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Abstract. Many real-world decision-making problems do not possess a
clearly defined objective function, but instead aim to find solutions that
capture implicit user preferences. This makes it challenging to directly
apply classical optimization technology such as integer programming or
constraint programming. Machine learning provides an alternative by
learning the agents’ decision-making implicitly via neural networks. How-
ever, solutions generated by neural networks often fail to satisfy physical
or operational constraints. We propose a hybrid approach, DDGan, that
embeds a Decision Diagram (DD) into a Generative Adversarial Network
(GAN). In DDGan, the solutions generated from the neural network are
filtered through a decision diagram module to ensure feasibility. DDGan
thus combines the benefits of machine learning and constraint reasoning.
When applied to the problem of schedule generation, we demonstrate
that DDGan generates schedules that reflect the agents’ implicit prefer-
ences, and better satisfy operational constraints.

1 Introduction

Traditional management science approaches to decision-making involve defin-
ing a mathematical model of the situation, including decision variables, con-
straints, and an objective function to be optimized. While common objectives
such as cost minimization or profit maximization are widely applied, many op-
erational decision-making processes depend on factors that cannot be captured
easily by a single mathematical expression. For example, in production planning
and scheduling problems one typically takes into account priority classes of jobs
and due dates, but ideally also (soft) business rules or the preferences of the
workers who execute the plan. Those rules and preferences may be observed
from historic data, but creating a model that results in, say, a linear objective
function is far from straightforward. Instead, one may represent the objective
function, or even the constraints, using machine learning models that are then
embedded into the optimization models; we refer to [24] for a recent survey.

In this work, we study the integration of machine learning and constraint
reasoning in the context of sequential decision making. In particular, we aim
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to extend (recursive) generative adversarial neural networks (GANs) with con-
straint reasoning. We assume that the context specifies certain physical or oper-
ational requirements, within which we need to find solutions that are similar to
the decisions that were made historically, as in the following stylized example.

Example 1. Consider a routing problem in which we need to dispatch a service
vehicle to perform maintenance at a set of locations. The set of locations differs
per day and is almost never the same. Previous routes indicate that the driver
does not follow a distance or time optimal sequence of visits, even though there
are no side constraints such as time windows or precedence relations. Instead,
the routes suggest that the driver has an underlying route preference, that is
exposed by, e.g., visiting shopping and lunch areas at specific times of the day.
Our decision making task is now: Given the historic routes and a set of locations
to visit today, determine a route that 1) visits all locations, and 2) is most similar
to the historic routes. In addition, we might add further restrictions such as a
maximum time limit, for example 8 hours.

In these contexts, traditional optimization methods such as integer programming
or constraint programming cannot be applied directly since they are unable to
represent an appropriate objective function. Instead, it is natural to represent the
structure and preferences from the historic solutions using a machine learning
model. For example, we could design and train a generative adversarial neural
network (GAN) for this purpose, which will be able to produce sequences of
decisions that aim to be similar to the historic data. However, because GANs
are trained with respect to an objective function (loss function) to be minimized,
hard operational constraints cannot be directly enforced. For example, in case
of the routing problem above, the sequences produced by the GAN usually fail
to visit all locations, visit some locations multiple times, or fail to recognize
constraints such as the maximum time limit.

Contributions. We propose a hybrid approach, which we call DDGan, that
embeds a decision diagram (DD) into a generative adversarial neural network.
The decision diagram represents the constraint set and serves as a filter for the
solutions generated by the GAN, to ensure feasibility. As proof of concept, we
develop a DDGan to represent routing problems as in Example 1. We show that
without the DD module, the GAN indeed produces sequences that are rarely
feasible, while the DD filter substantially increases the feasibility. Moreover, we
show that DDGan converges much more smoothly than the GAN.

We note that, in principle, any constraint reasoning module could have been
applied; e.g., we could embed an integer program or constraint program that con-
tains all constraints of the problem. The variable/value assignments suggested
by the GAN can then be checked for feasibility by running a complete search,
but this is time consuming. By compiling a decision diagram offline, we can check
for feasibility instantly during execution. Moreover, for larger problems we can
apply relaxed decision diagrams of polynomial size that may not guarantee fea-
sibility in all cases, but can produce much better solutions that those generated
by the GAN alone.
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2 Related Work

Within the broader context of learning constraint models, several works have
studied automated constraint acquisition from historic data or (user-)generated
queries, including [11, 23, 4, 7, 1]. These approaches use partial or complete ex-
amples to identify constraints that can be added to the model. The type of con-
straints that can be learned depends on the formalism that is used, for example
linear constraints for integer programming or global constraints for constraint
programming.

