An Efficient Generic Network Flow Constraint

Robin Steiger

LIA — Ecole Polytechnique
Fédérale de Lausanne
Lausanne, Switzerland

robin.steiger@epfl.ch

ABSTRACT

We propose a generic global constraint that can be appliedtte!

a wide range of network flow problems using constraint pnogra
ming. In our approach, all key aspects of a network flow can be
represented by finite domain variables, making the comstvairy
expressive. At the same time, we utilize a network simplgo-al
rithm to design a highly efficient, and incremental, domdteriing
algorithm. We thus integrate two powerful techniques facdite
optimization: constraint programming and the network $exl-
gorithm. Our generic constraint can be applied to autorabyic
implement effective and efficient domain filterng algorithfar ad-
hoc networks, but also for existing global constraints teat on a
network structure, including several soft global constismany of
which are not yet supported by CP systems. Our experimestal r
sults demonstrate the efficiency of our constraint, thatazdmeve
speed-ups of several orders of magnitude with negligibétmad,
when compared to a decomposition into primitive constgaint

Categories and Subject Descriptors

D.3.3 [Programming Language$: Language Constructs and Fea-
tures—Constraints, CSRFG.4 [Mathematics of Computing]: Math-
ematical software-Algorithm design and analysis

General Terms
Constraint programming, network flow constraint

Keywords

Minimum-cost network flow, global constraint

1. INTRODUCTION

Constraint programming (CP) is a paradigm to solve combinat
rial optimization problems, combining an expressive miodglan-
guage with powerful inference techniques and systemagche
In addition to algebraic and logical relations over probleari-
ables, CP allows the use of so-callgidbal constraintsthat pro-
vide shorthands to often-used combinatorial substrust{@e13].

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’'11March 21-25, 2011, TaiChung, Taiwan.

Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Willem-Jan van Hoeve
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA
vanhoeve @
andrew.cmu.edu

Radostaw Szymanek

LIA — Ecole Polytechnique
Fédérale de Lausanne
Lausanne, Switzerland

radoslaw.szymanek@

gmail.com

Global constraints embed specialized inference technitjeg ex-
ploit the associated combinatorial structure of the camsty of-
ten allowing stronger levels of reasoning than would be iptss
with a decomposed representation of the combinatoriattsire.
Nowadays, global constraints are considered to be one ohtse
important components of CP systems in practice.

Many global constraints utilize a combinatorial structtinat
takes the form of a specific network flow. For example, aligiff-
erentconstraint is equivalent to a bipartite matching proble®j,[1
while theglobal cardinality constraintor gcg can be represented
by a bipartite network flow [11]. Also when an objective fuinct
is combined with a global constraint, thus forming a soezhlbp-
timization constraint’, the correspondence with netwookv8 has
been exploited. One well-known example is theighted gccthat
corresponds to a weighted bipartite network flow [12].

Most, if not all, CP systems implement a dedicated inference
algorithm for each individual global constraint. Even wiggobal
constraints are based on network flows, and share similasttaic-
tures and procedures, each specialized network flow atgoritould
have to be implemented and tuned individually. The advantdg
this approach is that CP systems can offer highly efficiegb-al
rithms for these constraints. In recent years, howeverymaore
network-based global constraints have appeared in thatlites,
especially in the context afoft global constraints that can be ap-
plied to model and solve over-constrained problems [5].sTimi-
poses a burden, as it may be unreasonable to implement ad off
a dedicated algorithm for each such global constraint. d¢t) faost
CP systems do not support any soft global constraint. A gener
network flow constraint allows to simulate the performantée
specialized individual constraints in a convenient way.

Furthermore, many real-world problems contain a subsiract
that can be represented by some network flow, but not nedgssar
in the form of a global constraint that is offered by CP systeBx-
amples include process engineering, scheduling, routimdjfrans-
portation problems; see [16] for a discussion of consti@iogyram-
ming applications for networks. In order to exploit such-taat’
network flow structures, a generic network flow constraintilgo
be very convenient, both as a modeling tool and as a proegati
algorithm.

The main goal of this work is therefore to develogemeric net-
work flow constraint The purpose of this constraint is tpallow
to model ad-hoc network flow structures) allow to model ex-
isting global constraints, most importantly soft globahstraints,
andiii) embed efficient inference algorithms, providing the best
trade-off between modeling power and practical solvingigficy.

Our first main contribution is the introduction of a more ex-
pressive generic Network Flow ConstraifntfC) than is currently
available in the literature. Particular features of fMeC are that

the following aspects of the network flow can be interpreteca
variable: the total (weighted) value of the flow, the flow orlea
arc, but also the unit cost of each arc. In addition, the cairgt
supports a ‘structural’ variable for each arc that can bel tsen-
force that the flow on the arc must equal its lower or upper cigpa
Finally, we show how the node balance, node capacity, ané nod
cost can be interpreted and handled as variables. Thesedsai-
low us to model a wide range of network flow problems, inclagdin
the application areas mentioned above.

The second contribution of this paper is the embedding of ver
efficient inference algorithms (in the form of so-called domfil-
tering algorithms), that are based on the network simpletaane{1].
Most of the domain filtering algorithms for network flow-bédse
global constraints, includinglldifferent gcg andsoft-alldifferent
apply some variant of the combinatorial ‘successive sBbpaths’
network flow algorithm. Indeed, for these global constsithtat
are defined on bipartite networks, it can be shown that this ap
proach yields powerful and provably efficient algorithmer Fore
general networks, however, these algorithms may no longnd
most efficient approach, most importantly because the voarse
pseudo-polynomial time complexity is often encounteregriac-
tice. Instead, the network simplex is among the most efficien
network flow algorithms used in practical network flow apgtic
tions. Moreover, as we will see, the network simplex metrentlze
naturally embedded inside a propagation algorithm andthaaik
search environment. Since our main focus is on practicaieffty
and re-usability, we propose to balance the amount of filgeaind
the associated computational load, resulting in highlyieffit per-
formance. In particular, we consider checking the consestef a
domain value only if our heuristic suggests it may be incstesit
and can be filtered from its domain.

