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Abstract. In this paper we present and evaluate a search strategy called
Decomposition Based Search (DBS) which is based on two steps: sub-
problem generation and subproblem solution. The generation of subprob-
lems is done through value ranking and domain splitting. Subdomains are
explored so as to generate, according to the heuristic chosen, promising
subproblems first.
We show that two well known search strategies, Limited Discrepancy
Search (LDS) and Iterative Broadening (IB), can be seen as special cases
of DBS. First we present a tuning of DBS that visits the same search
nodes as IB, but avoids restarts. Then we compare both theoretically
and computationally DBS and LDS using the same heuristic. We prove
that DBS has a higher probability of being successful than LDS on a
comparable number of nodes, under realistic assumptions. Experiments
on a constraint satisfaction problem and an optimization problem show
that DBS is indeed very effective if compared to LDS.

1 Introduction

In this work we present a search strategy, called Decomposition Based Search
(DBS) for the solution of constraint satisfaction and optimization problems. The
search strategy is organized in two steps: subproblem generation and subproblem
solution. In the first phase, domain values are ranked and ordered accordingly for
decreasing ranks. Based on this ranking, domains are partitioned in two or more
subdomains. Subproblems then consist of the initial problem, in which variables
range over one of their subdomains. In the second phase of DBS the subproblems
are being solved. The first subproblem is considered the most promising one,
according to the ranking, to contain a (good) solution.

The actual generation of subproblems is managed by a tree search in which we
branch on subdomains. Although this tree can be traversed using any strategy,
we prefer to use an LDS-based strategy because it generates the most promising
subproblem first. If the ranking is accurate, we are likely to find feasible solutions
or good solutions (for optimization problems) early during the search process,



which in the second case is an extremely helpful condition to prove optimal-
ity relatively fast (see also [9]). On the other hand, the search process can be
stopped once the current best solution satisfies the user’s needs, thus obtaining
an incomplete search strategy.

DBS has several degrees of freedom, whose tuning leads to different explo-
rations of the subproblem generation tree. Beside the (traditional) variable and
value ordering heuristics, in DBS we have to tune other parameters concerning
the partitioning of domains. Specifically, the size and the number of subdomains
should be tuned and domains can be partitioned statically or dynamically. Stat-
ically means that domains are divided once for all at the root node while dy-
namically means that at each level of the search tree we select a variable and we
partition its domain (which can be already partly pruned by propagation).

This simple idea was first presented in [1] for scheduling problems modelled
through position variables. This paper can be seen as a generalization and an
extension of our previous work [10]. In that paper, we were mainly concerned to
show the effectiveness of a reduced cost based ranking. In this paper, instead, we
will theoretically and computationally evaluate this search strategy and compare
it with other search strategies. To show its behaviour in practice, we apply DBS
to both constraint satisfaction and optimization problems.

Concerning the comparison with other search strategies, we first present a
tuning of DBS such that it traverses the same nodes of the search tree as Iterative
Broadening (IB). Moreover, since DBS avoids the restarts of IB, it generates less
leaf nodes. Next we consider traditional Limited Discrepancy Search (LDS) and
show the equivalence with DBS when the cardinality of each subdomain is equal
to one. In addition, we show that by considering more than one value in each
subdomain, under realistic conditions, DBS has a higher probability of being
successful than LDS on a comparable number of generated nodes. Then, we
show experimental behaviour of LDS and DBS on the whole search tree, given a
number of probability distributions among the branches being successful. Finally,
we consider a constraint satisfaction problem, namely the partial latin square
completion problem and a combinatorial optimization problem, the traveling
salesman problem. We apply LDS and DBS to these problems using the same
variable and value ordering heuristics and show that DBS outperforms LDS in
almost all cases.

The paper is organized as follows. The next section introduces some prelimi-
naries. In Section 3 we propose the subproblem generation scheme. In Section 4,
we perform a theoretical comparison with IB and LDS. In Section 5, we present
a computational study of DBS experimenting it both on constraint satisfaction
and optimization problems. We conclude in Section 6.

2 Definitions

In this work we consider Constraint Satisfaction Problems (or CSPs), possibly
together with an objective function to be optimized. A Constraint Satisfaction
Problem P is defined by the triple (X ,D, C), where X = {x1, . . . , xn} is a set of



variables, D = {D1, . . . , Dn} is a set of variable domains, and C = {C1, . . . , Cm}
is a set of constraints Cj(xi1 , . . . , xik

) (j = 1, . . . , m) over variables (k ≤ n). A
solution s to P is an assignment of each variable to a value in its domain such
that all constraints are satisfied.

