
INFORMS JOURNAL ON COMPUTING
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0899-1499 |eissn1526-5528 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Discrete Optimization with Decision Diagrams

David Bergman
School of Business, University of Connecticut, 2100 Hillside Road, Unit 1041, Storrs, CT 06260,

david.bergman@business.uconn.edu

Andre A. Cire
Department of Management, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C-1A4

acire@utsc.utoronto.ca

Willem-Jan van Hoeve, J. N. Hooker
Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213

{vanhoeve,jh38}@andrew.cmu.edu

We propose a general branch-and-bound algorithm for discrete optimization in which binary decision

diagrams (BDDs) play the role of the traditional linear programming relaxation. In particular, relaxed BDD

representations of the problem provide bounds and guidance for branching, while restricted BDDs supply a

primal heuristic. Each problem is given a dynamic programming model that allows one to exploit recursive

structure, even though the problem is not solved by dynamic programming. A novel search scheme branches

within relaxed BDDs rather than on values of variables. Preliminary testing shows that a rudimentary

BDD-based solver is competitive with or superior to a leading commercial integer programming solver for

the maximum stable set problem, the maximum cut problem on a graph, and the maximum 2-satisfiability

problem. Specific to the maximum cut problem, we tested the BDD-based solver on a classical benchmark

set and identified tighter relaxation bounds than have ever been found by any technique, nearly closing the

entire optimality gap on four large-scale instances.

Key words : Programming:Integer:Branch-and-bound; Dynamic Programming:Deterministic;

Networks/graphs

History : Submitted February 2014, Revision September 2014, Accepted January 2015.

1. Introduction

Some of the most effective methods for discrete optimization are branch-and-bound algorithms

applied to an integer programming formulation of the problem. Linear programming (LP) relax-

ation plays a central role in these methods, primarily by providing bounds and feasible solutions

as well as guidance for branching.

We propose an alternative branch-and-bound method in which decision diagrams take over the

functions of the traditional LP relaxation. Binary decision diagrams (BDDs) were originally intro-

duced for applications in circuit design and formal verification (Akers 1978, Lee 1959, Bryant 1986,

Hu 1995) and have since been used for a variety of other purposes (Wegener 2000, Loekito et al.

1

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
2 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

2010). A BDD is a graphical representation of a Boolean function that can also be viewed as

representing the feasible set of a binary optimization problem. Weights can be associated with

arcs of the BDD to represent an objective function, resulting in a weighted BDD. Paths in a suit-

ably chosen diagram correspond to feasible solutions of the problem, and a longest (or shortest)

path corresponds to an optimal solution. This raises the possibility of using weighted BDDs as

an optimization tool. Although an exact BDD representation of a feasible set tends to explode

exponentially, useful relaxations and restrictions of the feasible set can be represented with much

smaller BDDs denoted by relaxed BDDs and restricted BDDs, respectively (Andersen et al. 2007,

Bergman et al. 2014b). Furthermore, a relaxed BDD provides the framework for a novel branch-

ing scheme. Problems with multi-valued discrete variables are easily accommodated by moving to

multi-valued decision diagrams, a straightforward extension of BDDs (Kam et al. 1998).

A possible attraction of BDD-based discrete optimization is that it permits an alternative

approach to modeling. Modeling for BDDs does not require an inequality formulation, which can be

very large, nor does it rely on integer variables or linearization. Rather, the problem is formulated

as a dynamic programming (DP) recursion, and memory requirements are controlled by limiting

the size of the relaxed and restricted BDDs. This allows one to exploit recursive structure in a

given class of problems, much as an LP approach allows one to exploit polyhedral structure. In

addition, discrete relaxations based on BDDs allow rapid computation of bounds, as well as an

alternative and perhaps more efficient approach to branching.

We therefore propose a novel BDD-based optimization method to tackle discrete optimization

problems. To fix ideas, assume that we are maximizing. The BDD-based optimization requires the

following input from the user.

• A DP model of the problem that exploits recursive structure. The size of the DP state space

is of little concern, because the problem is not solved by DP or approximate DP. Rather, the state

space is chosen to allow construction of an effective BDD relaxation of the problem. This may

result in different formulations than are normally used for a DP solution, as we illustrate here.

• A scheme for merging states, and perhaps adjusting arc costs, to be used in building a relaxed

BDD representation. The relaxation scheme is viewed as part of the DP model, much as valid

inequalities can be viewed as part of an integer programming (IP) model. Schemes for merging

states are reminiscent of conventional state space relaxation strategies, but they generally differ in

three ways: (a) the goal is to provide a tight bound rather than to solve the problem by DP, (b)

the relaxation may involve the modification of arc costs, and (c) the merging scheme is dynamic

and sensitive to evolving characteristics of the current BDD relaxation as it is built.

Given a DP model and a scheme to merge states, the BDD-based optimization solves the problem

by considering the following elements.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 3

• A novel branch-and-bound scheme that operates within a BDD relaxation of the problem.

Rather than branch on values of a variable, the scheme branches on a suitably chosen subset of

nodes in the relaxed BDD. Each node gives rise to a subproblem for which a relaxed BDD can be

created, and so on recursively. This sort of branching implicitly enumerates sets of partial solutions,

rather than values of one variable. It also takes advantage of information about the search space

that is encoded in the structure of the relaxed BDD. The branching nodes are selected on the

basis of that structure, rather than on the basis of fractional variables, pseudo-costs, and other

information obtained from an LP solution.

• Upper bounds obtained from the relaxed BDDs used for branching. To ensure generality of

the method, the relaxed BDDs are generated from the DP model using a standardized algorithm.

Bounds are obtained by simple longest-path calculations in the relaxed BDDs, rather than from

solution of LP relaxations. Memory requirements and the tightness of the bounds are readily

adjusted by controlling the size of the BDDs as they are generated.

• Lower bounds obtained from restricted BDDs created during the branching procedure. The

BDDs are again generated from the DP model in a standard fashion. Shortest-path calculations in

restricted BDDs provide a primal heuristic that serves the same function as “feasibility pumps” and

other primal heuristics in IP. In addition, a feasible solution is obtained when a BDD relaxation

happens to be exact, much as when the solution of an LP relaxation happens to be integral.

In addition to proposing the first general-purpose optimization method based on BDDs, the

key contributions of this paper are (a) a novel search scheme that branches within a relaxed

BDD, and (b) a resulting method for solving DP formulations by branch and bound rather than

recursive optimization, thus providing a strategy for defeating the curse of dimensionality. We

also introduce, for three classical optimization problems, new DP models that are suitable for

BDD-based optimization. These are the maximum independent set problem, the maximum cut

problem on a graph, and the maximum 2-satisfiability problem. They will serve as running examples

that illustrate BDD concepts in a variety of settings. They also allow for direct computational

comparison with an IP solver, since these problems have well-studied linear inequality formulations.

The paper is organized as follows. After surveying previous work, we define discrete optimization

in general and state the three studied optimization problems We then formally define BDDs and

show how they can represent feasible solutions and objective function values for discrete optimiza-

tion problems. We explain how to develop DP models for BDD-based optimization in Sections 5

and 6 and specify how these are used to generate relaxed BDDs. Section 7 shows how to build

restricted BDDs, and Section 8 presents the BDD-based branch-and-bound algorithm.

Because our BDD-based solver is proposed as a general-purpose method, it is appropriate to

compare it with another general-purpose solver. Integer programming is widely viewed as the most

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
4 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

highly developed technology for general discrete optimization, and we therefore compare BDD-

based optimization to a leading commercial IP solver in Section 10. We find that although IP

solvers have improved by orders of magnitude since their introduction, our rudimentary BDD-based

solver is competitive with or superior to the IP state of the art on the problem instances tested

here. The paper concludes with a summary and directions for future research.

2. Previous Work

Early applications of BDDs to discrete optimization include cut generation (Becker et al. 2005),

0–1 global optimization (Hooker 2006), post-optimality analysis (Hadžić and Hooker 2006, 2007),

and vertex and facet enumeration (Behle and Eisenbrand 2007).

Relaxed BDDs were introduced by Andersen et al. (2007) for the purpose of replacing the domain

store used in constraint programming by a richer data structure. Similar methods were applied

to other types of constraints in Hadžić et al. (2008a,b), Hoda et al. (2010) and Bergman et al.

(2012). Weighted BDD relaxations were used to obtain optimization bounds in Bergman et al.

(2011, 2014a), the former of which applied them to set covering and the latter to the maximum

independent set problem. Restricted BDDs were introduced by Bergman et al. (2014b).

Although we focus here on general-purpose methods, BDD-based optimization can be equally

competitive as a problem-specific method. Cire and van Hoeve (2013) applied weighted BDDs to a

variety of sequencing problems, in many cases improving on the state of the art, and in particular

closing three sequential ordering problems in TSPLIB. Kell and van Hoeve (2013) developed a

special-purpose BDD method for the multidimensional bin packing problem, with results superior

to a commercial IP solver, although with no comparison to a special-purpose method.

There is a close relationship between DP-solving techniques and the BDDs methods we propose

here. DP techniques solve a problem by enumerating states instead of value assignments, which

may be fewer in number as they aggregate partial solutions that are either equivalent or dominated

by others. Analogously, our BDD methods enumerate states, represented here as nodes of the

BDD. However, this is done within a branch-and-bound framework to cope with the curse of

dimensionality. The notion of equivalence and dominance has been explored before in branch-and-

bound algorithms for integer programming, such as in Ibaraki (1977), Fischetti and Salvagnin

(2010). The relationship between weighted BDDs and DP is further studied in Hooker (2013). In

addition, Sanner and McAllester (2005) and Hooker (2013) reallocate transition costs to different

arcs of the weighted BDD in a manner that is similar to the DP models proposed here.

As noted earlier, BDD-based relaxation is also related to state space relaxation in DP

(Christofides et al. 1981, Mingozzi 2002, Righini and Salani 2008, Baldacci et al. 2012). State space

relaxation approximates the original state space by a smaller, computationally feasible space that

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 5

allows objective function bounds to be proved or heuristic solutions to be found. As explained

above, however, BDD-based relaxation as developed here differs from conventional state space

relaxation in several respects.

3. Discrete Optimization Problems

For our purposes, a discrete optimization problem P has the form max{f(x) | x∈D, C}, where
x= (x1, . . . , xn) is a tuple of variables, and C = {C1, . . . ,Cm} is a (possibly empty) constraint set.

Each variable xj has a finite domain Dj , with D = D1 × · · · ×Dn. Each constraint Ci is either

satisfied or violated by any given x, and f :D→R is an objective function. A feasible solution of

P is any x∈D that satisfies all of the constraints in C. The set of feasible solutions of P is denoted

by Sol(P). A feasible solution x∗ is optimal for P if it satisfies f(x∗)≥ f(x) for all x∈ Sol(P). Let

z∗(P) = f(x∗) be the optimal value.

To simplify exposition, we restrict our discussion to binary optimization problems, in which

|Dj | = 2 for each j, but the ideas and techniques can be extended to the more general case. We

will focus on three particular binary optimization problems as running examples to illustrate the

concepts, and on which to conduct computational tests.

3.1. Maximum Independent Set Problem

Given a graph G= (V,E), V = {1,2, . . . , n}, an independent set I is a subset I ⊆ V such that no

two vertices in I are connected by an edge in E. Given weights wj ≥ 0 for each vertex j ∈ V ,

the maximum independent set problem (MISP) asks for a maximum-weight independent set of G.