The third contribution of this work is the application of @eneric
constraint to a number of network flow problems, includsujt
global constraints We show that th&/FC can be easily configured
to represent, e.g., theoft-alldifferent constraint, and we experi-
mentally demonstrate the computational performance oMRE
in practice. Interestingly, thA/FC can obtain speed-ups of several
orders of magnitude with respect to a corresponding decsitipo
of the problem, while the computational overhead is nelgligi

Lastly, we have made our implementation of tREC publicly
available as an add-on to the open-source CP solver JaCoR/¢8]
view this as an important contribution to the community, tael4
lows other researchers to quickly evaluate the performahoew
(soft) global constraints based on network flows.

The remainder of the paper is organized as follows. In Se@io
we compare our generic network flow constraint with existieg
lated work. Then, in Section 3 we provide necessary prebnigs
on constraint programming and network flow theory. In Sectio
we introduce our generic network flow constraint. The asgedi
propagation algorithm is described in Section 5. We presemt-
putational results in Section 6. Finally, we conclude int®ec?.

2. RELATED WORK

Network flows play an important role in constraint program-
ming, in particular because specialized network flow atbams
have been applied to design efficient filtering algorithmssev-
eral global constraints includirgfldifferent[10], gcc[11, 12], and
their soft variants [7]. Bockmayr et al. were first to intregua
generic network flow constraint in a CP context [3]. Their con
straint, called thdlow constraint in [3], has been implemented in
the CHIP solver. Similar to ouNFC, the flow constraint can be
applied to model minimum-cost network flow problems. Declar
atively, our NFC is more generic in that all flow aspects can be

interpreted as variables, whereas flogv constraint only considers
as variable the total value of the flow, the arc flow, and theaten
at each node. On the other hand, flogv constraint offers so-called
‘conversion nodes’ at the modeling level. These conversimfes
are not offered by th&/FC, because they can be transformed into an
equivalent multiple network flow problem (see Section 4}idled,
this approach is also taken by thew constraint to handle conver-
sion nodes [3]. The domain filtering rules for tflew constraint
are based on the computation of a network flow for feasibitty-
soning, and on reduced costs for optimality reasoning. K€
also includes this reasoning as part of the propagatiorrittign

A different network flow constraint has been proposed in§2g
also [4]. It can be used to model maximum flow problems (that is
no costs are involved), where the flow on each arc in the graph a
well as the total flow value is represented by a finite domaiit va
able. Therefore, this flow constraint is less generic thanffdw
constraint in [3] and ouNFC. The domain filtering algorithm em-
ploys the highest-label preflow-push algorithm, which istipa-
larly efficient for maximum flow problems.

Another closely related work is theplex library [15], which
provides a constraint programming interface to efficiemtdir pro-
gramming techniques. OWIFC can be viewed as a network-
specific variant of that work. Finally, in [9] it is discuss&dw
global constraints such &g among and their combinations can
be modeled in terms of a tractable set-intersection prolaited
‘Two Families of Sets’ (TFOS). It is shown that domain filtegi
for the TFOS can be based on a maximum flow algorithm, and how
the extension to the weighted TFOS problem can be reprasbpte
a minimum-cost flow.

3. PRELIMINARIES

3.1 Constraint Programming

We assume basic familiarity with constraint programminggd a
refer to [14] for more information.

A constraint programming problem is defined on a set of vari-
ablesX, and a set of constraints on subsets ok, and optionally
an objective functionf : X — Q. Each variabler € X has
an associated finite domaiP(z). The goal is to find a variable
assignmentr = d with d € D(z) for all z € X such that all
constraints are satisfied, ayfids optimized (if it exists).

For a set of variableX, we defineD(X) = U,exD(x). We
denote the lower and upper bound of a variabléy z™" =
min(D(x)) andz™** = maxz(D(x)), respectively.

3.2 The minimum-cost flow problem
We next present background information on network flow theor
to fix terminology. For a more thorough treatment of netwookvfl
theory we refer to the textbook [1].
An instance of the minimum-cost flow problem on a directed
graph is defined by a tupleV, A, 1, u, ¢,b), where
e N is the set of nodes,
e Ais the set of directed arcs,
e [: A — Zs>(is the lower capacity function on the arcs,
e u: A — Zs>o is the upper capacity function on the arcs,
e c: A — Zis the flow cost-per-unit function on the arcs,
e b: N — Zis the node mass balance function on the nodes.
A flowis a functionz : A — Zx>¢. The minimum-cost flow prob-

lem asks to find a flow that satisfies all arc capacity and notle ba
ance conditions, while minimizing total cost. It can be athas

follows:

min z(x) = Z CijTij (1)
(i,j)€A

s.t. lij < mij < iy v(i,j) € A, (2)

Z Tij — Z Tji = b; Vie N (3)

J:(i,j)€EA J:(3,))EA

In addition to the parameters above, it is sometimes coanend
apply cost and capacity functions on the nodes as well:

e [": N — Z> is the lower capacity function on the nodes,
e u" : N — Z>(is the upper capacity function on the nodes,
e ¢" : N — Zis the flow cost-per-unit function on the nodes.

A network with cost and capacity functions on the nodes can be
transformed into an equivalent network of the farm, A, 1, u, ¢, b)
[1]. Namely, we can split a nodec N into two nodesi, andious
collecting all incoming, respectively outgoing arcsiofWe then
introduce an argiin, iout) With arc coste;’ and lower and upper
arc capacitie$; andu;', respectively.