As far as search trees are concerned, we follow the concepts and vocabulary
introduced by Perron [11] and Van Hentenryck et al. [6]. A search tree consists of
three disjoint sets of nodes that are connected to each other: open nodes, closed
nodes and unexplored nodes. The connection between the three is as follows:

– all ancestors of an open node in a search tree are closed nodes,
– each unexplored node has exactly one open node as its ancestor,
– no closed node has an open node as its ancestor.

The set of open nodes is called the search frontier. The search frontier evolves
by so called node expansion. This operation removes an open node from the
frontier, transforms it to a closed node, and adds the unexplored children of the
node to the frontier. It corresponds to the branch operation in the Branch &
Bound algorithm. In this work, nodes represent CSPs.

3 Decomposition Based Search

Decomposition Based Search is a two-phase search strategy, consisting of sub-
problem generation and subproblem solution. In this section we first give an
outline of the strategy. Then details about subproblem generation are presented.
After that, the subproblem solution is considered.

The input of the DBS algorithm is the problem specification, represented by
a CSP P0 = (X ,D, C) and characteristics of the method that may be defined by
the user. Such characteristics must include a way to evaluate domain values, and
a solution strategy to solve the subproblems. Algorithm 3.1 presents the general
DBS scheme.

3.1 Subproblem Generation

The decomposition into subproblems is managed by a search tree. It can be di-
vided into two parts: the search tree specification and the search tree exploration.
The specification defines the nodes in the search tree, while the exploration de-
fines the way of traversing those nodes. We will treat both concepts separately.

Search tree specification The subproblem generation tree is specified by vari-
able ordering and domain partitioning (based upon some domain value ranking).
We list the basic ingredients for the specification of this search tree.

Variable Ordering - This is the traditional variable ordering heuristic which
specifies which variable will be used to expand the current node. The ordering of
variables can be of great importance during dynamic domain partitioning. One
widely used and problem-independent variable ordering heuristic in CP is the



Algorithm 3.1 Decomposition Based Search

Input: CSP P0, variable ordering (used in choose), domain value evaluator rank,
domain partitioner partition, search selector select, depth bound d, subproblem
solution strategy (used in solve), stop criteria stop

open P0

while stop not satisfied do

select open node → P

if P at depth d then

solve P

else

choose variable x

rank domain values of x

partition domain of x

expand P

end if

end while

first-fail principle: the variable with the smallest domain size is selected first.
Another principle is to select the most constrained variable (i.e. the variable
that occurs in the most number of constraints). As usual, problem dependent
heuristics can be used as well.

Domain Value Evaluator - In order to rank domain values (function rank in
Algorithm 3.1) we need a domain value evaluator, specified by the user. The
ranking is characterized by two levels of accuracy: first, the rank should give a
correct indication on which are the most promising values. Higher ranks should
be given to more promising domain values. Second, it should discriminate among
values. Here we introduce the concept of plateaus: a plateau is a set of values
with the same (or very similar) rank (sometimes also called a tie). To perform
a theoretical comparison among search strategies, we assume that the evaluator
has a probability distribution that assigns a certain probability of success to
each branch. Plateaus contain values with the same probability of success.

Domain Partitioner - Given a domain value ranking, the user has to specify
how the domain has to be partitioned (function partition in Algorithm 3.1). In

general, we partition domain Di into p subdomains D
(0)
i , . . . , D

(p−1)
i with ‘best’

ranked values in the first subdomain D
(0)
i and the worst ranked values in the

last subdomain D
(p−1)
i .

The user has to specify the number of subdomains (possibly variable depen-
dent), and the sizes of the different subdomains. An important point is that if
the heuristics presents plateaus, the domain partitioning step should in general
collect all values in a plateau in the same subdomain. Thus, the user can par-
tition variable domains according to equivalent ranks. Another possibility is to
partition domains on the base of their cardinality, e.g., split a domain into two
subdomains, with the 10% best ranked values in the first and the other 90% in
the second.



Node Expansion - The procedure expand P in Algorithm 3.1 generates p children
of a node P , being aware of the selected variable xi and the domain partition

D
(0)
i , . . . , D

(p−1)
i . Based upon the current node P = (X ,D, C), the children Pr

are defined as Pr = (X , D̃, C), where D̃ = {D1, . . . , Di−1, D
(r)
i , Di+1, . . . , Dn},

with r ∈ {0, . . . , p − 1}. The procedure closes node P and opens its children.

Search tree exploration The nodes of the search tree must be visited in a
specific order, based upon the following characteristics.

