Postponing Branching Decisions

Willem Jan van Hoeve! and Michela Milano?

Abstract. Solution techniques for Constraint Satisfaction and Op-
timization Problems often make use of backtrack search methods,
exploiting variable and value ordering heuristics. In this paper, we
propose and analyse a very simple method to apply in case the value
ordering heuristic produces ties: postponing the branching deci-
sion. To this end, we group together values in a tie, branch on this
sub-domain, and defer the decision among them to lower levels of
the search tree. We show theoretically and experimentally that this
simple modification can dramatically improve the efficiency of the
search strategy.

1 BACKGROUND

Constraint Satisfaction Problems (CSPs) and Constraint Optimiza-
tion Problems (COPs) are defined on a set of variables z1,...,z,
representing problem entities. Variables range on finite domains
Dy, ..., D, and are subject to a set of constraints C' that define the
feasible configurations of variable-value assignments. A COP in ad-
dition has an objective function to be optimized. A solution to a CSP
or a COP is a variable-value assignment respecting all constraints,
and optimizing the objective function if present. When being solved
with Constraint Programming, the solution process interleaves con-
straint propagation and search.

A general way of building a search tree for solving CSPs and
COPs, called labelling, consists in selecting a variable and assigning
it a single value from its domain. The variable and value selection are
guided by heuristics, such that the most promising variable/value is
selected first. If the value selection heuristic regards two or more val-
ues equally promising we say the heuristic produces a tie. The defi-
nition of ties can be extended to the concept of heuristic equivalence
[1] that considers equivalent all values that receive a rank within a
given percentage from a value taken as reference. A similar situation
occurs when different domain value heuristics are applied simulta-
neously. In general, ties occur when the used heuristic(s) define(s)
a partial order on the values’ ranks. In such situations, labelling
chooses a single value according to a deterministic (f.i. lexicographic
order) or a randomized (see [1]) rule.

We propose a very simple, yet extremely effective method that
improves the efficiency of tree search in presence of ties: avoid mak-
ing the choice and postpone the branching decision. This is done by
grouping together equivalent values in a sub-domain and performing
a branching on the whole sub-domain, while those that are clearly
ranked by the heuristic are still assigned singularly to a variable. We
call this method partitioning. The resulting search tree may consist of
a sub-problem at depth n, which must be searched further. In this pa-

L CwI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands email:
W.J.van.Hoeve@cwi.nl

2 DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
email: mmilano@deis.unibo.it

per, we will always search the sub-problem via labelling. This means
that the leaves of the search tree appear at depth between n and 2n.

Although labelling and partitioning have been used in practice be-
fore, to our knowledge no theoretical or experimental comparison
has been made thus far.

2 THEORETICAL COMPARISON

Similar to the analysis of limited discrepancy search (LDS) by Har-
vey and Ginsherg [3], we introduce a probability (distribution) of
the heuristic being successful. Given that the current search state
has a solution in its subtree (i.e. it is a good state), the heuris-
tic probability is the probability that the d-th choice of the heuris-
tic is also a good state. For a state corresponding to variable x;
and choices d € D;, we denote this probability by p¢. A leaf |
of a search tree consists of the instantiation of all n variables, i.e.
I ={z; = di; | di; € Di,i € {1,...,n}}. The probability (with
respect to the heuristic) of a leaf I being successful is

H pjm ‘

{wi:dij }el

prob(l) =

In Figure 1 we compare labelling and partitioning on trees corre-
sponding to 2 variables, both having 3 domain values. The branches
are ordered from left to right following the heuristic’s choice. The
heuristic probability of success is shown for each branch. Note that
the heuristic produces a tie, consisting of two values, for the first
variable. Labelling follows the heuristic on single values, while parti-
tioning groups together values in the tie. For depth-first search (DFS)
and LDS, the order in which the leaves are visited is given, together
with the cumulative probability of success. When we apply LDS to
partitioning, we only count the discrepancies in the upper part (depth
0 to n) of the tree. Note that for every leaf, partitioning always has
a higher (or equal) cumulative probability of success than labelling.
This is formalized in Theorem 1.