A flow z is feasibleif it satisfies the arc capacity constraints
(2) and node balance constraints (3). Under the assumpgtain t
a feasible flow exists, we can formulate the problem diffdyen
For this formulation we need the conceptre$idual network The
residual network with respect to a feasible flawis defined on
the same node séY, but uses arc sefl;.s(z) that is defined as
follows. An arc(s, j) with flow z;; has two copies iM;cs(x), arc
(4, 7) with residual lower capacity and upper capacity;; — z;;,
and an ard, ¢) with residual lower capacity and residual upper
capacityz;; — l;;. Moreover,l;; is subtracted frond; and added
to b; (the residual node balances). Two arcs that corresponctto th
same edge in the network flow problem are cafiester arcs

In order to ensure that the network allows a feasible saiutice
apply the standard technique of introducing auxiliary dheg are
used to potentially fulfill the node balance constraintghwissoci-
ated penalty costs. If the original network has no soluttbis is
detected by the huge cost of the ‘solution’ in the extendeelon.

We introduce a ‘potential’ functiom : N — Z and define the
reduced cosbf an arc(i, j) asc;; = ci; — (i) +7(j). Afeasible
flow z : A — Z> is optimal if and only if there exists a potential
functionw : N — Z such that:

CZTJ 2 0, v(l,j) S A’res(m)7 (4)

Algorithms for the minimum-cost flow can be separated jrie
mal and dual algorithms depending on how they ‘move’ towards
an optimal solution. Primal algorithms start with a feasjibut
non-optimal flow and then iteratively improve the optimabif the
flow until the optimality condition (4) is met. Converselya
algorithms start with an optimal, but infeasible solutidrhey it-
eratively improve the feasibility of the solution until tfeasibility
conditions (2) and (3) are met.

3.3 Network simplex algorithm

The network simplex algorithm uses the fundamental observa
tion that if a minimum-cost network flow problem has a solntio
then it has an optimal solution that can be represented anaisy
tree [1]. This is called apanning tree solutianThe basic idea of
the algorithm is that at each step we move from one tree tdhanot
by replacing a tree arc with a non-tree arc, until we find ainogit
spanning tree.

In a spanning tree solution, the flaw; of every ard(, j) notin
the spanning tree is either at its lower bound or at its uppand.

The network simplex algorithm maintains this informatioqléc-
itly, by representing a spanning tree solution as the arpagtion
(T, L,U), whereT is the set of tree arcd, is the set of arcs with
flow z;; = l;; andU is the set of arcs with flow;; = u;.

There are two basic operations defined on the spanning tree,
called primal pivot and dual pivot A primal pivot adds a non-
tree arc to the spanning tree, thus creating a cycle in tiee Few
is then sent through the cycle until some arc on the cyclene=ac
its upper capacity bound andlgockingthe flow. This process is
calledflow augmentationOne of the blocking arcs is then removed
from the tree structure, which eliminates the temporaryeciytthe
tree. In adual pivot we first select the an@, j) that leaves the span-
ning tree. This will divide the set of nodes in two subgeys, N2),
where each subset is reachable from exactly one endjpgiof the
leaving arc, along the spanning tree. We then consider el iar
the cut(N1, N2) and choose the arc with the lowest reduced cost
to enter the tree and repla¢g j). After a primal or dual pivot we
again have a spanning tree.

Even though the standard network simplex algorithm has an ex
ponential worst-case time complexity in theory, it is wiatlewn
that this bound is virtually never encountered in practite.the
contrary; the method is known to be among the most efficieat ne
work flow algorithms in practice [1]. We will apply the primalgo-
rithm to re-optimize the flow after (small) structural chasgwhile
the dual algorithm will be applied to perform sensitivityadysis.

4. NETWORK FLOW CONSTRAINT

As stated before, the purpose of our network flow constraint i
to be as expressive as possible, while being as computhyi@fia
ficient as possible. The constraint definition provided Wwedpeci-
fies which parts of the network flow are specified by variables a
which parts of the network flow are fixed. Syntactically, wéire
our Network Flow Constraint as

NFC(N7 A7 L7 U7 C7 Ln? Un7 C7L7 B7 X? Z? 5)7
where the parameters are defined as follows:

N is the list of nodes: fixed

e Aisthe list of directed arcs: fixed

L is the list of lower capacities for the arcs: fixed

U is the list of upper capacities for the arcs: fixed

e (is the list of unit costs for the arcs: fixed or variable

L™ is the list of lower capacities for the nodes: fixed

U™ is the list of upper capacities for the nodes: fixed

e C"is the list of unit costs for the nodes: fixed or variable

B is the list of mass balances for the nodes: fixed or variable

X is the list of flow values for the arcs: fixed or variable
e 7 is the total weighted flow value: variable

S is the list of tuples providing structural rules onf and
other problem variables

These parameters map directly (by capitalization) to tharpaters
that define the minimum-cost network flow problem in Section 3
We note that a user can define a maximization problem using the
NFC by negating all costs of the network.

For internal representation and solving purposes, however
only actively consider the variables (@, X, Z, S). Namely, we
can transform the network such that variable®iandC™ are rep-
resented by variables of typ€ andC'. For node balance variables
B, we introduce an artificial nodey, and connect this node to all

nodesi in N that have a node balance variable For each
such arc(i, no), the flow variabler; ,, is made equal to the cor-
responding variablé;. The transformation of node cost variables
C™ into arc cost variable§’ was already discussed in Section 3.
We note that these transformations maintain the inferenaepof
the constraint, without affecting its complexity.

All variable typesC', X andZ are assumed to have amervalas
their domain. That s, the propagation algorithm will onlgimtain
and update the lower and upper bound of the domains.

The paramete$ specifies a list obtructural rulesthat are used
to force the flow on an arc to be equal to its upper or lower capac
ity. A structural rule is specified by a tuple, d, a,t), wherew
is a finite domain variable] is a domain (a finite set} is an arc
(4, 7), andt denotes the type of the rule, being either UB (for upper
bound) or LB (for lower bound). An UB rule is defined as

D(v)gd = Tij = Uij,

Tij < Uij = D(U) Nnd=a, (5)
while a LB rule is defined as
D('U) Nd=og = Tij = lij, (6)

xzij >li; = Dw)Nd# 2,
wherez;; € X, l;; € L, andu;; € U. These rules are specifically
designed to map the network flow variabl&sto other problem
variablesv. The following example illustrates the use of structural
rules when modeling theoft-alldifferentconstraint using th&/FC.

