
The alldifferent Constraint: A Survey

W.J. van Hoeve

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
wjvh@cwi.nl

http://www.cwi.nl/~wjvh

Abstract. The constraint of difference is known to the constraint pro-
gramming community since Lauriere introduced Alice [11] in 1978. Since
then, several solving strategies have been designed for this constraint. In
this paper we give both a practical overview and an abstract comparison
of these different strategies.

1 Introduction

Many problems from combinatorial optimization can be modeled and solved us-
ing techniques from Constraint Programming [14, 22]. One of the constraints that
arises naturally in these models is the alldifferent constraint, which states
that all variables in this constraint must be pairwise different. In Example 1, a
scheduling problem is modeled using the alldifferent constraint.

Example 1 (Scheduling of speeches). Consider the following simple scheduling
problem, adapted from Puget [17], where a set of speeches must be scheduled
during one day. Each speech lasts exactly one hour (including questions and
a coffee break), and only one conference room is available. Furthermore, each
speaker has other commitments, and is available only for a limited fraction of
the day. A particular instance of this problem is given in Table 1, where the
fractions are defined by an earliest and latest possible time slot. This problem

Table 1. Time slots for the speakers

Speaker Earliest Latest

Sebastian 3 6
Frédéric 3 4
Jan-Georg 2 5
Krzysztof 2 4
Maarten 3 4
Luca 1 6

can be modeled as follows. We create one variable per speaker, whose value
will be the period of his speech. The initial domains of the variables will be the

available time intervals as stated in Table 1. Since two speeches cannot be held at
the same time in the same conference room, the period for two different speakers
must be different. The constraints for this scheduling problem thus become:

x1 ∈ [3, 6], x2 ∈ [3, 4], x3 ∈ [2, 5],
x4 ∈ [2, 4], x5 ∈ [3, 4], x6 ∈ [1, 6],

alldifferent(x1, x2, x3, x4, x5, x6).

To find a solution to a model as in the previous example, a constraint solver
essentially builds a search tree from all possible variable values. In general, find-
ing a solution for such problems is NP-complete, and this search tree can grow
extremely large. Therefore, strategies have been developed to prune parts of the
search tree. In Constraint Programming, these strategies mainly consist of the
simplification of the problem during the search for a solution. The techniques
that are most widely applied are so-called consistency techniques that can reduce
the domains of the variables, based on the constraints between them. Therefore,
algorithms that achieve some state of consistency are also called filtering algo-
rithms.

This paper deals with consistency techniques or filtering algorithms that can
be deduced from the alldifferent constraint. It turns out that there exist
different degrees of consistency, each degree allowing more or less values in the
variable domain. In general it takes more time to obtain a stronger consistency
than to obtain a weaker consistency. So with more effort, one could remove
more values. Therefore, for each individual problem one has to make a trade-
off between the effort (time) and the gain (domain shrinking) when choosing a
particular consistency to achieve.

1.1 Overview

The different degrees of consistency will be defined in Section 2, together with
some more preliminaries. Then each of the Sections 3 up to 6 will treat one
consistency technique. These sections are ordered in increasing strongness of the
considered consistency. The treatment consists of a description of the particular
consistency with respect to the alldifferent constraint, together with an algo-
rithm that achieves this consistency. Finally, a conclusion is given in Section 7.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined as a finite set of variablesX =
{x1, . . . , xn}, with domains D = {D1, . . . , Dn} associated with them, together
with a finite set of constraints C, each on a subset of X . A CSP P will also be
denoted as P = (X ,D, C). A constraint C ∈ C is defined as a subset of the
Cartesian product of the domains of the variables that are in C. For instance,
C(x1, x3, x4) ⊆ D1 × D3 × D4. An n-uple (d1, . . . , dn) ∈ D1 × · · · × Dn is a
solution to a CSP if for every constraint C ∈ C on the variables xi1 , . . . , xim

we have (di1 , . . . , dim
) ∈ C. For finite, linearly ordered domains Di, we define

min Di and maxDi to be the minimum value and the maximum value of the
domain Di.