The MISP (which is equivalent to the maximum clique problem) has found applications in many

areas, including data mining (Edachery et al. 1999), bioinformatics (Eblen et al. 2011), and social

network analysis (Balasundaram et al. 2011).

To formulate the MISP as a binary optimization problem, we let variable xj indicate whether

vertex j is selected (xj = 1) or not (xj = 0), for j ∈ V , so that the domain is Dj = {0,1}. The
objective function is f(x) =

∑n

j=1wjxj , and the constraint set is C = {xi +xj ≤ 1 | (i, j)∈E}.

3.2. Maximum Cut Problem

Given a graph G = (V,E), a cut (S,T) is a partition of the vertices in V . We say that an edge

crosses the cut if its endpoints are on opposite sides of the cut. Given edge weights, the value

v(S,T) of a cut is the sum of the weights of the edges crossing the cut. The maximum cut problem

(MCP) is the problem of finding a cut of maximum value. The MCP has been applied to VLSI

design, statistical physics, and other problems (Hager and Krylyuk 1999, Festa et al. 2002).

To formulate the MCP as a binary optimization problem, let xj indicate the set (S or T) in

which vertex j is placed, so that Dj = {S,T}. Using the notation S(x) = {j | xj = S} and T (x) =

{j | xj =T}, the objective function is f(x) = v(S(x), T (x)). Since any partition is feasible, C =∅.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
6 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

13

2

4

3

2

4

2

5

7

Figure 1 Graph with vertex weights for the MISP.

3.3. Maximum 2-Satisfiability Problem

Let x= (x1, . . . , xn) be a tuple of Boolean variables, where each xj can take value T or F (corre-

sponding to true or false). A literal is a variable xj or its negation ¬xj . A clause ci is a disjunction

of literals, which is satisfied if at least one literal in ci is true. If C = {c1, . . . , cm} is a set of clauses,

each with exactly 2 literals, and if each ci has weight wi ≥ 0, the maximum 2-satisfiability problem

(MAX-2SAT) is the problem of finding an assignment of truth values to x1, . . . , xn that maximizes

the sum of the weights of the satisfied clauses in C. MAX-2SAT has applications in scheduling, elec-

tronic design automation, computer architecture design, pattern recognition, inference in Bayesian

networks, and elsewhere.

To formulate the MAX-2SAT as a binary optimization problem, we use the Boolean variables

xj with domain Dj = {F,T}. The constraint set C is empty, and the objective function is f(x) =∑m

i=1wici(x), where ci(x) = 1 if x satisfies clause ci, and ci(x) = 0 otherwise.

4. Binary Decision Diagrams
4.1. Concepts and Notation

A binary decision diagram (BDD) B = (U,A,d) is a layered directed acyclic multi-graph (U,A)

with labeled arcs that encode values of binary variables. The node set U is partitioned into layers

L1,L2, . . . ,Ln+1, where layers L1 and Ln+1 consist of single nodes, the root r and the terminal t,

respectively. Each arc a ∈A is directed from a node in some Lj to a node in Lj+1 and has a label

d(a) ∈ {0,1} that represents the value of a binary variable xj. No two arcs leaving the same node

have the same label, which means every node has a maximum out-degree of 2. We let �(u) be the

layer index of node u; e.g. �(r) = 1 and �(t) = n+1.

Figure 2 presents examples of BDDs, where the dashed arcs are 0-arcs (i.e., arcs with label

0), and the solid arcs are 1-arcs. We let a0(u) denote the 0-arc leaving node u (if it exists), and

similarly for a1(u). We also let b0(u) denote the node at the opposite end of arc a0(u), and similarly

for b1(u). Every arc-specified path p= (a1, . . . , an) from r to t encodes an assignment to the binary

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 7

x1

x2

x3

x4

x5

r

0 3

04 0

0 2 0 0

0 2
0

t

0

7

0

(a)

r

0 3

0 4 0

0
2 0

0 2
0

t

0

7

0

(b)

r

0 3

0 0

2
0

0

0 2
0

t

0

7

0

(c)

Figure 2 (a) Exact BDD, (b) relaxed BDD, and (c) restricted BDD for the MISP on the graph in Figure 1.

variables x1, . . . , xn, namely xj = d(aj) for j = 1, . . . , n. We will denote this assignment by xp. The

set of r–t paths represents a set of assignments we denote Sol(B).

The width |Lj | of layer Lj is the number of nodes in the layer, and the width of a BDD B is

maxj{|Lj |}. The size |B| of B is the number of nodes in B.

It is common in the BDD literature to allow various types of long arcs that skip one or more

layers (Bryant 1986, Minato 1993). Long arcs can improve efficiency because they represent multi-

ple partial assignments with a single arc, but to simplify exposition, we will suppose with minimal

loss of generality that there are no long arcs. BDDs also typically have two terminal nodes, corre-

sponding to true and false, but for our purposes only a true node is required—as the terminus for

feasible paths.

A multi-valued decision diagram allows out-degrees higher than 2 and therefore encodes values

of general finite-domain variables. All the ideas presented here, including the branch-and-bound

algorithm of Section 8, are easily extended to allow for MDDs and general finite domains.

Because we are interested in optimization, we focus on weighted BDDs, in which each arc a has

an associated length v(a). The length of a directed path p= (a1, . . . , ak) rooted at r is its length

v(p) =
∑k

j=1 v(aj).

A weighted BDD B represents a binary optimization problem P in a straightforward way. It can

be an exact representation, a relaxation, or a restriction. B is an exact representation of P if the

r–t paths in B encode precisely the feasible solutions of P, and the length of a path is the objective

function value of the corresponding solution. More formally, we say that B is exact for P when

Sol(P) = Sol(B) (E-1)

f(xp) = v(p), for all r–t paths p in B (E-2)

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
8 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

B is relaxed for P if B represents a superset of the feasible solutions of P, and path lengths are

upper bounds on the value of feasible solutions. That is, B is relaxed for P if

Sol(P) ⊆ Sol(B) (Rel-1)

f(xp) ≤ v(p), for all r–t paths p in B for which xp ∈ Sol(P) (Rel-2)

Finally, B is restricted for P if it represents a subset of the feasible solutions of P, and path lengths

are lower bounds on the objective function value. So B is restricted for P if

Sol(P) ⊇ Sol(B) (Res-1)

f(xp) ≥ v(p), for all r–t paths p in B (Res-2)

An exact BDD reduces discrete optimization to a longest-path problem. If p is a longest path

in a BDD B that is exact for P, then xp is an optimal solution of P, and its length v(p) is the

optimal value z∗(P) = f(xp) of P. When B is relaxed for P, a longest path p provides an upper

bound on the optimal value. The corresponding solution xp may not be feasible, but v(p)≥ z∗(P).

Conversely, a longest path calculation serves as a primal heuristic when B is restricted for P. In

this case, a longest path p corresponds to a feasible solution xp of P that yields a lower bound v(p)

on z∗(P).

We now illustrate exact, relaxed, and restricted BDDs for the three problems introduced earlier.

4.2. Example BDDs for the MISP

Consider the graph and vertex weights depicted in Figure 1. Figure 2(a) represents an exact BDD

in which each path corresponds to an independent set encoded by the arc labels along the path,

and each independent set corresponds to some path. A 1-arc leaving layer Lj indicates that vertex

j is in the independent set, and a 0-arc indicates that it is not. The longest r–t path in the BDD

has value 11, corresponding to solution x = (0,1,0,0,1) and to the independent set {2,5}, the
maximum-weight independent set in the graph.

Figure 2(b) shows a relaxed BDD. Each independent set corresponds to a path, but there are

paths p for which xp is infeasible (i.e., not an independent set). For example, the path p̄ encoding

xp̄ = (0,1,1,0,1) does not represent an independent set because both endpoints of edge (2,3) are

selected. The length of each path that represents an independent set is the weight of that set,

making this a relaxed BDD. The longest path in the BDD is p̄, proving an upper bound of 13.

Figure 2(c) represents a restricted BDD. For each path p, xp is feasible and has length equal to the

weight of the corresponding independent set. The longest path corresponds to solution (1,0,0,0,1)

and independent set {1,5}, and thus proves a lower bound of 10 on the objective function.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 9

1 2

3 4

1

2

−2 3

−1

−1

Figure 3 Graph with edge weights for the MCP .

x1

x2

x3

x4

r

-4

0 4

0 6 1 1

t

4

0
2 0

0

0

(a)

r

-4

7 5

0 1

t

2

0 0

0

(b)

r

-4

4

1 1

t

2

0 0

0

(c)

Figure 4 (a) Exact BDD, (b) relaxed BDD, and (c) restricted BDD for the MCP on the graph in Figure 3.

4.3. Example BDDs for MCP

Consider the graph and edge weights in Figure 3. Figure 4(a) depicts an exact BDD for the MCP

on this graph. A 0-arc leaving Lj indicates that xj =S, and a 1-arc indicates xj =T. Note that we

can place vertex 1 in set S without loss of generality. For now, assume the arc lengths are as shown;

we derive these formally in Section 5.2. The longest path p corresponds to the optimal solution

xp = (S,S,T,S), and its length 4 is the weight of the maximum cut (S,T) = ({1,2,4},{3}).
Figure 4 (b) depicts a relaxed BDD. Again, every possible partition is represented by some path,

and the length of each r–t path is greater than or equal to the weight of the cut. The longest path

corresponds to the solution (S,S,S,S) and has length 5, while the actual weight of this cut is 0.

This proves an upper bound of 5 on the objective function.

Figure 4 (c) depicts a restricted BDD. Although not all of the solutions are present in the BDD,

each solution that is represented by a path has weight equal to the path length. The longest path

corresponds to solution x= (S,T,S,S) and has length 3, a lower bound on the optimal value.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
10 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

x1

x2

x3

r

9 7

3 8 4 7

t

0

6
0 2

2

0

(a)

r

12 8

3 7

t

0

3 1

0

(b)

r

9 7

3 7

t

0

6 2

0

(c)

Figure 5 (a) Exact BDD, (b) relaxed BDD, and (c) restricted BDD for the MAX-2SAT instance in Section 4.4.

4.4. Example BDDs for MAX-2SAT

Consider the following instance of MAX-2SAT:

clause index clause weight

1 x1∨x3 3
2 ¬x1∨¬x3 5
3 ¬x1∨x3 4
4 x2∨¬x3 2
5 ¬x2∨¬x3 1
6 x2∨x3 5

Figure 5 (a) depicts an exact BDD in which 0-arcs leaving Lj assign F to xj and 1-arcs assign T.

There is a path for each possible truth assignment to the variables, and its length is the sum of

the weights of the clauses satisfied by that solution. The arc lengths will be derived formally in

Section 5.3. The longest path corresponds to x= (F,T,T) and has length 19 because it satisfies all

clauses but c5.

Figure 5 (b) shows a relaxed BDD, in which path lengths over-approximate objective function

values. The longest path corresponds to x= (F,T,F) and has length 20, an upper-bound on the

optimal value. A restricted BDD appears in Figure 5 (c). Each path length is equal to the objective

function value of the corresponding solution. The longest path corresponds to solution x= (F,F,T)

and has length 18, a lower bound on the optimal value.