Example. Consider the constrairgoft-alldifferen X, z, jidec),
whereX = {z1,...,z,} is a set of variables; is a variable rep-
resenting the total violation cost, and the decompositiased vi-
olation measur@g.. is defined as

/’LdCC(m17“'7I7L) = |{(Z7]) | Ti = Tj, fori <J}|

Atuple(dy,...,dn, d)withd; € D(z;),d € D(z)is a solution to
soft-alldifferent X, z, piaec) if and only if paec(d, . .., dn) < d.

Solutions to thesoft-alldifferent constraint can be represented
by a minimum-cost network flow as follows [7]. We introduce a
node setNx representing the variables i¥, and a node seVp
representing the values in(X). We also introduce a ‘sink’ node
For each variable;; € X and domain valué € D(xz;) we define
an arc(z;, d), as well as an ar@d, t). We refer to the arc set as.
Wheneverd belongs to the domain of two or more variables, we
have created parallel arcs frafrto ¢. We order these parallel arcs
in a fixed but arbitrary way, and define a coest= 7 — 1 to thei-th
arc fromdtot, wherei = 1,2, The arcs fromVx to Np have
cost 0. Each are has a lower capacity, = 0 and upper capacity
uq = 1. We finally associate a node balarice = 1 to each node
x; € Nx, while by —n. An integer minimum-cost flow in the
resulting graph has a one-to-one correspondence with éi@olu
to the soft-alldifferent constraint minimizing the decomposition-
based violation measure, by interpreting the unit flow on an a
(zi,d) as the assignment; = d.

In order to model thesoft-alldifferentconstraint with theNFC,
we need to map the assignments= d to the arcqz;, d), for all
z; € X andd € D(X). We do this by using structural rules, as
follows. For each paifz;,d) we introduce both structural rules
(x4, {d}, (zi,d), UB) and(x;, {d}, (z;,d), LB). Together, these
will ensure that the flow on arge;, d) is exactly 1 whenever;
d, and O otherwise.

The soft-alldifferent constraint can now be modeled using the
NFC using the parameters described above. We remark that the
parameterd.”™, U™ andC™ are void in this case, and thatepre-
sents the total weighted flow variabfein the NFC.

In addition tosoft-alldifferent we can apply theVFC to imple-
ment any existing network flow-based constraint, such asldw
sical (weighted and unweighted)ldifferent and gcc constraints,
but also various other soft global constraints includinggbft-gcc
and thesoft-regularconstraints. We note that the current version of
the NFC requires soft global constraints to have violation measure
that can be expressed as convex costs on the arcs.

5. PROPAGATION ALGORITHM
5.1 Domain Filtering Algorithm

As discussed in Section 4, tié~C applies domain filtering (in
fact, bounds reduction) to the three variable typésX, Z, and
the structural ruless. Domain filtering for the variables i is
performed by establishing domain consistency on the cainssr
that define the rules (5) and (6). We note that domain comsigts
not guaranteed if for a particular ruleandx are the same variable.
We next discuss the domain filtering with respecftaX andC.

Algorithm 1 represents the overall propagation algorithfrthe
NFC. The first goal is to verify that a solution exists, i.e, tha t
constraint isconsistent This is done by computing a minimum-
cost flow, using the network simplex method; see line 2 of Algo
rithm 1. We note that only upon the first propagation evenigllg
at the root of the search tree), we need to run the network sim-
plex algorithm from scratch. After that, the consistenceathis
performed incrementally by re-optimizing the network floaking
into account the changes that have been made to the netwack st
ture. In particular we need to ensure that changes in thedsooh
variablesX, C, and Z still allow a feasible flow, with total cost
at mostZ™**. We note that, when using the network simplex al-
gorithm, the network flow can be re-optimized very quicklyoop
such changes. After (re-)optimization, we can immediatipigate
the lower bound on the total flow value, i.Z™", as shown in
line 4. Note that theNFC only ensures that(x) < Z™*, where
z(x) is the total cost of the flow (see equation (1)). Thus,NieC
prunesZ™™ while other model constraints and search constraints
prunezZ™ax,

If no failure is thrown (line 6) then we perform a consistency
analysis with respect to individual arcs of the networkg1B), in
order to filter the domains of variables i andC'. The algorithm
that analyzes a single arc is presented as Algorithm 2. Faran
(4, 7) the goal of arc analysis is to find the maximum amount of flow
through that arc, with cost at ma&t"**, corresponding ta;;™ or
a:?}i“, depending on the orientation of the arc in the residuallgrap
Observe that in the residual network, the residual loweaciy!; ;
for each ard(i, 5) is 0.

To find the maximum amount of flow through an gicj), we
try to route as much flow fromj to 7 as the remaining capacity of
arc(z, j) allows for it, without using more than the remaining ‘cost
slack’, as defined in line 8 of Algorithm 1. We can do this bytfirs
removing the ard, j) from the graph and then considering the

Algorithm 1 Main propagation

. updateCache()

. { cost, isFeasible ¥— networkSimplex()

L if (isFeasible N cost < Z™?2%)then
Zmin — max(cost,Z"‘i“)

else
throw Failure

end if

costSlack— Z™a* - cost

. arcAnalysis(costSlack)

Algorithm 2 Analyzing a single arc

1: {Input: (arc (4, j), costSlack) }
2: source+ arc.head

3: sink + arc.tail

4: capacity< arc.capacity

5: flow < 0
6
7
8
9

: while (capacity> 0) do

unitCost«— c7;

if (unitCost > 0) then
maxCapacity«— costSlack / unitCost

if (capacity> maxCapacity fhen
11: capacity«— maxCapacity
12: if (capacity= 0) then
13: break
14: end if
15: end if
16: endif
17: {delta, bArc } +— augmentFlow(source, sink, capacity)
18: flow «+ flow + delta
19: capacity< capacity - delta
20: costSlack— costSlack - unitCost * delta
21: if (capacity= 0Vv!dualPivot(bArc))then
22: break
23: endif
24: end while
25: if (flow < arc.capacity}then