We now introduce four notions of local consistency in the order they will
be discussed in the text. Note the use of braces ({, }) and brackets ([,]) that
indicate a set and an interval of domain values respectively.

Definition 1 (Arc consistency). A binary constraint C(x1, x2) where D1 and
D2 are non-empty, is called arc consistent iff ∀d1 ∈ D1 ∃d2 ∈ D2 such that
(d1, d2) ∈ C, and ∀d2 ∈ D2 ∃d1 ∈ D1 such that (d1, d2) ∈ C.

Definition 2 (Bound consistency). An m-ary constraint C(x1, . . . , xm) where
no domain Di is empty, is called bound consistent iff for each variable xi:
∀di ∈ {min Di, maxDi}, ∀j ∈ {1, . . . , m} − {i}, ∃dj ∈ [min Dj , maxDj] such
that (d1, . . . , dm) ∈ C.

Definition 3 (Range consistency). An m-ary constraint C(x1, . . . , xm) where
no domain Di is empty, is called range consistent iff for each variable xi: ∀di ∈
Di, ∀j ∈ {1, . . . , m} − {i}, ∃dj ∈ [min Dj , maxDj] such that (d1, . . . , dm) ∈ C.

Definition 4 (Hyper-arc consistency). An m-ary constraint C(x1, . . . , xm)
where no domain Di is empty, is called hyper-arc consistent iff for each variable
xi: ∀di ∈ Di, ∀j ∈ {1, . . . , m} − {i}, ∃dj ∈ Dj such that (d1, . . . , dm) ∈ C.

In other words, both arc consistency and hyper-arc consistency check whether
any value in every domain does belong to a feasible instance of the constraint,
based on the domains. Range consistency however, does not check the feasibility
of the constraint with respect to the domains, but with respect to intervals that
include the domains. It can be regarded as a relaxation of hyper-arc consistency.
Bound consistency can be regarded as a relaxation of range consistency. It does
not even check all values in the domains, but only the minimum and the max-
imum value, while still verifying the constraint with respect to intervals that
include the domains. This is formalized in Proposition 1.

Definition 5 (Consistent CSP). A CSP is arc consistent if all its binary
constraints are. A CSP is range consistent, respectively, bound consistent or
hyper-arc consistent if all its constraints are.

Consider a CSP P . If we apply to P an algorithm that achieves range con-
sistency on P , we will denote the result as ΦR(P). Analogously, ΦB(P), ΦA(P)
and ΦHA(P) denote the achievement of bound consistency, arc consistency and
hyper-arc consistency on P respectively. Let P∅ denote a failed CSP, i.e. a CSP
with at least one empty domain. We define a CSP P = (X ,D, C) smaller than
a CSP P ′ = (X ′,D′, C′) if D ⊆ D′. This relation is written as P � P ′. A CSP
P is strictly smaller than a CSP P ′, i.e. P ≺ P ′, when D ⊆ D′ and Di ⊂ D′

i for
at least one i. When both P � P ′ and P ′ � P we write P ≡ P ′. By convention,
P∅ is the smallest CSP. This notation is adopted from [3].

Proposition 1. ΦHA(P) � ΦR(P) � ΦB(P).

Proof. Both hyper-arc consistency and range consistency verify all values of
all domains. But hyper-arc consistency verifies the constraints with respect to
the exact domains Di, while range consistency verifies the constraints with
respect to intervals that include the domains: [min Di, maxDi]. A constraint
that holds on a domain Di also holds on the interval [min Di, maxDi] since
Di ⊆ [min Di, maxDi]. The converse is not true, see Example 2. Hence ΦR(P) �
ΦHA(P).