A different approach is to embed a machine learning model into the op-
timization formalism, e.g., by extending a constraint system with appropriate
global constraints. For example, [22] integrate neural networks and decision trees
in constraint programming, while [25, 26] introduce a ‘Neuron’ global constraint
that represents a pre-trained neural network. Another series of approaches based
on Grammar Variational Autoencoders [21, 12, 19] use neural networks to encode
and decode from the parse-tree of a context free grammar to generate discrete
structures. Such approaches are used to generate chemical molecule expressions,
which is also a structured domain. Compared to our work, their models are not
conditional, and therefore cannot solve decision-making problems with varying
contextual information.

Machine learning approaches have also been used to solve optimization prob-
lems. This includes the works [14, 30], which use neural networks to extend par-
tial solutions to complete ones. The authors of [5] handle the traveling salesman
problem by framing it as reinforcement learning. Approaches based on Neural
Turing Machines [16] employ neural networks with external memory for discrete
structure generation. More recently, the authors of [20] solve graph combinato-
rial optimization problems, and employ neural networks to learn the heuristics in
backtrack-free searching. The scopes of these works are different from ours, since
they do not deal with optimization problems without clear objective functions.
Recently, the work of [29] combine reasoning and learning using a max-margin
approach in hybrid domains based on Satisfiability Modulo Theories (SMT).
They also show applications in constructive preference elicitation [13]. Com-
pared to our work, their approach formulates the entire learning and reasoning
problem as a single SMT, while we combine reasoning and learning tools, namely
the neural networks and decision diagrams, into a unified framework.

3 Preliminaries

3.1 Structure Generation via Generative Adversarial Networks

Finding structured sequences in presence of implicit preferences is a more com-
plex problem compared to classical supervised learning, in which a classifier
is trained to make single-bit predictions that match those in the dataset. The
problem of finding such sequences is broadly classified as a structure genera-
tion problem in machine learning, which arises naturally in natural language
processing [17, 18], computer vision [8, 28], and chemistry engineering [21].
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Specifically, we are given common context Rc and a historical data set D =
{(R1, S1), (R2, S2), . . . , (Rt−1, St−1)}, in which Ri represents the contextual in-
formation specific to data point i and Si the decision sequence for scenario
i = 1, . . . , t−1. For our routing example, Ri represents the daily location requests
while Si is the ordered sequence of visits that covers the requested locations in
Ri. Rc, in this case, represents the set of constraints that is common to all data
points; for example, each location can be visited at most once. Notice that Ri

can be also interpreted in the form of constraints, which we will leverage later
in the paper. For example, in the routing problem, Ri can be interpreted as the
constraint that sequence Si can only contain locations from the requested set
Ri, and all locations in Ri must be visited.

Given present contextual data Rt, our goal is to find a good sequence of
decisions St. Using machine learning terminology, we would like to learn a con-
ditional probability distribution of “good” sequences

Pr(St | Rt)

based on the historical dataset. More precisely, Pr(St | Rt) should assign high
probabilities to “good” sequences, i.e., sequences that satisfy operational con-
straints and look similar to the ones in the historical dataset. A “bad” sequence,
for example, a sequence that violates key operational constraints, should ideally
be assigned a probability zero. When we deploy our tool (i.e., for scenario t), we
first observe the contextual data Rt, and then sample a sequence St according
to Pr(St | Rt), which should satisfy all operational constraints and the implicit
preferences reflected by the historical dataset.

Generative Adversarial Networks (GAN). GAN is a powerful tool devel-
oped in the machine learning community for complex structure generation [15].
The original GAN is developed to learn the probability distribution Pr(x) of
complex structural objects x. We will briefly review GAN in this simple context.

Given a dataset X in which each entry x ∈ X is independently and identically
drawn from the underlying (unknown) data distribution Prdata(x), GAN fits a
probability distribution Pr(x) that best matches Prdata(x). Instead of directly
fitting the density function, GAN starts with random variables z with a known
prior probability distribution Pr(z) (such as multi-variate Gaussian), and then
learns a deterministic mapping G : Z → X in the form of a neural network,
which maps every element z ∈ Z to an element x ∈ X. The goal is to fit the
function G(.) so that the distribution of G(z) matches the true data distribution
Prdata(x) when z is sampled from the known prior distribution.