Theorem 1 For a fixed variable ordering and a domain value order-
ing heuristic, let Ti.pe1 be the search tree defined by labelling, and
let Thartition D€ the search tree defined by partitioning (grouping to-
gether ties), both without constraint propagation. Assume pfl > p‘j2
if the heuristic prefers d; over ds for d1,d2 € D;. Let the set of the
first k£ leaf nodes visited by labelling and partitioning be denoted by
Liiner and LY iivion respectively. If Tiaper and Tpartition are both
traversed using DFS or LDS?, then

Z prob(l) > Z prob(l). 1)

leLk leLk

partition label

3 In fact, Theorem 1 holds for any ‘depth-first based’ search strategy.

@ leaf

[®] subproblem

- - - ~ - - - - -=== depthn ----
prob(/): 0.20 0.12 0.08 0.20 0.12 0.08 0.10 0.06 0.04

prob(/): 0.20 0.20 0.12 0.12 0.08 0.08 0.10 0.06 0.04
DFS: order: 1 2 3 4 5 6 7 g8 9 DFS: order: 1 2 3 4 5 6 7 8 9
X prob(/): 0.20 0.32 0.40 0.60 0.72 0.80 0.90 0.96 1.00 I prob(/): 0.20 0.40 0.52 0.64 0.72 0.80 0.90 0.96 1.00

LDS: diser: 0 1 2 1 2 3 2 3 4 LDS: discr: 0 0 1 1 2 2 2 3 4
order: 1 3 6 2 5 8 4 7 9 order: 1 2 3 4 6 7 5 8 9

I prob(/): 0.20 0.52 0.82 0.40 0.74 0.96 0.62 0.88 1.00 Z prob(/): 0.20 0.40 0.52 0.64 0.82 0.90 0.74 0.96 1.00

a. labelling b. partitioning

Figurel. Cumulative probability of success using DFS and LDS.

Proof. Omitted due to space restrictions, but available in an extended
version of the paper [8].]

3 EXPERIMENTAL COMPARISON

We have compared partitioning and labelling on the Travelling Sales-
man Problem (TSP) and the Partial Latin Square Completion Prob-
lem (PLSCP), implemented on a Pentium 1Ghz with 256 MB RAM,
using ILOG Solver 5.1 [5] and Cplex 7.1 [4].

For the TSP, we have used a constraint programming model and
a heuristic similar to [6] based on reduced costs. For this problem,
the heuristic is very accurate, and propagation is rather poor. Sub-
problems are being solved using DFS, since all leaves can be con-
sidered to have equal probability of being successful. We stop the
search as soon as an optimal solution has been found. The results
of our comparison are presented in Table 1. The instances are taken
from TSPLIB [7]. For labelling and partitioning, the table shows the
time and the number of fails (backtracks) needed to find an optimum.
For labelling, the discrepancy of the leaf node that represents the op-
timum is given. For partitioning, the discrepancy of the sub-problem
that contains the optimum is reported. On all instances but one, par-
titioning performs much better than labelling. Observe that for the
instance “‘dantzig42’ labelling needs less fails than partitioning, but
uses more time. This is because partitioning solves the sub-problems
using DFS, and lacks the LDS overhead.

Tabelling artitioning
instance time (s) faills discr | time(s) fails ~ discr
orl7 0.08 36 2 0.02 3 0
gr2l 0.16 52 3 0.01 1 0

r24 0.49 330 5 0.01 4 0

1126 0.16 82 2 0.01 0 0
bayg29 8.06 4412 8 0.07 82 1
bays29 231 1274 5 0.07 43 1
dantzig42 0.98 485 1 079 1317 1
swiss42 6.51 2028 4 0.08 15 0
hk48 190.96 35971 11 0.23 175 1
brazil58 N.A. N.A. NA. 0.72 770 1

N.A. means ‘not applicable’ due to time limit (900 s).

Tablel. Results for finding optima of TSP instances (not proving
optimality).