Both range consistency and bound consistency verify the constraints with
respect to intervals that include the domains. But bound consistency only con-
siders min Di and maxDi for a domain Di, while range consistency considers all
values in Di. Since {min Di, max Di} ⊆ Di, ΦB(P) � ΦR(P). Example 2 shows
that ΦB(P) ≺ ΦR(P) cannot be discarded.

The following examples clarify Proposition 1.

Example 2 (Comparing consistencies). Consider the following CSP:

P =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 2, 3},
alldifferent(x1, x2, x3).

Then ΦB(P) ≡ P , while

ΦR(P) =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3).

and ΦHA(P) ≡ ΦR(P). Next, consider the CSP

P ′ =

{

x1 ∈ {1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3).

This CSP is obviously inconsistent, since there are only two values available,
namely 1 and 3, for three variables that must be pairwise different. ΦHA(P ′)
will detect this inconsistency, while ΦR(P ′) ≡ P ′.

A useful theorem to derive algorithms that ensure consistency for the all-

different constraint is Hall’s Theorem [9]. The following formulation is stated
in terms of the alldifferent constraint. The cardinality of a set K is denoted
by |K|.

Theorem 1 (Hall). The constraint alldifferent(x1, . . . , xn) on the variables
x1, . . . , xn with respective domains D1, . . . , Dn has a solution if and only if no
subset K ⊆ {x1, . . . , xn} exists such that |K| > | ∪xi∈K Di|.

As an application of Theorem 1, let us return to the CSP P ′ in Example 2. Take
as subset K = {x1, x2, x3}, then |K| = 3. Furthermore, |∪xi∈KDi| = |{1, 3}| = 2.
For this subset K, Hall’s condition does not hold (3 > 2), hence this CSP has
no solution.

3 Local Consistency of a Decomposed CSP

The standard filtering algorithm for the alldifferent constraint is as follows.
Whenever the domain of a variable contains only one value, remove this value
from the domains of the other variables that occur in the alldifferent con-
straint. This procedure is repeated as long as possible. Although this algorithm
might seem rather poor or naive, it has been successfully implemented in many
constraint solvers, for instance in the system Chip [22].

This filtering algorithm can also be described as follows. A common way to
rewrite the alldifferent constraint is to generate a sequence of disequalities.
For instance

alldifferent(x1, x2, x3, x4) →
{

x1 6= x2, x1 6= x3, x1 6= x4,
x2 6= x3, x2 6= x4, x3 6= x4.

If we apply an algorithm that achieves arc consistency on this set of binary con-
straints, we obtain the same filtering as described above. One of the drawbacks
of this method is the quadratic increase of the number of constraints. One needs
(

n
2

)

= 1
2 (n2 −n) disequalities to express an n-ary alldifferent constraint. But

an even more important drawback is the loss of information. When this set of
binary constraints is being made arc consistent, only two variables are compared
at a time. However, when the alldifferent constraint is being made hyper-arc
consistent, all variables are considered at the same time, which gives a much
stronger consistency. This is shown in Proposition 2. Let Pdec denote the decom-
posed CSP P in which all alldifferent constraints have been replaced by a
sequence of disequalities.

Proposition 2. ΦHA(P) � ΦA(Pdec).

Proof. Since the definition of arc consistency and hyper-arc consistency is equiv-
alent for binary constraints, we only need to consider the filtering of the all-

different constraint. Consider the constraint C: alldifferent(x1, . . . , xn) and
the corresponding decomposition in terms of disequalities, denoted by Cdec. If a
value di ∈ Di is not arc consistent w.r.t. the set Cdec, then it is also not hyper-arc
consistent w.r.t. C. Indeed, when di is not arc consistent w.r.t. Cdec, then we
cannot find a dj ∈ Dj for some variable xj such that xi 6= xj . But then we also
cannot find an n-uple (d1, . . . , xn) ∈ C, since we cannot find a value dj ∈ Dj

such that di 6= dj . Therefore, ΦHA(P) � ΦA(Pdec). The converse is not true, as
illustrated in Example 3.