5. Problem Formulation: The DP Model

We now address the issue of formulating a discrete optimization problem P for BDD-based solution.

The formulation consists of a dynamic programming (DP) model and a rule for merging nodes

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 11

that are associated with similar states. The DP model serves as the conceptual basis for an exact

BDD, which is too large for practical use. The merger rule allows us to build a relaxed BDD of

any desired maximum width.

A DP model for a given problem P consists of the following elements:

• state spaces S1, . . . , Sn+1 with S1 = {r̂} and Sn+1 = {t̂, 0̂}, where r̂ is the root state, t̂ is the

terminal state, 0̂ is the infeasible state, and 0̂∈ Sj for j = 2, . . . , n+1

• transition functions tj : Sj ×Dj → Sj+1 for j = 1, . . . , n, where tj(0̂, d) = 0̂ for any d∈Dj

• transition cost functions hj : Sj ×Dj →R for j = 1, . . . , n

• a root value vr that will be added to the arcs directed out of the root node of the BDD

The problem variables x1, . . . , xn are regarded as controls, where a given control xj takes the

system from a given state sj ∈ Sj to state tj(s
j, xj) and incurs cost hj(s

j, xj). The DP formulation

has variables (s,x) = (s1, . . . , sn+1, x1, . . . , xn) and is written

min f̂(s,x) = vr +
n∑

j=1

hj(s
j, xj)

subject to (DP)

sj+1 = tj(s
j, xj), xj ∈Dj, j = 1, . . . , n

sj ∈ Sj, j = 1, . . . , n+1

Let S = S1 × · · · × Sn+1. The formulation (DP) is valid for P if for every x ∈D, there is an s ∈ S

such that (s,x) is feasible in (DP) and

sn+1 = t̂ and f̂(s,x) = f(x), if x is feasible for P (A1)

sn+1 = 0̂, if x is infeasible for P (A2)

A valid DP formulation leads directly to an exact BDD representation. Suppose that (DP) is

valid for problem P, and consider the state-transition graph for (DP). Omit all occurrences of the

infeasible state 0̂, and let each remaining arc from state sj to state tj(s
j, xj) have length equal to

the transition cost hj(s
j, xj). The resulting multigraph BDP is an exact BDD for P, because paths

from state r to state t in BDP correspond precisely to feasible solutions of (DP), and the objective

function value of the corresponding solution is the path length.

The construction of BDP is straightforward in principle. Begin with the root note r in layer 1,

which corresponds to the root state r̂. Proceed recursively, creating a node for each feasible state

that can be reached from r. Thus, having constructed layer j, let Lj+1 contain nodes corresponding

to all distinct feasible states to which one can transition from states represented in Lj. Then add

an arc from layer j to layer j+1 for each such transition.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
12 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 1 Exact or relaxed BDD Compilation

1: Create node r= r̂ and let L1 = {r}
2: for j = 1 to n do

3: while |Lj |>W do

4: let M =node select(Lj), Lj ← (Lj \M)∪{⊕(M)}
5: for all u∈Lj−1 and i∈ {d1, d2} with bi(u)∈M do

6: bi(u)←⊕(M), v (ai(u))← ΓM (v(ai(u)) , bi(u))

7: let Lj+1 =∅

8: for all u∈Lj and i∈Dj do

9: let u′ = tj (u, i), add u′ to Lj+1, and set bi(u) = u′

The procedure is more precisely stated as Algorithm 1. Because distinct nodes always have

distinct states, the algorithm identifies each node with the state associated with that node. When

creating an exact BDD, we let W =∞, so that lines 3–6 of the algorithm have no effect and can

be ignored for now.

We do not actually build an exact BDD, because the state-transition graph can grow exponen-

tially with the problem size. Rather, we construct relaxed and restricted BDDs whose size can

be controlled by bounding their width. A relaxed BDD can be obtained by selecting a maximum

width W and using suitable operators ⊕, Γ in Algorithm 1 as discussed in Section 6.

We remark in passing that the resulting BDD is not necessarily reduced (Bryant 1986, Wegener

2000), meaning that a layer j may contain two or more equivalent nodes. Two nodes are equivalent

when the paths from each to t correspond to the same set of assignments to (xj, . . . , xn). In a

reduced BDD, all equivalent nodes in a layer are superimposed. Although reduced BDDs play a

key role in circuit verification and some other applications, they can be unsuitable for optimization,

because the arc lengths from equivalent nodes may differ (Hooker 2013).

We next state DP models for the three discrete optimization problems discussed earlier.

5.1. Formulating the MISP: DP Model

We present a valid DP formulation for the MISP (Bergman et al. 2012, 2014a). Let G= (V,E) be a

vertex-weighted graph with vertex weight wi for all i∈ V = {1, . . . , n}. Define Vj = {j, j+1, . . . , n},
and let N(j) = {j′ | (j, j′)∈E}∪ {j} be the neighborhood of j.

A state sj ∈ Sj is the set of vertices that can still be added to obtain an independent set, given

the vertices already selected. The transition cost from sj is wj if vertex j is selected, and otherwise

zero. Formally, the DP model is

• state spaces: Sj = 2Vj for j = 2, . . . , n, r̂= V , and t̂=∅

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 13

x1

x2

x3

x4

x5

r {1,2,3,4,5}

u1{2,3,4,5} u2 {4,5}

0 3

u3{5} u4 {3,4,5} u5 {4,5}

04 0

u6 {5} u7 {4,5}

0 2 0 0

u8{5} u9 ∅

0 2
0

t
∅

0

7
0

(a)

r {1,2,3,4,5}

{2,3,4,5} {4,5}

0 3

u′{3,4,5} {4,5}

0 4 0

{5} {4,5}
2

0
0

{5} ∅

0 2
0

t
∅

0

7
0

(b)

Figure 6 (a) Exact BDD with states for the MISP on the graph in Figure 1. (b) Relaxed BDD for the same

problem instance.

• transition functions: tj(s
j,0) = sj \ {j}, tj(s

j,1) =

{
sj \N(j) , if j ∈ sj

0̂ , if j /∈ sj

• cost functions: hj(s
j,0) = 0, hj(s

j,1) =wj

• root value: vr = 0

As an illustration, consider the MISP for the graph in Figure 1. The states associated with nodes

of BDP are shown in Figure 6(a). For example, node u1 has state {2,3,4,5}, representing the vertex

set V \ {1}. The validity of the DP formulation for the MISP is given by the following Theorem,

proved in (Bergman et al. 2014a).

Theorem 1. The DP formulation above is valid for the MISP.

5.2. Formulating the MCP: DP Model

We now formulate a DP model for the MPC. Let G = (V,E) be an edge-weighted graph, which

we can assume (without loss of generality) to be complete, because missing edges can be included

with weight 0. A natural state variable sj would be the set of vertices already placed in S, as this

is sufficient to determine the transition cost of the next choice. However, we will be interested in

merging nodes that lead to similar objective function values. We therefore let the state indicate,

for vertex j, . . . , n, the net marginal benefit of placing that vertex in T , given previous choices. We

will show that this is sufficient information to construct a DP recursion.

Formally, we specify the DP formulation as follows. As before, the control variable is xj ∈ {S,T},
indicating in which set vertex j is placed, and we set x1 =S without loss of generality. We will use

the notation (α)+ =max{α,0} and (α)− =min{α,0}.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
14 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

x1

x2

x3

x4

r (0,0,0,0)

u1 (0,1,2,-2)

-4

u2(0,0,5,-3) u3 (0,0,-1,-1)

0 4

u4(0,0,0,-4) u5(0,0,0,-2) u6 (0,0,0,0)

0 6 1 1

t

(0,0,0,0)

4

0
2 0

0

0

(a)

r (0,0,0,0)

(0,1,2,-2)

-4

u′ (0,0,0,-1)

7 5

(0,0,0,-2) (0,0,0,0)

0 1

(0,0,0,0)

2
0 0

0

(b)

Figure 7 (a) Exact BDD with states for the MCP on the graph in Figure 3. (b) Relaxed BDD for the same

problem instance.

• state spaces: Sk =
{
sk ∈R

n | skj = 0, j = 1, . . . , k− 1
}
, with root state and terminal state equal

to (0, . . . ,0)

• transition functions: tk(s
k, xk) = (0, . . . ,0, sk+1

k+1, . . . , s
k+1
n), where

sk+1
� =

{
sk� +wk�, if xk =S

sk� −wk�, if xk =T

}
, �= k+1, . . . , n

• transition cost: h1(s
1, x1) = 0 for x1 ∈ {S,T}, and

hk(s
k, xk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−skk)
+ +

∑
�>k

sk�wk�≤0

min
{
|sk� |, |wk�|

}
, if xk =S

(skk)
+ +

∑
�>k

sk�wk�≥0

min
{
|sk� |, |wk�|

}
, if xk =T

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, k= 2, . . . , n

• root value: vr =
∑

1≤j<j′≤n

(wjj′)
−

Note that the root value is the sum of the negative arc weights. The state transition is based on

the fact that if vertex k is added to S, then the marginal benefit of placing vertex � > k in T (given

choices already made for vertices 1, . . . , k− 1) is increased by wk�. If k is added to T , the marginal

benefit is reduced by wk�. Figure 7(a) shows the resulting weighted BDD for the example discussed

earlier. We have the following Theorem, proved in the Appendix.

Theorem 2. The DP formulation above is valid for the MCP.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 15

5.3. Formulating MAX-2SAT: DP Model

We suppose without loss of generality that a MAX-2SAT problem contains all 4 ·
(
n
2

)
possible

clauses, because missing clauses can be given zero weight. Thus C contains xj ∨ xk, xj ∨ ¬xk,

¬xj ∨xk and ¬xj ∨¬xk for each pair j, k ∈ {1, . . . , n} with j �= k. Let wTT
jk be the weight assigned

to xj ∨xk, w
TF
jk the weight assigned to xj ∨¬xk, and so forth.

We let each state variable sk be an array (sk1, . . . , s
k
n) in which each skj is the net benefit of setting

xj to true, given previous settings. The net benefit is the advantage of setting xj =T over setting

xj =F. Suppose, for example, that n= 2 and we have fixed x1 =T. Then x1 ∨x2 and x1 ∨¬x2 are

already satisfied. The value of x2 makes no difference for them, but setting x2 =T newly satisfies

¬x1 ∨ x2, while x2 = F newly satisfies ¬x1 ∨ ¬x2. Setting x2 = T therefore obtains net benefit

wFT
12 −wFF

12 . If x1 has not yet been assigned a truth value, then we do not compute a net benefit

for setting x2 =T. Formally, the DP formulation is as follows.

• state spaces: Sk =
{
sk ∈R

n | skj = 0, j = 1, . . . , k− 1
}
, with root state and terminal state equal

to (0, . . . ,0)

• transition functions: tk(s
k, xk) = (0, . . . ,0, sk+1

k+1, . . . , s
k+1
n), where

sk+1
� =

{
sk� +wTT

k� −wTF
k� , if xk =F

sk� +wFT
k� −wFF

k� , if xk =T

}
, �= k+1, . . . , n

• transition cost: h1(s
1, x1) = 0 for x1 ∈ {F,T}, and

hk(s
k, xk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−skk)
+ +

∑
�>k

(
wFF

k� +wFT
k� +min

{
(sk�)

+ +wTT
k� , (−sk�)

+ +wTF
k�

})
, if xk =F

(skk)
+ +

∑
�>k

(
wTF

k� +wTT
k� +min

{
(sk�)

+ +wFT
k� , (−sk�)

+ +wFF
k�

})
, if xk =T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

k= 2, . . . , n

• root value: vr = 0

Figure 8(a) shows the resulting states and transition costs for the example discussed earlier.