For the PLSCP we have used a straightforward constraint pro-
gramming model, using alldifferent constraints on the rows and the

columns, with maximal and effective propagation. As heuristic we
have used a simple, not very accurate, first-fail principle for the val-
ues, i.e. values that are most constrained are to be considered first.
The sub-problems of partitioning are again being solved using DFS.
For both labelling and partitioning, constraint propagation is applied
throughout the whole search tree. We made a comparison on bal-
anced and unbalanced instances at the phase transition of the prob-
lem, generated with the PLS-generator [2]. The name of an instance,
‘b/u.on.hm’, indicates an (un)balanced instance of order n with m
holes. The results are reported in Table 2, which follows the same
format as Table 1. Clearly, partitioning has a negative impact on the
propagation. Although partitioning often outperforms labelling due
to the lack of LDS overhead, the decreased propagation is too impor-
tant to neglect. Hence none of the methods always outperforms the
other on these PLSCP instances.

Tabelling partitioning
instance time(s) fails discr | time(s) fails discr
b.025.h238 236 668 5 109 746 5
b.025.h239 049 15 1 042 2 1
b.025.h240 117 179 4 0.86 893 4
b.025.h241 331 772 3 470 3123 4
b.025.h242 241 537 3 180 1753 4
b.025.h243 406 1082 4 396 2542 4
b.025.h244 133 214 3 299 2072 4
b.025.h245 940 2308 6 1066 12906 7
b.025.h246 201 401 5 222 1029 4
b.025.h247 25891 69105 6 11.66 5727 4
b.025.h248 33.65 6969 5 0.68 125 2
b.025.h249 21276 60543 11 10146 85533 8
b.025.h250 245 338 2 0. 687 3
u.030.h328 27353 32538 4 82 14102 3
u.030.h330 2179 2756 3 2515 5019 3
u.030.h332 23540 30033 5 56.94 9609 3
u.030.h334 418 256 2 6.09 2
u.030.h336 173 69 2 0.76 1
u.030.h338 49.17 5069 3 29.41 8026 3
u.030.h340 168 91 2 081 66 2
u.030.h342 2840 3152 3 541 600 2
u.030.h344 9.05 605 2 835 1103 2
u.030.h346 215 101 2 376 482 2
u.030.h348 4380 2658 2 32.86 2729 2
u.030.h350 116 46 1 080 12 1
u.030.h352 510 288 2 095 32 1
sum 121145 220793 9T 396.62 159773 81
mean 46.59 8492.04 350 1525 614512 3.12

Table2. Results for PLS completion problems.

REFERENCES

[1] C.P. Gomes, B. Selman, and H. Kautz, ‘Boosting Combinatorial Search
Through Randomization’, in Proceedings of the Fifteenth National Con-
ference on Artifi cial Intelligence (AAAI’98), pp. 431-437, (1998).

[2] C.P. Gomes and D. Shmoys, ‘Completing Quasigroups or Latin Squares:
A Structured Graph Coloring Problem’, in Proceedings of the Computa-
tional Symposium on Graph Coloring and its Generalizations, (2002).

[3] W. D. Harvey and M. L. Ginsberg, ‘Limited Discrepancy Search’, in
Proceedings of the Fourteenth International Joint Conference on Artifi -
cial Intelligence (1JCAI-95), volume 1, pp. 607-615, (1995).

[4] ILOG. ILOG Cplex 7.1, Reference Manual, 2001.

[5] ILOG. ILOG Solver 5.1, Reference Manual, 2001.

[6] M. Milano and W.J. van Hoeve, ‘Reduced cost-based ranking for gen-
erating promising subproblems’, in Eighth International Conference on
the Principlesand Practice of Constraint Programming (CP’ 02), volume
2470 of LNCS pp. 1-16. Springer Verlag, (2002).

[7] G. Reinelt, “TSPLIB - a Traveling Salesman Problem Library’, ORSA
Journal on Computing, 3, 376-384, (1991).

[8] W.J. van Hoeve and M. Milano. Postponing branching decisions, 2004.
http://homepages.cwi.nl/~wjvh/papers/postpone.pdf.