Example 3 (Hyper-arc and arc consistency compared). For some integer n ≥ 3,
consider the CSP’s

P =

{

x1 ∈ {1, . . . , n − 1}, . . . , xn−1 ∈ {1, . . . , n − 1}, xn ∈ {1, . . . , n},
alldifferent(x1, . . . , xn)

Pdec =

{

x1 ∈ {1, . . . , n − 1}, . . . , xn−1 ∈ {1, . . . , n − 1}, xn ∈ {1, . . . , n},
x1 6= x2, . . . , xn−1 6= xn.

Now ΦA(Pdec) ≡ Pdec, while

ΦHA(P) =

{

x1 ∈ {1, . . . , n − 1}, . . . , xn−1 ∈ {1, . . . , n − 1}, xn ∈ {n},
alldifferent(x1, . . . , xn).

Our next goal is to find a consistency notion for the set of disequalities that is
equivalent to the hyper-arc consistency notion for the alldifferent constraint.
Relational consistency can be used for this.

Definition 6 (Relational (1, m) consistency, [6]). A set of constraints S =
{C1, . . . , Cm} is relationally (1, m)-consistent iff all domain values d ∈ Di of
variables appearing in S, appear in a solution to the m constraints, evaluated
simultaneously. A CSP P = (X ,D, C) is relationally (1, m)-consistent iff every
set of m constraints S ⊆ C is relationally (1, m)-consistent.

Note that arc consistency is equivalent to (1, 1)-consistency.
Again, let P be the CSP that consists only of the alldifferent constraint

and a corresponding set of variables and domains.

Proposition 3. ΦHA(P) ≡ ΦR(1, 1

2
(n2−n))C(Pdec).

Proof. By construction we have that the alldifferent constraint is equivalent
to the simultaneous consideration of the sequence of corresponding disequalities.
The number of disequalities is precisely 1

2 (n2−n). If we consider only 1
2 (n2−n)−i

disequalities simultaneously (1 ≤ i ≤ 1
2 (n2 − n) − 1), there are i unconstrained

relations between variables, and the corresponding variables could take the same
value when a certain instantiation is considered. Therefore, we really need to take
all 1

2 (n2 − n) constraints into consideration, which corresponds to the relational
(1, 1

2 (n2 − n))-consistency.

As suggested before, the pruning performance of ΦA(Pdec) is rather poor.
Moreover, the complexity is relatively high, namely around O(n2), whereas the
hyper-arc consistency algorithms are around O(dn1.5), where d is the maximum
cardinality of the domains and n is the number of variables involved [12, 18].
Nevertheless, this filtering algorithm applies quite well to several problems, such
as the n-queens problem (n < 200) [12, 17].

Other work on the comparison of the alldifferent constraints and the
corresponding decomposition has for instance been done in [20] and [8].

4 Bound Consistency

The notion of bound consistency for the alldifferent constraint was intro-
duced by Puget [17]. We summarize his method in this section. Puget uses Hall’s
Theorem to construct an algorithm that achieves bound consistency.

Definition 7 (Hall interval). Given an interval I, let KI be the set of vari-
ables xi such that Di ⊆ I. We say that I is a Hall interval iff |I | = |KI |.

Proposition 4 (Puget [17]). The constraint alldifferent(x1, . . . , xn) where
no domain Di is empty, is bound consistent iff

– for each interval I: |KI | ≤ |I |,
– for each Hall interval I: {minDi, maxDi} ∩ I = ∅ for all xi /∈ KI .

Proposition 4 can be used to construct an algorithm that achieves bound
consistency on the alldifferent constraint. Indeed, we could check every in-
terval I with bounds ranging from the minimum of all domains to the max-
imum of all domains. When |I | ≤ |KI |, we know that the constraint is in-
consistent. And for each Hall interval, we remove all min Di and max Di until
{min Di, maxDi} ∩ I = ∅. Puget gives an implementation with the time com-
plexity of O(n log n).