The validity of the DP formulation for the MAX-2SAT is given by the following Theorem, proved

in the appendix.

Theorem 3. The DP formulation above is valid for the MAX-2SAT.

6. Problem Formulation: Relaxation

The second phase of problem formulation is to specify when states can be merged, perhaps with

an adjustment in transition costs. The goal is to create a relaxed BDD that has limited width but

provides a tight bound. In the discussion to follow, we again identify each node u of a BDD with

its associated state.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
16 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

x1

x2

x3

r (0,0,0)

u1(0,0,3) u2 (0,0,-1)

9 7

u3(0,0,6) u4(0,0,2) u5 (0,0,-2)

3 8 4 7

t

0

6
0 2

2

0

Figure 8 Exact BDD with states for the MAX-2SAT problem introduced in Section 4.4.

When a layer Lj in the BDD grows too large, we heuristically select a subset M of nodes in the

layer to be merged, perhaps by choosing nodes with similar states. The state of the merged nodes

is ⊕(M), and the length v of every arc coming into a node u ∈M is modified to ΓM (v,u). The

process is repeated until |Lj | no longer exceeds the maximum width W .

A relaxed BDD is obtained by using the operators ⊕, Γ and a selection heuristic node select in

Algorithm 1, where by convention L0 =∅. The functions ⊕, Γ are valid relaxation operators if a

relaxed BDD results from applying the algorithm with any selection heuristic.

6.1. Formulating the MISP: Relaxation

For the MISP, recall that the state associated with a node is the set of vertices that can still be added

to the independent set. States are merged simply by taking their union, so that if M = {ui | i∈ I},
the merged state is ⊕(M) =

⋃
i∈I ui. The transition cost is not changed, so that ΓM (v,u) = v for

all v,u. The validity of these relaxation operators is formally proved in Bergman et al. (2014a),

but it is clear that taking the union of states does not exclude any paths and therefore results in

a relaxed BDD.

Figure 6(b) depicts a relaxed BDD for the MISP on the graph in Figure 1. Nodes u3 and u4 are

merged to obtain u′ = u3 ∪u4 = {3,4,5}, which reduces the width of the BDD to 2.

6.2. Formulating the MCP: Relaxation

In the DP model of the MCP, the current state vector sk contains numbers sk� that represent

the net benefit of adding vertex � to set T . Recall that we identify each node u ∈ Lk with the

associated state vector sk. When we merge two nodes u1 and u2, we would like the resulting

node unew = ⊕({u,u′}) to reflect the values in u and u′ as closely as possible, while resulting in

a valid relaxation. In particular, path lengths should not decrease. Intuitively, it may seem that

unew
j =max{u1

j , u
2
j} for each j is a valid relaxation operator, because increasing state values could

only increase path lengths. However, this can reduce path lengths as well. It turns out that we can

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 17

offset any reduction in path lengths by adding the absolute value of the state change to the length

of incoming arcs.

We therefore merge the nodes in M as follows. If, for a given �, the states u� have the same

sign for all nodes u∈M , we change each u� to the state with smallest absolute value, and add the

absolute value of each change to the length of arcs entering u. When the states u� differ in sign,

we change each u� to zero and again add the absolute value of the changes to incoming arcs. More

precisely, when M ⊂Lk we let

⊕(M)� =

⎧⎪⎪⎨
⎪⎪⎩

min
u∈M

{u�}, if u� ≥ 0 for all u∈M

−min
u∈M

{|u�|}, if u� ≤ 0 for all u∈M

0, otherwise

⎫⎪⎪⎬
⎪⎪⎭ , �= k, . . . , n

ΓM (v,u) = v+
∑
�≥k

(|u�| − |⊕ (M)�|) , all u∈M

(MCP-relax)

Figure 7 shows the relaxed BDD that results for the example discussed earlier if nodes u2 and u3

of the exact BDD are merged.

To show that ⊕ and Γ are valid relaxation operators, we rely on the following.

Lemma 1. Let B be an exact BDD generated by Algorithm 1 for an instance P of the MCP.

Suppose we add Δ to one state element sk� in layer k of B (�≥ k), and add |Δ| to the length of

each arc entering the node u associated with sk. If we then recompute layers k, . . . , n+ 1 of B as

in Algorithm 1, the result is a relaxed BDD for P.

Proof Let B′ the result of recomputing the BDD, and take any x̄∈ {S,T}n. It suffices to show

that the path p corresponding to x̄ is no shorter in B′ than in B. We may suppose p contains u,

because otherwise p has the same length in B and B′. Only arcs of p that leave layers Lk−1, . . . ,Ln

can have different lengths in B′. The length v(a) of the arc a leaving Lk−1 becomes v(a) + |Δ|.
The states sj� along p in B for j = k, . . . , n become sj� +Δ in B′, and all other states along p are

unchanged. Thus from the formula for transition cost, the length v(a′) of the arc a′ leaving L�

becomes at least

v(a′)+min
{
(−(s�� +Δ))+, (s�� +Δ)+

}
−min

{
(−s��)

+, (s��)
+
}

≥ v(a′)+min
{
(−s��)

+ −Δ, (s��)
+ +Δ

}
−min

{
(−s��)

+, (s��)
+
}
≥ v(a′)− |Δ|

From the same formula, the lengths of arcs leaving Lj for j > k and j �= � cannot decrease. So the

length v(p) of p in B becomes at least v(p)+ |Δ| − |Δ|= v(p) in B′. �

Theorem 4. Operators ⊕ and Γ as defined in (MCP-relax) are valid relaxation operators for

the MCP.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
18 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 2 Restricted BDD Compilation (substitute for lines 3–6 of Algorithm 1)

1: while |Lj |>W do

2: let M = state select(Lj)

3: Lj ←Lj \M

Proof We can achieve the effect of Algorithm 1 if we begin with the exact BDD, successively

alter only one state sk� and the associated incoming arc lengths as prescribed by (MCP-relax), and

compute the resulting exact BDD after each alteration. We begin with states in L2 and work down

to Ln. In each step of this procedure, we increase or decrease sk� = u� by δ = |u�| − | ⊕ (M)�| for
some M ⊂ Lk, where ⊕(M)� is computed using the states that were in Lk immediately after all

the states in Lk−1 were updated. We also increase the length of arcs into u� by δ. So we can let

Δ=±δ in Lemma 1 and conclude that each step of the procedure yields a relaxed BDD. �

6.3. Formulating MAX-2SAT: Relaxation

The interpretation of states is very similar for the MCP and MAX-2SAT. We therefore use the

same relaxation operators (MCP-relax). The proof of their validity for MAX-2SAT is analogous to

the proof of Theorem 4.

Theorem 5. Operators ⊕ and Γ as defined in (MCP-relax) are valid relaxation operators for

MAX-2SAT.

7. Building Restricted BDDs

Restricted BDDs can be constructed in a much simpler way than relaxed BDDs. We need only

eliminate nodes from a layer when the layer becomes too large (Bergman et al. 2014b). Given a

valid DP formulation of a discrete optimization problem, Algorithm 1 constructs a restricted BDD

when lines 3–6 are replaced by Algorithm 2. Condition (Res-1) for a restricted BDD is satisfied

because the algorithm only deletes solutions, and furthermore, since the algorithm never modifies

the states of any nodes that remain, condition (Res-2) must also be satisfied.

We present examples for each of the problems discussed in this paper. For the MISP, Figure 2(c)

shows a restricted BDD created by deleting node u3 in the exact BDD in Figure 6(a). For the

MCP, Figure 4(c) shows a restricted BDD created by deleting node u2 from the exact BDD in

Figure 7(a). And finally, for MAX2SAT, Figure 5(c) shows a restricted BDD created by deleting

node u4 in the exact BDD in Figure 8.

8. Branch and Bound

We now present a BDD-based branch-and-bound algorithm. We first define the notion of exact and

relaxed nodes and indicate how they can be identified. Then, given a relaxed BDD, we describe a

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 19

x1

x2

x3

x4

x5

r

E

ū1

E
ū2

E

0 3

ū3R ū4 E

0 4 0

ū5R ū6 R

0
2 0

ū7

R

ū8

R

0 2
0

t

R

0

7
0

(a)

ū1

v(ū1) = 0

0 + 0 0 + 4

0
2

0

2
0

0

t
0

0

7

(b)

ū4

v(ū4) = 3

3+0

2 0

t
0

0

7

(c)

Figure 9 (a) Relaxed BDD for the MISP on the graph in Figure 1 with nodes labeled as exact (E) or relaxed

(R); (b) exact BDD for subproblem corresponding to ū1; (c) exact BDD for subproblem corresponding

to ū4.

technique that partitions the search space so that relaxed/restricted BDDs can be used to bound

the objective function for each subproblem. Finally, we present the branch-and-bound algorithm.

For a given BDD B and nodes u,u′ ∈ B where layers satisfy �(u) < �(u′), we let Buu′ be the

BDD induced by the nodes that lie on directed paths from u to u′ (with the same arc-domains and

arc-cost as in B). In particular, Brt =B.

8.1. Exact Cutsets

The branch-and-bound algorithm is based on enumerating subproblems defined by nodes in an

exact cutset. To develop this idea, let B̄ be a relaxed BDD created by Algorithm 1 using a valid

DP model of binary optimization problem P. We say that a node ū in B̄ is exact if all r–ū paths

in B̄ lead to the same state sj. A cutset of B̄ is a subset S of nodes of B̄ such that any r–t path

of B̄ contains at least one node in S. We call a cutset exact if all nodes in S are exact.

As an illustration, Figure 9(a) duplicates the relaxed BDD B̄ from Figure 2 and labels the nodes

labeled exact (E) or relaxed (R). Node ū4 in B̄ is an exact node because all incoming paths (there

is only one) lead to the same state {4,5}. Node ū3 is relaxed because the two incoming paths

represent partial solutions (x1, x2) = (0,0) and (0,1) that lead to different states, namely {3,4,5}
and {5}, respectively. Nodes ū1 an ū4 form one possible exact cutset of B̄.

We now show that an exact cutset provides an exhaustive enumeration of subproblems. If B is

an exact BDD for binary optimization problem P, and let v∗(Buu′) be the length of a longest u–u′

path in B. For a node u in B, we define P|u to be the restriction of P whose feasible solutions

correspond to r–t paths of B that contain u. Recall that z∗(P) is the optimal value of P.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
20 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Lemma 2. If B is an exact BDD for P, then for any node u in B,

v∗(Bru)+ v∗(But) = z∗(P|u)

Proof z∗(P|u) is the length of a longest r–t path of B that contains u, and any such path has

length v∗(Bru)+ v∗(But). �

Theorem 6. Let B̄ be a relaxed BDD created by Algorithm 1 using a valid DP model of binary

optimization problem P, and let S be an exact cutset of B̄. Then

z∗(P) =max
u∈S

{z∗(P|u)}

Proof Let B be the exact BDD for P created using the same DP model. Because each node

ū ∈ S is exact, it has a corresponding node u in B (i.e., a node associated with the same state),

and S is a cutset of B. Thus

z∗(P) =max
u∈S

{v∗(Bru)+ v∗(But)}=max
u∈S

{P|u}

where the second equation is due to Lemma 2. �

8.2. Enumeration of Subproblems

We solve a binary optimization problem P by a branching procedure in which we enumerate a

set of subproblems P|u each time we branch, where u ranges over the nodes in an exact cutset of

the current relaxed BDD. We build a relaxed BDD and a restricted BDD for each subproblem to

obtain upper and lower bounds, respectively.