Search Selector - The search selector is implemented by the function select

that chooses a node to expand from the frontier. In principle, any search selector
ranging from Depth-First Search to LDS could be used, but LDS fits the most
to the idea of DBS. Instead of LDS, also the Best Bound First (BBF) strategy
could be suitable to the DBS framework. BBF is typically applied in a dynamic
way, where it is convenient to recompute the bounds after each node expansion.
When both the ranking heuristic and the bound computation have the same
origin (say reduced costs and a solution from an LP relaxation as done in [10]),
a dynamic version of LDS will often behave similar to BBF.

In this paper we take into account a LDS Selector. Harvey and Ginsberg
define LDS on binary search trees [5]. However, we need a general search strategy,
therefore we cannot be limited to binary trees. In the following we recall two
version of LDS when applied to a b-ary tree (a search tree with branch width b,
see Figure 1.a).

In principle, a b-ary search tree can be mapped onto a binary search tree
(see Figure 1.b), but one has to take into account the depth of the resulting
tree. When n variables ranging on b domain values are considered, the leftmost
path from the root to a leaf in the binary search tree will be of depth n. On
the other hand, the rightmost path will be of depth n ∗ b, see Figure 1. This has
to be taken into account when analyzing LDS on a b-ary search tree. For the
purpose of this paper, we have chosen not use binary trees with variable depths,
but to maintain a b-ary search tree with fixed depth n. For this reason, we need
to distribute higher discrepancies along multiple branches, on multiple depths.
A straightforward way to do so is the following. Each node in the search tree
has b branches, ordered by some heuristic. The branches (ordered from left to
right) contribute a discrepancy of 0 up to b − 1 and have a corresponding label
weighting the arc, i.e., wij where i represents the depth of the search tree and j
the fact that the arc is ranked j. The total discrepancy of a leaf node is the sum
of all branches that form the path from the root node to this leaf, i.e.,

∑n

i=1 wij

j = 0..b − 1 (see also Figure 1).
Now we still have a degree of freedom. At each discrepancy k we have two

choices: the first one is to visit nodes labelled with discrepancy k independently
from their order. However, when the heuristic used to label branches represents,
for example, preferences, visiting nodes of discrepancy k in any order is not fair
since we give the same importance to a choice where n−1 variables have the first
choice (that suggested by the heuristics) and one its k − th choice. Therefore, if
the heuristics orders preferences, we have n−1 variables completely satisfied and
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Fig. 1. Two corresponding (partial) search trees. The numbers 1, 2, . . . , b represent do-
main values. The numbers between parentheses represent the discrepancy correspond-
ing to the above leaf nodes.

one with its k−th preference. Among nodes with the same discrepancy, we could
visit first those where the level of un-satisfaction is more balanced. Therefore, one
could prefer to visit first the node where k out of n variables have a degree of
un-satisfaction equal to 1. In this way, we apply an ordering to nodes with the
same discrepancy. Before traversing a branch whose label is h we have to explore
all those paths formed by branches labelled from 0 up to h − 1. This preference
based ordering will be used to compare DBS with IB in Section 4.1.

Depth Bounding - The user may be interested to partition domains only until a
certain depth d. At level d, the subproblem solution procedure will start. When
d is taken smaller than the depth of the search tree (together with a LDS search
selector and single valued subdomains), DBS behaves similar to Depth-Bounded
Discrepancy Search [13].

3.2 Subproblem Solution

At a certain level d of depth in the search tree, the user has specified to solve the
subproblem at hand. In order to solve the subproblem, several methods can be
applied, which are often problem dependent. In the following, we present only a
few of the possible methods to give some insights.

An interesting aspect of the subproblem solution concerns the use of a differ-
ent variable and value ordering heuristic with respect to that used for subproblem
generation. Suppose that the first application of DBS for subproblem generation
has grouped domain values with the same (or similar) ranking value. Using the
same heuristic for the subproblem solution is not very informative since all val-
ues belonging to the problem have a very similar rank. Thus, it is convenient to
change the heuristic and use for instance one of the following search strategies.

Standard labelling procedure - Solve the subproblem using traditional Depth-



First Search. A motivation for this strategy is that all leaf nodes in the subprob-
lem are equally likely to be successful with respect to the heuristic applied to
the subproblem generation. Moreover, Depth-First Search is usually much faster
than specialized search strategies.

Iterated application of DBS - Another possibility is to apply DBS to the sub-
problem again. As stated above, it would be useless to use the same heuristic for
ranking domain values as the one used for subproblem generation. Instead, one
should use a heuristic that captures a different property of the problem at hand.
Thus, combining DBS at different levels yields an effective and simple method
for breaking ties.