In [15], Mehlhorn and Thiel present an algorithm that achieves bound con-
sistency of the alldifferent constraint in time O(n) plus the time required for
sorting the interval endpoints. In particular, if the endpoints are from a range
of size O(nk) for some constant k, the algorithm runs in linear time.

Example 4. The following simple problem shows an application of the bound
consistency algorithm based on intervals.

P =

{

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {2, 3},
alldifferent(x1, x2, x3).

Intuitively, observe that the variables x1 and x2 both have domain {1, 2}. So
these two variables together range over two values, and for a feasible instantiation
they must be different. This means that the values 1 and 2 must be assigned
to these two variables. Hence, values 1 and 2 cannot be assigned to any other
variable and therefore, value 2 will be removed from the domain of x3.

The algorithm detects this when the interval I is set to I = {1, 2}. Then the
number of variables for which Di ⊆ I is 2, namely x1 and x2. Since |I | = 2, I is a
Hall interval. The domain of x3 is not in this interval, and {min D3, maxD3}∩I =
{min D3}. In order to obtain the empty set in the right hand side of the last
equation, we need to remove min Di. The resulting CSP is bound consistent.

5 Range Consistency

An algorithm that achieves range consistency was introduced by Leconte [12].
We follow the same procedure as in the previous example. Leconte also uses
Hall’s Theorem to construct the algorithm.

Definition 8 (Hall set). Given a set of variables K, let IK be the interval
[min DK , maxDK], where DK = ∪xi∈KDi. We say that K is a Hall set iff
|K| = |IK |.

Note that in the above definition IK does not necessarily need to be a Hall
interval.

Proposition 5 (Leconte [12]). The constraint alldifferent(x1, . . . , xn) where
no domain Di is empty, is range consistent iff for each Hall set K ⊆ {x1, . . . xn}:
Di ∩ IK = ∅ for all xi /∈ K.

We can deduce an algorithm from Proposition 5 in a similar way as we did
for the algorithm for bound consistency. Leconte implemented an algorithm that
achieves range consistency with a complexity of O(n2d), where d is the average
size of the domains.

Observe that this algorithm is similar to the algorithm for bound consistency.
Where the algorithm for bound consistency takes the domains as a starting point,
the algorithm for range consistency takes the variables. But they both attempt
to reach a situation in which the cardinality of a set of variables is equal to
the cardinality of the union of the corresponding domains, as was illustrated in
Example 4.

6 Hyper-arc Consistency

A filtering algorithm that achieves hyper-arc consistency for constraints of dif-
ference was proposed by Régin [18]. A similar result was obtained independently
by Costa [5]. Before we can introduce this algorithm, we have to establish a
connection with the maximum matching problem in graph theory. The standard
reference to matching theory is the book by Lovász and Plummer [13].

6.1 Connections with Matching Theory

Consider again the scheduling problem from Example 1. To illustrate the prob-
lem, assume that Krzysztof and Luca decided not to speak. We now want to
model this problem graph-theoretically. First we introduce the definition of a
bipartite graph.

Definition 9 (Bipartite graph). A graph G consists of a finite non-empty
set of elements V called nodes and a set of pairs of nodes E called edges. If the
node set V can be partitioned into two disjoint non-empty sets X and Y such
that all edges in E join a node from X to a node in Y , we call G bipartite with
bipartition (X, Y). We also write G = (X, Y, E).

The remaining speakers from Example 1 and their available times can be repre-
sented by the bipartite graph in Figure 1. Both speakers and time periods are
represented by nodes, and these two sets of nodes are connected by edges, giving
the bipartition (Speakers ,Times). We call the constructed bipartite graph of an
alldifferent constraint C the value graph of C. Let XC denote the variables
occurring in a constraint C, with corresponding domains DC .