26: amount« arc.capacity - flow
27. if (arc.isForwardthen

28: TP 2 — amount
29: else '

30: :v?]““ — :v?]““ + amount
31: endif

32: end if

problem of sending:;; units of flow from a sourcej{ to a sink ¢),
whereu;; represents the residual capacity(@fj). This is done in
several iterations. At each iteration we send one or morts i
flow from j to 7, by augmenting the flow along thei path in the
spanning tree (there is exactly one path frgno 7), i.e., here we
apply primal pivot operations. We try to send the maximum amo
of flow possible (line 17 of Algorithm 2) and by doing so we will
either reach the capacity limit of the original &ig j) or create a
blocking arc(called ‘bArc’) on the augmenting path. A blocking

arc prevents us from sending more flow and has to be replaced by

another arc with non-zero residual capacity. This is dona tyal
pivot operation (line 21). This operation returns falsedfsuch arc
exists. If this is the case, then the current computed flomffdo

1 is maximal and we exit the loop.

Another termination condition is when the flow becomes too
costly. The cost of sending one more unit of flow is equal to the
reduced cost of the arej;). Note that sending flow along the
spanning tree has always costSince we started from an optimal
solution,c7; is non-negative and it will increase at each iteration as
the spanning tree changes. This exposes the (convex) noguse
of the arc, which we use for cost-based pruning by compatita i
the cost slack.

We can prune the domain af; € X whenever the maximum
flow that can be sent fromto i is less than the arc capacity (line
25). Depending on the orientation (forward/backward) @ &nc
either the upper or lower bound of; is narrowed. For the vari-
ables inC', we apply a more passive filtering algorithm. First, ob-
serve that theVFC can never increasé™™ for ¢ € C, but it may
decrease™®*. We decrease™** whenever we can determine that
the flow requirements oft, j) makec™** inconsistent, that is, we
apply the condition}** < ¢}*" + costSlack /z ;"™

The correctness of Algorithm 2 follows from standard networ

flow theory [1]. In fact, lines 6-7, 17-19, 21-24 implementald
network simplex algorithm, while lines 8-16, 20 implemené t
cost-based pruning procedure.

5.2 Efficiency and Improvements

Performing an analysis for all arcs in the network would bitgequ
expensive, most importantly because in many cases it magenot
sult in any domain filtering. Therefore, we only considerstarcs
that seem most promising to yield actual pruning of the \deido-
mains. To this end, we employ a scoring heuristic to choosetwh
arcs should be analyzed. Each arc is assigned a score tleatesl
how likely we are able to do successful pruning based on titat a
Here, successful pruning means that we have pruned the darhai
one of the variables associated to that arc. During our |gajxn
algorithm we only consider the top% of arcs with the highest
scores, for some percentage

Our dynamically updated scoring heuristic is based on cbiig
the history of an arc with respect to pruning. That is, if an arc
yielded successful pruning, its score is increased. If anwars
analyzed but no associated variable domain could be prihed,
the score is decreased. We will see that the experiment®gipp
assumption that the history of pruning is a relevant indicaf the
pruning potential for the remaining part of the search.

For nodes that are connected to only 1 or 2 arcs we can achieve
stronger pruning than Algorithm 2. If node € N has degree 1
then there is only one possible flow assignment for the are con
nected to that node. Depending on the direction of the arcewe s
the correspondingd(-variable to+b; or —b;, whereb; denotes the
balance ofn,. In effect, the flow on the arc is then fixed, and it
can be removed from the network. Next, consider the sitnatfa
noden; with degree 2. Letr; andz- be the flow variables of the
two arcs connected to that node. The relation betweeand z-
can be expressed as

di-x1 =d2-x2+ b

whered; € {—1,1}, ¢« = 1,2, depending on the direction of the
arcs. We perform a standard domain consistency propagaition
rithm for these binary constraints.

5.3 Implementation Details

We next discuss the most important data structures of tre alg
rithm, as well as implementation details concerning efficie and
state restoration upon backtracking.

Residual Network. We store the network in the form of a residual
network. Recall that the residual network defines two sestes for
each arqi, j) € A. In effect, we do not need to treat forward and
residual (backward) arcs differently. In our implemergatisister
arcs have pointers to each other. For efficiency we allonduedi
arcs to have upper capacity @fso that we do not have to allocate
or de-allocate arcs when the flow is redistributed.

Spanning Tree. In order to maintain the spanning tree solution
of the network simplex algorithm, we apply the parent-tdreapth
(PTD) representation [1]. The PTD representation allovesqrder
traversal inO(1) memory because it stores the pre-order explicitly
using pointers. Recall that the network simplex algoritrquires
access to three sets of ar¢s, L, U). Our spanning tree already
contains the tree ar@s, while we store the set of arcs at their lower
bound () in a global list of arcs. The list of arcs at their upper
bound) does not need to be maintained explicitly, since each arc
in U is a sister arc of an arc ih.

We also utilize the information iil", L, U') during the arc anal-
ysis. Namely, arcgi, j) in L have a supporting flow fori‘;i“,

while arcs(i, j) in U have a supporting flow fat;;**. Therefore,

for these arcs the consistency of one bound comes for freleyan
only perform the arc analysis for the other direction. Meero
some arcs il may be at their lower or upper bound, which again
saves the check for one bound.