GAN also trains another discriminator neural network D : x → R to de-
termine the closeness of the generated and the true structures. D is trained to
separate the real examples from the dataset with the fake examples generated
by function G. Both the generator G and the discriminator D are trained in a
competing manner. The overall objective function for GAN is:

min
G

max
D

E
x∼data[D(x)] + Ez[1−D(G(z))]. (1)
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Fig. 1. Multi-valued decision diagrams (MDDs) representing possible assignments
of x1, x2, x3. (a) Exact MDD representing the subset of permutations satisfying
alldifferent(x1, x2, x3) and x1 6= l1. Each path from r to t represents a valid permu-
tation satisfying the two constraints. (b) A width-1 relaxed MDD for the exact MDD
in (a). (c) A width-2 relaxed MDD, which is formed by combining nodes u4 and u5 of
the MDD in (a).

For our application, we extend the classical GAN into a conditional structure,
as will be discussed in Section 4. We acknowledge that GAN is a recent popular
probabilistic model for structural generation. Nevertheless, structural generation
is challenging and many research questions still remain open. Our embedding
framework is general and can be applied beyond the GAN structure.

3.2 Decision Diagrams

Decision diagrams were originally introduced to compactly represent Boolean
functions as a graphical model [2, 9], and have since been widely used, e.g., in the
context of verification and configuration problems [31]. More recently decision
diagrams have been used successfully as a tool for optimization, by representing
the set of solutions to combinatorial optimization problems [6].

Decision diagrams are defined with respect to a sequence of decision variables
x1, x2, . . . , xn. Variable xi has a domain of possible values D(xi), for i = 1, . . . , n.
For our purposes, a decision diagram is a layered directed acyclic graph, with
n+1 layers of nodes; see Figure 1 for an example. Layer 1 contains a single node,
called the root r. Layer n+1 also contains a single node, called the terminal t. An
arc from a node in layer i to a node in layer i+1 represents a possible assignment
of variable xi to a value in its domain, and is therefore associated with a label
l ∈ D(xi). For an arc (v, w), we use var(v, w) to represent the variable being
assigned through this arc, and use val(v, w) to represent its assigned value. For a
node m in the MDD, we use val(m) to represent the union of the values of each
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arc starting from node m, i.e., val(m) = {val(u, v) : u = m}. Notice that val(m)
represents the possible value assignments of the decision variable corresponding
to node m. Each path from the root r to the terminal t represents a solution,
i.e., a complete variable-value assignment. We can extend the arc definition to
allow for “long arcs” that skip layers; a long arc out of a node in layer i still
represents a value assignment to variable xi and assigns the skipped layers to a
default value (for example 0). In our case, we consider variables with arbitrary
domains, which results in so-called multi-valued decision diagrams (MDDs).

Example 2. Let x1, x2, x3 represent a sequence of decision variables, each with
domain {l1, l2, l3}. The constraint alldifferent(x1, x2, x3) restricts the val-
ues of x1, x2, x3 to be all different; i.e., they form a permutation. Along with
another constraint x1 6= l1, it restricts the set of feasible permutations to be
{(l2, l1, l3), (l2, l3, l1), (l3, l2, l1), (l3, l1, l2)}. Figure 1(a) depicts the exact MDD
that encodes all permutations satisfying these two constraints.

Exact Decision Diagram. Given a set of constraints R, MDD M is said to
be exact with respect to R if and only if every path that leads from the root
node r to the terminal node t in M is a variable-value assignment satisfying all
constraints in R. Conversely, every valid variable-value assignment can be found
as a path from r to t in M. For example, Figure 1(a) represents an exact MDD
that encodes the constraints alldifferent(x1, x2, x3) and x1 6= l1.