Definition 10 (Value graph). Given an alldifferent constraint C, the bi-
partite graph GV (C) = (XC , DC , E) where (xi, d) ∈ E iff d ∈ Di is called the
value graph of C.

2 3 4 5

MJFS

6

Speakers

Time Slots

Fig. 1. The value graph for the revised speech scheduling problem

Definition 11 (Maximum matching). A subset of edges in a graph G is
called a matching if no two edges have a node in common. A matching of maxi-
mum cardinality is called a maximum matching. A matching M covers a set X
if every node in X is an endpoint of an edge in M .

Note that a matching that covers the set of speakers in Figure 1 is a maximum
matching. The following theorem gives the link between a maximum matching
in a bipartite graph and hyper-arc consistency of the alldifferent constraint.

Proposition 6 (Régin [18]). The constraint C : alldifferent(x1, . . . , xn)
is hyper-arc consistent iff every edge in its value graph GV (C) belongs to a
matching which covers XC in GV (C).

2 3 4 5

MJFS

6

Speakers

Time Slots

Fig. 2. A maximum matching in the value graph

An illustration of Proposition 6 is given in Figures 2 and 3. The fat lines in the
graph of Figure 2 denote a maximum matching that covers all speaker nodes. Not
all edges belong to such a matching, and by Proposition 6 they can be removed.
When these edges are removed, the resulting alldifferent constraint is hyper-
arc consistent. This is depicted in Figure 3, which corresponds to Table 2.

2 3 4 5

MJFS

6

Speakers

Time Slots

Fig. 3. The value graph after filtering

Table 2. Filtered time slots for the speakers

Speaker Available

Sebastian {5, 6}
Frédéric {3, 4}
Jan-Georg {2, 5}
Maarten {3, 4}

6.2 An Algorithm for Achieving Hyper-arc Consistency

An algorithm that achieves hyper-arc consistency for the alldifferent con-
straint should remove all those edges in the corresponding value graph that do
not belong to a maximum matching. Berge has given a property that identifies
exactly these edges [2]. But first, we introduce some definitions we need for this
property.

Definition 12. Let M be a matching in a graph G = (V, E). An alternating
path or alternating cycle is a path or a cycle whose edges are alternately in M
and in E−M . The length of a path or a cycle is the number of edges it contains.
A node is called free w.r.t. M if it is not incident to a matching edge.

For instance, in Figure 2, (3, F, 4, M, 3) is an even alternating cycle of length 4.
Node 6 is a free node.

Proposition 7 (Berge). An edge belongs to a maximum matching iff for some
maximum matching, it belongs to either an even alternating path which begins
at a free node, or to an even alternating cycle.

With this property, we are able to identify and remove edges that are not in
any maximum matching. Note that we need to construct a maximum matching
before we can apply this property. The algorithm that achieves hyper-arc con-
sistency is represented in Figure 4. To construct the value graph GV , we need
O(d|XC |+ |XC |+ |DC |) steps, where d is the maximum cardinality of a variable
domain. The procedure ComputeMaximumMatching(GV) computes a max-
imum matching in the graph GV . This can be done for instance with a so-called

Input: constraint of difference C, variables X and domains D
Output: false when no solution, otherwise true and updated domains
begin
1 Build GV = (XC , DC , E)
2 M(GV)← ComputeMaximumMatching(GV)
3 if |M(GV)| < |XC | then return false
4 RemoveEdgesFromG(GV, M(GV))
5 return true
end

Fig. 4. An algorithm for achieving hyper-arc consistency

augmenting path algorithm. Hopcroft and Karp gave an implementation for this
that runs in O(

√

|XC |m) time, where m is the number of edges of GV [10].
Their algorithm still remains essentially the best known [4].