Local Search - An alternative to the use of tree search could be the use of local
moves on a landscape. In this case, we have to generate some initial solution of
the subproblem, and try to improve it by performing problem dependent ‘local
moves’. The resulting approach is not ‘complete’.

4 Comparison with other approaches

This section compares DBS with similar approaches to traverse a search tree,
namely Iterative Broadening (IB) [2] and Limited Discrepancy Search (LDS)
[5]. Note the distinction between LDS as sole search strategy (single-valued) and
LDS as component of DBS to generate subproblems (multi-valued).

For our comparison we make the following assumptions. DBS, IB and LDS
are applied to the same search tree with fixed branch width b and depth n.
Furthermore, we assume that a heuristic orders the branches in such a way that
the probability that branch j leads to a successful leaf is pj , with p1 ≥ p2 ≥
· · · ≥ pb. As in [5], this probability is independent of the depth for the sake of
simplicity. Thus the probability that the first leaf of the ordered search tree is
successful is pn

1 . Finally, a fair comparison is established by the hypothesis that
the heuristic is the same for all three approaches.

As explained in Section 3, we have seen that DBS can be tuned by fixing the
degrees of freedom. In the following we show that DBS can be tuned in such a
way that it is equivalent to IB and even improves it by avoiding the repeated
exploration of some nodes.

Next we consider LDS and show the equivalence with DBS when the cardi-
nality of each subdomain is taken one. In addition, we show that by considering
more than one value in each subdomain, the first subproblem generated by DBS
has a higher probability of being successful than LDS under certain conditions.

Finally, we show experimental behaviour of LDS and DBS on the whole
search tree, given a number of probability distributions among the branches
being successful.

4.1 Iterative Broadening

Iterative Broadening (IB) (see [2]) introduces a breadth cut-off c0 which is the
maximum branch-width to explore in a Depth-First Search (DFS) tree. First



c0 is set to some initial value, and the corresponding search tree is traversed
in a DFS manner. After that, we increase c0 and traverse the extended search
tree. Typically c0 is only increased a small number of times, as to keep the total
nodes to search as low as possible, while still being effective. It is proven that
under certain assumptions IB performs better than DFS [2]. One drawback of
IB is the redundancy in traversing the search tree. Each time c0 is increased, the
corresponding search tree has to be traversed from scratch, including the parts
that were already visited in previous runs.

The first subproblem generated by DBS can be seen as the first run of IB,
where c0 is the exact number of values to include in the best subdomain for
each variable. If this subtree is being traversed in a DFS manner, DBS and IB
behave equally in this first case. Moreover, when we apply LDS instead of DFS
to traverse the subtree, DBS behaves provably better than IB (see [5]).

Suppose that IB increases c0 to c1 up to cmax. Let the corresponding con-
secutive runs be denoted by IB(ci). Define the following domain partitioner

(denoted by (?)) for variable xi, partitioning Di into D
(0)
i , . . . , D

(max)
i , where

D
(0)
i = {d1, . . . , dc0

}, and D
(t)
i = {dct−1+1, . . . dct

} (0 < t ≤ max). Here dj rep-
resents the domain value of Di corresponding to the j-th branch in the ordered
search tree. Next, we apply a preference based ordered (described in Section 3.1)
LDS strategy to the subproblem generation tree of DBS. Given a branch cut-off

ct (t ∈ {0, . . . , cmax}), let DBS(t)
(?)
k represent all subproblems of discrepancy k,

using partitioner (?) restricted to subdomains D
(l)
i with l ≤ t, in which at least

one D
(t)
i is present. Applying this strategy up to discrepancy k = t ∗ n, the sub-

sequent runs of DBS(t)
(?)
k exactly generate those leaf nodes generated by IB(ct)

and not generated by IB(ct−1), yielding the following theorem. Here |DBS(t)
(?)
k |

denotes the number of leaf nodes generated by DBS(t)
(?)
k . Similarly for |IB(ct)|.

Theorem 1. Given DBS(t)
(?)
k and IB(ct) as described above (t > 0),

t∗n
∑

k=t

prob(DBS(t)
(?)
k successful) = prob(IB(ct) successful) −

prob(IB(ct−1) successful),

and
t∗n
∑

k=t

|DBS(t)
(?)
k | = |IB(ct)| − |IB(ct−1)|.

Proof. Follows immediately from the above. ut

As a consequence of this theorem, note that the redundant exploration in IB
does not appear in the case of DBS.

