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Abstract. This work presents a hybrid approach to solve the maximum
stable set problem, using constraint and semidefinite programming. The
approach consists of two steps: subproblem generation and subproblem
solution. First we rank the variable domain values, based on the so-
lution of a semidefinite relaxation. Using this ranking, we generate the
most promising subproblems first, by exploring a search tree using a lim-
ited discrepancy strategy. Then the subproblems are being solved using
a constraint programming solver. To strengthen the semidefinite relax-
ation, we propose to infer additional constraints from the discrepancy
structure. Computational results show that the semidefinite relaxation
is very informative, since solutions of good quality are found in the first
subproblems, or optimality is proven immediately.

1 Introduction

This paper describes a hybrid method to solve a classical combinatorial optimiza-
tion problem, the maximum weighted stable set problem, or stable set problem1

in short. Given a graph with weighted vertices, the stable set problem is to find
a subset of vertices of maximum weight, such that no two vertices in this subset
are joined by an edge of the graph. In the unweighted case (when all weights are
equal to 1), this problem amounts to the maximum cardinality stable set prob-
lem, which has been shown to be already NP-hard [24]. Practical applications
of the stable set problem are plentiful, they appear in coding theory, computer
vision, pattern recognition, and many other areas [4].

We propose a two-phase approach to solve the stable set problem, either
with or without proving optimality. The first phase generates subproblems based
upon a semidefinite relaxation, the second phase solves the subproblems using
constraint programming. Concerning the first phase, given a model for the stable
set problem, we solve its semidefinite relaxation. The solution provides us frac-
tional values for the variables of the model. These fractional values are a good

? An earlier version of this paper appeared as [18].
1 Alternative names for the stable set problem are vertex packing, coclique or inde-

pendent set problem.



indication for the optimal (discrete) values of the variables. Hence we divide se-
lected variable domains in two parts: a ‘good’ subdomain and a ‘bad’ subdomain.
By branching on these subdomains using a limited discrepancy strategy [15], we
obtain first a very promising subproblem, and subsequently less promising sub-
problems.

The second phase consists of the solution of the subproblems. Since they
are much smaller than the original problem, we can easily solve them using a
constraint programming solver.

As computational results will show, the semidefinite relaxation is quite in-
formative. In several cases we can simply round the solution of the relaxation
and obtain a provable optimal solution already. Otherwise, we are likely to find a
good solution in one of the first subproblems. Using a limited number of subprob-
lems to investigate, we yield an incomplete method producing good solutions.
In order to obtain a complete search strategy, we need, in principle, to generate
and solve all possible subproblems. A good upper bound is necessary to prove
optimality earlier. For this reason we investigated the use of ‘discrepancy cuts’
that can be added to the semidefinite program to strengthen the relaxation and
thus prune large parts of the search tree. However, computational results will
show that they can not be applied efficiently on the instances we considered.

The outline of the paper is as follows. The next section gives a motivation
for the approach proposed in this work. Then, in Section 3 some preliminaries
on semidefinite programming are given. In Section 4 we introduce the stable
set problem, integer optimization formulations and a semidefinite relaxation. A
description of our solution framework is given in Section 5. Section 6 presents
the computational results. This is followed by an overview of related literature
in Section 7. Finally, in Section 8 we conclude and discuss future directions.

2 Motivation

Combinatorial optimization problems that are NP-hard are often solved with
the use of a polynomially solvable relaxation. Let us first motivate why in this
paper a semidefinite relaxation is used rather than a (more common) linear
relaxation. Indeed, one could argue that linear programs are being solved much
faster in general. However, for the stable set problem, linear relaxations are not
very tight. Therefore one has to identify and add inequalities that strengthen
the relaxation. But it is time-consuming to identify such inequalities, and by
enlarging the model the solution process may slow down.