From Hall’s Theorem we already know that whenever we find a subset of
nodes the cardinality of which exceeds the cardinality of the corresponding set
of domain values, no matching exists that saturates XC . This is checked in line
3. In the procedure RemoveEdgesFromG(GV, M(GV)) the actual filtering
takes place. Instead of applying Berge’s property directly, we can translate the
problem in such a way, that we have to search for the so-called strongly connected
components of the graph [18]. For this problem we can use an implementation
by Tarjan that runs in O(n + m) time on graphs with n nodes and m edges [18,
21]. In the algorithm from Figure 4, the search for a maximum matching remains
the dominant factor, hence the total algorithm runs in O(

√

|XC |m) time.

The notion of hyper-arc consistency was introduced by Mohr and Masini
[16]. They also give a general algorithm to achieve this notion. For an n-ary
alldifferent constraint, where the domain size of all variables is bounded by
d, Di ≤ d, the time complexity of the general algorithm is O(d!

(d−n)!), whereas

the time complexity of the above algorithm is O(dn
√

n).

7 Conclusions and Future Work

In this paper, an overview of several filtering techniques for the alldifferent

constraint has been given. A comparison of these different techniques has been
made by means of corresponding notions of local consistency and algorithms to
achieve them.

However, there are other interesting articles related to this subject, that are
not considered in this paper. For instance, Focacci et al. [7] use information from
the alldifferent constraint for a filtering technique based on reduced costs.
Furthermore, in [19] Régin introduced the symmetric alldifferent constraint,
together with filtering algorithms for this constraint. Finally, Barták considers
a dynamic version of the alldifferent constraint [1].

References

1. R. Barták. Dynamic global constraints: A first view. In CP-AI-OR 2001, Third
International Workshop on Integration of AI and OR Techniques, 2001.

2. C. Berge. Graphs and hypergraphs. North-Holland, 1973.
3. H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies. Reliable

Computing, 5:1–16, 1999.
4. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial

Optimization. Wiley, 1998.
5. M.-C. Costa. Persistency in maximum cardinality bipartite matchings. Operations

Research Letters, 15(3):143–149, 1994.
6. R. Dechter and P. van Beek. Local and global relational consistency. Theoretical

Computer Science, 173:283–308, 1997.
7. F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In PPCP -

CP’99, volume 1713 of LNCS, pages 189–203, 1999.
8. I. Gent, K. Stergiou, and T. Walsh. Decomposable Constraints. In New Trends in

Constraints, volume 1865 of LNCS, pages 134–149. Springer, 2000.
9. P. Hall. On representatives of subsets. Journal of the London Mathematical Society,

10:26–30, 1935.
10. J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
11. J.-L. Lauriere. A language and a program for stating and solving combinatorial

problems. Artificial Intelligence. An International Journal, 10(1):29–127, 1978.
12. M. Leconte. A bounds-based reduction scheme for constraints of difference. In

Constraint-96, Second International Workshop on Constraint-based Reasoning,
Key West, Florida, 1996.

13. L. Lovász and M. D. Plummer. Matching Theory. North-Holland, Amsterdam,
1986.

14. K. Marriot and P. Stuckey. Programming with Constraints: An Introduction. MIT
Press, Cambridge, MA, 1998.

15. K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sorted-
ness and the alldifferent constraint. In PPCP - CP2000, volume 1894 of LNCS,
pages 306–319, 2000.

16. R. Mohr and G. Masini. Good Old Discrete Relaxation. In European Conference
on Artificial Intelligence (ECAI-88), pages 651–656, Munchen, Germany, 1988.

17. J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the AAAI ’98, pages 359–366, 1998.

18. J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In
Proceedings of the AAAI ’94, pages 362–367, 1994.

19. J.-C. Régin. The symmetric alldiff constraint. In Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99), pages 420–425,
1999.

20. K. Stergiou and T. Walsh. The difference all-difference makes. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
pages 414–419, 1999.

21. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

22. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, Cambridge, MA, 1989.