4.2 Limited Discrepancy Search

For the definition of Limited Discrepancy Search we refer to [5] and to our
definition for b-ary trees given in Section 3.1.



When DBS is configured in such a way that the subdomains are restricted
to contain only a single value, traversing the corresponding tree using a limited
discrepancy strategy will be equivalent to LDS. More interesting is what happens
when DBS applies a limited discrepancy strategy to subdomains of cardinality
greater than one in comparison to LDS on single values. Then one can compare
the total number of generated leaf nodes with the probability of success for both
methods. In the following the first subproblem generated by DBS is compared
with LDS on single values.

Assume a domain partitioning of DBS in which the best ranked subdomains
have cardinality c (with c ≤ b). Let DBS(c) denote the first subproblem generated
by DBS, corresponding to discrepancy 0. The total number of leaf nodes of
DBS(c) is cn. The probability of success is

prob(DBS(c) successful) =

(

c
∑

i=1

pi

)n

.

Next the same analysis is performed for LDS. Let LDS(k) denote the search
subtree consisting of all paths of discrepancy k from the root to the leaf nodes.
At depth n of the search tree, the paths of discrepancy k can be viewed as
partitioning the integer k into exactly n integers between 0 and b. Formally,
define the set of partitions of an integer k as

Pk = {πi = (π
(1)
i , π

(2)
i , . . . , π

(n)
i ) | π

(j)
i integer, 0 ≤ π

(j)
i ≤ b,

n
∑

j=1

π
(j)
i = k}

Furthermore, each partition πi can occur several times. We denote its multiplicity

as µi. The number of leaf nodes of discrepancy k is thus
∑|Pk|

i=1 µi. The probability
that these nodes are successful is

prob(LDS(k) successful) =

|Pk|
∑

i=1





n
∏

j=1

p
π

(j)
i



µi .

Let LDS(d)k
d=0 denote the search subtree consisting of all paths of discrepancy

0 up to k from the root to the leaf nodes. Then

prob(LDS(d)k
d=0 successful) =

∑k

d=0 prob(LDS(d) successful).

Next we present two results that relate the probability of success of DBS and
LDS. The first result considers a search tree in which the first c branches are
ranked equal (called a plateau). The second result considers a search tree in
which no plateaus occur.

Theorem 2. Given p1 = p2 = · · · = pc > pc+1 ≥ pc+2 ≥ · · · ≥ pb, 1 ≤ c̃ ≤ c
and 0 ≤ k ≤ n(b − 1):

prob(DBS(c̃) successful)

c̃n
≥

prob(LDS(d)k
d=0 successful)

∑k

d=0

∑|Pd|
i=1 µi

.



Proof. The inequality compares the mean probability of success per leaf node
of DBS(c̃) and LDS(d)k

d=0. For DBS(c̃) this is pn
1 for all c̃ ≤ c. This is the same

for LDS(d)k
d=0 when k < c. For k ≥ c, LDS(k) also uses branches with pc+1 up

to pb which are strictly smaller than p1 up to pc. Hence the mean probability of
success per leaf node decreases for LDS(k). ut

Corollary 1. Given a problem instance in which for each search variable a
plateau of size c is ranked best, DBS(c) is more likely to be successful than
LDS(d)k

d=0 on a comparable number of generated leaf nodes.

Proof. Direct application of Theorem 2. ut

We now consider the case when the branches all have strictly different prob-
abilities of success. In the following theorem we compare the first subproblem
generated by DBS(c), containing cn leaf nodes, with any LDS(d)k

d=0 search tree
containing at most cn leaf nodes. In other words, we fix c (and hence DBS(c)),
and make sure that LDS(d)k

d=0 does not generate more leaf nodes than DBS(c).
In that case, DBS(c) is more likely to be successful than LDS(d)k

d=0, assuming
pn−1
1 pc+1 < pn

c .

Theorem 3. Given p1 > p2 > · · · > pb with pn−1
1 pc+1 < pn

c , n > 1, 1 ≤ c ≤ b,
0 ≤ k ≤ n(b − 1) and LDS(d)k

d=0 is allowed to generate at most cn leaf nodes:

prob(DBS(c) successful) ≥ prob(LDS(d)k
d=0 successful),

In particular, equality only holds for the pairs (c = 1, k = 0), (c = b − 1, k =
n(b − 1) − 1) and (c = b, k = n(b − 1)).

