 18 (1970) 1138–1162

[28] Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization.
Mathematical Programming 6 (1974) 62–88

[29] Gervet, C.: Constraints over structured domains. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier Science
Inc. (2006)