Caching. Often, certain parts of the flow are fixed and we could
use an integer constant instead of singleton variables.eMerr,

an efficient approach also takes advantage of the fact thiables
change relatively rarely when compared to how often theitest
is being read. Therefore, the cached residual graph raypetsm

is only being updated if values aff}™, 2}3** andcj™ change.
Caching has a number of advantages and one disadvantasteifFir
we do not cache, recomputing flow bounds of arcs in residwagigr
with the help ofmin() andmaz() functions is expensive when
compared to one memory access. Caching results in a large per
formance boost since flow bounds access operations aramperdo
extremely often in our algorithm. Moreover, for singlet@riables

the domain does no longer change, and we do not need to update

the cache. However, one disadvantage is that the cache must b
maintained (procedurepdateCache() in line 1 of Algorithm 1).

Backtracking. Upon backtracking, th&/FC must restore its data
to make it consistent with the search state. In order to doefii-
ciently and with little memory, we only remember the set ofdno
ified or deleted arcs at each search level. Their state canbibe
restored by refreshing the cached values with the stateeafdtre-
sponding search variables. Note that we can reuse the ttloen
the current node potentials (reduced costs) and the cuapanhning
tree along with the associated arc $@tsL, U). On backtracking,
we only need to re-establish the invariants of the spanmaggo-
lution when it restores the previous state. This will reguait most a
few pivot operations on the tree. As backtracking can onbktrdg
the optimality of the flow, but not its feasibility, we normhalvould
apply the primal algorithm to re-optimize the flow. Howewsnce
consistency also uses the primal algorithm we can simplgrdae
re-optimization until then and save execution time.

6. EXPERIMENTAL RESULTS

#Arcs % Arcs #Nodes # Wrong Time (s)
considered pruned decisions
Primitive - - 333,147 162,014 4.0
NFC 0 - 118,371 54,626 9.12
NFC 1 258 23,395 7,138 2.29
NFC 2 10.7 13,679 2,280 1.82
NFC 3 10.6 11,233 1,057 1.81
NFC 4 9.1 9,907 394 1.89
NFC 5 8.2 9,327 104 1.9
NFC 6 7.5 9,239 60 2.1
NFC 7 6.5 9,195 38 2.13
NFC 8 5.9 9,143 12 2.15
NFC 9 5.7 9,141 11 2.19
NFC 10 5.4 9,137 9 2.2
NFC 11 5.2 9,125 3 2.28
NFC 12 5.1 9,123 2 2.29
NFC 13 5.0 9,121 1 2.32
NFC 14 5.0 9,121 1 2.34
NFC 29 4.8 9,119 0 2.4

Table 1: The NFC applied to a soft-alldifferent problem with

a sparse solution space of only 9,120 solutions. The parameters
are N = 19, MaxL = 4 and MaxC = 3; the network has 38 nodes
and 390 arcs. We search for all solutions. Th&/FC is config-
ured to only prune a small number of arcs per search node.

X are defined as follows. Letndom(m) be a function that pro-
duces a random number uniformly chosen from the intgivah).
For each variable;;, we generatéen; = random(MaxL — 1) and
min; = random(n — len;). We then defineD(z;) = [min;,
(min; + len;)]. Note that the size oD(x;) is len; + 1 and
lies between 2 anWaxL. We consider various problem variants to
these instances: finding all solutions, proving unsatigfigtfthat
is, there exists no assignment f&irsuch that < MaxC, and find-
ing a minimum-cost solution.

We first investigate the performance of our arc scoring Ilséiari
Recall that at each propagation event we only perform artyana

The main purpose of our experiments is to assess the computa-sis on a subset of the arcs in the network, having the largese s

tional efficiency of various aspects of th&#C, including the over-
all efficiency and the performance of the arc selection Iséariln
addition, we compare the computational efficiency of NEC to
decomposed models in which only primitive constraints aedy
to evaluate the potential gain in performance when usingwark
flow-based global constraint.

6.1 Soft All-Different

Ouir first experiments are performed on problems that coosist
a single decomposition-basadft-alldifferentconstraint (as in the
example of Section 4). The reason for using a sirsgié-alldiff-
erentconstraint is that domain consistency can be established in
polynomial time for this constraint, which allows us to exate
the quality of the arc scoring heuristic. Namely, we caneéase
the number of arcs to include until we effectively approaomein
consistency.

We represent this problem using th&=C, and with a decom-
posed model using primitive constraints. The decompaskigso-
ciates a Boolean variablg; to each equality constraint; = x;,
yielding the reified constrairty; < (z; = z;), foralli < j. The
total violation is expressed as= 3, _; ti;.

Tables 1 and 2 show the results on problems with different-cha
acteristics. The first problem has a sparse solution spaocealgf
9,120 solutions, while the second problem is much less cainsd

and allows 54,996 solutions. In both tables, we find all sohs to

the problem. In these tables, we report the performance=dffiC
when the number of arcs considered is increased. Here (% Arcs
pruned’) refers to the average success ratio of pruning, hav
often arc analysis leads to actual pruning, given by

of arcs pruned

0, — PRl i
% of arcs pruned ~ #ofarcs examined

We can observe that the number of wrong decisions is roughly d
vided by 2 for every additional arc that we attempt to prumer-
estingly, the results show that when only 29 (Table 1), rethgedy
14 (Table 2), arcs are considered during each filtering efedrtiut
7.4%, resp. 6.0%, of the total number of arcs), the corredpon
ing pruning is sufficient to make no wrong decisions duringrsie
(similar to what domain consistency would achieve). Thiggasts
that our scoring heuristic is performing quite well.

These tables also illustrate the impact of solution densiigt
can be adjusted with the parameiaxC. When the solution space
is smaller (Table 1), th&/FC has more pruning opportunities, and

We created random problem instances based on three parameean outperform the decomposition using primitive constseaiHow-

ters, N, MaxL (for maximum length), andMaxC (for maximum
cost). They define the constrasuft-alldifferen{ X, z, ji4ec) Where
|X| = N andD(z) = [0, Maxd. The domains of the variables in

ever, when the solution space is larger (Table 2), the awiditi
pruning may not lead to a reduced computation time when only
a single constraint is considered.