Suppose u is one of the nodes on which we branch. Because u is an exact node, we have already

constructed an exact BDD Bru down to u, and we know the length v∗(u) = v∗(Bru) of a longest

path in Bru. We can obtain an upper bound on z∗(P|u) by computing a longest path length v∗(But)

in a relaxed BDD B̄ut with root value v∗(u). To build the relaxation B̄ut, we start the execution

of Algorithm 1 with j = �(u) (i.e. j equals the layer index of u) and root node u, where the root

value is vr = v∗(u). We can obtain a lower bound on z∗(P|u) in a similar fashion, except that we

use a restricted rather than a relaxed BDD.

The branch-and-bound algorithm is presented in Algorithm 3. We begin with a set Q= {r} of

open nodes consisting of the initial state r of the DP model. Then, while open nodes remain, we

select a node u from Q. We first obtain a lower bound on z∗(P|u) by creating a restricted BDD

B′
ut as described above, and we update the incumbent solution zopt. If B

′
ut is exact (i.e., |Lj| never

exceeds W in Algorithm 2), there is no need for further branching at node u. This is analogous

to obtaining an integer solution in traditional branch and bound. Otherwise we obtain an upper

bound on z∗(P|u) by building a relaxed BDD B̄ut as described above. If we cannot prune the search

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 21

Algorithm 3 Branch-and-Bound Algorithm

1: initialize Q= {r}, where r is the initial DP state

2: let zopt =−∞, v∗(r) = 0

3: while Q �=∅ do

4: u← select node(Q), Q←Q \ {u}
5: create restricted BDD B′

ut using Algorithm 1 with root u and vr = v∗(u)

6: if v∗(But)> zopt then

7: zopt ← v∗(B′)

8: if B′
ut is not exact then

9: create relaxed BDD B̄ut using Algorithm 1 with root u and vr = v∗(u)

10: if v∗(B̄ut)> zopt then

11: let S be an exact cutset of B̄ut

12: for all u′ ∈ S do

13: let v∗(u′) = v∗(u)+ v∗(B̄uu′), add u′ to Q

14: return zopt

using this bound, we identify an exact cutset S of B̄ut and add the nodes in S to Q. Because S

is exact, for each u′ ∈ S we know that v∗(u′) = v∗(u)+ v∗(B̄uu′). The search terminates when Q is

empty, at which point the incumbent solution is optimal by Theorem 6.

As an example, consider again the relaxed BDD B̄ in Figure 9(a). The longest path length in this

graph is v∗(B̄) = 13, an upper bound on the optimal value. Suppose that we initially branch on the

exact cutset {ū1, ū4}, for which we have v(ū1) = 0 and v(ū4) = 3. We wish to generate restricted and

relaxed BDDs of maximum width 2 for the subproblems. Figure 9 (b) shows a restricted BDD B̄ū1t

for the subproblem at ū1, and Figure 9 (c) shows a restricted BDD B̄ū4t for the other subproblem.

As it happens, both BDDs are exact, and so no further branching is necessary. The two BDDs

yield bounds v∗(B̄ū1t) = 11 and v∗(B̄ū4t) = 10, respectively, and so the optimal value is 11.

8.3. Selecting an Exact Cutset

Given a relaxed BDD, there are many exact cutsets. Here we present three such cutsets and

experimentally evaluate them in Section 10.

• Traditional branching (TB). Branching normally occurs by selecting some variable xj and

branching on xj = 0/1. Using the exact cutset S = L2 has the same effect. Traditional branching

therefore uses the shallowest possible exact cutset for some variable ordering.

• Last exact layer (LEL). For a relaxed BDD B̄, define the last exact layer of B̄ to be the set

of nodes LEL(B̄) =Lj′ , where j′ is the maximum value of j for which each node in Lj is exact. In

the relaxed BDD B̄ of Figure 9(a), LEL(B̄) = {ū1, ū2}.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
22 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

• Frontier cutset (FC). For a relaxed BDD B̄, define the frontier cutset of B to be the set of

nodes

FC(B̄) =
{
u in B̄ | u is exact and b0(u) or b1(u) is relaxed

}
In the example of Figure 9(a), FC(B̄) = {ū1, ū4}. A frontier cutset is an exact cutset, due to the

following.

Lemma 3. If B̄ is a relaxed BDD that is not exact, then FC(B̄) is an exact cutset.

Proof By the definition of a frontier cutset, each node in the cutset is exact. We need only show

that each solution x ∈ Sol(B̄) contains some node in FC(B̄). But the path p corresponding to x

ends at t, which is relaxed because B̄ is not exact. Since the root r is exact, there must be a first

relaxed node u in p. The node immediately preceding this node in p is in FC(B̄), as desired. �

9. Modeling Advantages

The recursive formulation of BDD-based models provides a good deal of modeling flexibility,

because there is no need for linear, convex, or inequality-based formulations. Any objective function

or side constraint that can expressed in terms of the current state and control can be modeled,

either in closed form or by subroutine call. While the three problems discussed above already have

simple and obvious IP models, they were deliberately chosen for this reason, as it makes comparison

with IP more straightforward. In other cases, a recursive formulation can provide a natural model

when there is no obvious IP formulation.

Sequencing problems provide good examples. In a simple one-machine scheduling problem, for

instance, each job � has processing time time p� and deadline d�, where the objective is to minimize

total tardiness. At least six IP models have been proposed for the problem, surveyed by Baker and

Keller (2010). However, there is a natural recursive model that accommodates a variety of side

constraints with no convenient IP formulation. The control variable xj is the jth job processed (so

that there is no need for 0-1 variables). This results in a multivalued decision diagram (MDD) in

which the state (Si, fi) associated with each node ui on level j consists of the set Si of jobs so far

processed and the finish time fj of the last job processed so far. The arcs leaving ui correspond to

the vertices not in Si. Selecting xj = � effects a transition from (Si, fi) to (Si ∪ {�}, fi + p�), and

the corresponding arc cost is the tardiness t� =max{0, fi + p� − d�} of job �. Merging nodes with

states (Si, fi) and (Sk, fk) in a relaxed MDD yields state (Si ∩ Sk,min{fi, fk}), where fi is now

interpreted as the earliest finish time. Recursive MDD-based models similar to this have achieved

excellent computational results for several sequencing problems (Andersen et al. 2007, Cire and

van Hoeve 2013).

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 23

The recursive model readily accommodates any side constraint or objective function that can be

defined in terms of (Si, fi) and xj. For example, we can shut down the machine for maintenance in

the interval [a, b] by transitioning from finish time state fi to state fi + p� + b− a, rather than to

fi+p�, when a−p� ≤ fi < b. Release times are also easily enforced. In addition, processing job � may

require that certain components already have been fabricated in the processing of previous jobs.

We simply exclude the control xj = � when the jobs in Si do not yield the necessary components.

Such side constraints actually make the problem easier by simplifying the MDD. A wide variety

of objective functions are also possible. For example, the cost of processing job � may depend on

which jobs have already been processed, perhaps again due to common components. We can let

the cost associated with control xj = � be any desired function c�(Si), perhaps evaluated by table

lookup. Or cost could be an arbitrary function c�(t�) of tardiness, such as a step function, or a

function of both Si and fi.

Another modeling illustration is provided by the minimum bandwidth and linear arrangement

problems, both of which are defined on an undirected graph G= (V,E) of n vertices. The minimum

bandwidth problem assigns distinct positions yj ∈ {1, . . . , n} to the vertices j so as to minimize

max(j,k)∈E{zjk}, where zjk = |yj − yk| is the label assigned to edge (j, k). The linear arrangement

problem differs only in its objective function, which is to minimize
∑

(j,k)∈E{zjk}. It is not obvious
how to write IP models for these problems, and Caprara et al. (2011) observe that no useful IP

models are known. A recursive model, however, can be formulated as follows. The control variables

are the edge labels zjk (plus variable y1 corresponding to the root node of the MDD). The state at

an MDD node on the layer corresponding to zjk is a tuple (D1, . . . ,Dn), where Dj is the current

domain of yj. At the root node, each Dj = {1, . . . , n}. The arcs leaving a given node in layer zjk of

the MDD correspond to all values of |�− �′| for which (�, �′) ∈Dj ×Dk. In the linear arrangement

problem, the cost on an arc is simply the corresponding value z̄jk assigned to zjk. The arc leads to

state (D′
1, . . . ,D

′
n), where D

′
j contains all positions in Dj that have distance z̄jk from some position

in Dk, and similarly for D′
k. Also, D′

i =Di for i �= j, k. The minimum bandwidth problem is only

slightly different, as it seeks the r–t path with the smallest maximum arc cost, rather than simply

the shortest path. We therefore add a state variable c representing the largest cost so far, so that

the arc cost is z̄jk if z̄jk > c and zero otherwise. A variety of side constraints can be enforced, as

in other sequencing problems. In the relaxed MDD, states (D1, . . . ,Dn, c) and (D′
1, . . . ,D

′
n, c

′) are

merged to yield (D1∪D′
1, . . . ,Dn∪D′

n,min{c, c′}). A good deal of domain reduction is also possible.

In general, an MDD-based model requires that an overall recursive structure be identified, which

is not necessary for an IP model. However, once the recursion is specified, a wide variety of con-

straints and objectives can be easily expressed in terms of the control and state variables. The

availability of state-dependent objective functions is a particularly powerful feature. Furthermore,

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
24 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

an MDD model allows one to identify and exploit recursive structure, which can be an advantage

over an IP model. The recursion also indicates a natural variable ordering for branching, informa-

tion that an IP model ordinarily does not provide. One must design the node merger mechanism

carefully to obtain a good MDD relaxation, but one must likewise formulate an IP model carefully

to obtain a good linear relaxation, perhaps by reformulation or addition of redudant constraints

and auxiliary variables. In sum, MDD-based optimization provides the modeling flexibility of a

dynamic programming formulation without the burden of enumerating the exponential state space

that often results from such a formulation.

10. Computational Results

Since we propose BDD-based branch-and-bound as a general discrete optimization method, it is

appropriate to measure it against an existing general-purpose method. We compared BDDs with a

state-of-the-art IP solver, inasmuch as IP is generally viewed as the most highly-developed general-

purpose solution technology for discrete optimization.

Like IP, a BDD-based method requires several implementation decisions, chief among which are

the following:

• Maximum width: Wider relaxed BDDs provide tighter bounds but require more time to build.

For each subproblem in the branch-and-bound procedure, we set the maximum width W equal to

the number of variables whose value has not yet been fixed.