Relaxed Decision Diagram. Because exact decision diagrams can grow ex-
ponentially large, we will also apply relaxed decision diagrams of polynomial
size [3]. The set of paths in a relaxed decision diagram forms a superset of that
of an exact decision diagram. For example, the set of paths in Figure 1(a) is fully
contained in the sets of paths in the Figures 1(b) and (c). Therefore, the MDDs
in Figures 1(b) and (c) form two relaxed versions of the MDD in Figure 1(a).
Relaxed MDDs are often defined with respect to a maximum width, i.e., the
number of nodes in its largest layer. For example, Fig. 1(b) is a width-1 relaxed
MDD, which trivially forms the superset of any constrained set of x1, x2, x3,
while Fig. 1(c) is a width-2 relaxed MDD.

Decision Diagram Compilation. Decision diagrams can be constructed to
encode constraints over the variables, by a process of node refinement and arc fil-
tering [3, 6]. In general, arc filtering removes arcs that lead to infeasible solutions,
while node refinement (or splitting) improves the precision in characterizing the
solution space. One can reach an exact MDD by repeatedly going through the
filtering and the refinement process from a width-1 MDD. We refer to [10] for
details on MDD compilation for sequencing and permutation problems.

Exact MDD Filtering. MDD filtering algorithms can also be applied without
node refinement, to represent additional constraints in a given MDD. Generally,
MDD filtering does not guarantee that each remaining r-t path is feasible. To
establish that, we next introduce the notion of an exact MDD filter.

Definition 1. Let M be an exact MDD with respect to a constraint set R, and
let C be an additional constraint. An MDD filter for C is exact if applying it to
M results in an MDD M′ that is exact with respect to R and C.
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Fig. 2. DDGan as the generator G within the GAN framework. On the top is a recur-
sive neural network (RNN) structure. RNN takes as input the contextual information
Rt and random variables z, and outputs scores for values for each variable. The val-
ues are filtered by the WalkDD module on the bottom that represents a constraint
set. The values that lead to contradictions are filtered out (marked by the red color).
Finally, a softmax layer decides the value of each variable by picking up the one with
the largest score among all non-filtered values.

Consider the following MDD filtering algorithm FilterUnary for unary con-
straints, i.e., constraints of the form x 6= l for some variable x and value l ∈ D(x).
We first let FilterUnary remove any arc that violates the unary constraints.
Then, working from the last layer up to the first layer, FilterUnary recursively
removes any nodes and arcs that do not have path that lead to the terminal t.
We have the following result.

Proposition 1. FilterUnary is an exact MDD filter.

4 Embedding Decision Diagrams into GANs

We next present our hybrid approach, DDGan, which embeds a multi-valued
decision diagram into a neural network, to generate structures that (i) satisfy a
set of constraints, and (ii) capture the user preferences embedded implicitly in
the historical dataset. The structure of DDGan is shown in Fig. 2.
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To achieve this, DDGan has a recursive neural network (RNN) as its first
layer. The RNN module generates scores of possible assignments to variables
x1, . . . , xn in a sequence of n steps. We refer the entire recursive neural network
(the upper part of Fig.2) as a RNN and refer to the one-step unrolling of the
network as a RNN cell. In the i-th step, one RNN cell takes the hidden state of
the previous step as input, outputs the hidden state of this step, and a table of
dimension |D(xi)|. The table corresponds to the score for each value of variable
xi. In general, the higher the score is, the more likely the RNN believes that xi

should be assigned to the particular value. RNN is trained to capture implicit
preferences which give higher scores to the structures in the historical dataset.
Because of the link through hidden states among RNN cells of different steps,
RNN is able to capture the correlations among variables.

However, the structures generated by the RNN module may not satisfy key
(operational) constraints. Therefore, we embed a WalkDD neural network as a
second layer (Fig. 2 bottom, within the dashed rectangular) to filter out actions
that violate the constraint set. WalkDD simulates the process of descending
along a particular path of the MDD. During this process, WalkDD marks cer-
tain assignments generated by the RNN module as infeasible ones (as shown
in the entries with red background). Finally, a softmax layer takes the action
with highest score among all feasible actions. In this way, WalkDD filters out
structures that violate operational constraints.

Full WalkDD Filtering. We assume access to an MDDM, which is compiled
with respect to the common constraint set Rc. We first focus on the case where
M is exact, i.e., each r-t path inM represents an assignment to x1, . . . , xn that
satisfies all constraints in Rc. We also assume we are given an filtering scheme
Filter for the additional contextual constraints Rt for data point t. LetMt be
the MDD resulted from M filtered through constraints Rt using Filter.