#Arcs % Arcs #Wrong Time (s)
considered pruned decisions
Primitive - - 32,932 1.3
NFC 0 - 63,592 6.9
NFC 1 19.4 26,838 7.4
NFC 2 13.6 16,146 8.0
NFC 3 12.2 8,818 8.2
NFC 4 11.2 4,137 8.1
NFC 5 10.6 1,934 8.5
NFC 6 9.9 718 8.9
NFC 7 9.3 384 8.9
NFC 8 9.1 199 9.0
NFC 9 8.7 45 9.5
NFC 10 8.3 30 9.3
NFC 11 8.3 10 9.4
NFC 12 8.1 4 9.5
NFC 13 8.0 7 9.6
NFC 14 8.0 0 9.6

Table 2: The NFC applied to a soft-alldifferent problem with a
dense solution space with 54,996 solutions. The parameters are
N =15, MaxL = 4 and MaxC= 5; the network has 29 nodes and
232 arcs. We search for all solutions.

N MaxL MaxC # Nodes #Wrong Time (s)

Decisions
NFC 17 4 2 0 0 0.023
Primitive 17 4 2 8951 4476 0.164
NFC 20 7 3 0 0 0.04
Primitive 20 7 3 840,011 420,006 8.34
NFC 24 4 6 0 0 0.024
Primitive 24 4 6 >4,372,355>2,186,170 >60

Table 3: Unsatisfiable instances oboft-alldifferent. The NFC
fails immediately without search. Primitive constraints ime
out on the last instance.

In order to further investigate the power of th&=C, we next
consider unsatisfiable problem instances, for whidaxC is too
low to allow any solution. These instances expose an impbrta
difference between thWFC and the decomposition: tHéFC can
immediately deduce that an instance is unsatisfiable, vghiiei-
tive constraints cannot, as illustrated in Table 3. All émstes in
this table are unsatisfiable. TIN~C fails immediately at the first
node, whereas primitive constraints need to explore a laegeto
prove that the instance is unsatisfiable.

Finally, we compare th&/FC and the decomposition on the op-
timization variant of this problem, in which we want to finda s
lution with minimum total violation cost. The optimization the
search is achieved by decreasing the upper bound of the aost v
able every time a solution is found. The search stops whenare m
solutions can be found. As there may be many suboptimalggife
ble) search nodes, it is expected that NMEC performs better than
the decomposition into primitive constraints, based onrésailts
in Table 3. The performance of the different models is presken
in Table 4. The reported instances in this table all have adtle
one feasible solution. Observe that the primitive constsaindeed
perform poorly in this case. They are not aware of the optmiz
tion goal, and the upper limit on the cost has little direciience
on the propagation. The performanceNfC is remarkable, as al-
ready for small problema/FC uses four orders of magnitude less
search nodes than the decomposition.

N MaxL Cost #Nodes Time (s)
NFC 17 5 1 42 0.154
Primitve 17 5 1 896,655 10.4
NFC 20 5 1 44 0.155
Primitve 20 5 (2) 1,569,962 > 30
NFC 50 5 4 239 2.4
Primitive 50 5 (10) 1,270,823 > 30
NFC 70 5 8 605 11.4
Primitive 70 5 (25) 647,708 > 30
NFC 17 10 0 88 0.154
Primitve 17 10 0 55,068 0.685
NFC 20 10 3 64 0.155
Primitve 20 10 (4) 2,175,059 > 30
NFC 50 10 8 285 4.8
Primitve 50 10 (18) 947,174 > 30
NFC 70 10 8 723 21.5
Primitve 70 10 (32) 382,176 > 30

Table 4: Finding an optimal solution for soft-alldifferent. Prim-
itive constraints time out for the network with 20 or more vari-
ables. A cost in parenthesis is the minimal cost that was fouh
before timeout.

6.2 Personnel Scheduling

The next set of experiments is performed on a personnel athed
ing problem introduced in [3]. In this problem, we need toigiss
8-hour shifts to telephone operators. A day is divided inp@Bods
of 4 hours. Each period has a minimum requirement on the num-
ber of operators. We assume that operators work for a cotgecu
period of 8 hours and that they can start to work at the begnni
of any of the 6 periods. The objective is to minimize the nundfe
shifts while respecting the minimum requirements for eastiogl.

The personnel scheduling problem has been used by [3] to test
the implementation of their network flow constraint. Untovately,
they only publish their model but not their benchmarkingutess
We will still use the same data set that they proposed: themoim
requirement of working operators per each shift 26, 52, 86,
120, 75, 35. This problem can be modeled using a simple network
with 6 nodes and 12 arcs. Nodes correspond to the beginniag of
time period. There are two types of aregorking arcsgoing from
t tot + 4 hours andree arcslasting from¢ to ¢ + 16 hours (both
modulo 24 hours). Working arcs have a cost of one per unit of
flow and a lower capacity equal to minimum requirements fat th
period. Free arcs have no cost and a lower capacity of zero.

For this problem, the decomposed model consists of theididiv
ual constraints (2) and (3) that constitute the network flogbfem
of Section 3. In our experiments we let both approachesNth€
and the primitive model, find all solutions up to a given casiid.

We measure the time and the number of search nodes for each exe
cutions. The results, shown in Table 5 show that\feC makes no
wrong decisions. Interestingly, there is virtually no dwead in us-

ing the NFC over the primitive model. Both process nodes at about
the same rate. Together, thNg-C is faster by 11x (cost 425) to 19x
(cost 455) when compared to the model using primitive cainss.