• Node selection for merger: The selection of the subsetM of nodes to merge during the construc-

tion of a relaxed BDD (line 4 of Algorithm 1) likewise affects the quality of the bound (Bergman

et al. 2011, 2012, 2014b). We use the following heuristic. After constructing each layer Lj of the

relaxed BDD, we rank the nodes in Lj according to a rank function rank(u) that is specified in the

DP model with the state merging operator ⊕. We then let M contain the lowest-ranked |Lj | −W

nodes in Lj.

• Variable ordering: Much as branching order has a significant impact on IP performance, the

variable ordering chosen for the layers of the BDD can affect branching efficiency and the tightness

of the BDD relaxation. Previous works have shown that this order can be crucial for the effectiveness

of BDD techniques for discrete optimization problem (Bergman et al. 2012). We describe below

the variable ordering heuristics we used for the three problem classes.

• Search node selection: We must also specify the next node in the set Q of open nodes to be

selected during branch and bound (Algorithm 3). We select the node u with the minimum value

v∗(u).

The tests were run on an Intel Xeon E5345 with 8GB RAM. The BDD-based algorithm was

implemented in C++. The commercial IP solver CPLEX 12.4 was used for comparison. Default

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 25

settings, including presolve, were used for CPLEX unless otherwise noted. No presolve routines

were used for the BDD-based method.

10.1. Results for the MISP

The MISP is a problem thoroughly studied in the optimization literature, with several dedicated

exact approaches mostly based on enumeration of maximal subcliques or that exploit graph struc-

ture, such as those presented in Carraghan and Pardalos (1990), Östergärd (2002), Tomita and

Kameda (2007).

We first specify the key elements of the algorithm that we used for the MISP. Node selection

for merger is based on the rank function rank(u) = v∗(u). We used the variable ordering heuristic

in Bergman et al. (2014a): after selecting the first j− 1 variables and forming layer Lj , we choose

vertex j as the vertex that belongs to the fewest number of states in Lj . We used FC cutsets for

all MISP tests.

For graph G= (V,E), a standard IP model for the MISP is

max

{∑
i∈V

xi

∣∣∣∣∣xi +xj ≤ 1, all (i, j)∈E; xi ∈ {0,1}, all i∈ V

}
(1)

A tighter linear relaxation can be obtained by pre-computing a clique cover C of G and using the

model

max

{∑
i∈S

xi

∣∣∣∣∣xi ≤ 1, all S ∈ C; xi ∈ {0,1}, all i∈ V

}
(2)

We refer to this as the tight MISP formulation. The clique cover C is computed using a greedy

procedure as follows. Starting with C =∅, let clique S consist of a single vertex v with the highest

positive degree in G. Add to S the vertex with highest degree in G \ S that is adjacent to all

vertices in S, and repeat until no more additions are possible. Notice that, by construction, S is

a maximal clique (inclusion-wise). At this point, add S to C, remove from G all the edges of the

clique induced by S, update the vertex degrees, and repeat the overall procedure until G has no

more edges.

We begin by reporting results on randomly generated graphs. We generated random graphs with

n∈ {250,500, . . . ,1750} and density p∈ {0.1,0.2, . . . ,1} (10 graphs per n,p configuration) according

to the Erdös-Rényi model G(n,p) (where each edge appears independently with probability p).

Figure 10 depicts the results. The solid lines represent the average percent gap for the BDD-

based technique after 1800 seconds, one line per value of n, and the dashed lines depict the same

statistics for the integer programming solver using the tighter, clique model, only. The average gap

is computed by taking into account the upper and lower bounds that each method obtained when

time limit was reached. It is clear that the BDD-based algorithm outperforms CPLEX on dense

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
26 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 P
er

ce
nt

 G
ap

Density

250-CPLEX
250-BDD

500-CPLEX
500-BDD

750-CPLEX
750-BDD

1000-CPLEX
1000-BDD

1250-CPLEX
1250-BDD

1500-CPLEX
1500-BDD

1750-CPLEX
1750-BDD

Figure 10 Average percent gap on randomly generated MISP instances.

graphs, solving all instances tested with density 80% or higher, and solving almost all instances,

except for the largest, with density equal 70%, whereas the integer programming solver could not

close any but the smallest instances (with n= 250) at these densities.

CPLEX outperformed the BDD technique for the sparsest graphs (with p= 10), but only for the

small values of n. As n grows, we see that the BDD-based algorithm starts to outperform CPLEX,

even on the sparsest graphs, and that the degree to which the ending percent gaps increase as n

grows is more substantial for CPLEX than it is for the BDD-based algorithm.

We also tested on the 87 instances of the maximum clique problem in the well-known DIMACS

benchmark set (http://cs.hbg.psu.edu/txn131/clique.html). The MISP is equivalent to the maxi-

mum clique problem on the complement of the graph.

Figure 11 shows a time profile comparing BDD-based optimization with CPLEX performance for

the standard and tight IP formulations. The BDD-based algorithm is superior to the standard IP

formulation but solved 4 fewer instances than the tight IP formulation after 30 minutes. However,

fewer than half the instances were solved by any method. The relative gap (upper bound divided

by lower bound) for the remaining instances therefore becomes an important factor. A comparison

of the relative gap for BDDs and the tight IP model appears in Fig. 11(b), where the relative

gap for CPLEX is shown as 10 when it found no feasible solution. Points above the diagonal are

favorable to BDDs. It is evident that BDDs tend to provide significantly tighter bounds. There are

several instances for which the CPLEX relative gap is twice the BDD gap, but no instances for

which the reverse is true. In addition, CPLEX was unable to find a lower bound for three of the

largest instances, while BDDs provided bounds for all instances.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 27

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800

nu
m

be
r

so
lv

ed

time (s)

BDD
CPLEX-TIGHT

CPLEX 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

ga
p

ra
tio

 (
C

P
LE

X
-T

IG
H

T
)

gap ratio (BDD)

Gap Ratio (UB/LB) Comparison

(a) (b)

Figure 11 Results on 87 MISP instances for BDDs and CPLEX. (a) Number of instances solved versus time for

the tight IP model (top line), BDDs (middle), standard IP model (bottom). (b) End gap comparison

after 1800 seconds.

10.2. Results for the MCP

The state-of-the-art exact dedicated approaches for the MCP are based on special semidefinite

relaxations incorporated into branch-and-bound algorithms, such as the BiqMac solver (Rendl

et al. 2010) and the BiqCrunch solver (Krislock et al. 2014).

We generated random instances of the MCP as follows. For n ∈ {30,40,50} and p ∈
{0.1,0.2, . . . ,1}, we again generated random graphs (10 per n,p configuration). The weights of the

edges generated were drawn uniformly from [−1,1].

We let the rank of a node u∈Lj associated with state sj be

rank(u) = v∗(u)+
n∑

�=j

∣∣sj�∣∣
We considered a lexicographically variable ordering in this case, i.e. variables were ordered according

to the order they were given in the input file.

A traditional IP formulation of the MCP introduces a 0–1 variable yij for each edge (i, j)∈E to

indicate whether this edge crosses the cut. The formulation is

min

⎧⎨
⎩

∑
(i,j)∈E

wijyij

∣∣∣∣∣∣
{
yij + yik + yjk ≤ 2
yij + yik ≥ yjk

}
all i, j, k ∈ {1, . . . , n}; yij ∈ {0,1},all (i, j)∈E

⎫⎬
⎭

We first consider instances with n = 30 vertices, all of which were solved by both BDDs and

IP within 30 minutes. Figure 12 shows average solution time for CPLEX and the BDD-based

algorithm, using both LEL and FC cutsets for the latter. We tested CPLEX with and without

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
28 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

 0

 50

 100

 150

 200

 250

 300

 350

 0.2 0.4 0.6 0.8 1

tim
e

(s
)

density

Average Run-Time for Random MCP Instances (n=30)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

Figure 12 Average solution time for MCP instances (n= 30 vertices) using BDDs (with LEL and FC cutsets)

and CPLEX (with and without presolve). Each point is the average of 10 random instances.

 0

 2

 4

 6

 8

 10

 0.2 0.4 0.6 0.8 1

nu
m

be
r

so
lv

ed

density

Number of MCP Instances Solved in 60 Seconds (n=40)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

 0

 2

 4

 6

 8

 10

 0.2 0.4 0.6 0.8 1

nu
m

be
r

so
lv

ed

density

Number of MCP Instances Solved in 1800 Seconds (n=40)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

Figure 13 Number of MCP instances with n= 40 vertices solved after 60 seconds (left) and 1800 seconds (right),

versus graph density, using BDDs (with LEL and FC cutsets) and CPLEX (with and without presolve).

presolve because presolve reduces the model size substantially. We find that BDDs with either type

of cutset are substantially faster than CPLEX, even when CPLEX uses presolve. In fact, the LEL

solution time for BDDs is scarcely distinguishable from zero in the plot. The advantage of BDDs

is particularly great for denser instances.

Results for n = 40 vertices appear in Figure 13. BDDs with LEL are consistently superior to

CPLEX, solving more instances after 1 minute and after 30 minutes. In fact, BDD solved all but

one of the instances within 30 minutes, while CPLEX with presolve left 17 unsolved.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 29

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 1 10 100 1000

nu
m

be
r

so
lv

ed

time (s)

Number of Random MCP Instances Solved (n=50)

BDD (LEL)
BDD (FC)

IP (no presolve)
IP (with presolve)

 0

 100

 200

 300

 400

 500

 0.2 0.4 0.6 0.8 1

pe
rc

en
t g

ap

density

Average Percent Gap after 1800 Seconds for Random MCP Instances (n=50)

BDD (LEL)
BDD (FC)

IP (presolve-off)
IP (presolve-on)

(a) (b)

Figure 14 (a) Time profile for 100 MCP instances with n = 50 vertices, comparing BDDs (with LEL and FC

cutsets) and CPLEX (with and without presolve). (b) Percent gap versus density after 1800 seconds,

where each point is the average over 10 random instances.

Figure 14(a) shows time profiles for 100 instances with n= 50 vertices. The profiles for CPLEX

(with presolve) and BDDs (with LEL) are roughly competitive, with CPLEX marginally better for

larger time periods. However, none of the methods could solve even a third of the instances, and so

the gap for the remaining instances becomes important. Figure 14(b) shows that the average percent

gap (i.e., 100(UB−LB)/LB) is much smaller for BDDs on denser instances, and comparable on

sparser instances, again suggesting greater robustness for a BDD-based method relative to CPLEX.

In view of the fact that CPLEX benefits enormously from presolve, it is conceivable that BDDs

could likewise profit from a presolve routine.

We also tested the algorithm on the g-set, a classical benchmark set, created by the authors

in Helmberg and Rendl (2000), which has since been used extensively for computational testing

on algorithms designed to solve the MCP. The 54 instances in the benchmark set are large, each

having at least 800 vertices. The best known (BK) upper and lower bounds were obtained from

Festa et al. (2002) and Shylo et al. (2012), respectively. The results appear in Table 1 only for those

instances for which the BDD-based algorithm was able to improve upon the best known objective

gaps. For this experiment, we used a BDD width of 100,000 and a time limit of 3,600 seconds. For

the instances with 1% density or more, the objective gap provided by the BDD-based algorithm

is about an order-of-magnitude worse than the best known objective gaps, but for these instances

(which are among the sparsest), we are able to improve on the best known gaps through proving

tighter relaxation bounds and identifying better solutions than have ever been found.