Proof. It is easily seen that equality holds only for the pairs (c = 1, k = 0),
(c = b − 1, k = n(b − 1) − 1) and (c = b, k = n(b − 1)) because for each pair
the generated search trees are equivalent (note that n(b − 1) is the maximum
discrepancy of LDS).

The strict inequality comes from the following observation. LDS(d)k
d=0 can

generate at most cn leaf nodes, and by nature it differs at least one leaf node
from DBS(c) when n > 1. Therefore LDS(d)k

d=0 can be built from DBS(c) by
interchanging DBS(c) leaf nodes for LDS(d)k

d=0 leaf nodes. Consider the worst-
case interchangement that can occur. The rightmost leaf node inside the DBS(c)
search tree has the smallest probability of success within that tree, namely pn

c .
The ‘first’ leaf node of LDS(d)k

d=0 outside the DBS(c) tree is one of n in which
one branch is of discrepancy c (branch c + 1) and the others of discrepancy
0 (branch 1). This leaf node has probability of success pn−1

1 pc+1, being the
highest outside the DBS(c) tree. Since pn−1

1 pc+1 < pn
c , non-DBS(c) leaf nodes

have a strictly smaller probability of success than DBS(c) leaf nodes. Hence the
interchangement will decrease the total probability of success of LDS(d)k

d=0 with
respect to DBS(c). ut



4.3 Theoretical comparison of LDS and DBS

In this section we compare the behaviour of DBS and LDS on a whole search
tree, given three different probability distributions of being successful among the
branches. We have chosen to compare linear, poisson and binomial probability
distributions, depicted in Figure 2. This choice is motivated by the different
slopes of the distributions, which will influence the performance of DBS and
LDS. For each probability distribution, also a version containing plateaus has
been used. Such a distribution consists of 4 plateaus of size 2, following the
same distribution as its origin (although being scaled to make the sum among
all branches equal to 1).

Figure 3 depicts the results of our experiments. It shows the cumulative
probability of success for DBS and LDS. DBS is plotted in two different ways.
The first way represents DBS on subdomains of size 2 using a limited discrepancy
strategy to generate subproblems (indicated by ‘DBS(2), with LDS’). The second
represents DBS(c), the first subproblem generated by DBS, where c is the size of
the best ranked subdomains and ranges from 1 up to b/2 (indicated by ‘DBS(c)’).
The latter corresponds to DBS(c) in Section 4.2.

Figures 3.a and 3.b make use of a linear descending probability distribu-
tion among the branches, with and without plateaus. One can observe that for
this distribution the performance of DBS and LDS is almost identical, although
‘DBS(2) with LDS’ performs slightly better than LDS when plateaus are present.

In Figures 3.c up to 3.f the used probability distributions are poisson and
binomial (both distributions are scaled such that the sum among the branches
equals 1). These figures show a better performance for ‘DBS(2) with LDS’ com-
pared to LDS, especially in the presence of plateaus. Another observation con-
cerns DBS(c) compared to LDS. Even in case of plateaus, enlarging c does not
necessarily make DBS(c) better than LDS.
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Fig. 2. Probability distributions among the branches being successful.
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Fig. 3. Cumulative probability of success for LDS and DBS on search tree of width 8,
depth 8 and linear, poisson and binomial probability distributions.

5 Computational Results

This section presents computational results of two applications for which we have
compared DBS and LDS. The first is the traveling salesman problem, the second



LDS DBS

instance time (s) fails discr time (s) fails discr

gr17 0.08 36 2 0.02 3 0
gr21 0.16 52 3 0.01 1 0
gr24 0.49 330 5 0.01 4 0
fri26 0.16 82 2 0.01 0 0
bayg29 8.06 4412 8 0.07 82 1
bays29 2.31 1274 5 0.07 43 1
dantzig42 0.98 485 1 0.79 1317 1
swiss42 6.51 2028 4 0.08 15 0
hk48 190.96 35971 11 0.23 175 1
brazil58 N.A. N.A. N.A. 0.72 770 1

N.A. means ‘not applicable’ due to time limit (900 s).

Table 1. Results for finding optima of TSP instances (not proving optimality).

the partial latin square completion problem. For each application we state the
problem, define the applied heuristic and report the computational results.

For the implementation of the applications we have used ILOG Solver [8] and
Cplex [7] on a Pentium 1Ghz with 256 MB RAM.

5.1 Traveling salesman problem

The traveling salesman problem (TSP) is a traditional NP-hard combinatorial
optimization problem. Given a set of cities with distances (costs) between them,
the problem is to find a closed tour of minimal length visiting each city exactly
once.