WalkDD is executed as follows. It keeps the current MDD node of Mt as
its internal state. Initially, the internal state is at the root node r. In each step,
WalkDD moves to a new MDD node in the next layer once one variable is set
to a particular value. Suppose WalkDD is at step i, the MDD node mi, and
the corresponding decision variable xi. Recall that val(mi) represents the set of
values that can be assigned to variable xi according to the labels of the arcs out
of mi. WalkDD blocks all assignments to xi outside of val(mi) (shown as the
entries with the red background in Figure 2). After this step, a softmax layer
picks up the variable assignment with the largest score among all non-blocked
entries and set xi to be the corresponding value. WalkDD then moves its state
to the corresponding new node in the MDD following the variable assignment.

Proposition 2. Let M be an exact MDD with respect to constraint set Rc and
let Filter be an exact filter for constraint set Rt. Then WalkDD is guaranteed
to produce sequences that satisfy the constraints in both Rc and Rt.

Overall Conditional GAN Architecture. During training, the aforemen-
tioned DDGan structure is fed as the generator function G in the conditional
GAN architecture [27], which is the classical GAN network, modified to take into
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Fig. 3. GAN structure for solving the structure generation problem with implicit pref-
erences. The contexts Rt and random variables are fed into the generator G, which
will produce a structure St. The Discriminator D are trained to separate the generated
structures Ŝt with the real structures St. D and G are trained in a competing manner.

account contextual information Rt. We use conditional GAN as a example to
host DDGan. Nevertheless, DDGan can be accommodated by other structures
as well. For example, infeasible actions can be filtered out by WalkDD in a
similar fashion in the Viterbi algorithm for Hidden Markov Models. The overall
conditional GAN architecture is shown in Figure 3. In this structure, Rt and
random variables z are arguments of the generator G, which in turn produces
a structure (or sequence) Ŝt. The discriminator D is trained to separate the
generated structure Ŝt with the real one St. D and G are trained in a compet-
ing manner using stochastic gradient descent. The overall objective function we
optimize is:

min
G

max
D

Et [D(St, Rt) + Ez[1−D(G(Rt, z), Rt)]] . (2)

Note that, compared to the objective function of the classical GAN (Equation 1),
the discriminator and the generator in Equation (2) both take the contextual
information Rt as an additional input.

Implementation. WalkDD heavily uses matrix operations, most of which
can be efficiently carried out on GPUs. We have a state-transition matrix of the
MDD, which are hard-coded prior to training and in which infeasible transitions
are labeled with a unique symbol. During execution, we maintain the state ten-
sor, which contains the current MDD node of each data point in the mini-batch.
We also maintain the mask tensor, which indicates values that variables cannot
take. Backpropagate the Gradients. We heavily rely on non-differentiable
gather and scatter operations offered by Pytorch to maintain the state and the
mask tensors. As a filter, WalkDD can have non-differentiable components
because it is not updated during training. We pass gradients through the non-
blocked entries of WalkDD into the fully-differentiable RNN. We leave it as
a future research direction to make WalkDD fully differentiable following the
work of Neural Turing Machine [16].
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5 Case Study: Routing with Implicit Preferences

As proof of concept, we apply DDGan to a routing problem similar to Exam-
ple 1. We consider a set of n locations L = {l1, l2, . . . , ln}. At each day t, a service
person (an agent) receives the request to visit a subset of locations Rt ⊂ L. For
this work, we assume that the agent can visit at most M locations in a day;
i.e., |Rt| ≤ M for all t. The agent has a starting location s ∈ L and an ending
location e ∈ L. When s = e, the agents’s route is a Hamiltonian circle.

The agent’s actual visit schedule for day t, St = (s1,t, s2,t, . . . , s|Rt|,t), is a
permutation (or, an ordered list) of locations in Rt. Notice that it is sufficient to
specify the schedule fully using a permutation. Other information, such as the
earliest time and latest time to visit locations in the schedule, can be inferred
from the permutation. For this work, we assume the agent’s schedules are subject
to the following constraints:

1. All-different Constraint. St must be a subset of L, in which no location
is visited more than once.

2. Full-coverage Constraint. St must visit all and only the locations in Rt.
3. Total Travel Distance Constraint. Let di,j be the length of the shortest

path between li and lj . The total travel distance for the agent is: distt =

ds,s1 +
∑|Rt|−1

i=1 dsi,si+1
+ds|Rt|,e

. Suppose the agent has a total travel budget
B. We must have distt ≤ B.