The first column provides the name of the instance. The instances are ordered by density, with

the sparsest instances reported appearing at the top of the table. We then present the upper bound

(UB) and lower bound (LB), after one hour of computation time, for the BDD-based algorithm,

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
30 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

follow by the best known (BK) upper bound and lower bound that we could find in the literature.

In the final columns, we record the previously best known percent gap and the new percent gap,

where the decrease is due to the improvements from the BDD-based algorithm. Finally, we present

the reduction in percent gap obtained.

For four instances (g50, g33, g11, and g12) better upper bounds were proven than were previously

known, reducing the best known upper bound by 82.44%, 0.71%, 95.24%, and 7.69%, respectively.

For these instances, the reduction in the percent gap is shown in the last column. Most notably,

for g50 and g11, the objective gap was significantly tightened (82.44 and 95.24 percent reduction,

respectively). As the density grows, however, the BDD-based algorithm is not able to compete

with other state-of-the-art techniques, yielding substantially worse solutions and relaxation bounds

than the best known values.

We note here that the BDD-based technique is a general branch-and-bound procedure, whose

application to the MCP is only specialized through the DP model that is used to calculate states

and determine transition costs. This general technique was able to improve upon best known

solutions obtained by heuristics and exact techniques specifically designed to solve the MCP. And

so, although the technique is unable to match the best known objective function bounds for all

instances, identifying best known solution via this general purpose technique is an indication of

the power of the algorithm.

Table 1 G-Set Computational Results

Instance BDD(UB) BDD(LB) BK(UB) BK(LB) BK(%gap) NewBK(%gap) %ReductionInGap

g50 5899 5880 5988 5880 1.84 0.32 82.44
g33 1536 1380 1537 1382 11.22 11.14 0.71
g11 567 564 627 564 11.17 0.53 95.24
g12 616 556 621 556 11.69 10.79 7.69

10.3. Results for MAX-2SAT

There has been a significant interest in tackling maximum satisfiability problems in the literature,

with a number of dedicated approaches and empirical work. Most of existing techniques are based

on identifying variables that must be fixed (local consistency) and special search techniques, such

as restarts. A survey on existing methods can be found in Morgado et al. (2013).

For the MAX-2SAT problem, we created random instances with n∈ {30,40} variables and density

d∈ {0.1,0.2, . . . ,1}. We generated 10 instances for each pair (n,d), with each of the 4 ·
(
n
2

)
possible

clauses selected with probability d and, if selected, assigned a weight drawn uniformly from [1,10].

We used the same rank function as for the MCP, and we ordered the variables in ascending order

according to the total weight of the clauses in which the variables appear.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 31

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

nu
m

be
r

so
lv

ed

time (s)

Number of Random MAX2SAT Instances Solved (n=30)

BDD (LEL)
BDD (FC)

IP (no presolve)
IP (with presolve)

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000 10000

nu
m

be
r

so
lv

ed

time (s)

Number of Random MAX2SAT Instances Solved (n=40)

BDD (LEL)
BDD (FC)

IP (no presolve)
IP (with presolve)

Figure 15 Time profile for 100 MAX-2SAT instances with n = 30 variables (left) and n = 40 variables (right),

comparing BDDs (with LEL and FC cutsets) and CPLEX (with and without presolve).

We formulated the IP using a standard model. Let clause i contain variables xj(i) and xk(i). Let

xi
j be xj if xj is posited in clause i, and 1− xj if xj negated. Let δi be a 0-1 variable that will be

forced to 0 if clause i is unsatisfied. Then if there are m clauses and wi is the weight of clause i,

the IP model is

max

{
m∑
i=1

wiδi

∣∣∣∣∣xi
j(i) +xi

k(i) +(1− δi)≥ 1,all i; xj, δi ∈ {0,1}, all i, j
}

Figures 15 shows the time profiles for the two size classes. BDDs with LEL are clearly superior to

CPLEX for n= 30. When n= 40, BDDs prevail over CPLEX as the available solving time grows.

In fact, BDDs solve all but 2 of the instances within 30 minutes, while CPLEX leaves 17 unsolved

using no presolve, and 22 unsolved using presolve.

11. Conclusion

We presented a new branch-and-bound optimization method in which decision diagrams provide

discrete relaxations, a primal heuristic, and a framework for branching. The method uses a dynamic

programming formulation of the problem and therefore has no need of an inequality model, even

though it does not solve the problem with dynamic programming. The branching scheme enumer-

ates pools of partial solution rather than individual assignments of values to variables.

A general optimization method cannot be fully evaluated, nor its potential fully realized, with-

out a significant period of experimentation and development. Integer programming, for example,

evolved over decades, during which it improved by several orders of magnitude. Nonetheless, our

initial experience suggests that a prototype BDD-based solver is competitive with, or superior to,

the latest integer programming technology on three problem classes that are readily formulated for

an integer solver.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
32 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Unlike integer programming, the BDD-based method described here has no obvious extension

to continuous variables, and it requires that problems be modeled as a dynamic programming

recursion. On the other hand, it has no need of integer variables or linear constraints, and the

problem formulation may allow one to take advantage of structure that cannot be exploited in

other modeling regimes. It may provide an alternative approach to problems with huge inequality

models, including models that are too large to load into a linear programming solver. BDDs can

also work alongside integer programming by supplying additional upper and lower bounds and

even a framework for branching.

Several research questions remain. One is whether the advantage of BDDs is greater on problems

that are difficult to model for linear integer programming, such as minimum bandwidth problems or

quadratic assignment problems. A second is whether modeling flexibility can be usefully extended

by nonserial dynamic programming formulations, as suggested by Hooker (2013). Finally, one might

ask whether BDD methods can be profitably adapted to stochastic problems, perhaps along the

lines of Sanner and McAllester (2005), or even to continuous optimization.

References

Akers, S. B. 1978. Binary decision diagrams. IEEE Transactions on Computers C-27 509–516.

Andersen, H. R., T. Hadžić, J. N. Hooker, P. Tiedemann. 2007. A constraint store based on multivalued

decision diagrams. C. Bessière, ed., Principles and Practice of Constraint Programming (CP 2007),

Lecture Notes in Computer Science, vol. 4741. Springer, 118–132.

Baker, K. R., B. Keller. 2010. Solving the single-machione sequencing problem using integer programming.

Computers and Industrial Engineering 59 730–735.

Balasundaram, B., S. Butenko, I. V. Hicks. 2011. Clique relaxations in social network analysis: The maximum

k-plex problem. Operations Research 59 133–142.

Baldacci, R., A. Mingozzi, R. Roberti. 2012. New state-space relaxations for solving the traveling salesman

problem with time windows. INFORMS Journal on Computing 24 356–371.

Becker, B., M. Behle, F. Eisenbrand, R. Wimmer. 2005. BDDs in a branch and cut framework. S. Nikoletseas,

ed., Experimental and Efficient Algorithms, Proceedings of the 4th International Workshop on Efficient

and Experimental Algorithms (WEA 05), Lecture Notes in Computer Science, vol. 3503. Springer,

452–463.

Behle, M., F. Eisenbrand. 2007. 0/1 vertex and facet enumeration with BDDs. Proceedings of the Workshop

on Algorithm Engineering and Experiments (ALENEX). SIAM, 158–165.

Bergman, D., A. A. Cire, W.-J. van Hoeve, J. N. Hooker. 2012. Variable ordering for the application of

BDDs to the maximum independent set problem. Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems (CPAIOR 2012), LNCS , vol. 7298. Springer,

34–49.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 33

Bergman, D., W.-J. van Hoeve, J. N. Hooker. 2011. Manipulating MDD relaxations for combinatorial

optimization. Proceedings of CPAIOR, LNCS , vol. 6697. 20–35.

Bergman, David, Andre A. Cire, Willem-Jan van Hoeve, J. N. Hooker. 2014a. Optimization bounds from

binary decision diagrams. INFORMS Journal on Computing 26 253–268.

Bergman, David, Andre A. Cire, Willem-Jan van Hoeve, Tallys Yunes. 2014b. Bdd-based heuristics for

binary optimization. Journal of Heuristics 20 211–234.

Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers C-35 677–691.

Caprara, A., A. N. Letchford, J-J. Salazar-González. 2011. Decorous lower bounds for minimum linear

arrangement. INFORMS Journal on Computing 23 26–40.

Carraghan, Randy, Panos M. Pardalos. 1990. An exact algorithm for the maximum clique problem. Oper.

Res. Lett. 9 375–382.

Christofides, N., A. Mingozzi, P. Toth. 1981. State-space relaxation procedures for the computation of bounds

to routing problems. Networks 11 145–164.

Cire, Andre A., Willem-Jan van Hoeve. 2013. Multivalued Decision Diagrams for Sequencing Problems.

Operations Research 61 1411–1428.

Eblen, J. D., C. A. Phillips, G. L. Rogers, M. A. Langston. 2011. The maximum clique enumeration problem:

Algorithms, applications and implementations. Proceedings of the 7th international conference on

Bioinformatics research and applications . ISBRA’11, Springer-Verlag, Berlin, Heidelberg, 306–319.

Edachery, J., A. Sen, F. J. Brandenburg. 1999. Graph clustering using distance-k cliques. Proceedings of

Graph Drawing , LNCS , vol. 1731. Springer-Verlag, 98–106.

Festa, P., P. M. Pardalos, M. G. C. Resende, C. C. Ribeiro. 2002. Randomized heuristics for the max-cut

problem. Optimization Methods and Software 7 1033–1058.

Fischetti, Matteo, Domenico Salvagnin. 2010. Pruning moves. INFORMS Journal on Computing 22 108–119.

Hadžić, T., J. N. Hooker. 2006. Postoptimality analysis for integer programming using binary decision

diagrams. Tech. rep., Carnegie Mellon University.

Hadžić, T., J. N. Hooker. 2007. Cost-bounded binary decision diagrams for 0-1 programming. E. Loute,

L. Wolsey, eds., CPAIOR 2007 Proceedings , Lecture Notes in Computer Science, vol. 4510. Springer,

84–98.

Hadžić, T., J. N. Hooker, B. O’Sullivan, P. Tiedemann. 2008a. Approximate compilation of constraints into

multivalued decision diagrams. P. J. Stuckey, ed., Principles and Practice of Constraint Programming

(CP 2008), Lecture Notes in Computer Science, vol. 5202. Springer, 448–462.

Hadžić, T., J. N. Hooker, P. Tiedemann. 2008b. Propagating separable equalities in an MDD store. L. Perron,

M. A. Trick, eds., CPAIOR 2008 Proceedings , Lecture Notes in Computer Science, vol. 5015. Springer,

318–322.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
34 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

Hager, W. W., Y. Krylyuk. 1999. Graph partitioning and continuous quadratic programming. SIAM Journal

on Discrete Mathematics 12 500–523.

Helmberg, C., F. Rendl. 2000. A spectral bundle method for semidefinite programming. SIAM Journal on

Optimization 10 673–696.

Hoda, S., W.-J. van Hoeve, J. N. Hooker. 2010. A systematic approach to MDD-based constraint pro-

gramming. Proceedings of the 16th International Conference on Principles and Practices of Constraint

Programming (CP 2010), Lecture Notes in Computer Science, vol. 6308. Springer, 266–280.

Hooker, J. N. 2006. Discrete global optimization with binary decision diagrams. GICOLAG 2006 . Vienna,

Austria.