Several papers on approximation theory following [11] have shown the tight-
ness of semidefinite relaxations. However, being tighter, semidefinite programs
are more time-consuming to solve than linear programs in practice. Hence one
has to trade strength for computation time. For large scale applications, semidef-
inite relaxations can often be preferred as the relaxation of choice to be used
in a branch and bound framework. Moreover, our intention is not to solve a
relaxation at every node of the search tree. Instead, we propose to only solve
a relaxation at the root node of the first phase (its solution is used to identify



the subdomains), and optionally at the root node of a subproblem (in order to
strengthen the upper bound). Therefore, we are willing to make the trade-off in
favour of the semidefinite relaxation.

Another point of view is the following. Although semidefinite programming
has been developing for many years now in the operations research community,
no efforts of integration or cooperation with constraint programming have been
made to our knowledge. Application of semidefinite programming to problems
typical to constraint programming, as was done in the papers on approximation
algorithms mentioned in Section 7, is not yet hybrid problem solving. In this
paper, however, a first step is being made. The solution of the semidefinite
relaxation is used to identify promising subdomains, and also produces a tight
upper bound for the constraint programming solver. On the other hand, the
solutions found by the constraint programming solver serve as a lower bound
inside the semidefinite programming solver.

3 Preliminaries on Semidefinite Programming

In this section we introduce semidefinite programming [28] as an extension of
the more common linear programming. Both paradigms can be used to model
polynomially solvable relaxations of NP-hard optimization problems.

In linear programming, combinatorial optimization problems are modeled in
the following way:

max cTx

s.t. aT

j x ≤ bj (j = 1, . . . , m)
x ≥ 0.

(1)

Here x ∈ R
n is an n-dimensional vector of decision variables and c ∈ R

n a
cost vector of dimension n. The m vectors aj ∈ R

n (j = 1, . . . , m) and the m-
dimensional vector b ∈ R

m define m linear constraints on x. In other words, this
approach models problems using nonnegative vectors of variables.

Semidefinite programming makes use of positive semidefinite matrices of vari-
ables instead of nonnegative vectors. A matrix X ∈ R

n×n is said to be positive
semidefinite (denoted by X � 0) when yTXy ≥ 0 for all vectors y ∈ R

n. Semidef-
inite programs have the form

max tr(CX)
s.t. tr(AjX) ≤ bj (j = 1, . . . , m)

X � 0.
(2)

Here tr(X) denotes the trace of X, which is the sum of its diagonal elements,
i.e. tr(X) =

∑n

i=1 Xii. The cost matrix C ∈ R
n×n and the constraint matrices

Aj ∈ R
n×n are supposed to be symmetric. The m reals bj and the m matrices

Aj define again m constraints.

We can view semidefinite programming as an extension of linear program-
ming. Namely, when the matrices C and Aj (j = 1, . . . , m) are all supposed to be



diagonal matrices2, the resulting semidefinite program is equal to a linear pro-
gram. In particular, then a semidefinite programming constraint tr(AjX) ≤ bj

corresponds to the linear programming constraint aT

j x ≤ bj , where aj represents
the diagonal of Aj .

Applied as a continuous relaxation (i.e. the integrality constraint on the vari-
ables is relaxed), semidefinite programming in general produces solutions that
are much closer to the integral optimum than linear programming. Intuitively,
this can be explained as follows. Demanding positive semidefiniteness of a matrix
automatically implies nonnegativity of its diagonal. If this diagonal corresponds
(as in the general case described above) to the nonnegative vector of the lin-
ear relaxation, the semidefinite relaxation is stronger than a linear relaxation.
Unfortunately, it is not a trivial task to otain a good (i.e. efficient) semidefinite
program for a given problem.

Theoretically, semidefinite programs have been proved to be polynomially
solvable using the so-called ellipsoid method (see for instance [12]). In practice,
nowadays fast ‘interior point’ methods are being used for this purpose (see [3]
for an overview). Being a special case of semidefinite programming, linear pro-
grams are also polynomially solvable using an ellipsoid or interior point method.
However, they are often solved with a special linear programming solver, the
simplex method. Although this method can have an exponential running time
in theory, in practice it is often faster than an interior point algorithm.