Observe that only the Full-coverage constraint requires the contextual data Rt.
Therefore, the common constraints Rc contains the All-different and the Total
Travel Distance constraint. Lastly, the agent has implicit preferences. As
a result, the schedule St may deviate from the shortest path connecting the
locations in Rt. Moreover, the agent cannot represent these preferences as a
clear objective function. Instead, we are given the travel history S1, S2, . . . , St−1
and the request locations Rt for day t. The goal is to find a valid schedule St,
which satisfies all constraints, but also serves his preferences reflected implicitly
in the travel history.

Constructing MDD for the Routing Problem. For this application, the set
of nodes of the MDDM is partitioned into M + 2 layers, representing variables
x1, . . . , xM+2. The first layer contains only one root node, representing the agent
at the starting location, s. The last layer also contains only one terminal node,
representing the agent at the ending location, e. The nodes in the layer of variable
xi correspond to the agent making stops at the i-th position of the schedule. As
initial domain we use D(xi) = L, i.e., the set if all possible locations. There
are two types of arcs. An arc a = (u, v) of the first type is always directed
from a source node u in one layer xi to a target node v in the subsequent layer
xi+1. Each arc a of the first type in the i-th layer is associated with a label
val(a) ∈ {l1, . . . , ln}, meaning that the agent visits location li as the i-th stop.
The second type of arcs b, whose values val(b) are always e, connect every node
to the terminal node. These arcs are used to allow the agent to travel back to
the end location at any time. The terminal node is connected to itself with an
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arc of the second type. This allows the agent to stay at the end location for the
rest of his day, once arrived.

We follow the procedure in [10] for constructing the (relaxed) MDD for the
routing problem, with respect to both the alldifferent and the maximum distance
constraint in Rc. That is, we start with a width-1 MDD, and then repeatedly
apply the filter and the refine operations until the MDD is exact or a fixed width
limit has reached. These operations make use of specific state information that
is maintained at each node of the MDD. Since we will re-use some of these, we
revisit them here. For an MDD node v, (i) All↓(v) is the set of locations that
every path from the root node r to the current node v passes, while (ii) Some↓(v)
is the set of locations that at least one path from the root node r to the current
node v passes. (iii) All↑(v) and (iv) Some↑(v) are defined similarly, except that
they consider locations from the current node v to the terminal node t. An arc in
the MDD of a routing problem corresponds to visiting one location. For an arc a,
define (v) st↓(a) as the shortest travel distance from the root, which is the shortest
distance that the location val(a) can be reached along any path from the root r.
Similarly, define (vi) st↑(a) as the shortest travel distance from the target, which
is the shortest distance to travel to the target node t from the location val(a)
along any path in the MDD. When the MDD is exact, the sum st↓(a) + st↑(a)
represents the shortest distance to travel from the root r to target t along any
valid path passing arc a. When the MDD is relaxed, the computation of st↓(a)
and st↑(a) can be along any path, regardless its validity. The sum st↓(a)+st↑(a)
therefore becomes the lower bound of the shortest distance. More details on how
this information is used for filtering and refinement can be found in [10].

Full WalkDD Filtering for the Routing Problem. The daily requests
Rt for the routing problem can be translated into the following two constraints
in addition to the all-different and maximum distance requirements in Rc: (i)
only locations in the requested set Rt are allowed to be visited other than the
starting and ending locations. (ii) The trip length is exactly |Rt| + 2. Notice
that these two constraints can be realized by imposing unary constraints to
the MDD. To enforce the first constraint, we can remove all first-type arcs in
the MDD whose corresponding location is outside of Rt. To enforce the second
constraint, we remove all second-type arcs which imply the wrong trip length.
Because we have access to an exact filter for unary constraints (Proposition 1),
the schedules produced by the full WalkDD scheme presented in Section 4
satisfy all constraints, if the MDD is exact with respect to Rc (Proposition 2).