For the TSP, we have used a heuristic similar to the one used in [10]. It
relies on the reduced cost matrix that originates from the solution of a linear
relaxation (an assignment problem) inferred from the TSP. The heuristic ranks
those values best that are associated to the lowest reduced costs. Intuitively this
is motivated by the fact that those values will contribute the least to an optimal
tour. Differently from [10] we now apply this heuristic in a dynamic way. This
means that the subdomains are not selected beforehand (statically) but during
the subproblem generation. This approach avoids the inclusion of already pruned
domain values. Secondly, for each variable we only include values that have the
same (lowest) reduced cost, instead of a range of low reduced costs.

The further tuning of DBS consists of the following. The subproblems are
generated using a limited discrepancy strategy, without preference ordering con-
cerning the discrepancies. Subproblems are being solved using depth-first search,
since all leaf nodes can be considered to have equal probability of success.

To compare LDS and DBS fairly, we stop the search as soon as an optimal so-
lution has been found. The proof of optimality should not be taken into account,
because it is not directly related to the probability of a branch being successful.



The results of our comparison are presented in Table 1. The instances are
taken from TSPLIB [12] and represent symmetric TSPs. For LDS and DBS,
the table shows the time and the number of fails (backtracks) needed to find
an optimum. For LDS, the discrepancy of the leaf node that represents the
optimum is given. The discrepancy of the subproblem that contains the optimum
is reported for DBS.

For all instances but one, DBS performs much better than LDS. Both the
number of fails and the computation time are substantially less for DBS. Ob-
serve that for the instance dantzig42 LDS needs less fails than DBS, but uses
more time. Here is where the depth-first search strategy for solving the DBS
subproblems pays off. It can visit almost three times more nodes in less time,
because it lacks the LDS overhead.

5.2 Partial latin square completion problem

The partial latin square completion problem (PLSCP) is a well known NP-
complete combinatorial satisfaction problem. A latin square is an n × n square
in which each row and each column is a permutation of the numbers {1, . . . , n}.
For example:

2 4 3 1
1 3 2 4
4 2 1 3
3 1 4 2

is a latin 4 × 4 square. A partial latin square is a partially pre-assigned square.
The PLSCP is the problem of extending a partial latin square to a feasible
(completely filled) latin square.

As heuristic we have used a simple first-fail principle for the values, i.e. values
that are most constrained are to be considered first. This means, a value that
occurs the most inside a partial latin square is ranked best. Hence the rank of a
value is taken equal to the number of the value’s occurrences in the partial latin
square, and a higher rank is regarded better.

In our implementation, DBS groups together values of the same rank to
generate subproblems, using a limited discrepancy strategy without preference
ordering concerning the discrepancy. The subproblems are being solved using a
depth-first strategy, since we consider all values of the same rank to be equally
successful. Furthermore, the CSP that models the PLSCP uses alldifferent

constraints on the rows and the columns, with maximal propagation. The max-
imal alldifferent propagation (achieving hyper-arc consistency) is of great
importance for solving the PLSCP as a CSP. With less powerful propagation,
the considered instances are practically unsolvable.

In Table 2 we report the performance of LDS and DBS on a set of partial
latin square completion problems. The instances are generated with the PLS-
generator lsencode by Gomes et al. [3]. Following remarks made in [4], our
generated instances are such that they are ‘difficult’ to solve. The instances



LDS DBS

instance time (s) fails discr time (s) fails discr
bpls.order25.holes238 2.36 668 5 1.09 746 5
bpls.order25.holes239 0.49 15 1 0.42 2 1
bpls.order25.holes240 1.17 179 4 0.86 893 4
bpls.order25.holes241 3.31 772 3 4.70 3123 4
bpls.order25.holes242 2.41 537 3 1.80 1753 4
bpls.order25.holes243 4.06 1082 4 3.96 2542 4
bpls.order25.holes244 1.33 214 3 2.99 2072 4
bpls.order25.holes245 9.40 2308 6 10.66 12906 7
bpls.order25.holes246 2.01 401 5 2.22 1029 4
bpls.order25.holes247 258.91 69105 6 11.66 5727 4
bpls.order25.holes248 33.65 6969 5 0.68 125 2
bpls.order25.holes249 212.76 60543 11 101.46 85533 8
bpls.order25.holes250 2.45 338 2 0.83 687 3
pls.order30.holes328 273.53 32538 4 82 14102 3
pls.order30.holes330 21.79 2756 3 25.15 5019 3
pls.order30.holes332 235.40 30033 5 56.94 9609 3
pls.order30.holes334 4.18 256 2 6.09 843 2
pls.order30.holes336 1.73 69 2 0.76 12 1
pls.order30.holes338 49.17 5069 3 29.41 8026 3
pls.order30.holes340 1.68 91 2 0.81 66 2
pls.order30.holes342 28.40 3152 3 5.41 600 2
pls.order30.holes344 9.05 605 2 8.35 1103 2
pls.order30.holes346 2.15 101 2 3.76 482 2
pls.order30.holes348 43.80 2658 2 32.86 2729 2
pls.order30.holes350 1.16 46 1 0.80 12 1
pls.order30.holes352 5.10 288 2 0.95 32 1
sum 1211.45 220793 91 396.62 159773 81
mean 46.59 8492.04 3.50 15.25 6145.12 3.12