6.3 Random Shift Scheduling Networks

The NFC was designed to be very expressive, but it is difficult
to find benchmark problems that use all properties of ourtcains
simultaneously. Therefore, in this last set of experimemésapply
random networks to evaluate all th&C features simultaneously.
We compare théVFC against a decomposed model that applies
global sum and weighted global sum constraints that constihe

Maximal # Solutions # Search Time (s) # Nodes/s

cost Nodes
NFC 415 231 230 0.13 1.77
Primitive 415 231 5,650 0.47 12.0
NFC 425 6,496 6,495 0.57 11.4
Primitive 425 6,496 75,607 6.23 12.1
NFC 435 26,411 26,410 1.92 13.8
Primitive 435 26,411 351,198 27.8 12.8
NFC 445 68,460 68,459 4.68 14.6
Primitive 445 68,460 1,112,925 76.7 145
NFC 455 141,960 141,959 9.0 15.8
Primitive 455 141,960 2,784,763 171 16.3

Table 5: Finding all operator schedules up to a given cost. Té
NFC mimics domain consistency (no wrong decisions) on all
cases, while processing nodes at the same rate as primitivenc
straints.

Arcs # Solutions # Search #Wrong Time
Nodes Decisions (S)
NFC 18 4,712 48,035 21,662 0.29
Primitive 18 4,712 51,067 23,178 5.57
NFC 20 621 9,288 4,334 0.19
Primitive 20 621 44,068 21,724 9.67
NFC 30 4,587 34,882 15,148 0.28
Primitive 30 4,587 52,638 24,026 10.1
NFC 40 35,123 478,662 221,770 4.14
Primitive 40 0) 265,469 132,730>120

Table 6: Finding all solutions of randomly generated shift
scheduling problems.

network flow problem.

The random networks have a cyclical structure similar tqore
sonnel scheduling problem in the previous section, but witne
shifts, and with variable arc costs. Each node has an are toetkt
node in the cycle and to two nodes earlier in the cycle. Our in-
stances withm arcs containn /2 shifts (each shift is represented
by a node). Each ar(, j) has associated variables; € X and
cij € C. For both variable types, the domains are generated ran-
domly as an interval betweemin and max Hereminis a num-
ber produced byandom (10) — 1, yielding the rangg0, 9], while
maxis equal ta21 — random (10) yielding the rangé11, 20]. Re-
call thatrandom(m) produces a random number uniformly chosen
from the interval1, m].

Table 6 shows the results that we obtained for instancesh8ith
20, 30, and 40 arcs. Observe that tNEC is performing more
pruning, resulting in fewer search nodes, than the decoitipros
More importantly, however, th&/FC is at least one order of mag-
nitude faster already for small problems. Realizing thatglobal
sum constraints of the decomposed model are already optimiz
the difference in efficiency is even more striking. Appatgrthe
decomposition not only loses the network structure, busa pays
a computational price in the overhead of maintaining a lage-
ber of smaller constraints.

7. CONCLUSIONS

We have introduced a generic network flow constraint that can
be applied to model ad-hoc global constraints for netwobpr
lems as well as existing global constraints that utilize ec#jr
network flow representation, in particular soft global dosists.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

We have shown how the efficient network simplex algorithm can
be embedded inside the domain filtering filtering associatithl
this network flow constraint. We have evaluated the perfocaa
of our network flow constraint, and demonstrated its efficyamith
respect to corresponding decomposed models, on threeaipti
areas: soft global constraints, realistic network flow peois (per-
sonnel scheduling), and randomly generated shift schegipliob-
lems exhibiting all features modeled by our constraint. &peri-
ments indicate that the network flow constraint can achipeed-
ups of orders of magnitude compared to a corresponding dezom
sition into primitive constraints.

8. REFERENCES

[1] R. Ahuja, T. Magnanti, and J. OrlitNetwork Flows -
Theory, Algorithms and ApplicationBrentice-Hall, 1993.
T. Benoist, E. Gaudin, and B. Rottembourg. Constraint
Programming Contribution to Benders Decomposition: A
Case Study. IfProceedings of CPvolume 2470 oL NCS
pages 603-617. Springer, 2002.

A. Bockmayr, N. Pisaruk, and A. Aggoun. Network Flow
Problems in Constraint Programming.Rnoceedings of CP
volume 2239 oLNCS pages 196-210. Springer, 2001.

E. Gaudin, N. Jussien, and G. Rochart. Implementing
explained global constraints. Proceedings of the CP’04

Workshop on Constraint Propagation and Implementation
pages 61-76, 2004.

W.-J. van Hoeve. Over-Constrained Problems. In
P. Van Hentenryck and M. Milano, editotdybrid
Optimization: the 10 years of CPAIQBhapter 6. Springer,
2010.

W.-J. van Hoeve and I. Katriel. Global constraints. InsBio
et al. [14], chapter 6.

W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global
warming: Flow-based soft global constrainteurnal of
Heuristics 12(4):347-373, 2006.

Java Constraint Programing (JaCoP) solver.
http://jacop.osolpro.com.

I. Razgon, B. O’Sullivan, and G. Provan. Generalizing
Global Constraints Based on Network FlowsRacent
Advances in Constraintsolume 5129 oL NCS pages
127-141. Springer, 2008.

J.-C. Régin. A Filtering Algorithm for Constraints of
Difference in CSPs. IProceedings of AAAlolume 1,
pages 362-367. AAAI Press, 1994.

J.-C. Régin. Generalized Arc Consistency for Global
Cardinality Constraint. IfProceedings of AAAI/IAAI

volume 1, pages 209-215. AAAI Press/The MIT Press, 1996.
J.-C. Régin. Cost-Based Arc Consistency for Global
Cardinality ConstraintsConstraints 7(3-4):387-405, 2002.

J.-C. Régin. Global Constraints and Filtering Algbnis. In
M. Milano, editor,Constraint and Integer Programming -

Toward a Unified Methodologyghapter 4. Kluwer Academic
Publishers, 2003.

F. Rossi, P. van Beek, and T. Walsh, editétandbook of

Constraint ProgrammingElsevier, 2006.

K. Shen and J. Schimpf. Eplex: Harnessing Mathematical

Programming Solvers for Constraint Logic Programming. In

Proceedings of CRvolume 3709 oL NCS pages 622—-636.

Springer, 2005.

H. Simonis. Constraint applications in networks. InsRio

et al. [14], chapter 25.

(2]

(3]

(4]

(5]

(6]
(7]

(8]
(9]