Local WalkDD Filtering for the Routing Problem. The full WalkDD fil-
tering scheme requires a pass over the entire MDD for each data point (filtering
unary constraints). While this guarantees to produce structures that satisfy all
constraints, when the MDD is exact, it is also relatively computationally expen-
sive. We next discuss a more efficient local WalkDD filtering scheme that
removes infeasible transitions only from the information that is local to the cur-
rent MDD node. This local scheme is not comprehensive, i.e., local WalkDD fil-
ter may generate structures that do not fully satisfy all constraints, even though
the MDD is exact. In practice, however, exact MDDs often become too large, in
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which case we apply relaxed MDDs for which the guarantees in Proposition 2
no longer hold. In other words, the computational benefit of local filtering of-
ten outweighs theoretical guarantees: it only requires to visit a single path from
the root to the terminal for local filtering, which is substantially cheaper than
visiting the entire MDD as in the full case.

The local WalkDD filter rules out actions of the RNN in each step by only
examining information that is local to the current MDD node, as follows. As
before, we assume that MDDM represents the common constraints Rc. For day
t, local WalkDD keeps its own internal state: Wt,i = (ut,i, lt,i, Vt,i, Rt,i, T imet,i)
after deciding the first i locations, where ut,i is the MDD node inM representing
the current state, lt,i is the current location of the agent, Vt,i is the set of locations
that the agent already visited, Rt,i is the set of locations that remains to be
visited, and Timet,i is the time elapsed after visiting the first i locations. Local
WalkDD applies the following local filters based on its internal state:

– Next Location Filter: The location to be visited should follow one of the
arcs that starts from the current node ut,i. Otherwise, the location is filtered.

– Locations Visited Filter: If the location to be visited is in the set of visited
locations Vt,i, then the location is filtered out, except for the end location e.

– Locations to be Visited Filter: If the location to be visited is not in the
set Rt,i, then the location is filtered out. We guarantee that the end location
e is always in Rt,i.

– Future Location Set Filter: Suppose the next location to be visited is
lt,i+1 and the MDD node following the arc of visiting lt,i+1 is ut,i+1. If
Rt,i \ {lt,i+1} is not a subset of Some↑(ut,i+1), then we cannot cover all the
locations remaining to be visited following any paths starting from ut,i+1.
Therefore, lt,i+1 should be filtered out.

– Total Travel Time Filter: Let lt,i+1 be the next location to visit and
st↑(lt,i+1) be the shortest time to reach the end location e from lt,i+1. If
Timet,i + dlt,i,lt,i+1

+ st↑(lt,i+1) > B, this suggests that no path from lt,i+1

to the end location satisfies the total distance constraint. Therefore, lt,i+1

should be filtered out.

6 Experiments

The purpose of our experiments is to evaluate the performance of the GAN with
and without the DD module. We first describe the implementation details of the
GAN. We use a LSTM as the RNN module. The dimension of the hidden state
of the LSTM in DDGan is set to 100. The dimension of the random input z is
20. During training, DDGan is used as the generator of the conditional GAN
infrastructure. The discriminator of the conditional GAN is also a RNN-based
classifier, whose hidden dimension is 100. The batch size is set to be 100. We
compare our DDGan with the same neural network structure except without
the WalkDD module as the baseline. The entire conditional GAN is trained
using stochastic gradient descent. The learning rate of both the generator and
the discriminator are both set to be 0.01. Every 10 epochs, the performance of
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Fig. 4. DDGan on a small scheduling problem with 6 locations. DDGan has access to
an exact MDD and the full filtering scheme. (Left) The percentage of valid schedules
generated along training progress. DDGan always generates valid schedules, while the
same neural network without the WalkDD component cannot. (Right) the normalized
reward for the schedules generated by DDGan and the competing approach. The
normalized rewards converge to 1 for DDGan, suggesting that DDGan is able to fully
recover the implicit preference of the agent.

DDGan and the baselines are tested by feeding in 1,000 scheduling requests into
the generator part of the neural network (the structure shown in Figure 2) and
examining the schedules it generates.

We assume the agent’s implicit preferences are reflected by a hidden reward
function ri,j , which is the reward that the agent visits location j in the i-th
position of his schedule. For our experiments, this reward function is generated
uniformly randomly between 0 and 1. The agent’s optimal schedule is the one
that maximizes the total reward while observing all the operational constraints.
The reward function is hidden from the neural network. In our application,
the goal of the neural networks is to generate schedules subject to operational
constraints, which also score high in terms of this hidden reward function.