4 The Stable Set Problem

In this section, the stable set problem is formally defined, and formulated in
two different ways as an integer optimization problem. From this, a semidefinite
programming relaxation is inferred.

4.1 Definition

Consider an undirected weighted graph G = (V, E), where V = {1, . . . , n} is the
set of vertices and E a subset of edges {(i, j)|i, j ∈ V, i 6= j} of G, with |E| = m.
To each vertex i ∈ V a weight wi ∈ R is assigned (without loss of generality,
we can assume all weights to be nonnegative in this case). A stable set is a set
S ⊆ V such that no two vertices in S are joined by an edge in E. The stable

set problem is the problem of finding a stable set of maximum total weight in
G. This value is called the stable set number of G and is denoted by α(G)3. The
maximum cardinality (or unweighted) stable set problem can be obtained by
taking all weights equal to 1.

2 A diagonal matrix is a matrix with nonnegative values on its diagonal entries only.
3 In the literature α(G) usually denotes the unweighted stable set number. The

weighted stable set number is then denoted as αw(G). In this work, it is not necessary
to make this distinction.



4.2 Integer Optimization Formulation

Let us first consider an integer linear programming formulation. We introduce
binary variables to indicate whether or not a vertex belongs to the stable set
S. So, for n vertices, we have n integer variables xi indexed by i ∈ V , with
initial domains {0, 1}. In this way, xi = 1 if vertex i is in the stable set S, and
xi = 0 otherwise. We can now state the objective function, being the sum of
the weights of vertices that are in the stable set S, as

∑n

i=1 wixi. Finally, we
define the constraints that restrict two adjacent vertices to be both inside S as
xi +xj ≤ 1, for all edges (i, j) ∈ E. Hence the integer linear programming model
becomes:

α(G) = max
∑n

i=1 wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V.

(3)

Another way of describing the same solution set is presented by the following
integer quadratic program

α(G) = max
∑n

i=1 wixi

s.t. xixj = 0 ∀(i, j) ∈ E

x2
i = xi ∀i ∈ V.

(4)

Note that here the constraint xi ∈ {0, 1} is replaced by x2
i = xi. This quadratic

formulation will be used below to infer a semidefinite programming relaxation
of the stable set problem.

In fact, both model (3) and model (4) can be used as a constraint program-
ming model. We have chosen the first model, since the quadratic constraints
take more time to propagate than the linear constraints, while having the same
pruning power.

4.3 Semidefinite Programming Relaxation

The integer quadratic program (4) gives rise to a semidefinite relaxation intro-
duced by Lovász [22] (see Grötschel et al. [12] for a comprehensive treatment).
The value of the objective function of this relaxation has been named the theta

number of a graph G, indicated by ϑ(G). Let us start again from model (4). As
was indicated in Section 3, we want to transform the current model that uses
a nonzero vector into a model that uses a positive semidefinite matrix to rep-
resent our variables. In the current case, we can construct a matrix X ∈ R

n×n

by defining Xij = xixj . Let us also construct a n × n cost matrix W with
Wii = wi for i ∈ V and Wij = 0 for all i 6= j. Since Xii = x2

i = xi, the objec-
tive function becomes tr(WX). The edge constraints are easily transformed as
xixj = 0 ⇔ Xij = 0. The first step in the transformation of model (4) can now
be made:

max tr(WX)
s.t. Xij = 0 ∀(i, j) ∈ E

Xij = xixj ∀i, j ∈ V

x2
i = xi ∀i ∈ V.