Table 2. Results for PLS completion problems.

bpls.order25.holesm are balanced 25×25 partial latin squares, with m unfilled
entries (around 38%). Instances pls.order30.holesm are unbalanced 30 × 30
partial latin squares, with m unfilled entries (around 38%).

Again, we report the time and the number of fails (backtracks) needed to
find a solution for both LDS and DBS. The discrepancy of the leaf node that
represents the solution is reported for LDS, for DBS this is the discrepancy
of the subproblem that contained the solution. Although DBS performs much
better than LDS on average, the results are not homogeneous. For some instances
LDS even found a solution at a lower discrepancy level than DBS. This can
be explained by the pruning power of the alldifferent constraint. Because
DBS branches on subdomains of cardinality larger than one, the alldifferent

constraint will remove less inconsistent values compared to branching on single
values, as is the case with LDS. Using DBS, such values will only be removed
inside the subproblems.

As was already mentioned in Section 5.1, DBS effectively exploits the depth-
first strategy which it is allowed to use to solve the subproblems. For a number of
instances, DBS finds a solution earlier than LDS, although making use a higher
number of fails.



6 Conclusion

In this paper, we presented a theoretical and experimental evaluation of an effec-
tive search strategy, Decomposition Based Search (DBS), based on value ranking
and domain partitioning. We have shown that DBS can be tuned to implement
two well known search strategies, namely Iterative Broadening and Limited Dis-
crepancy Search. Concerning IB, we show that DBS explores the same number
of nodes of each IB iteration, but avoids restarts. As far as LDS is concerned, we
prove that DBS has a higher probability of success on a comparable number of
nodes. Experimental result on the partial latin square completion problem and
on the traveling salesman problem show that DBS outperforms LDS in almost
all cases.

References

1. F. Focacci. Solving Combinatorial Optimization Problems in Constraint Program-
ming. PhD thesis, University of Ferrara, 2001.

2. M.L. Ginsberg and W.D. Harvey. Iterative broadening. Artificial Intelligence,
55(2):367–383, 1992.

3. C.P. Gomes, H. Kautz, and Y. Ruan. lsencode: a generator of quasigroup with
holes and quasigroup completion problems, 2001.

4. C.P. Gomes and D. Shmoys. Completing Quasigroups or Latin Squares: A Struc-
tured Graph Coloring Problem. In Proc. Computational Symposium on Graph
Coloring and Generalizations, 2002.

5. W. D. Harvey and M. L. Ginsberg. Limited Discrepancy Search. In C. S. Mellish,
editor, Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95); Vol. 1, pages 607–615, 1995.

6. P. van Hentenryck, L. Perron, and J.-F. Puget. Search and Strategies in OPL.
ACM Transactions on Computational Logic (TOCL), 1(2):285–320, 2000.

7. ILOG. ILOG Cplex 7.1, Reference Manual, 2001.
8. ILOG. ILOG Solver 5.1, Reference Manual, 2001.
9. A. Lodi, M. Milano, and L.M. Rousseau. Discrepancy based additive bounding,

2003. Submitted.
10. M. Milano and W.J. van Hoeve. Reduced cost-based ranking for generating promis-

ing subproblems. In P. van Hentenryck, editor, Eighth International Conference
on the Principles and Practice of Constraint Programming (CP’02), volume 2470
of LNCS, pages 1–16. Springer Verlag, 2002.

11. L. Perron. Search procedures and parallelism in constraint programming. In
J. Jaffar, editor, Fifth International Conference on the Principles and Practice of
Constraint Programming (CP’99), volume 1713 of LNCS, pages 346–360. Springer
Verlag, 1999.

12. G. Reinelt. TSPLIB - a Traveling Salesman Problem Library. ORSA Journal on
Computing, 3:376–384, 1991.

13. T. Walsh. Depth-Bounded Discrepancy Search. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 1997.