We first test DDGan on a synthetic small instance of 6 locations. In this
case, we embed an exact MDD into the DDGan structure and we apply the
full filtering scheme as discussed in Section 4. The result is shown in Figure 4.
As we can see, the schedules generated by DDGan always satisfy operational
constraints (red curve, left panel), while the schedules generated by the same
neural network without the WalkDD module are often not valid (blue curve,
left panel). On the right we plot the total reward of the schedules generated
by the two approaches. Because the number of locations are small, we compute
offline the optimal schedule for each request, i.e., the one that yields the highest
total reward. Then we normalize the reward of the generated schedules against
that of the optimal schedule, so the optimal schedule should get a reward of
1. As we can see from Figure 4 (right), the normalized reward of the schedules
generated by DDGan converges to 1 as the training proceeds, which suggests
that the schedules generated by DDGan are close to optimal. It is interesting
to note that the baseline approach also learns the implicit reward function, since
its generated schedules also have high reward. In fact, the normalized reward
can go beyond 1 because the schedules do not fully satisfy the constraints.
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Fig. 5. DDGan on a medium-sized scheduling problem in TSPLib consisting of 29
locations, where DDGan can only access a relaxed MDD of width at most 1,000. The
agent is allowed to visit 6 locations (left) or 12 locations (right) maximally. (Top) The
normalized reward for the schedules generated with DDGan and the same neural net-
work without the WalkDD module. DDGan learns to generate schedules that are
close to the optimal ones (with normalized reward close to 1). (Middle, lower) The per-
centage of different types of schedules generated by DDGan (middle) and the baseline
(lower). Legends on the bottom. The schedules generated by DDGan (middle) always
satisfy the alldifferent and distance constraints. The percentage of fully valid sched-
ules increase in (middle). However, the same neural network without WalkDD cannot
satisfy major constraints (lower).
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We then conduct an experiment using instance bayg29.tsp from the TSPLib
benchmark, representing 29 cities in Bavaria with geographic distances. We first
run a medium-sized experiment, in which the agents can visit at most 6 loca-
tions. Even though we do not represent the MDD exactly, we can still compute
(offline) the optimal route once we know the requests of at most 6 locations.
For problems of this size, we only apply local WalkDD filters, as discussed in
Section 5, as they are more efficient. The results are shown in Figure 5 (left). For
this experiment, we classify the generated schedules more precisely: (i) Valid
schedules satisfy all constraints. They cover all the locations in the requested
set, meet the travel distance budget, and visit each location exactly once. (ii)
Permutation invalid schedules visit locations that are outside of the requested
set and/or visit locations repeatedly. (iii) Distance invalid schedules break the
total travel distance constraint. (iv) Valid non-empty subset schedules sat-
isfy both the permutation and the distance constraints. However, they visit only
a subset of the requested locations. (v) Empty schedules do not visit any
location other than the starting location. As shown in Figure 5 (middle, left),
the schedules generated by DDGan are either completely valid, or violate at
most the full coverage constraint. Moreover, the percentage of valid schedules
increases as the training proceeds. The schedules generated by DDGan are no
longer all valid because the MDD is not exact in dealing with the problem with
this scale. On the bottom are the schedules generated with the same neural net
without the WalkDD module. As we can see, the schedules break all operational
constraints.

In Figure 5 (right), we further run experiments with a maximum of 12 visits.
In this case, we cannot compute the optimal schedule exactly. Instead, we use a
greedy approach, which selects the best 1,000 candidate solutions for each stop
in the schedule. The reward of the schedules generated by the neural networks
are normalized with respect to that of the greedy approach. We can see that for
larger problems we can apply relaxed decision diagrams of polynomial size that
may not guarantee feasibility in all cases, but can produce much better solutions
that those generated by the GAN.

7 Conclusion

In this work, we study the integration of machine learning and constraint rea-
soning in the context of sequential decision-making without clear objectives. We
propose a hybrid approach, DDGan, which embeds a decision diagram (DD)
into a generative adversarial network (GAN). The decision diagram represents
the constraint set and serves as a filter for the solutions generated by the GAN, to
ensure feasibility. We demonstrate the effectiveness of DDGan to solve routing
problems with implicit preferences. We show that without the decision diagram
module, the GAN indeed produces sequences that are rarely feasible, while the
the decision diagram filter substantially increases the feasibility. Moreover, we
show that DDGan converges much more smoothly.
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