(5)



This model is still a quadratic program, although reformulated. The problem
remains how to model the last, very important, constraint. We need a mapping
of the diagonal entries Xii = x2

i to the vector entries xi. For this reason, we
extend X with another row and column (both indexed by 0) that contain vector
x, and define the (n + 1) × (n + 1) matrix Y as

Y =











1 x1 · · · xn

x1

... X

xn











where the 1 in the leftmost corner of Y is needed to obtain positive semidefi-
niteness. In this case we can express the required mapping as Yii = 1

2
Yi0 + 1

2
Y0i

(note that X and Y are symmetric), since then x2
i = Yii = 1

2
Yi0 + 1

2
Y0i = xi.

The final step in the transformation consists of replacing the constraints on X

by constraints on Y . In particular, instead of demanding X to be a product of
nonnegative vectors, we restrict Y to be a positive semidefinite matrix. Namely,
if the vector x represents a stable set, then the matrix Y is positive semidefi-
nite. However, not all positive semidefinite Y matrices represent a stable set, in
particular its values can take fractional values.

In order to maintain equal dimension to Y , a row and a column (both indexed
by 0) should be added to W , all entries of which containing value 0. Denote the
resulting matrix by W̃ . The theta number of a graph G can now be described as

ϑ(G) = max tr(W̃Y)
s.t. Yii = 1

2
Yi0 + 1

2
Y0i ∀i ∈ V

Yij = 0 ∀(i, j) ∈ E

Y � 0.

(6)

By construction, the diagonal value Yii serves as an indication for the value of
variable xi (i ∈ V ) in a maximum stable set. In particular, this program is a
relaxation for the stable set problem, i.e. ϑ(G) ≥ α(G). Note that program (6)
can easily be rewritten into the general form of program (2). Namely, Yii =
1
2
Yi0 + 1

2
Y0i is equal to tr(AY ) where the (n + 1) × (n + 1) matrix A consists

of all zeroes, except for Aii = 1, Ai0 = − 1
2

and A0i = − 1
2
, which makes the

corresponding b entry equal to 0. Similarly for the edge constraints.

The theta number also arises from other formulations, different from the
above, see [12]. In our implementation we have used the formulation that has
been shown to be computationally most efficient among those alternatives [13].
Let us introduce that particular formulation (called ϑ3 in [12]). Again, let x ∈
{0, 1}n be a vector of binary variables representing a stable set. Define the n×n

matrix X = ξξT where ξi =
√

wi√
∑

n
j=1

wjxj

xi. Furthermore, let the n×n cost matrix

U be defined as Uij =
√

wiwj for i, j ∈ V . Observe that in these definitions we



exploit the fact that wi ≥ 0 for all i ∈ V . The following semidefinite program

ϑ(G) = max tr(UX)
s.t. tr(X) = 1

Xij = 0 ∀(i, j) ∈ E

X � 0

(7)

gives exactly the theta number of G. When (7) is solved to optimality, the
scaled diagonal element ϑ(G)Xii (a fractional value between 0 and 1) serves as
an indication for the value of xi (i ∈ V ) in a maximum stable set (see for instance
[13]). Again, it is not difficult to rewrite program (7) into the general form of
program (2).

Program (7) uses matrices of dimension n and m + 1 constraints, while pro-
gram (6) uses matrices of dimension n + 1 and m + n constraints. This gives an
indication why program (7) is computationally more efficient.

5 Solution Framework

5.1 Overview

The two-phase solution approach proposed here is similar to the one described
in [23]. In the first phase subproblems are generated, which are being solved in
the second phase. A subproblem consists of a constraint programming model
(program (3)) on restricted variable domains. The restricted domain values are
selected by a heuristic, in our case the solution to the semidefinite programming
relaxation. Each subproblem is solved to optimality using a constraint program-
ming solver. A general overview of the method is presented in Algorithm 1 and
explained hereafter.

Let us first explain how we use the solution of the semidefinite program (7)

to partition the domain Di of a variable xi into D
good
i and Dbad

i (for i ∈ V ). As
was stated before, the solution of program (7) assigns fractional values between 0
and 1 to its variables. Naturally, if for a variable xi the corresponding fractional
value ϑ(G)Xii is close to 1, we regard 1 to be a good value for variable xi. More
specifically, we select the variable xi with the highest corresponding fractional
value ϑ(G)Xii, set D

good
i = {1} and Dbad

i = {0}, and mark it as handled. Then
we mark all its neighbours j (with (i, j) ∈ E) as being handled, keeping their
original domain Dj = {0, 1}. This procedure is repeated until all variables are
handled. For later convenience, we partition V into two distinct sets V0 = {i ∈
V |Dgood

i = {1}} and V1 = V \ V0. Here V1 represents the set of neighbours j of
V0, with Dj = {0, 1}.

In a similar way, we can use the solution of the semidefinite relaxation to
compute a first feasible integer solution. Namely, follow the same procedure, but
now instantiate the selected variable xi = 1 and set its neighbours xj = 0. The
objective value of this feasible integer solution is in many cases already equal to
the (in case of integer weights downward rounded) solution of the semidefinite
relaxation. In that case, we have found an optimal solution and finish. In other



Algorithm 1 Solution framework

read problem
set maximum discrepancy
solve semidefinite program (7) → upper bound
round solution of (7) → lower bound
for i ∈ V0 do

define D
good
i

and D
bad
i using solution of (7)

end for

set discrepancy = 0
while lower bound < upper bound and discrepancy ≤ maximum discrepancy do

generate subproblem using LDS branching strategy on D
good
i

and D
bad
i

solve subproblem → lower bound
discrepancy = discrepancy + 1

end while

cases, we can still use this first solution as a lower bound to be applied during
the solution of the subproblem.

Next, we explain how to generate subproblems using these subdomains. The
generation of subproblems makes use of a tree structure of depth |V0| in which

we branch on D
good
i versus Dbad

i . The tree is traversed using a limited discrep-
ancy strategy (LDS) [15]. LDS visits the nodes of a search tree differently from
depth-first search. It tries to follow a given suggestion as good as it can. Branches
opposite to the suggestion are regarded as discrepancies and are gradually al-
lowed to be traversed. The first ‘run’ of LDS doesn’t allow any discrepancies,
the second allows only one, and so on. This means that for a particular discrep-
ancy k, a path from the root to a leaf is allowed to consist of maximally k right
branches. Typically this method is applied until a limited number of discrepan-
cies is reached (say 2 or 3), which yields an incomplete search strategy. In order
to be complete, one has to visit all nodes, up to discrepancy d for a binary tree
of depth d.

In our case, the suggestion that should be followed are branches of the kind
D

good
i , while branches Dbad

i are regarded as discrepancies. Hence, our first sub-

problem is the subproblem defined by program (3), with xi ∈ D
good
i for all

i ∈ V0. The next |V0| subproblems have all xi ∈ D
good
i , except for one xk ∈ Dbad

k

(i, k ∈ V0). The next discrepancy generates 1
2
(|V0|2 + |V0|) subproblems, each of

which contains two variables xk1
∈ Dbad

k1
and xk2

∈ Dbad
k2

(k1, k2 ∈ V0), and so
on. Since we expect to obtain a very good solution already in the first subprob-
lems, we will only generate subproblems up to a certain maximum discrepancy.
In our experiments the maximum discrepancy is chosen 2 and 4 respectively.
Finally, we solve all subproblems to optimality using a constraint programming
solver.

Note that the first subproblem, corresponding to discrepancy 0, only contains
one solution, namely the one that we obtain in our rounding procedure. By
propagation of the edge constraints, all variables xj ∈ Dj = {0, 1} (j ∈ V1)



are instantiated automatically to 0. Hence, the subproblem corresponding to
discrepancy 0 is obsolete in our current implementation.

5.2 Adding Discrepancy Cuts

In the case one needs to generate and solve subproblems up to a large discrep-
ancy, it is preferable to prove possible suboptimality of a subproblem before
entering it, especially when the subproblems are still relatively large. This can
be done in several ways.

First, before entering a subproblem, we can identify variables which have a
subdomain of size 1, namely those with i ∈ V0. For those variables, one can add
an additional constraint to the semidefinite program (7), enforcing either xi = 1
or xi = 0. Then the semidefinite program can be solved again, and will in general
provide a tighter bound, hopefully lower than the current lowerbound, in which
case we have proven suboptimality. However, solving the semidefinite program
each time before entering a subproblem is very time-consuming and this method
will not be very practical.

A better alternative would be to add a specific constraint, a discrepancy cut,
that is valid for all subproblems of a given discrepancy. Recall that V0 = {i ∈
V |Dgood

i = {1}}. Hence, all subproblems of discrepancy k consist of k variables
xi with xi = 0, and |V0| − k variables xi with xi = 1 (i ∈ V0). This gives rise to
two discrepancy cuts, given discrepancy k:

∑

i∈V0

xi = |V0| − k (8)

∑

i∈V0

1 − xi = k (9)

We implemented both of them, and cut (9) gives the best results. Stated in terms
of semidefinite program (6), the discrepancy cut looks like tr(AY ) = |V0| − k,
with Aii = 1 if i ∈ V0 and Aij = 0 otherwise (i, j ∈ {0, . . . , n}). As mentioned
before, solving a semidefinite relaxation is relatively expensive, and one should
make a tradeoff between its computation time and the gain in time of not solving
the subproblems. For the instances we considered, the time needed to solve a
semidefinite program is always larger than the time needed to solve all subprob-
lems we would like to proof suboptimal. However, these cuts might be helpful
for larger instances.

6 Computational Results

Our experiments are being done on a Pentium 1GHz processor, with 256 Mb
RAM. As constraint programming solver we use the ILOG solver library, version
5.1 [19]. As semidefinite programming solver, we use CSDP version 4.1 [5]. The
reason for our choices is that both solvers are among the fastest in their field,



and because ILOG solver is written in C++, and CSDP is written in C, they
can be easily hooked together.

The first instances we consider are randomly generated weighted graphs with
n vertices and m edges. The vertex weights are randomly chosen integers from
a range of 1 up to n. The edge density is chosen such that the constraint pro-
gramming solver has difficulties solving them. Namely, the more edge constraints
we have, the more propagation can be performed, and the easier the instance
is solved by constraint programming. On the other hand, more edge constraints
will slow down the semidefinite programming solver, because it is highly sensitive
to the size of the semidefinite program to solve.

The name of the instances represent the number of vertices and the edge
density, i.e. g75d015 is a graph on 75 vertices with an approximate edge density
of 0.15. For these graphs, we have chosen to generate subproblems up to a
maximum discrepancy of 4, based upon earlier experience.

We also considered structured instances (1tc.64 up to 1et.256), obtained
from problems arising in coding theory [27]. These are unweighted graphs, there-
fore we have set all weights equal to 1. For these graphs, we generate subproblems
up to a discrepancy of 2.

The results of our experiments are given in Table 1. It consists of three
parts: the first part describes the instances, the next part gives the results of
our approach (sdp and cp), the last part concerns the results of a sole constraint
programming approach (cp alone) applied to program (3).

The columns in this table represent the following. An instance name has n

vertices and m edges. For the part on our approach, the value of the semidefinite
relaxation is ϑ, the rounded solution of the semidefinite relaxation has value
round, and best is the value of the best solution found. This best solution is
found in a subproblem generated during discrepancy best discr. Note that we
generate subproblems up to discrepancy 4 in all cases, as was mentioned in
Section 5. The time spent on solving the semidefinite relaxation is denoted by
time sdp. The time spent on solving all generated subproblems is denoted by
time subp. These values together form the total time. All times are measured in
seconds. The number of all backtracking steps made during the search in our
approach is collected in backtracks. Concerning the sole constraint programming
approach, we report the best solution found (best), the total time spent during
search, and the total number of backtracks. Note that we have set time limits
for the constraint programming solver, to create a fair comparison with our
approach. They are 100 seconds for g50d005 up to g150d010, 190 seconds for
g150d015 and 324 seconds for the structured instances. Best found solutions
that are proven to be optimal are indicated by an asterisk (*).

For the instances in Table 1 we only solved one semidefinite relaxation per
problem, namely at the root node. The reason for this is that the time spent
during the subproblem search is less than the time spent on computing another
relaxation, as reported in the table. Therefore, we cannot gain time by adding
discrepancy cuts and computing another semidefinite relaxation.



instance sdp and cp cp alone

best time time total back- total back-
name n m ϑ round best discr sdp subp time tracks best time tracks

g50d005 50 69 746.00 746 746∗ 0 0.48 0.00 0.48 0 746∗ 6.38 160185
g50d010 50 130 568.00 568 568∗ 0 0.53 0.00 0.53 0 568∗ 1.54 40878
g50d015 50 191 512.00 512 512∗ 0 0.71 0.00 0.71 0 512∗ 0.54 13355
g75d005 75 139 1472.17 1455 1466 1 0.99 3.47 4.46 36492 1077 100.00 2555879
g75d010 75 280 1148.25 1122 1134 3 2.05 1.01 3.06 12964 1074 100.00 2299226
g75d015 75 414 966.76 924 946 4 3.50 0.88 4.38 11136 951∗ 46.63 1000409
g100d005 100 250 2903.00 2903 2903∗ 0 3.13 0.00 3.13 0 2415 100.01 1578719
g100d010 100 495 2058.41 1972 2029 4 6.92 7.17 14.09 74252 1850 100.02 1666892
g100d015 100 725 1704.61 1568 1608 4 17.87 4.28 22.15 47222 1644 100.01 1469221
g125d005 125 367 3454.00 3454 3454∗ 0 7.10 0.00 7.10 0 2656 100.02 1644993
g125d010 125 761 2448.94 2208 2271 4 22.00 13.98 35.98 107610 1668 100.01 1643183
g125d015 125 1110 2033.74 1839 1846 4 59.56 6.15 65.71 53103 1733 100.02 1454377
g150d005 150 549 5043.09 5035 5035 0 15.79 26.89 42.68 135051 3090 100.02 1426234
g150d010 150 1094 3651.38 3281 3423 2 64.83 13.10 77.93 78263 2294 100.02 1462125
g150d015 150 1641 2935.84 2572 2572 0 181.54 4.56 186.10 27306 2224 190.03 2119929

1tc.64 64 192 20.00 20 20∗ 0 1.05 0.00 1.05 0 19 324.01 10969580
1et.64 64 264 18.85 18 18∗ 0 0.97 0.00 0.97 0 18∗ 179.00 5763552
1tc.128 128 512 38.00 38 38∗ 0 12.03 0.00 12.03 0 19 324.02 9455475
1et.128 128 672 29.33 28 28 0 13.48 0.67 14.15 1929 19 324.02 8562959
1dc.128 128 1471 16.89 16 16∗ 0 107.71 0.00 107.71 0 13 324.04 6497027
1zc.128 128 2240 20.84 16 18 2 323.53 0.41 323.94 2094 18 324.04 7584769
1tc.256 256 1312 63.43 60 62 2 129.82 8.63 138.45 11588 13 324.03 7284451
1et.256 256 1664 55.14 50 50 0 230.39 5.02 235.41 7184 18 324.04 7656162
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In general, our method produces better solutions than the constraint pro-
gramming approach alone. In many cases, the rounded solution of the semidefini-
nite relaxation is already optimal. However, note that there are two instances
for which the constraint programming approach gives better solutions. Note also
that the structured instances are handled quite well by our approach, while the
constraint programming approach produces very low quality solutions for the
larger instances.

A final remark concerns instance 1et.256. In [27], the maximum value of
this instance is 48, while we find a solution with value 50. After notification, the
author of [27] agreed with our solution.

7 Related Literature

Since the stable set problem is NP-hard, no complete (or exact) algorithm is
known that solves the stable set problem in polynomial time. Many other tech-
niques have been proposed, including approximation algorithms, heuristics, or
branch and bound structured methods. A survey of different formulations, com-
plete methods and heuristics for the maximum clique problem4 is given by Parda-
los and Xue [25] and, more recently, by Bomze et al. [4]. The maximum clique
problem has also been succesfully attacked using constraint programming, by
Fahle [7] and Régin [26]. Both papers make use of specialized propagation algo-
rithms for the maximum clique problem.

Although semidefinite programs can be solved in polynomial time theoret-
ically, it lasted until a few years ago until fast solvers for this purpose were
implemented. Until then, application inside a branch and bound framework was
unrealistic. Still, solving a semidefinite program takes relatively much time, com-
pared to solving a linear program. However, since semidefinite programming
solvers are getting faster, semidefinite relaxations become a serious candidate to
be used within a branch and bound framework, see for instance the paper by
Karisch et al. [20].

A large number of references to papers concerning semidefinite programming
are on the web pages of Helmberg [16] and Alizadeh [2]. A general introduction
on semidefinite programming applied to combinatorial optimization is given by
Goemans and Rendl [10].

Another area that made semidefinite programming useful in practice is that
of approximation algorithms. In this field one tries to give a performance guar-
antee for an algorithm on a particular problem. In particular, the paper [11] by
Goemans and Williamson uses a semidefinite relaxation and randomized round-
ing to prove such a performance guarantee for the maximum cut problem of
a graph and satisfiability problems. Following this result numerous papers ap-
peared, also concerning the approximation of satisfiability problems, including
[14] and [21].

4 The maximum weighted stable set problem of a graph is equivalent to the maximum
weighted clique problem of its complement graph.



The solution structure of the current work, namely problem decomposition by
branching on promising subdomains, is similar to the method described in [23],
which is also present in [8]. In [23] a linear relaxation is used to identify promis-
ing values. Moreover, by exploiting the discrepancy structure of the method
combined with reduced costs, suboptimality of subproblems can be proved very
fast.

Another hybrid approach, using linear programming and constraint program-
ming, has been investigated by Ajili et al. [1] and El Sakkout et al. [6]. A subset
of constraints is relaxed as a linear program in such a way that its solution is al-
ways integral. The solution to the relaxation serves as a suggestion (a ‘probe’) for
solving the complete program using a constraint programming solver. A probe
is used to detect infeasibility, to remove inconsistent domain values and to guide
the search. During search, many probing steps are being made. This results in a
tight cooperation of the linear programming and constraint programming solver.

8 Conclusions and Further Research

We introduced a method that combines semidefinite programming and constraint
programming to solve the stable set problem. Our experiments show that con-
straint programming can indeed benefit greatly from semidefinite programming.
On instances that were very difficult to handle for a constraint programming
solver, our hybrid method obtained very good results.

The discrepancy cuts we proposed to strengthen the semidefinite relaxation
could not be applied efficiently to the instances we considered. However, for
larger instances they could be helpful.

Further research in this direction would for instance be to obtain a filtering
mechanism similar to the cost-based domain filtering for linear relaxations [9].
In [17], Helmberg describes such a procedure, called variable fixing, for semidef-
inite relaxations. It would be interesting to see how his method can be applied
in a constraint programming framework.

Also, one could consider a different way of selecting promising values from the
solution of the semidefinite relaxation. A strategy that incorporates randomized
rounding possibly yields better results. This thought is motivated by the use of
randomized rounding of semidefinite relaxations in approximation algorithms,
as discussed in Section 7.

Finally, this work has much in common with our previous work [23]. The un-
derlying general principle of decomposing a problem into promising subproblems
according to a certain heuristic is currently under research.
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