Hooker, J. N. 2013. Decision diagrams and dynamic programming. CPAIOR 2013 Proceedings . 94–110.

Hu, A. J. 1995. Techniques for efficient formal verification using binary decision diagrams. Thesis CS-TR-

95-1561, Stanford University, Department of Computer Science.

Ibaraki, Toshihide. 1977. The power of dominance relations in branch-and-bound algorithms. J. ACM 24

264–279.

Kam, T., T. Villa, R. K. Brayton, A. L. Sangiovanni-Vincentelli. 1998. Multi-valued decision diagrams:

Theory and applications. International Journal on Multiple-Valued Logic 4 9–62.

Kell, B., W.-J. van Hoeve. 2013. An MDD approach to multidimensional bin packing. Proceedings of

CPAIOR, Lecture Notes in Computer Science, vol. 7874. Springer, 128–143.

Krislock, Nathan, Jérôme Malick, Frédéric Roupin. 2014. Improved semidefinite bounding procedure for

solving max-cut problems to optimality. Mathematical Programming 143 61–86.

Lee, C. Y. 1959. Representation of switching circuits by binary-decision programs. Bell Systems Technical

Journal 38 985–999.

Loekito, E., J. Bailey, J. Pei. 2010. A binary decision diagram based approach for mining frequent subse-

quences. Knowl. Inf. Syst 24 235–268.

Minato, S. 1993. Zero-suppressed BDDs for set manipulation in combinatorial problems. 30th Conference

on Design Automation. IEEE, 272–277.

Mingozzi, A. 2002. State space relaxation and search strategies in dynamic programming. Proceedings

of Abstraction, Reformulation, and Approximation, Lecture Notes in Computer Science, vol. 2371.

Springer, 51–51.

Morgado, Antonio, Federico Heras, Mark Liffiton, Jordi Planes, Joao Marques-Silva. 2013. Iterative

and core-guided maxsat solving: A survey and assessment. Constraints 18 478–534. doi:10.1007/

s10601-013-9146-2.

Östergärd, Patric R.J. 2002. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics

120 197 – 207. Special Issue devoted to the 6th Twente Workshop on Graphs and Combinatorial

Optimization.

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 35

Rendl, Franz, Giovanni Rinaldi, Angelika Wiegele. 2010. Solving Max-Cut to optimality by intersecting

semidefinite and polyhedral relaxations. Math. Programming 121 307.

Righini, G., M. Salani. 2008. New dynamic programming algorithms for the resource constrained shortest

path problem. Networks 51 155–170.

Sanner, S., D. McAllester. 2005. Affine algebraic decision diagrams (AADDs) and their application to

structured probabilistic inference. Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI 2005). 1384–1390.

Shylo, V.P., O.V. Shylo, V.. Roschyn. 2012. Solving weighted max-cut problem by global equilibrium search.

Cybernetics and Systems Analysis 48 563–567.

Tomita, Etsuji, Toshikatsu Kameda. 2007. An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. Journal of Global Optimization 37 95–111. doi:10.1007/

s10898-006-9039-7.

Wegener, I. 2000. Branching programs and binary decision diagrams: theory and applications . SIAM mono-

graphs on discrete mathematics and applications, Society for Industrial and Applied Mathematics.

Appendix. Validity Proofs of the DP Formulations

Proof of Theorem 2 Note that any solution x ∈ {S,T}n is feasible so that we need only show that

condition (A1) holds. The state transitions clearly imply that sn+1 is the terminal state t̂= (0, . . . ,0), and

thus sn+1 ∈ {t̂, 0̂}. If we let (s̄, x̄) be an arbitrary solution of (DP), it remains to show that f̂(s̄, x̄) = f(x̄). Let

Hk be the sum of the first k transition costs for solution (s̄, x̄), so that Hk =
∑k

j=1 hj(s̄
j, x̄j) and Hn + vr =

f̂(s̄, x̄). It suffices to show that

Hn + vr =
∑
j,j′

{wjj′ | 1≤ j < j′ ≤ n, x̄j �= x̄j′} (Hn)

because the right-hand side is f(x̄). We prove (Hn) as follows. Note first that the state transitions imply

that

sk� =L�
k−1 −R�

k−1, for �≥ k (Sk)

where

L�
k =

∑
j≤k

x̄j=S

wj�, R�
k =

∑
j≤k

x̄j=T

wj�, for � > k

We will show the following inductively:

Hk +Nk =
∑

j<j′≤k

x̄j �=x̄j′

wjj′ +
∑
�>k

min
{
L�

k,R
�
k

}
(Hk)

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
36 INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS

where Nk is a partial sum of negative arc weights, specifically

Nk =
∑

j<j′≤k

(wjj′)
− +

∑
j≤k<�

(wk�)
−

so that, in particular, Nn = vr. This proves the theorem, because (Hk) implies (Hn) when k= n.

We first note that (Hk) holds for k= 1, because in this case both sides vanish. We now suppose (Hk) holds

for k− 1 and show that it holds for k. The definition of transition cost implies

Hk =Hk−1 +(σks
k
k)

+ +
∑
�>k

σksk� wk�≥0

min
{
|sk� |, |wk�|

}

where σk is 1 if x̄k =T and −1 otherwise. This and the inductive hypothesis imply

Hk =
∑

j<j′≤k−1

x̄j �=x̄j′

wjj′ +
∑
�≥k

min
{
L�

k−1,R
�
k−1

}
−Nk−1 +(σks

k
k)

+ +
∑
�>k

σksk� wk�≥0

min
{
|sk� |, |wk�|

}

We wish to show that this is equal to the right-hand side of (Hk) minus Nk. Making the substitution (Sk)

for state variables, we can establish this equality by showing∑
�≥k

min
{
L�

k−1,R
�
k−1

}
−Nk−1 +(σk(L

k
k−1 −Rk

k−1))
+ +

∑
�>k

σk(L
�
k−1−R�

k−1)wk�≥0

min
{
|L�

k−1 −R�
k−1|, |wk�|

}

=
∑
j<k

x̄j �=x̄k

wjk +
∑
�>k

min
{
L�

k,R
�
k

}
−Nk

(Eq1)

We will show that (Eq1) holds when x̄k = T. The proof for x̄k = S is analogous. Using the fact that R�
k =

R�
k−1 +wk�, (Eq1) can be written

min
{
Lk

k−1,R
k
k−1

}
+
∑
�>k

min
{
L�

k−1,R
�
k−1

}
+(Lk

k−1 −Rk
k−1)

+

+
∑
�>k

(L�
k−1−R�

k−1)wk�≥0

min
{
|L�

k−1 −R�
k−1|, |wk�|

}

=Lk
k−1 +

∑
�>k

min
{
L�

k−1,R
�
k−1 +wk�

}
− (Nk −Nk−1)

(Eq2)

The first and third terms of the left-hand side of (Eq2) sum to Lk
k−1. We can therefore establish (Eq2) by

showing that for each �∈ {k+1, . . . , n}, we have

min
{
L�

k−1,R
�
k−1

}
+ δmin

{
R�

k−1 −L�
k−1,−wk�

}
=min

{
L�

k−1,R
�
k−1 +wk�

}
−wk�, if wk� < 0

min
{
L�

k−1,R
�
k−1

}
+(1− δ)min

{
L�

k−1 −R�
k−1,wk�

}
=min

{
L�

k−1,R
�
k−1 +wk�

}
, if wk� ≥ 0

where δ = 1 if L�
k−1 ≤R�

k−1 and δ= 0 otherwise. It is easily checked that both equations are identities. �

Proof of Theorem 3 Since any solution x ∈ {F,T}n is feasible, we need only show that the costs are

correctly computed. Thus if (s̄, x̄) is an arbitrary solution of (DP), we wish to show that f̂(s̄, x̄) = f(x̄). If

Hk is as before, we wish to show that Hn =SATn(x̄), where SATk(x̄) is the total weight of clauses satisfied

by the settings x̄1, . . . , x̄k. Thus

SATk(x̄) =
∑
jj′αβ

{wαβ
jj′ | 1≤ j < j′ ≤ k; α,β ∈ {F,T}; x̄j = α or x̄j′ = β}

Bergman, Cire, van Hoeve, Hooker: Discrete Optimization with Decision Diagrams
INFORMS Journal on Computing 00(0), pp. 000–000, c© 0000 INFORMS 37

Note first that the state transitions imply (Sk) as in the previous proof, where

L�
k =

∑
1≤j≤k

x̄j=T

wFT
j� +

∑
1≤j≤k

x̄j=F

wTT
j� , R�

k =
∑

1≤j≤k

x̄j=T

wFF
j� +

∑
1≤j≤k

x̄j=F

wTF
j� , for � > k

We will show the following inductively:

Hk =SATk(x̄)+
∑
�>k

min
{
L�

k,R
�
k

}
(Hk-SAT)

This proves the theorem, because (Hk-SAT) reduces to Hn =SATn(x̄) when k= n.

To simplify the argument, we begin the induction with k = 0, for which both sides of (Hk-SAT) vanish.

We now suppose (Hk-SAT) holds for k − 1 and show that it holds for k. The definition of transition cost

implies

Hk =Hk−1 +(σks
k
k)

+ +
∑
�>k

(
wαF

k� +wαT
k� +min

{
(sk�)

+ +wβT
k� , (−sk�)

+ +wβF
k�

})
where σk is 1 if x̄k =T and −1 otherwise. Also α is the truth value x̄k and β is the value opposite x̄k. This

and the inductive hypothesis imply

Hk =SATk−1(x̄)+
∑
�≥k

min
{
L�

k,R
�
k

}
+(σks

k
k)

+ +
∑
�>k

(
wαF

k� +wαT
k� +min

{
(sk�)

+ +wβT
k� , (−sk�)

+ +wβF
k�

})
We wish to show that this is equal to the right-hand side of (Hk-SAT). We will establish this equality on

the assumption that x̄k =T, as the proof is analogous when x̄k =F. Making the substitution (Sk) for state

variables, and using the facts that L�
k =L�

k−1 +wFT
k� and R�

k =R�
k−1 +wFF

k� , it suffices to show∑
�>k

min
{
L�

k,R
�
k

}
+min

{
Lk

k−1,R
k
k−1

}
+(Lk

k−1 −Rk
k−1)

+

+
∑
�>k

(
wTF

k� +wTT
k� +min

{
(L�

k−1 −R�
k−l)

+ +wFT
k� , (L�

k−1 −R�
k−l)

+ +wFF
k�

})
=
∑
�>k

min
{
L�

k−1 +wFT
k� ,R�

k +wFF
k�

}
+SATk(x̄)− SATk−1(x̄)

(Eq-SAT)

The second and third terms of the left-hand side of (Eq-SAT) sum to Lk
k−1. Also

SATk(x̄)− SATk−1(x̄) =Lk
k−1 +

∑
�>k

(
wTF

k� +wTT
k�

)
We can therefore establish (Eq-SAT) by showing that

min
{
L�

k−1,R
�
k−1

}
+min

{
(L�

k−1 −R�
k−1)

+ +wFT
k� , (R�

k−1 −L�
k−1)

+ +wFF
k�

}
=min

{
L�

k−1 +wFT
k� ,R�

k−1 +wFF
k�

}
for � > k. It can be checked that this is an identity. �

