Chapter 7

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

Contents

7 Global Constraints 1
Willem-Jan van Hoeve and Irit Katriel

Contents 1
7.1 Notationand Preliminaries 3
7.2 Examplesof Global Constraints 9
7.3 Complete Filtering Algorithms 14
7.4 Optimization Constraints 21
7.5 Partial Filtering Algorithms 25
7.6 GlobalVariables. 32
7.7 Conclusion e 35

Handbook of Constraint Programming

Francesca Rossi, Peter Van Beek, and Toby Walsh, Ed.
(©2006 Elsevier All rights reserved

This copy is for educational and scientific use only.

2 CONTENTS

A global constrainis a constraint that captures a relation between a non-fixetber
of variables. An example is the constraaitl di f f er ent (x4, ..., ,), which specifies
that the values assigned to the variables. . ., z,, must be pairwise distinct. Typically, a
global constraint is semantically redundant in the senaetlie same relation can be ex-
pressed as the conjunction of several simpler constraitatging shorthands for frequently
recurring patterns clearly simplifies the programming tagkhat may be less obvious is
that global constraints also facilitate the work of the ¢aaiat solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is th@agation-search tech-
nique, which consists of a traversal of the search spaceedjitten constraint satisfaction
problem (CSP) while detecting “dead ends” as early as pless#n algorithm that per-
forms only the search component would enumerate all p&sagsignments of values to
the variables until it either finds a solution to the CSP oragidts all possible assignments
and concludes that a solution does not exist. Such an extaesarch has an exponential-
time complexity in thebest casgand this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search spta®it enumerating them. For
example, if the CSP contains the constraint y = 3 and bothr andy are set tal, we
can conclude that regardless of the values assigned to whables, the partial assign-
ment we have constructed so far cannot lead to a solutiors ifisisafe to backtrack and
reverse some of our previous decisions (see also Chapt€o8straint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapsecalledfiltering of the
variable domains. The filtering task is to examine the vdemklwhich were not assigned
values yet, and remove useless values from their domainsluwevs useless if it cannot
participate in any solution that conforms with the assignim@lready made. Since it is,
in general, NP-hard to determine whether or not a value indttheain of a variable is
useful for the CSP, the solver filters separately with resmeeach of the constraints. If a
value is useless with respect to one of the constraints,ithemlso useless with respect
to the whole CSP, but not vice versa. In other words, filtesegarately with respect
to each constraint allows false-positives (keeping a vathieh is useless for the CSP),
but not false-negatives (removing a useful value). We thremeaat a tradeoff between
the efficiencyof the filtering (i.e., the running time) and ieffectivenesé.e., how many
useless values were identified). “Good” constraints arstcaimts that address this tradeoff
by allowing significant filtering with a low computational€to

A filtering algorithmfor a constraintC' is an algorithm that filters the domains of
variables with respect t6'. If the algorithm removes every useless value from the domai
of every variable that is defined on, we say that it achievesmplete filtering If it
removes only some of the useless values, we say that it pesfoartial filtering.

This chapter explores the topic of globals constraints. ghal is to familiarize the
reader with the important concepts of the field, which ineldiferent types of constraints,
different measures of filtering and different compromisetsieen efficiency and effective-
ness of filtering. We will illustrate each of the conceptshasiome examples, that is,
specific global constraints and filtering algorithms. Weidaad that our (obviously non-
exhaustive) selection of constraints and algorithms ss€fto provide the reader with an
overview of the state of the art of research on global comgta

The rest of the chapter is organized as follows. Section votiges notation and
preliminaries for the rest of the chapter. In Section 7.2 wectibe some useful global

3

constraints. In Section 7.3 we describe efficient algorghinat achieve complete filtering
for several global constraints. In Section 7.4 we descrlbbaj optimization constraints,
i.e., constraints that encapsulate optimization criteaiad filtering algorithms for them.
Section 7.5 covers the topic of partial filtering algorithinsginning with their motivation
through definitions of different measures of filtering touattexamples of partial filtering
algorithms. In Section 7.6 we describe complex variablesyponstraints defined on them
and filtering algorithms for such constraints. Finally, ec8on 7.7 we review some recent
ideas and directions for further research.

7.1 Notation and Preliminaries

7.1.1 Constraint Programming

Thedomainof a variabler, denotedD(x), is a finite set of elements that can be assigned to
x. For a set of variableX we denote the union of their domains BY X) = U,ec x D(z).

Let X = {z1,...,z} be a set of variables. BonstraintC on X is a subset of the
Cartesian product of the domains of the variableXin.e.,C C D(x1) X ... x D(zy).

A tuple (di,...,dx) € C is called asolutionto C. Equivalently, we say that a solution
(d1,...,dr) € Cis an assignment of the valdgto the variablec;, forall 1 < i < k, and
that this assignmersatisfiesC. If C = (), we say that it isSnconsistentWhen a constraint
C'is defined on a seX of k variables together with a certain gedf ¢ parameters, we will
denote it byC (X, p), but consider it to be a set &ftuples (and nok + ¢-tuples).

A constraint satisfaction problefCSB is a finite set of variableX’, together with a
finite set of constraint€§’, each on a subset df. A solution to a CSRs an assignment of
avalued € D(z) to eachr € X, such that all constraints are satisfied simultaneously.

Given a constrainC defined on the variable&e, ..., 2}, the filtering task is to
shrink the domain of each variable such that it still cordaith values that this variable can
assume in a solution t6'. An algorithm that achieves complete filtering, computes, f
everyl < j <k,

D(.”L'j) — D(.I‘j)ﬂ{’l}i | D(l‘l)X...XD(.I'j_l)X{’Ui}XD(xj+1)><. ..XD(xk)ﬂC #* (Z)}

In many applications, we wish to find a solution to a CSP thapigmal with respect
to certain criteria. Aconstraint optimization problefCOP) is a CSPP defined on the
variablesry, . .., x,, together with ambjective functiory : D(z1) x ... X D(z,) — Q
that assigns a value to each assignment of values to thélemiaAnoptimal solutionto
a minimization (maximization) COP is a solutidrto P that minimizes (maximizes) the
value of f(d). The objective function value is often represented by aateeiz, together
with the “constraintmaxi ni ze z orm ni m ze z for a maximization or a minimization
problem, respectively.

7.1.2 Graph Theory

Basic Notions

A graphor undirected graphs a pairG = (V, E), whereV is a finite set of vertices and
E C V x Vis a multiset of unorderedpairs of vertices, calleddges An edge “between”

1A multiset is a set in which an element may occur more than.once

4 CONTENTS

u € V andv € V is denoted by{u,v}. A graphG is bipartite if there exists a partition
S UT of V such thatt C S x T'. We then writeGG = (S, T, E).

A walkin a graphG = (V, E) is a sequenc® = vy, e1, v, .. ., e, v Wherek > 0,
Vo, .-,V € V,e1,...,ep € Eande; = {v;—1,v;} for1 < i < k. If there is no
confusion,P may be denoted byy, v1,..., v, Orey,es, ..., er. Awalkis called gathif
v, . . ., U, are distinct. A closed path, i.eiy = vy, is called acircuit.

An induced subgraplof a graphG = (V, E) is a graphG’ = (V', E’) such that
V' CVandE = {{u,v} | v e V', v eV {uv} e E}. Acomponenbrconnected
componenbf a graphG = (V, E) is an induced subgraph’ = (V’, E’) of G such that
there exists a-v path inG’ for every pairu, v € V', andG’ is maximal with respect t&”.

A digraphor directed graphs a pairG = (V, A) whereV is a finite set of vertices and
A CV x V is amultiset oforderedpairs of vertices, calledrcs A pair occurring more
than once inA is called a multiple arc. An arc from € V tov € V is denoted byfu, v).
The set of arcs incoming into a vertexis denoted by (u) = A N (V x {u}) and the
set of arcs outgoing from a vertexis denoted by°**(u) = A N ({u} x V). Similarly
to undirected bipartite graphs, a directed grédph= (V, A) is bipartite if there exists a
partition.S U T of V such thatd C (S x T) U (T x S). We then writeG = (5, T, A).

A directed walkin a directed grapty = (V, A) is asequenc® = vy, a1, v1,. .., Gk, Uk
wherek > 0, vg,...,vx € V,a1,...,ar € Aanda; = (v;—1,v;) for1 < i < k. Again,
if there is no confusionP may be denoted byg,v1,...,v; OF a1, as,...,ar. A di-
rected walk is called directed pathf vy, ..., vy are distinct. A closed directed path, i.e.,
v = v, IS called adirected circuit

An induced subgraph of a digrafgh = (V, A) is a graphG’ = (V’, A’) such that
V' C VandA’ = AN(V'xV’). A strongly connected componeiia digraphG = (V, A)
is an induced subgragh = (V’, A") of G such that there exists a directed path inG’
for every pairu, v € V’, andG’ is maximal with respect td”.

Matching Theory

Given an undirected graghl = (V, E'), amatchingin G is a setM C F of disjoint edges,
i.e., no two edges i/ share a vertex. A matching is saiddovera vertexv if v belongs
to some edge id/. For a setS C V, we say that\/ coversS if it covers every vertex in
S. Avertexv € V is calledM -freeif M does not cover. Thecardinality of a matching
M is the number of edges in itM|. Themaximum cardinality matching probleis the
problem of finding a matching of maximum cardinality in a drap

Let M be a matching in a grapf = (V, E). A path P in G is called M -augmenting
if P has odd length, its ends are not coveredidyand its edges are alternatingly out of
and inM. A circuit C in G is called M -alternatingif its edges are alternatingly out of
and inM. Given anM -augmenting patt?, the symmetric differenéeof M and P gives
a matchingV/’ with |M’| = | M|+ 1. Furthermore, the existence of Afi-alternating path
is anecessargondition for the existence of a matching of larger cardipal

Theorem 1 (Petersen [50])Let G = (V, E) be a graph, and let\/ be a matching in
G. ThenM is a maximum-cardinality matching if and only if there does exist an)M -
augmenting path iids.

2For two setsA and B, thesymmetric differencel @ B is the set of elements that belongAoor B but not
both. Formally, A& B = (AU B) \ (AN B).

5

Hence, a maximum-cardinality matching can be found by regoiya finding anM -
augmenting path i/ and using it to extend/. On a bipartite graplty = (U, W, E), this
can be done with the following method, due to van der Waer@&hdnd Konig [38]. Let
M be the current matching. Construct the directed bipartéelyGy, = (U, W, A) by
orienting all edges i/ from W to U and all other edges frofii to W, i.e.,

A= {(w,u) | {u,w} e M,u e U,we W} U
{(u,w) | {u,w} € E\ M,u € Uwe W}.

Then every directed path i@, starting from anM -free vertex inU and ending in an
M-free vertex inW” corresponds to ah/-augmenting path id:. By choosingU| < |W|,
we need to find at mos$t/| such paths. As each path can be identified in at roggt|)
time by breadth-first search, the time complexity of thisailym isO(|U]| | A]).

Hopcroft and Karp [28] improved this running timect11|U|1/2 |A]), where we choose
again|U| < |W]|. Instead of repeatedly augmentifg along a singleM -augmenting
path, the idea is to repeatedly augm@ntsimultaneously along a collection of disjoint
M-augmenting paths. Such a collection of paths can againuefm O(| A|) time. By
reasoning on the lengths of the alternating paths, one aam #iat the algorithm needs
only O(|U|1/2) iterations, leading to a total time (:omplexity(O(|U|1/2 |Al).

Flow Theory

Let G = (V, A) be a directed graph and left € V. Afunctionf : A — R is called a
flow froms to ¢, or ans-t flow, if

(i) fla)>0 for eacha € A,

(i) f(8(v)) = F(6™(v)) foreachw € V' \ {s,1}. (7.1)

where for any seftS of arcs, f(S) = >, g f(a). Property (7.1)ii) ensureslow
conservationi.e., for a vertexv # s,t, the amount of flow entering is equal to the
amount of flow leaving.
Thevalueof ans-t flow f is defined to be

valug(f) = f(6°""(s)) — f(5"(s))-

In other words, the value of a flow is the net amount of flow lagw, which by flow
conservation must be equal to the net amount of flow entering

In a flow network, each arcis associated with @quirementd(a), c¢(a)] wherec(a) >
d(a) > 0. Viewing d(a) as the “demand” of. andc(a) as its “capacity”, we say that a
flow f is feasiblein the network ifd(a) < f(a) < ¢(a) for everya € A.

Letw : A — R be a “weight” (or “cost”) function for the arcs. For a diredtpath P
in G we definew(P) = > . pw(a). Similarly for a directed circuit. Theveightof any
flow f : A — Ris defined to be

weight(f) = Y w(a)f(a).
acA

A feasible flow is called aminimum-weight flovif weight(/) < weight /') for any
feasible flowf’. Given a digrapiG = (V, A) with s,¢t € V, the minimum-weight flow
problemis to find a minimum-weight-¢ flow in G.

6 CONTENTS

Algorithm 1: Minimum-weight feasibles-¢ flow in G = (V, A)

setf =0
add the ar¢t, s) with d(¢, s) = 0, c(t, s) = oo, w(t,s) = 0andf(t,s) =0t0 G
while there exists an ar¢u, v) with f(u, v) < d(u,v) do
compute a directed-u pathP in G minimizing w(P)
if P does not existhen stop (no feasible flow exists)
elsedefine the directed circul® = P, u, v
resetf = f + ex©, wheres is maximal subject té < f + ex? < ¢and
flu,v) + e < d(u,v)

Let f be ans-t flow in G. Theresidual graphof G with respect tof is defined
asGy = (V,Ay) where for eacHu,v) € A, if f(u,v) < c(u,v) then(u,v) € Ay
with residual demanchax{d(u,v) — f(u,v),0} and residual capacity(u,v) — f(u,v),
and if f(u,v) > d(u,v) then(v,u) € Ay with residual demand and residual capacity
f(v,u) — d(v,u). Intuitively, if the capacity of an arc is not exceeded, tiiea residual
demand indicates how much more flomustbe sent along this arc for its demand to be
fulfilled and the residual capacity indicates how much add#l flow canbe sent along
this arc without exceeding its capacity. If the flow on an atrictly higher than its
demand, then the residual capacity (on an arc which is @kint the reverse direction)
indicates by how much we may reduce the flow on this arc, wiilldudfilling its demand.

Let P be a directed path id7;. Every arca € P appears in5 either in the same
orientation (as the arg) or in reverse direction (as the aic!). The characteristic vector
of P is defined as follows:

1 if P traverses:,
—1 if Ptraverses !,
0 if P traverses neithernora!,

x"(a) =

For a directed circui€ in G, we definex® € {—1,0, 1} similarly.

Using the above notation, a feasilste flow in G with minimum weight can be found
using Algorithm 1, which is sometimes referred to as shecessive shortest paths algo-
rithm, due to Ford and Fulkerson [18], Jewell [31], Busacker and/&0[11], and Iri [30].

It begins by adding the af¢, s) to G, with demand 0 and infinite capacity. This simplifies
the computations because we no longer need to considadt as special vertices; all
we need in order to have a feasible flow is to ensure that flosewation holds at every
vertex. Then, the algorithm repeatedly finds an arc whoseaddns not respected and
adds flow along a cycle in the residual graph that contairssatd. The flow is increased
maximally along this cycle, taking into account the demand @apacity requirements of
the arcs on the cycle. Note that in order to meet the demand af@ it may be necessary
to increase the flow along more than one directed cycle. Itbeaproved that for integer
demand and capacity functions and non-negative weightgordhm 1 finds an integral
feasibles-t flow with minimum weight if it exists; see for example [62, /8-176].

The time complexity of Algorithm 1 i€ (¢-SP), whereg is the value of the flow found
and SP is the time to compute a shortest directed path ir\lthough faster algorithms
exist for general minimum-weight flow problems, this algiom suffices for our purposes,
because we only need to find flows of relatively small values.

7

Note that the van der Waerden-Konig algorithm for finding aximum-cardinality
matching in a bipartite graph is a special case of the ab@eait#im. Namely, lelG =
(U, W, E) be a bipartite graph. Similar to the construction of the aizd bipartite graph
G in Section 7.1.2, we transfori@ into a directed bipartite grapfi’ by orienting all
edges fromUJ to W. Furthermore, we add a “source; a “sink” ¢, and arcs frons to
all verticesU and from all vertices id¥ to ¢t. To all arcsa of the resulting graph we
assign a capacity(a) = 1 and a weightw(a) = 0. Now the algorithm for finding a
minimum-weights-¢ flow in G’ mimics exactly the augmenting paths algorithm for find-
ing a maximum-cardinality matching i&. In particular, given a flowf in G’ and the
corresponding matchindy/ in G, the directed grapt';; corresponds to the residual graph
G’f wheres, t and their adjacent arcs have been removed. Similarly}/aaugmenting
path inG,; corresponds to a directeel path inG’f.

Finally, we mention a result that, as we will see, is partciyl useful for designing
incremental filtering algorithms. Given a minimum-weight flow, we want to compute
the increase that would occur in the weight of solution whemiaused arc is forced to be
used. The following result shows that this can be done byuginig the flow through a
minimum-cost circuit containing the unused arc, see [238].3

Theorem 2 Let f be a minimum-weight-t flow of valuep in G = (V, A) with f(a) =0
for somea € A. LetC be a directed circuit inG; with a € C, minimizingw(C'). Then
= f+ex®, wheree is subject tad < f + ex® < ¢, has minimum weight among all
s-t flowsg in G with valudg) = ¢ andg(a) = ¢. If C does not existf’ does not exist.
Otherwise, weightf’) = weight f) + ¢ - w(C).

The proof of Theorem 2 relies on the fact that for a minimumgheflow f in G, the
residual grapléz does not contain directed circuits with negative weight.

For further reading on network flows we recommend Ahuja ef2lor Schrijver [62,
Chapter 6-15].

7.1.3 Linear Programming

A linear programconsists of continuous variables and linear constraineqialities or
equalities). The objective is to optimize a linear cost tiort One of the standard forms
of a linear program is

min cir1 + coxoy + ... + CnTn
subject to ayiz1 + a2 + ... + aipxn, = b1
as1r1 + asers + ... 4+ asptn, = bo
Am1T1 + AmoTs + ...+ GmnTn = bpy
T1,...,Tn >0

or, using matrix notation,

min {c"z | Az = b,z > 0} (7.2)

8 CONTENTS

wherec € R™, b € R", A € R™*™ andz € R". Herec represents the “cost” vector and
is the vector of variables. Every linear program can be foanged into a linear program
in the form of (7.2); see for example [61, Section 7.4].

Recall that theank of a matrix is the number of linearly independent rows or oats
of the matrix. For simplicity, we assume in the following tliae rank ofA is m, i.e. there
are no redundant equations in (7.2).

Let A = (a1, aq,...,a,) Wherea; is the j-th column of A. For some “index set”
I C {1,...,n} we denote byA; the submatrix ofA consisting of the columng; with
1€ 1.

Because the rank of is m, there exists an index s& = { By, ..., B, } such that the
m X m submatrixAg = (ap,,...,ap,,) is nonsingular and is therefore invertible. We
call Ap abasisof A. Let N = {1,...,n}\ B. If we permute the columns of such that
A= (Ap, An), we can writeAz = b as

Apxp + Ayxy = b,
wherex = (zp,zy). Then a solution tcdx = b is given byzpg = Aglb andzy = 0.
This solution is called &asic solution A basic solution ifeasibleif Aglb > 0. The
vectorz g contains théasic variablesaind the vector ; contains thenonbasic variables
If we permutec such thatc = (cp,cy), the corresponding objective value d§z =
cp A b+ ch0 = cL A
Given a basisA g, we can rewrite (7.2) into the following equivalent lineaogram
min chglb + (cJTV — chglAN)xN
subjectto x5 + Az'Ayay = AR'b (7.3)
zg,rN > 0.

Program (7.3) represents how the objective may improve ifvaeld replace (some) basic
variables by nonbasic variables. This means that some tasables will take value O,
while some nonbasic variables will take a non-zero valuteats If we do so, feasibility
is maintained byrp + Az'Anzy = Az'b. The improvement of the objective value
is represented byc]T\, — cTBAglAN)xN. This rewritten cost vector far is called the
reduced-cosvector and is defined on both basic and nonbasic variable$ as ¢' —
cTBAjBlA. We have the following (cf. [46, pp. 31-32]):

Theorem 3 (zp, zy) is an optimal solution if and only & > 0.

Apart from this result, reduced-costs have another intigeproperty. Namely, they rep-
resent the marginal rate at which the solution gets worseeifngert a nonbasic variable
into the solution (by giving it a non-zero value). For exaepl we insert nonbasic vari-
ablex; into the solution, the objective value will increase by asig; z;. This property
will be exploited in Section 7.5.2.

To solve linear programs one often usesghmeplex methodnvented by Dantzig [15],
which employs Theorem 3. Roughly, the simplex method monges bne basis to another
by replacing a column i by a column indy, until it finds a basic feasible solution
for which all reduced-costs are nonnegative. The methodng fast in practice, although
it has an exponential worst-case time complexity. Polyrabiiine algorithms for linear
programs were presented by Khachiyan [36] and Karmarkat33R
For further reading on linear programming we recommends@i\14] or Nemhauser and
Wolsey [46].

7.2 Examples of Global Constraints

In this section we present a number of global constraintsatteapractically useful and for
which efficient filtering algorithms exist.

7.2.1 The Sum and Knapsack Constraints

Thesumconstraint is one of the most frequently occurring consteain applications. Let
x1,...,T, be variables. To each variahle, we associate a scalay € Q. Furthermore,
let z be a variable with domai®(z) C Q. Thesumconstraint is defined as

sumzs,...,zn, 2,¢) = {(d1,...,dy,d) | Vid; € D(z;),d € D(2),d = > c;d;}.

We also writez = Y7, ¢;x;.

Theknapsack constraint is a variant of theumconstraint. Rather than constraining
the sum to be a specific value, theapsack constraint states the sum to be within a lower
bound! and an upper bound. Traditionally, one writeg < >°" | ¢;z; < u. Here we
represent andu by a variablez, such thatD(z) = [I, u]. Then we define thenapsack
constraint as

knapsack(xy,...,zpn,2,¢) =

{(dl, .. .,dn,d) | Vid; € D(Il),d S D(Z),d < Z?:l Cldl} n
{(dl, .. .,dn,d) | Vid; € D(Il),d S D(Z)’E?:l cid; < d},

which corresponds tmin D(z) < 37| ¢;z; < max D(z).

7.2.2 The Element Constraint

Lety be an integer variable,a variable with finite domain, andan array of variables, i.e.,
¢ = [z1,x9,...,x,]. Theel ement constraint states thatis equal to they-th variable in
¢, or z = x,,. More formally

el ement (y,z,21,...,2n) =
{(e; fidr,....dn) | e € D(y), f € D(2),Yi d; € D(x;), f = d.}.

The el enment constraint was introduced Van Hentenryck and Carillon [24]can be
applied to model many practical problems, especially whenwant to model variable
subscripts. An example is presented in Section 7.2.8 below.

7.2.3 The Alldifferent Constraint

Theal | di fferent constraint is probably the best-known, most influential amabt
studied global constraint in constraint programming. Afram its simplicity and practical
applicability, this is probably due to its relationship t@atching theory. This important
field of theoretical computer science has produced sevissical results and provided
the basis for efficient filtering algorithms for tlaé | di f f er ent constraint.

Definition 1 (Alldifferent constraint, [39]) Letxy,zs,...,z, be variables. Then

al I di fferent (Il,. ..,In) = {(dl,. .. ,dn) |V1 d; € D(Il), vz;ﬁ] d; }é dj}

10 CONTENTS

A famous problem that can be modeled wathl di f f er ent constraints is the:-
gueens problem: Place queens on am x n chessboard in such a way that no queen
attacks another queen.

One way of modeling this problem is to introduce an integeiakde «; for every row
1 = 1,2,...,n, which ranges over column 1 to. This means that in row, a queen is
placed in ther;-th column. The domain of every; is D(x;) = {1,2,...,n} and we
express the no-attack constraints by

x; #x; for 1 <i<j<mn, (7.4)
xi—x;#Fi—j for 1<i<j<n, (7.5)
ri—x;#£Aj—1i for 1 <i<j<n, (7.6)

The constraints (7.4) state that no two queens are alloweddor in the same column
and the constraints (7.5) and (7.6) state the diagonal cAse®re concise model can be
stated as follows. After rearranging the terms of constsain.5) and (7.6), we transform
the model into

alldifferent(z,...,2,),
alldifferent(x; — 1,20 —2,...,2, — n),
alldifferent(z;+1,224+2,...,2, +n),
x; €{1,2,...,n}for 1 <i<n.

7.2.4 The Global Cardinality Constraint

The global cardinality constraintgcc(xy,...,Zn,cy,,-..,¢y,,) IS @ generalization of
al I di fferent. While al | di fferent requires that every value is assigned to at
most one variable, thgc ¢ is specified om assignment variables, . . ., z,, andn’ count
variablesc,,, ..., ¢, , and specifies that each valugis assigned to exactly,, assign-
ment variablesal | di f f er ent , then, is the special case @€ c in which the domain of
each count variable i§0, 1}. For any tuple € D™ and valuev € D, let occ(v,t) be the
number of occurrences ofin ¢.

Definition 2 (Global cardinality constraint, [47]) Letxy,...,z, be assignmentvariables
whose domains are contained {m1, ... v, } and let{c,,,...,c, ,} be count variables
whose domains are sets of integers. Then

gCC(SEl,.. <3 Lny Coyy - - ';Cun/) = {(wlv" -y Wn, 01, .- .,On/) |
Vi w; € D(xj),Vi occ(v;, (wi,...,wp)) = 0; € D(cy,)}.

An example of a problem that can be modeled withce is the shift assignment
problem[13, 57] in which we are given a set of workdié = {IVy, ..., W,} and a set of
shiftsS = {51, ..., S} and the problem is to assign each worker to one of the shifiewh
fulfilling the constraints posed by the workers and the b&ssch workenV; specifies in
which of the shifts she is willing to work and for each shiftthe boss specifies a lower
and upper bound on the number of workers that should be &skignthis shift. In the
gcc, the workers would be represented by the assignment vasanid the shifts by the
count variables. The domain of an assignment variable woatdain the set of shifts that
the respective worker is willing to work in and the intervakiesponding to each count
variable would match the lower and upper bounds specifietiéposs for this shift.

11

7.2.5 The Global Cardinality Constraint with Costs

Theglobal cardinality constraint with cos{®8] combines @gcc and a variant of theum
constraint. As in Section 7.2.4, 1&f = {x1, ..., z,} be a set of assignment variables and
letc,,,...,c, 6 be countvariables. We are given a functiotthat associates to each pair
(xz,d) € X x D(X) a“cost"w(z,d) € Q. Inaddition, the constraint is defined on a “cost”
variablez with domainD(z). Assuming that we want tminimizethe cost variable, the
global cardinality constraint with costs is defined as

CoSt gCC(Z1,...,Tn,Cops---s o, 2,w) = {(d1,...,dn,01,...,00,d) |
(di,...,dn,01,...,00) €QCC(T1,. ., Tn,Cops---,Co,,) (7.7)
Vid; € D(Il),d S D(Z)’E?:l ’LU(I“dZ) < d}

In other words, the cost variablerepresents an upper bound on the surwof;, d;)
for all 7. We want to find only those solutions to tgec whose associated cost is not
higher than this bound.

As an example of the practical use o€ast _gcc we extend the above shift assign-
ment problem. It is natural to assume that different worker$orm shifts differently. For
example, suppose that we have a prediction of “work outptigmwe assign a worker to a
shift. Denote this output b (1, S) for each worke#V” and shiftS. The boss now wants
to maximize the output, while still respecting the abovdenences and constraints on the
shifts. We can model this as

cost gcc(Wy,...,Wy,51,...,5;, 2 0),

whereO(W, S) = —O(W, S) for all workersW and shiftsS. Namely, maximizing) is
equivalent to minimizing-O.

7.2.6 Scheduling with Cumulative Resource Constraints

An important application area for constraint solvers isalving NP-hard scheduling prob-
lems. Chapter 22, “Planning and Scheduling”, explores fgeaf constraint programming
for scheduling in depth. Here, we mention only one problethisffamily; that of schedul-
ing non-preemptive tasks who share a single resource withdex capacity.

We are given a collectio’ = ¢4, .. .,t, of tasks, such that each taskis associated
with four variables: Itgelease time-; is the earliest time at which it can begin executing,
its deadlined; is the time by which it must complete, iggocessing time; is the amount
of time it takes to complete and itapacity requirement; is the capacity of the resource
that it takes up while it executes. In addition, we are givencapacity variablé of the
resource. (The special case in whithe; = 1 andC = 1 is known as thelisjunctivecase
while the general case in which arbitrary capacities amat is thecumulativecase.)

A solution is a schedule, i.e., a starting timefor each task; such that; < s; <
d; — p; (the task completes before its deadline), and in addition,

Yu E ¢ <C
ils;i <u<s;+pi

i.e., at any time unit;, the capacity of the resource is not exceeded. Note thatahing
times s; are auxiliary variables; instead of we reason about the release timesand
deadlines!;.

12 CONTENTS

Figure 7.1: A representation of a DFA with each state showa eiscle, final states as a
double circle, and transitions as arcs.

Thecurul ative({r,...,mn},{d1,...,dn},{pP1,---,0n},{c1,...,cn},C) constraint
models scheduling problems as described above [1].

7.2.7 The Regular Language Membership Constraint

Ther egul ar constraint [49] is defined on a fixed-length sequence of fiddmain vari-
ables and states that the sequence of values taken by thiéedgles belongs to a given
regular language. Theegul ar constraint has applications, for example, in rostering
problems and sequencing problems.

Before we formally introduce theegul ar constraint, we need some definitions (see
[29]). A deterministic finite automato{DFA) is described by &-tuple M = (Q, X, 4, qo,
F) whereQ is a finite set of state§; is an alphabet] : Q x ¥ — @Q is a transition function,
qo € @ is the initial state, and” C @ is the set of final (or accepting) states. Given an
input string, the automaton starts in the initial stat@nd processes the string one symbol
at the time, applying the transition functiérat each step to update the current state. The
string isacceptedf and only if the last state reached belongs to the set of &tebsF'.
Strings processed b/ that are accepted are said to belong to the language definkd by
denoted byf.(M). As an example, the DFA{ for the regular expressiatu*bb* aa* + cc*
is shown in Figure 7.1. It accepts the stringgbaa andcc, but notaacbba.

Definition 3 (Regular language membership constraint, [49] LetM = (Q, %, 6, qo, F)
be a DFA and letX = {zi,z9,...,2,} be a set of variables wittD(z;) C X for
1<i<n.Then

regul ar (X, M) ={(d1,...,dp) | Vid; € D(z;),d1d2---d, € L(M)}.
Returning to our example, consider the CSP

x1 € {a,b,c},x9 € {a,b,c}, x5 € {a,b,c}, x4 € {a,b,c},
regul ar (z1, 22, x3, x4, M).

One solution to this CSP is; = a, x2 = b, 73 = ¢ andzy4 = a.

Ther egul ar constraint allows us to express many relations betweendhables
of a sequence. For example, it is possible to express thenmuaxilength of identical
consecutive values, also known as #ite et ch constraint [48, 23]. A typical application
of thest r et ch constraint is to restrict the maximum number of night shifts. nurse
scheduling problem. Pesant [49] discusses even more coatgadi patterns.

13

7.2.8 The Circuit Constraint

Before we introduce thei r cui t constraint, we need the following definition. Consider
a permutatiors = si,...,s, of {1,...,n},i.e.,s; € {1,...,n} ands; # s; whenever
1 # 7. Define the se€'s as follows:

1605,
1€(Cyg=s;€ls.

We say thatS is cyclicif |Cs| = n.

Definition 4 (Circuit constraint, [39]) Let X = {z1,22,...,z,} be a set of variables
with respective domain®(z;) C {1,2,...,n}fori=1,2,...,n. Then

circuit(z,...,xn) ={(d1,...,dn) | Vi d; € D(z;),ds,...,d, is cyclic}.

To the variables in Definition 4 we can associate the digrapk (X, A) with arc set
A = {(xs,z;) | 7 € D(z:),1 < i < n}. Anassignmenty; = dy,...,x, = d,
corresponds to the subset of arts= {(x;,z4,) | 1 < i < n}. Theci rcui t constraint
ensures thafl is a directed circuit.

A famous combinatorial problem that can be modeled withchecui t constraint
is the Traveling Salesperson Problem, or TSP [40]: A salsspeneeds to find a shortest
route to visitn cities exactly once, and return in its starting city.

We model the TSP as follows. Lef; denote the distance between citgndj (where
1 < 4,57 < n). For each cityi, we introduce a variable; with domain D(z;) =
{1,...,n} \ {i}. The value ofz; is the city that is visited by the tour immediately af-
ter city <. We also introduce for every < i < n the variabled; to indicate the distance
from city ¢ to city ;. The TSP can then be modeled as follows.

mnimze z,
circuit(x,...,z,), (7.8)

Z:Z?:ldi’
di:Cimi 1§Z§TL

To perform the assignmedt = ¢;,,,, we use the constraiel enent (x;, d;, ¢;«), where
ci« denotes the arraly; ;]1<j<n.

7.2.9 The Soft Alldifferent Constraint

A soft constraintas opposed to a traditionahrd constraintis a constraint that may be
violated. Instead we measure its violation, and the goa iminimize the total amount
of violation of all soft constraints. Soft constraints atrularly useful to model and
solve over-constrained and preference-based problem€{sapter 9, “Soft Constraints”).
In this chapter, we follow the scheme proposed by Régin.§6@] to soften global con-
straints.
A violation measurdor a soft constraintC(z,...,x,) is a functiony : D(x1) x

. x D(x,) — Q. This measure is represented by a “cost” variahlevhich is to be
minimized. There exist several useful violation measugssbft constraints. For the
softal | di f f er ent constraint, we consider two measures of violation, see. [Ftje
first is thevariable-basedviolation measure:.,,, which counts the minimum number of

14 CONTENTS

variables that need to change their value in order to satisfyconstraint. The second is
the decomposition-basedolation measure:y.. which counts the number of constraints
in the binary decomposition that are violated. Bot di f f er ent (x4, ..., z,) the latter
amounts tQuaec (1, . . ., n) = [{(¢,4) | Vi < j x; = ;}|.

Definition 5 (Soft alldifferent constraint, [51]) Let x1,xo,...,z,, 2z be variables with
respective finite domain®(z1), D(z2), ..., D(x,), D(z). Letu be a violation measure
for theal | di f f er ent constraint. Then

soft alldifferent(xy,...,zn,2,p0) =
{(d1,...,dn,d) | Vid; € D(x;),d € D(2),p(dy,...,dn) <d}

is the sofal | di f f er ent constraint with respect tp.

As stated above, the cost variableis minimized during the solution process. Thus,
max D(z) represents the maximum value of violation that is allowext] :ain D(z) rep-
resents the lowest possible value of violation.

As an example, consider the following over-constrained CSP

z1 € {a,b}, x2 € {a,b}, 3 € {a,b}, x4 € {b,c},
al I di fferent (z1,x2,x3,24).

We have, for instanceyy., (a, a, b, b) = 2, while pgec(a, a, b, b) = 2, anduya, (b, b,b,0) =
3, while pgec(b, b, b,b) = 6. We soften thel | di f f er ent constraint usingg.., and
transform the CSP into the following COP

z€{0,1,...,6},

z1 € {a,b}, x2 € {a,b}, 3 € {a,b}, x4 € {b,c},
soft al | di fferent (xy1,z2, 23, 24, 2, ltdec),
mnimze z.

A solution to this COP iy = a, 29 = a, 23 = b, z4 = candz = 1.

7.3 Complete Filtering Algorithms

As mentioned in Section 7.1, the filtering task with respeettonstrainf’ defined on a set
of variablesX is to remove values from the domains of variableXiwithout changing the
set of solutions t@. We say that the filtering is complete if the removal of anyitiddal
value from the domain of any of the variablesXnwouldchange the set of solutions€a
Formally:

Definition 6 (Generalized arc consistency)Let C' be a constraint on the variables,,
..., Tx, With respective domain®(zx,), ..., D(xy). Thatis,C C D(x1) X ... x D(xy).
We say tha€' is generalized arc consistefatrc consistent, for short) if for evety< i < k
andv € D(xz;), there exists a tupléd,,...,d;) € C such thatd; = v. A CSP is arc
consistent if each of its constraints is arc consistent.

In the literature, arc consistency is also referred thygser-arc consistenayr domain
consistencyNote that arc consistency only guarantees that each thdivVconstraint has
a solution; it doesmot guarantee that the CSP has a solution.

a. Value graph b. Value graph after filtering

Figure 7.2: Graph representation for thkl di f f er ent constraint, before and after
filtering. Bold edges represent a matching, correspondiraggolution to thel | di f f -
er ent constraint.

In this section we present filtering algorithms that estdibdirc consistency. In general,
establishing arc consistency for a non-binary constraing{obal constraint) is NP-hard
(see Chapter 3, “Constraint Propagation”). For a numbelaida constraints, however,
it is possible to establish arc consistency quite efficientVe present such filtering algo-
rithms in detail for theal | di f f er ent , thegcc, and the egul ar constraints.

7.3.1 The Alldifferent Constraint

Régin [56] proposed an arc consistency algorithm fordhé di f f er ent constraint
which is based on matching theory.

Definition 7 (Value graph, [56]) LetX be a set of variables anB (X ') the union of their
domains. The bipartite grapf = (X, D(X), E) with E = {{z,d} | x € X,d € D(z)}
is called thevalue graplof X.

As an example, consider the following CSP:

x1 € {b,c,d, e}, xo € {b,c},x3 € {a,b,c,d}, x4 € {b,c},
al I different(z1,x2,x3,24).

The value graph of the variables in this CSP is shown in Fig2e.

Theorem 4 (Régin [56]) Let X = {x1,z2,...,z,} be a set of variables and &t be
the value graph ofX. Then(ds,...,d,) € al I di fferent (z1,...,z,) if and only if
M = {{z1,d1},...,{zn,dn}} is @amatching inG.

Proof: By definition. O

Note that the matching/ in Theorem 4 coverX, and is therefore a maximum-cardinality
matching.

Consider again the above CSP. A solution to this CSP, i.g¢hdal | di f f er ent
constraint in the CSP, i8; = d, o = b, x3 = a andxy = c. This solution corre-
sponds to a maximum-cardinality matching in the value grapticated with bold edges
in Figure 7.2.a.

16 CONTENTS

Corollary 5 (Régin [56]) LetG be the value graph of a set of variabl&s= {z1, zo, .. .,
xn }. The constrainal | di f f er ent (x1,zo,...,z,) is arc consistent if and only if every
edge inG belongs to a matching i& coveringX .

Proof: Immediate from Definition 6 and Theorem 4. O

The following Theorem identifies edges that belong to a maxmtardinality match-
ing. The proof follows from [50]; see also [62, Theorem 16.1]

Theorem 6 Let G be a graph and\/ a maximum-cardinality matching i&. An edgee
belongs to some maximum-cardinality matchingsiiif and only ife € M, or e is on an
even-length\/-alternating path starting at an\/-free vertex, ore is on an even-length
M -alternating circuit.

Proof: Let M be a maximum-cardinality matching if = (V, E). Suppose edge
belongs to a maximum-cardinality matchidg ande ¢ M. The graphG’ = (V, M &
N) consists of even-length paths (possibly empty) and cisowith edges alternatingly
in M and N. If the paths are not of even length, eithef or N can be made larger
by interchanging edges i/ and N along this path (a contradiction because they are of
maximum cardinality).

Conversely, letM be a maximum-cardinality matching i@ and letP be an even-
length M -alternating path starting at af -free vertex or an\/-alternating circuit. Let
be an edge such thate P\ M. ThenM ¢ P is a maximum-cardinality matching that
containse. O

Using Theorem 6, we construct the following arc consisteaiggrithm. First we com-
pute a maximum-cardinality matching in the value graplG = (X, D(X), E). This
can be done irO(m+/n) time, using the algorithm by Hopcroft and Karp [28], where
m =Y., |D(z;)|. Next we identify the eved/-alternating paths starting at ad-free
vertex, and the evef/-alternating circuits in the following way.

Define the directed bipartite graghy, = (X, D(X), A) with arc setd = {(z,d) |
z € X,{z,d} e M} U{(d,z) | z € X,{x,d} € E\ M}. In other words, edges i/
are oriented fromX (the variables) td>(X) (the domain values) and edges nofiihare
oriented in reverse direction. We first compute the strowgiynected components @y,
in O(n + m) time [65]. Arcs between vertices in the same strongly cotetecomponent
belong to an even/-alternating circuit in(z, and are marked as “used”. Next we search
for the arcs that belong to a directed pattGyy,, starting at an/-free vertex. This takes
O(m) time, using breadth-first search. Arcs belonging to suchth pelong to an}/-
alternating path itz starting at an\/-free vertex, and are marked as “used”. For all edges
{z,d} whose corresponding arc is not marked “used” and that do elohlg to M, we
updateD(z) = D(x) \ {d}. Then, by Theorem 6, the correspondglg di f f er ent
constraint is arc consistent.

It follows from the above that thal | di f f er ent constraint can be checked for
consistency, i.e., determined to contain a solutionQimn/n) time and that it can be
made arc consistent ifi(m) additional time.

In Figure 7.2.b we have shown the corresponding value grapbur example CSP,
after establishing arc consistency. Note that the remgiaitges are either in the matching

17

Ey | E2 | B3 | By

B ® ® O
[1,3]([1,2]|[1,2]|[1,1]
D(z1) | D(x2) | D(z3) | D(z4)| D(x5) | D(xe }{ l
{1 {12 {120 | {2} [{234]|{34 W B ® ® & ®
Figure 7.3:gcc example: On the left are the domaibgx;) of the assignment variables

and the fixed interval®); that replace the count variables. On the right is the coarging
value graph with a solution marked by bold edges.

~

M (for examplex;d), or on an even-length/-alternating path starting at avf-free ver-
tex (for examplex1dzsa), or on an even-length/ -alternating circuit (namelysbzcas).

During the whole solution process of the CSP, constrairtterathanal | di f f er -
ent might also be used to remove values from variable domainsuc¢h cases, we must
update the filtering of oual | di f f er ent constraint. As pointed out by Régin [56],
this can be done incrementally, i.e., we can make use of auemriuvalue graph and our
current maximume-cardinality matching to compute a new mmaxn-cardinality matching.
For example, if the domain df variables has changed, we can recompute our matching
in O(min{km, m+/n}) time, and establish arc consistencyi(m) additional time again.
The same idea has been used by Bartak [4] to makaltheli f f er ent constraint dy-
namic with respect to the addition of variables during thetsan process.

7.3.2 The Global Cardinality Constraint

Figure 7.3 shows an example afjac and one of its solutions. Unfortunately, itis NP-hard
to filter the domains of all variables to arc consistency [S3pwever, if we replace the
count variables:,, , .. .,c, , by constant interval&; = [L;, U] (i = 1,...,n), we can
use a generalization of the arc consistency algorithm feath di f f er ent constraint
to efficiently filter the domains of all assignment variablesarc consistency [57]: We
construct the value graph as before, orient the arcs from the variables to the valuds an
assign to each of them a requiremenf®fl]. Then, we add two verticesandt, such that
for each variable;; there is an arc with requiremejit 1] from s to z;, and for each value
vj, there is an arc with requiremeldt;, U;] from v; to t (see Figure 7.4.a). The following
theorem states that a solution to thec corresponds to an integral feasible flow in this
network.

Theorem 7 (Regin [57]) LetC' = gcc (w1, ..., 2, Cyy, -+, Co,,) @nd letG be the aug-
mented value graph described above. Then there is a onad@arrespondence between
the solutions ta@” and integral feasible-t flows inG.

Proof: Given a solutionS = (v;,,...,v;, ,01,...,0,) to the constraint, we construct
a feasible flow inG' as follows. For each variable;, f(z;,v;;) = 1 and for any value
v # vy, f(x;,v) = 0. For each value;, we setf(v;,t) = o; and for each variable; we
setf(s,xz;) = 1. Itis not hard to verify that the capacities of the arcs aspeeted byf
and that flow conservation holds, gas an integral feasible-t flow.

18 CONTENTS

[0,1]

a. Flow network and feasible flow b. Residual graph

Figure 7.4: a. The flow network for the example of Figure 7.8e Tequirements of the
arcs are shown as intervals above each equal-requirenmar.gfhe numbers above the
arcs indicate a feasible flow. b. The residual capacity ofrarj«g, t) indicates how many
more variables can be assigned the valu@ithout exceeding its capacity and the resid-
ual capacity of an arét, v;) indicates how many variables which are assigngdan be
assigned another value without going belevg demand.

Conversely, letf be a feasible flow iG. Then by the demand and capacity require-
ment, for every ara from a variable vertex to a value vertek(a) € {0,1}. By flow
conservation, and by our selection of capacities for the fiam s to the variable vertex,
we know that every variable vertex is incident to exactly eagable-value arc that carries
flow 1.

LetS = (viy,...,v;,,01,...,0,) be atuple such that for eadh< j < n, the arc
(z;,vq;) is the unique arc such th#(x;,v;;) = 1 and for eachl. < j' < n/, 0 is the
number of occurrences of the valug in (v;,,...,v;,). To see thab is a solution to the

constraint, it remains to show that every variable is assign value in its domain. For
the assignment variables this is obvious: If a variablewalrc carries flow it must exist
in the graph, and this can hold only when the value is in thealorof the variable. For
the count variables, this holds, again, by flow conservatimhby our choice of capacities
for the arcs in the network: The value of the flow on an arc framvalue vertex, to ¢
is, by construction of the flow network, some valfiein E;. By flow conservation, the
amount of flow entering this value vertex is algg and since flow can only enter through
variable-value arcs, we get that the number of variablésattesassigned the valugis f;.

O

We say that the are belongs to a flowf if f(a) > 0. Once again, we conclude that:

Corollary 8 (Régin [57]) LetG be the value graph of a set of variabl&s= {1, ..., z,},
augmented into a flow network as described above. The camstrac (1, .. ., zn, F1,

.., E,), where eactE; is a fixed interval, is arc consistent if and only if every adfe-
value arc inG belongs to some feasible integral flowGh

19

The following theorem characterizes the arcbthat belong to feasible flows, in
terms of the residual graph 6f with respect to a given flow (see Figure 7.4.b). Its proofis
along the same lines as the proof of Theorem 6 and belongs folttiore of flow theory.

Theorem 9 LetG be a graph andf a feasible flow inG. An arc belongs to some feasible
flow in G if and only if it belongs tgf or both of its endpoints belong to the same SCC of
the residual graph ofz with respect tof .

Therefore, given gcc whose count variables are fixed intervals, we can filter the do
mains of the assignment variables to arc consistency bygamitim that follows the same
approach as the arc consistency algorithm forathkedi f f er ent constraint, except that
the maximum cardinality matching computation is replacgdbeasible flow computa-
tion. If we were to use a generic flow algorithm such as Aldonitl, the running time
deteriorates t@(mn). However, Quimper et al. [53] recently showed that the $tmecof
the value graph can be exploited to compute the flo@(m./n) time, using an adaptation
of the Hopcroft-Karp algorithm [28] for maximum cardinglibipartite matchings.

7.3.3 The Regular Language Membership Constraint

A filtering algorithm for ther egul ar constraint, establishing arc consistency, was pre-
sented by Pesant [49]. It makes use of a specific digraphseptation of the DFA, which
has similarities to dynamic programming.

Let M = (Q,%,0,q0, F) be a DFA and letX = {z1,...,z,} be a set of vari-
ables withD(z;) C X for eachl < ¢ < n. We construct the digrapR representing
regul ar (X, M) as follows. The vertex sét consists of: + 1 duplicates of the set of
states of the DFA:

V=ViUVU...UVpi1,
where
Vici<n+1Vi = {q}, | ax € Q}-
The arc sefd of the graph represents the transition functiasf the DFA:
A=A1UAU...UA,,
where
VicicnAi = {(gk, q;"") | 8(q, d) = q for d € D(x;)}.

Figure 7.5.a shows the graphcorresponding to the DFA in Figure 7.1.

Theorem 10 (Pesant [49])A solution tor egul ar (X, M) corresponds to a directed path
in R from ¢ in V4 to a final state inV, ;.

20 CONTENTS

X % X %

@ @ ® ®

a

<@ @ © @ &

a. Graph representation b. Graph after filtering

Figure 7.5: Graph representation for thegul ar constraint, before and after filtering. A
double circle represents a final state. Arcs outgoing froraréex which is not reachable
from ¢{ were omitted for clarity.

Proof: Follows immediately from the construction & and the definition of theegu-
| ar constraint. O

We apply Theorem 10 to establish arc consistency for tgul ar constraint;

Corollary 11 (Pesant [49]) LetM = (Q, X, 4, g0, F) beaDFAandleX = {xz1,...,z,}
be a set of variables wittb(z;) C X for 1 < ¢ < n. The constraint egul ar (X, M)
is arc consistent if and only if for alk; € X andd € D(x;), there exists an arc
a = (qi,q ") such thats(g,d) = ¢ anda belongs to a path from to a final state
in Vn+1.

Consider again the example presented in Section 7.2.7, i.e.

x1 € {a,b,c},x9 € {a,b,c}, x5 € {a,b,c}, x4 € {a,b,c},
regul ar (z1, 22,23, x4, M).

The CSP is not arc consistent. For example, valean never be assigned 19. If we
make the CSP arc consistent we obtain

T € {avc}aIQ S {aabv C},Ig € {avbac}7x4 € {CL,C},
regul ar (z1, 22, x3, x4, M).

In Figure 7.5.b, the grapR corresponding to this example is shown after establishing a
consistency.

Corollary 11 implies the following filtering algorithm. &ir, we construct the grapR,
referred to in [49] as the “forward” phase. During this phageomit all arcs that are not
on a directed path starting ig. Then we remove all arcs that are not on a path fggno a
final state inV,,,1. This can be done in a “backward” phase, starting from vestioV;, 1
which are not final states. The total time complexity of thgoaithm is dominated by the
time to construct the graph, which is@(n |X| |@Q]). This is also the space complexity of
the algorithm.

21

Figure 7.6: Updated graph after the removal of elenaginom D (x3).

Note that the algorithm can be made incremental. Wheneeeddimain of a variable
has changed, we remove the corresponding arc from the gréein.we simply perform a
forward and backward phase on the affected parts of the gvegle leaving the rest un-
changed. An example is given in Figure 7.6. It shows the wgatigtaph after the removal
of element from D(xz2). As a resulta is removed fromD(x3).

It should be noted that this algorithm resembles the filgealyorithm for theknap-
sack constraint proposed by Trick [66]. Trick’s algorithm amgdidynamic programming
techniques to establish arc consistency orkthapsack constraint. The same algorithm
can be applied to make tls@imconstraint arc consistent. It has a pseudo-polynomial run-
ning time however, as its complexity depends on the actuakgeof the domain elements
of the variable which represents the sum.

7.4 Optimization Constraints

In this section we consider global constraints in the cantéxconstraint optimization
problems, or COPs. Recall that a COP contains an objectivetifin to be optimized,
and the goal is to find a solution that minimizes or maximitevalue. Anoptimization
constraintis a constraint that is linked to the objective function of fhroblem at hand.
For example, theost _gcc is an optimization constraint. Every solution to it induees
“cost” that is represented by a variableThe assumption is thatappears in the objective
function, and is to be minimized. Whenever a solution to tiaGs found, we obtain an
upper bound for the variable Then the domain of is filtered accordingly, and from that
point on, we will only be searching for improving solutions.

Traditionally, COPs were solved in the following way. Assuthat the objective func-
tion is represented by a variablewhich is to be minimized. If we find a solution to the
problem, we compute its corresponding objective valpieand add the constraint< opt.

In that way, we search only for improving solutions. By ra@eg on the domains of the
variables present in the objective function, we may everdetub-optimality before in-
stantiating all variables, and backtrack. A major deficiemithis method, however, is that

22 CONTENTS

there is no inference from the domainzofo the domains of the other variables. Optimiza-
tion constraints do take this two-way inference into ac¢olihey are global constraints,
i.e., they specify a complex relation on a set of variablesjiaddition they are also de-
fined on a variable such asabove, which represents the value of the best solution found
so far. Since we are only interested in improving soluti@nsjnimization (maximization)
constraint is satisfied only when the value of the soluticat imost (at least).

In this section we present complete filtering algorithmstfen types of optimization
constraints. First, we consider tb®st _gcc, which embodies the natural extension of
global constraints to optimization constraints. Next, wasider thesof t _al | di f f er -
ent constraint, which can be applied to over-constrained aatkpgnce-based problems.
In Section 7.5.2 we discugartial filtering methods for optimization constraints.

7.4.1 The Global Cardinality Constraint with Costs

The filtering algorithm for the global cardinality constraivith costs (theeost _gcc) is
an extension of the filtering algorithm of tlgee ¢ without costs. As in Section 7.3.2, we
replace the count variables,, . ..,c, , by constantinterval#, ..., £, and filter the
domains of the assignment variables.

Let X = {1,...,2,}, E = {E1,...,Ey} and letcost gcc(X, E, z,w) be the
constraint under consideration in this section. We extéedgraphG of Section 7.3.2
by applying a “weight” function to its arcs. The weight of dtg;, d) is w(z;, d) for all
1 <i<nandd € D(z;). To all other arcs we assign a weight 0. The filtering alganith
is based on finding a flow in the weighted versiorgfwhich we denote b¢g.

Theorem 12 (Regin [58]) The constraintost gcc (X, E, z,w) is arc consistent if and
only if

i) forall x € X andd € D(z) there exists an integral feasiblet flow f in CG with
f(z,d) =1 and weightf) < max D(z), and

1) min D(z) > weight f) for some integral feasible-t flow f in CG.

Proof: If we ignore the costs, we know from thlgcc case that there is a one-to-one
correspondence between integral feasibielows and solutions to the constraint. By our
choice of weights for the arcs, the weight of a flow is equah#dost of the corresponding
solution. Hence, a flow corresponds to a solution only if iedght is at mosinax D(z)
and every value iD(z) (in particularmin D(z)) must be larger than the weight of at least
one feasible integrat-t flow. O

Theorem 12 gives rise to the following filtering algorithmi fhecost _gcc. We first
build the digraphCg that represents the constraint. Then, for every variablaevpair
(z;,d) we check whether the pair belongs to a solution, i.e., whetteze exists a flow in
CG that represents a solution containing= d, with cost at mostnax D(z). If this is not
the case, we can removdrom D(x;). Finally, we updatenin D(z) to be the maximum
between its current value and the weight of a minimum-wesghtiow of valuen in CG.

By applying the successive shortest paths algorithm destiin Section 7.1, we can
compute a minimum-weight flow i€G in O(n(m + nlogn)) time. Hence, the time
complexity of this filtering algorithm i$)(n?d(m + nlogn)) whered is the maximum

23

domain size. However, we can improve the efficiency by apgl{iiheorem 2, as proposed
by Régin [58, 59].

The resulting, more efficient, algorithm is as follows. Westficompute an initial
minimum-weight flow f in CG representing a solution. Then for each arc= (u,v)
representindz;, d) with f(a) = 0, we compute a minimum-weight directed patHrom
v to u in the residual grapliG ;. Together witha, P forms a directed circuit. Because
f represents a solution, it is an integer flow. This means tleatan reroute one unit of
flow along the circuit and obtain a floy/. Then costf’) = cos{ f) + cost P), following
Theorem 2. If costf’) > max D(z) we removel from the domain of:;.

An initial solution is still computed irO(n(m + nlogn)) time, but we can reduce
the time complexity to establish arc consistency. A firgmfit is to compute for all arcs
(x;,d) with f(z;,d) = 0 a shortest path in the residual graph. That would yield a time
complexityO((m—n)(m+nlogn)). We can do better, however, see [58, 59]. We compute
for each (variable) vertex itX the distance to all other vertices @(m + nlogn) time.
Alternatively, this may be done for all (value) vertices/h X) instead. This gives us the
lengths of all paths IO (A(m + nlogn)) time, whereA = min(n, |D(X)]).

In addition, this algorithm is incremental. When the donddih variables has changed,
it takesO(k(m + nlogn)) time to recompute a feasible flow, starting from the previous
flow. Establishing arc consistency is done agai®iif\(m + nlogn)) additional time.

Note that, by definition (7.7), we don't restrict all valuéd#() to belong to a solution.
This would however be the case if we had defiéd , w(z;,d;) = din (7.7). The reason
for omitting this additional restriction on is that it makes the task of establishing arc
consistency NP-hard. This follows from a reduction from ‘thgbset sum” problem (see
[20]). Definition (7.7) does allow an efficient filtering algihm, as we have seen above. In
a sense, one could argue that while establishing arc censistthe algorithm mimics the
establishment of bound consistency (see Section 7.5.h)redpect to the cost variable

7.4.2 The Soft Alldifferent Constraint

In this section we present filtering algorithms for thef t _al | di f f er ent constraint.
Each of the violation measures,, anduq.. gives rise to a different arc consistency prob-
lem, and we describe an algorithm for each of them.

Variable-Based Violation Measure

Recall that the variable-based violation measurg counts how many variables need to
change their values in order for the constraint to be satisfie

Theorem 13 (Petit et al. [51]) Let G be the value graph of the variables, ..., z, and
let M be a maximum-cardinality matching i#. The constrainsoft _al [di f f er -
ent (z1,...,2n, 2, var) 1S @rc consistent if and only if one of the following condio
holds

i) min D(z) <n — |M| < max D(z), or

it) min D(z) < n — |M| = max D(z) and all edges irG belong to a matching i
with cardinality| M |.

24 CONTENTS

Proof: We can assignM/| variables to a different value. Thus we need to change the
value of at least — |M| variables, i.e.jvay > n — |M]. Given an assignment with min-
imum violation, every change in this assignment can onlydaseu.,, by 1. Hence, if
min D(z) < n — |M| < max D(z) all domain values belong to a solution. On the other
hand, ifn — |[M| = max D(z), only those edges that belong to a matching with cardinality
| M| belong to a solution. O

The constrainsof t _al | di ff erent (x1,...,x,, 2, uvar) €an be filtered to arc con-
sistency by an algorithm which is similar to the one in Sett3.1. First we com-
pute a maximum-cardinality matching in the value grapltz in O(m+/n) time, where
m =", |D(z;)|. If n — |[M| > max D(z), the constraint is inconsistent. Otherwise, if
n — |M| = max D(z), we identify all edges that belong to a maximum-cardinatigtch-
ing. Here we apply Theorem 6, i.e., we identify the evéralternating paths starting at an
M-free vertex, and the evell -alternating circuits. This takg3(m) time, as we saw in
Section 7.3.1. Note that in this case verticeXimay also be\/-free. Finally, we update
min D(z) < max{min D(z),n — |[M|} if min D(z) < n — |M]|.

Decomposition-Based Violation Measure

Recall that the decomposition-based violation measuratsdhe number of constraints in
the binary decomposition (i.e., the set of pairwise notaéganstraints) that are violated.
Once again, we construct a directed graph: (V, A), this time with

V={s,t}UXUD(X) and A= Ax UA, U A,

whereX = {z1,...,z,} and
Ax = {(xi.d)|de D)},
As = {(s,2;) |1 <i<n},
Ay = {(d,t)|de D(z;),1 <i<n}.

Note thatA; contains parallel arcs if two or more variables share a dowalue. If there
arek parallel arcgd, t) between somé € D(X) andt, we distinguish them by numbering
the arcs a$d, t)o, (d,t)1,. .., (d,t)r—1 in afixed but arbitrary order.
To the arcs ind; we assign a requiremefit 1] while the arcs ind \ A, have require-
ment|[0, 1]. We also assign a “cost” functianto the arcs. It € A;U Ax, thenw(a) = 0.
If a € Ay, such that = (d, t); for somed € D(X) and integet, the value ofw(a) = 1.
Figure 7.7.a shows the graphcorresponding to theof t _al | di f f er ent example
presented in Section 7.2.9.

Theorem 14 (van Hoeve [26])The constraint soft _al | di fferent (z1,...,2,, 2,
ldec) IS @rc consistent if and only if

i) every arca € Ax belongs to some feasible integral flginn S with weigh{ f) <
max D(z), and

i1) min D(z) > weight f) for a minimum-weighs-t flow f in S.

25

a. Flow network and feasible flow b. Residual graph

Figure 7.7: Graph representation for thef t _al | di f f er ent constraint. The require-
ments of the arcs are shown as intervals above each equatemgnt group. Unless
indicated otherwise, the weight of an arc is0. The numbers next to the arcs describe a
feasible flow with weight.

Proof: Similar to the proof of Theorem 12. The weights on the arcdjrare chosen
such that the weight of a minimum-cost flow is exactly the $@sabossible value qf ...
Namely, the first unit of flow entering a valdec D(X') causes no violation and chooses
the outgoing arc with weight 0. Theth unit of flow that enterd causes: — 1 violations
and chooses the outgoing arc with weight 1. O

Once again, we can filter the constragf t _al | di fferent (x1,..., 2, 2, tdec)
to arc consistency by an algorithm which is similar to the on8ection 7.3.1. First we
compute a minimum-cost floy in S. We apply the successive shortest paths algorithm,
i.e., we need to compute shortest paths in the residual graph. Because there are non-
zero weights only on arcs id;, each shortest path computation takgsn) time, using a
breadth-first search. Hence we can fifth O(nm) time. If weigh{ f) > max D(z), we
know that the constraint is inconsistent.

To identify the arcs: = (z;,d) € Ax that belong to a feasible integral floywith
weightg) < max D(z), we again apply Theorem 2. Thus, we search for a shaftest
path inS; that together withu forms a directed circuif’. We can compute all such shortest
paths inO(m) time, using again the fact that only ares= A; contribute to the cost of
such paths (more details are given in [26]).

In [27], the above algorithm was extended to other soft dlobastraints, such as the
softr egul ar constraint and the sofcc constraint. The result for the safegul ar
constraint was obtained independently in [6].

7.5 Partial Filtering Algorithms

The algorithms we have presented so far achieve perfedirfigte The removal of any

additional value from the domain of any variable would cheatige solution set of the
constraint. Sometimes, achieving this utopic goal is tostlgpeven intractable, and it
makes sense to compromise on a weaker level of filtering. S¢dson describes some of
the approaches that have been suggested for partial fijtefiglobal constraints.

26 CONTENTS

7.5.1 Bound Consistency

Assume that the elements of the variable domains are drawm drtotal order (e.g., the
integers) and that the domain of each variablés an interval of this total order. Thus,

a domainD(z) = [L(z), U(z)] is specified by a lower bound and an upper bound on the
values that variable can take.

Definition 8 (Bound consistency)LetC' be a constraint on the variables, . . ., x; with

respective interval domain®(z1), ..., D(zx). We say thaC is bound consisterif for

everyl < i < k, there exists a tupléds, ..., d;) € C such thatd; = L(z;) and there
exists atupldes, ..., ex) € C such thaie; = U(x;).

Computing bound consistency, then, amounts to shrinkiegdimain intervals as
much as possible without losing any solutions.

Bound Consistency foral | di f f er ent andgcc

The assumption that the domain of each variable is an intefithe values, implies that
the value graph is convex:

Definition 9 (Convex graph) A bipartite graphG = (X, Y, E) is convexif the vertices
of Y can be assigned distinct integers frgin|Y'|] such that for every vertex € X, the
numbers assigned to its neighbors form a subintervél gt|].

Algorithms for computing bound consistency exploit thisgerty of the value graph
(either directly or implicitly). Naturally, filtering algithms foral | di f f er ent ap-
peared first and the generalizationsgtoc followed. Two parallel approaches were ex-
plored (see Table 7.1). The first is an adaption of the matg¢fiw method described
above and the second is based on Hall's marriage theorem.

Theorem 15 (Hall's Marriage Theorem [22]) A bipartite graphG = (X,Y, E) has a
matching coveringX if and only if for any subseX’ of X, we have thatD(X")| > | X’|.

In our terminology: there is a solution to ah | di f f er ent constraint if and only
if for every subset of the variables, the union of their damaiontains enough values to
match each of them with a different value. This theorem iegpthat if there is a se&t of
k variables whose domains are contained in a siksterval I of values, then the values
of I can be safely removed from the domain of any variable outside It also implies
that this filtering step suffices: If it cannot be applied, &id di f f er ent constraint is
bound consistent.

As we saw, the flow-based approach yields both arc consistemd bound consistency
algorithms. The second approach, using Hall's marriagerdm, was first applied by
Leconte [41] who obtained an algorithm that compugesye consistencw filtering level
which is stronger than bound consistency but weaker than@rsistency. Subsequently,
Hall's theorem was also used in bound consistency algosthm

In the following,n denotes the number of variables,denotes the number of values in
the union of their domains and denotes the sum of the cardinalities of the domains (so
the value graph has + n’ vertices andn edges). Since: may be as large as»’, bound
consistency algorithms typically do not construct the grapplicitly.

27

Hall's Theorem Matchings/Flows
bound consistency arc consistency bound consistency
al I di fferent Puget [52], Régin [56] Mehlhorn and Thiel [44]
Lopez-Ortiz et al. [43]
gcc Quimper et al. [54] Régin [57] Katriel and Thiel [35]

Table 7.1: The two approaches for filteringadfl di f f er ent andgcc constraints.

Puget designed the first bound consistency algorithnafdrdi f f er ent , which is
based on Hall's theorem and runs@in logn) time [52]. Mehlhorn and Thiel [44] later
showed that since the matching and SCC computations ohR&ggorithm [56] can be
performed faster on convex graphs compared to general gk possible to achieve
bound consistency fal | di f f er ent using the matching approach@(n + n’) time
plus the time required to sort the variables according toetidpoints of their domains.
Katriel and Thiel [35] later generalized this algorithm foegcc case. Simultaneously,
Quimper et al. [54] discovered an alternative bound coasst algorithm foigcc, based
on the Hall interval approach. The latter algorithm narrtivesdomains of only the assign-
ment variables, while the former narrows the domains of #sigament variables as well
as the count variables, to bound consistency.

As mentioned in Section 7.3.2, it is NP-hard to filter all edfes to arc consistency.
It is therefore significant that we can achieve at lsashefiltering for the domains of the
count variables.

Glover’s Algorithm

In order to demonstrate how much simpler convex bipartitgplgs are from general bi-
partite graphs, we describe a simple, greedy algorithmfihds a maximum cardinality
matching in a convex value graph. Glover [21] was the first whggested this algo-
rithm as anO(nn')-time solution. Using sophisticated data structures, tmepexity was
later reduced t®(n’ + na(n)) by Lipski and Preparata [42] and finally @&(n’ + n) by
Gabow and Tarjan [19]. The latter solutions assume that éheeg are integers in the in-
terval[1, n'] (which can be achieved i®?(n’ logn’) time by sorting and relabeling them).
We will restrict our description to a simple implementatminGlover’s algorithm, which
uses only a priority queue and does not require that the satein[1, n’]. This imple-
mentation runs irD(n’ + nlogn) time. It is much faster than the best known solution for
general value graphs which, recall, runglgm./n) time [28].

The algorithm traverses the value vertices from smalleatgdr and greedily decides,
for each value vertex, whether it is to be matched and if sth which variable vertex.
For this purpose, it maintains a priority queue that corgtai@riable vertices which are
candidates for matching, sorted by the upper endpointeafdomains. When considering
the value vertew;, the algorithm first inserts into the queue all variable iees whose
domains begin at;; they were not candidates for matching before, but they ave n

Next, there are two cases to consider. If the priority qusuempty,v; will remain
unmatched. Otherwise, the minimum priority variable vetteis extracted, and there are
two subcases. If;’s priority is at least;, then it is matched withy;. Otherwise, it should
have been matched earlier, and the algorithm terminatee@odts that there is no solution

28 CONTENTS

(the graph does not have a matching covetiqgor, equivalently, thel | di f f er ent
constraint does not have a solution).

The intuition behind this algorithm is that it always matsliee candidate variable ver-
tex whose domain ends earliest, so wheris matched, any candidate vertex that remains
unmatched can be matched with at least as many value veaiegs but perhaps more.
For a formal proof of correctness see [21] or [44].

7.5.2 Reduced-Cost Based Filtering

Next we consider a partial filtering method for optimizaticonstraints of the following
type. LetX = {zi,...,z,} be a set of variables with corresponding finite domains
D(z1),...,D(z,). We assume that each pair;, j) with j € D(z;) induces a “cost”
ci;- We now extend any global constraifiton X to an optimization constraimpt _C' by
introducing a cost variable and defining

opt C(x1,...,xpn,2,¢) ={(d1,...,dn,d) |
(dl,...,dn) 60(1‘1,...,xn),
Vid; € D(Il),d S D(Z), Z?:l Cid; < d}

where we assume thais to be minimized. For example, te®st _gcc is a particular
instance of such constraint. We have seen that its arc ¢ensisalgorithm is efficient
because of its correspondence with a minimum-weight flow.nfk&ny other optimization
constraints of this type, however, such correspondence dotexist, or is difficult to
identify. In such situations we may be able to apmguced-cost based filteririgstead,
using a linear programming relaxation of the optimizati@mstraint. This method was
first introduced in this form by Focacci et al. [17], althoutljie technique is part of the
linear programming folklore under the namwariable fixing Note that in general, such a
filtering algorithm does not establish arc consistency.

In order to apply reduced-cost based filtering, we need tr iaflinear programming
relaxation from the optimization constraint. First, wer@tuce binary variableg;; for all
i€ {l,...,n}andj € D(x;), such that

To ensure that each variahileis assigned to a single value in its domain we state the linear
constraints

Z yij =1 fori=1,...,n.

JED(z;)
The linear objective function is stated as
n
> 2. culi
i=1 jeD(:)

The next, most difficult, task is to rewrite (a part of) theioptation constraint as a system
of linear constraints using the binary variables. This @pem dependent, and no general

29

recipe exists. However, for many problems such descriptame known, see, e.g., [55].
For example, for aml | di f f er ent constraint we may add the linear constraints

iyij <1 forallje O D(x;)

i=1 i=1

to ensure that every domain value is assigned to at most cizdlea
Finally, in order to obtain a linear programming relaxatiai®@ remove the integrality
constraint on the binary variables and state

OSUW <1 fOf’iG{l,...,n},jGD(Ii).

When we solve this linear programming relaxation to optitpalve obtain a lower
bound orz, and reduced-costs Recall from Section 7.1.3 that reduced-costs estimate the
increase of the objective function when we force a variatie he solution. Hence, if we
enforce the assignment = j, the objective function value will increase by at leagt
Let z* be the objective value of the current optimal solution oflthear program. Then
we apply the following filtering rule:

if 2* +7¢; > max D(z)thenD(x;) < D(x;) \ {j}

A huge advantage of this approach is that it can be applied efficiently. Namely,
reduced-costs are obtained automatically when solvingeatiprogram. Hence, the filter-
ing rule can be applied without additional computationatso

7.5.3 Intractable Global Constraints

As already noted, global constraints serve to break up thri@s a conjunction of simpler
CSPs, each of which can be filtered efficiently. We show belwat if it is NP-hard to
determine whether a constraint has a solution, it is alsdnBif@-to compute arc consistency
for the constraint. The following is a special case of a Teeodue to Bessiere et al. [10].

Theorem 16 LetC be a constraint. If there is a polynomial-time algorithmtleamputes
arc consistency fo€' then there is a polynomial-time algorithm that finds a sirgg&ution
toC.

Proof: Assume that we have an algorithmthat prunes the variable domains to arc
consistency in polynomial time. Then we can find a solutiotheoconstraint as follows:

1. Use algorithmA to compute arc consistency. The constraint has a solutiandf
only if all domains are now non-empty.

2. Repeat until a solution is found:

a) Letz be a variable such théb(x)| > 1 and letv € D(z).
b) SetD(x) « {v}

¢) Use algorithmA to compute arc consistency.

30 CONTENTS

In each iteration the value of one variable is determinedhedotal number of itera-
tions is at most equal to the number of variables and the ngntiine of the algorithm is
polynomial. O

The converse of Theorem 16 does not hold; there are contstfairwhich arc consis-
tency is NP-hard while checking feasibility is not (see, g&#]). A weaker version which
does hold is stated below. The crucial point to note is thaitettare constraints for which
it is possible to efficiently check whether the constrairg Aaolution, but it is NP-hard to
check whether it has a solution in which a certain variabksisigned a specific value in
its domain.

Theorem 17 Let C be a constraint defined on the variabl&s= {xz1,...,2;}. If there
is an algorithmA that, for anyz; € X andd € D(z;), determines in polynomial time
whether there is a solution to the constrafit\ (z; < d), then there is a polynomial-time
algorithm that computes arc consistency €or

Proof: For every variable:;; and valual € D(x;), use algorithmA to check if there is a
solution whenz; < d and removel from D(z;) otherwise. O

A consequence of Theorem 16 is that there is a very large ofggsactically useful
global constraints for which we probably cannot achievdgmefiltering. In some cases,
a possible remedy is to compromise on bound consistencyreeds mentioned, bound
consistency can be computed in almost-linear time fogihe, while arc consistency, for
the assignment and count variables, is NP-hard.

Filtering for the Cumulative Constraint

Another method to cope with NP-hardness isdafax the constraint. That is, to transform
our NP-hard constrain® into a constraintC’ such thatC’ can be efficiently filtered to a
guaranteed consistency level (e.g., arc consistency arceonsistency) an@ c ', i.e.,
every solution ta”' is also a solution t@”. For example, the reduced-cost based filtering
method described above applies a linear programming ridexaf the constraint. Here
we will demonstrate this approach by describing a filterifgpathm for a relaxation of
the cunul at i ve® constraint [45]. We assume for simplicity that the capaoitythe
resource and the capacity requirements and processing tifrthe tasks are fixed, i.e.,
|D(C)| = 1 and|D(c;)| = |D(p;)| = 1 for all i. The filtering task is to increase the
minimum start times and decrease the maximum completioestiaf the tasks, without
losing any solutions to the constraint. We will describe #hgorithm that tightens the
earliest start times; the solution for the latest comptetiimes is symmetric. The relaxation
of thecumul at i ve constraint will be defined below, but first we wish to build e t
intuition behind the definition.

Let theenergyof taskt; bee; = ¢;p;; it represents the total capacity of the resource
that is consumed by the task. For aQeC T of tasks, letrg be the earliest release time
of atask inQ2, dq, the latest deadline of a task {handeg, the sum of the energies of tasks
in Q. Clearly, if there is a subsél C T of the tasks such that, > C(do — rq), the

SThecunul at i ve constraint is, in general, NP-hard. Recently, Artiouctémel Baptiste [3] developed a
bound consistency algorithm for the special case in whichratessing times are equal.

31

problem is infeasible: Between timg, anddq,, the tasks need more of the resource than
is available.

Now, let() be a set of tasks and ¢ 2 another task such that,,,; > C(da —
rau{t})- If ti is scheduled such that it completes executing before akyina@, then it
completes beforéy, so the total energy of the tasks scheduled in the intéryaly,y , do]
is above the capacity of the resource, a contradictiont; Bompletes execution last among
the tasks im U {¢;}.

Once we have found such a péit, ¢;), we can use it to adjust the starting timetpés
follows. For each subsé C 2, we examine the time intervdl= [rg, do] and determine
what is the earliest time in this interval at whighcan start executing. Since we know that
t; cannot complete before any task@n we get that ift; is scheduled at time unit € 1,
then in the intervalu, do] the schedule allocates orfy— ¢; capacity units of the resource
for tasks in©.

Conceptually, split the resource into two parts, with cétes’; = C—c; andCsy = c¢;.
Assume that the schedule plaggdn the second part and thatvas the last task scheduled
there. Clearly, on the first part we can schedule at rf®st ¢;)(de — re) units of energy
in the time intervall. This means that at leastst(©, ¢;) = eo — (C — ¢;)(de — o) UNItS
of energy must be scheduled in this time interval on the sg¢paint just to schedule all the
tasks of©. Even if all of this energy is scheduled as early as possiiilakes up at least
the firstclirest(e), ¢;) time units of the second part and thereféereannot begin before
time unitrg + C%_?"est(@, ¢i)-

An algorithm that performs all such adjustments to the istgtimes of tasks is called
anedge-findinglgorithm (because the algorithm discovers edges in theegence-graph
of the completion times of the tasks). The basic idea of suchlgorithm is to efficiently
identify a small number of pair@d, ¢;) for which the rule described above needs to be
applied.

Edge-finding algorithms were first developed for the disjiveccase, which is much
simpler than the most general case. The fastest algoritms iruO(nlogn) time [12].
For the cumulative case, the fastest known solution is bycMeand Van Hentenryck [45]
and runs inO(kn?) wherek is the number of different capacity requirements of thegask
(a previously develope@(n?)-time solution was shown to be incomplete).

After giving an outline of the algorithm, we are ready to defthe constraint that it
filters, i.e., the relaxation of theurul at i ve constraint. Since edge-finding algorithms
existed in the scheduling literature befanenul at i ve was a global constraint, this def-
inition may seem opportunistic: We define the problem to batever we already know
how to solve. Nevertheless, scheduling is an importantiegijdn in constraint program-
ming so we believe that the edge-finding algorithm deservessaription in constraint
programming terminology: It is a bound consistency aldnitfor the relaxation of the
cumul at i ve constraint (where the processing times and capacitiesedbsks, as well
as the capacity of the resource are fixed) which is satisfifet gvery task;

min{D(r;)} > max max 1o + firest(@, ¢i)]
QCT ©cO
i¢Q rest(0, ¢;)
a(Q,1)

32 CONTENTS
Wherea(Q, Z) =4 (C(dQ — T‘Qu{i}) < eglu{i})).

Intractable Optimization Constraints

Sellmann [63, 64] suggested two forms of partial consistewbich are specifically mo-
tivated by NP-hard optimization constraints. The first isaglaptation of relaxed con-
sistency [64] to optimization constraints. That is, we sfanm the constrain€' into a
constraintC’ such thatC' C C’ andC” can be filtered efficiently. The idea is similar to
the relaxation of the&eunul at i ve constraint described above, except that hérand
C’ are both optimization constraints. The reduced-cost bikedng based on a linear
relaxation, which was described in Section 7.5.2, also eyghis idea.

Sellmann demonstrates this technique by way of the shpa#r-constraint, which is
defined on a digrapty, a source vertex and a target vertexin G, an upper bount¥” and
a variableP whose domain is all subsets of arcs(@f{see Section 7.6.1). The constraint
is satisfied ifP is a set of arcs that form a path @ from s to ¢ whose length is at most
W. Since it is NP-hard to determine whether there is a path fréo that uses a certain
arc (while visiting each node at most once), it is NP-harddmpute bound consistency
for the set variable®. However, it is easy to determine whether there is an “alfpatt”
from s to ¢ that uses the ar@:, v) and whose length is at most the upper bound: Find the
length of the shortest path frogto v and the length of the shortest path frerto ¢. The
concatenation of these two paths through the(ate) is a walk froms to ¢ that visits
every vertex at most twice. The relaxed shorter-path caimifithen, excludes from the set
assigned td” any arc that does not belong to a path or almost-path frtart in G whose
length is at mostV/.

Sellmann’s second form of partial consistency is terayggroximated consisten{§3].
Here, the idea is to use efficient approximation algorithard\fP-hard problems as com-
ponents of the filtering algorithm. Recall that amapproximation algorithm for a mini-
mization (maximization) problen® is a polynomial-time algorithna such that for every
instancez of P, A finds a solution whose value is at mdst+ €) - Opt(P, z) (at least
(1 —¢€) - Opt(P, x)), whereOpt(P, z) is the value of the optimal solution to instance
of problemP. Clearly, the smaller the value of the better the quality of approximation.
1+« (resp.l — «) is referred to as thapproximation factoachieved by algorithm. For
more details, see any text on approximation algorithmd) ssq25, 68].

For a minimization (maximization) constraint that is defiren a variablez which
holds the upper (lower) bound on the value of a solution, wetlsatC' is e-arc consistent
if every value in the domain of every variable participatesisolution of value at most
z + €Opt (at leastz — eOpt). The motivation behind this definition is that approxinoati
algorithms allow us to efficiently identify problem instascwhose optimal solutions are
much better or much worse than the best solution found sbdamay give inconclusive
replies for instances which are of comparable quality. lchstases, approximate consis-
tency allows one-sided errors: we keep the respective vmlthe variable domain, to be
on the safe side.

7.6 Global Variables

In recent years, some of the work of global constraints, it of providing more struc-
tured information to the solver and simplifying the synté&C&Ps, is taken up by complex

33

variable types, which we will collectively refer to agobal variables Our focus in this
section is on constraints defined on global variables andéiseyn of filtering algorithms
for such constraints. We will discuss two important exarapgets and graphs. Chapter 17,
“Beyond Finite Domains”, is devoted to the topic of complexiable types, and describes
many examples and aspects that are not mentioned here.

7.6.1 Set Variables

Let us revisit the shift-assignment problem for which wedigee global cardinality con-
straint in Section 7.2.4. We assumed that each worker is t& @xactly one shift. It is

more realistic, however, that we have a lower bound and aemippund on the number
of shifts that each worker is to staff. The result is known lessymmetric cardinality

constraint[37]:

Definition 10 The symmetric cardinality constraigyntc(z1, ..., Tn, Coyy -« - Cays Coys

.., Cy,,) is defined on a collection of assignment variahigs. . ., z,, and two sets of
count variablesg,, , ..., ¢z, ande,,,...,c, ,. It specifies that the value assigneditp
is a subset of vy, ..., v, } of cardinality c,.,, and that the number of such subsets that
containuv; is c,, .

We still have one variable for each worker, but the value of #ariable is thesetof
shifts that the worker will staff. One way to handle this issty that the domain contains
all subsets of the shifts. This results in an exponentialjtan the number of values (and
hence in the size of the value graph).

An alternative is to useet variables A set variabler is a variable that has a discrete
domainD(x) = [Ib(z), ub(x)]. Thus, the domain of a set variable consists of two sets, the
setlb(x) of mandatoryelements and the seb(x) \ [b(z) of possibleelements. The value
assigned ta: should be a sei(x) such thatb(x) C s(x) C ub(x).

For a constraint on set variables, we are not interestedcic@rsistency because the
individual values that a set variable can take do not explieixist; we only have their
intersection {p) and their unionb). Viewing the intersection as a lower bound and the
union as an upper bound, we speak of bound consistency whennfil the domain of a
set variable. A bound consistency computation for a comgt€adefined on a set variable
x requires that we:

e Remove a value from ub(x) if there is no solution t&' in whichv € s(z).

e Include a value € ub(x) in Ib(x) if in all solutions toC, v € s(x).

To demonstrate such a computafiowe sketch how the flow-based filtering algorithm
for gcc can be adapted to compute bound consistency for the assigrvaeables of
syntc, assuming that the domains of all count variables are fixezhials. The flow
network constructed from the value graph is almost idehteaept that the requirement
of an arc froms to a variable vertex reflects the cardinality requirementiie set assigned
to the variable. That is, the capacity of the #cx;) is equal to the intervaD(c,,).
Then, we once again have a one-to-one correspondence Ipetfteeemtegrals-¢ flows in

4Additional examples can be found in [9].

34 CONTENTS

the network and the solutions to the constraint. As befdter inding a flow we have that
a non-flow arc belongs to some integsad flow if and only if its endpoints belong to the
same SCC of the residual graph.

However, unlike in thgcc case, this does not complete the filtering task: we must also
identify arcs that belong tanyintegrals-¢ flow, and make sure that they are in the lower
bounds of the domains of the relevant set variables. It igliffitult to verify that this is
exactly the set of flow arcs whose endpoints belong to diffe€Cs of the residual graph
(recall that the requirement of an arc from a variable vetdex value vertex i§0, 1]).

The bottleneck of the algorithm is the flow computation, vihigkesO (mn) time. It
is interesting to note that the cardinality of the domainrof af the set variables may well
be exponential in the running time of this algorithm, whi@nbles all of these domains at
once.

7.6.2 Graph Variables

A graph variable[16] is simply two set variable¥ and E, with an inherent constraint
E C V x V. As with set variables, the domain(G) = [Ib(G), ub(G)] of a graph variable
G consists of mandatory vertices and ed@j€sr) (thelower bound graphand possible
vertices and edgesb(G) \ [b(G) (the upper bound graph The value assigned to the
variableG must be a subgraph ab(G) and a super graph of th&(G).

The usefulness of graph variables depends on the existémtictent filtering algo-
rithms for useful constraints defined on them, i.e., cossdhat force graph variables to
have certain properties or certain relations between th&sma simple example, the con-
straint Subgraph(G, S) specifies thatS is a subgraph ofs. Note that bothS andG are
variables, so computing bound consistency forhégraph constraint means the follow-

ing:
1. If Ib(S) is not a subgraph afb(G), the constraint has no solution.
2. For eacte € ub(G) N1b(S), includee in Ib(G).
3. For eache € ub(S) \ ub(G), removee fromub(S).

The conditions above can be checked in time which is linetlrérsum of the sizes of
ub(G) andub(S). As with set variables, we are in the interesting situatiomvhich the
number of graphs that the bound consistency algorithm ressglbbout may be exponential
in the running-time of the algorithm.

The Spanning Tree Constraint

As a slightly more sophisticated example, we consider thestraintST (G, T'), which
states that the gragh is a spanning tree of the gragh Since a spanning tree is a sub-
graph, the conditions described above should be checked wedraputing bound consis-
tency forST. In addition, (1) the vertex-sets 6f andT must be equal, and (2) must be
atree.

To enforce (1), we remove fromb(G) any vertex which is notimb(7") and we include
in [b(T) any vertex which is ifib(G). As for (2), if Ib(T") contains a circuit theff cannot
be a tree and if.b(T') is not connected the# cannot be connected. In both cases, the

35

constraint has no solution. Finally, any edgeuli(T) \ Ib(T') whose endpoints belong
to the same connected componentidf’) must be removed (including it in any solution
would introduce a circuit ifl") and any bridgein ub(T") must be placed ith(T) (T cannot
be connected if it is excluded).

The running time of the algorithm we described is linear i $hhm of the sizes of the
upper bounds ofs and7'. To prove that it achieves bound consistency, one need®® sh
that the following three conditions hold:

1. Every vertex or edge that was removed, does not parteipatny solution.

2. Every remaining vertex or edge b (7") or ub(G) participates in at least one solu-
tion and every remaining vertex or edgead(7)\!b(T") or ub(G)\b(G) is excluded
from at least one solution to the constraint.

3. Every vertex or edge that the algorithm inserts int@-) or [b(T") participates in all
solutions.

Note that in item 3 above we do not say that every elemeli{id) andib(T') belongs
to all solutions. This is only required of those elements tha filtering algorithm decided
to include in the lower bound sets. The input may include aryex or edge in the lower
bound graph, and the filtering algorithm does not ask why:ay wnly remove values from
variable domains, and never add them.

7.7 Conclusion

The search for useful global constraints and the designfiofesit filtering algorithms for
them is an ongoing research effort that tackles many clgitigrand interesting problems.
We have already mentioned some of the fundamental questtihat are the frequently
recurring sub-problems that we would like to capture by glamnstraints? For a specific
constraint, what is the computational complexity of filtgriit to arc consistency? Should
we compromise on partial consistency? We would like to byriefention several other
ideas on global constraints that have been proposed intreears.

Given the large number of global constraints that were arldbsi defined, several
researchers are attempting to find generic methods to geaifhandle constraints. Beldi-
ceanu et al. [7] describe a constraint solver that views aajloonstraint in terms of a
collection of graph properties (such as the number of styormnnected components in a
digraph). Then, the solver uses a database of known graptetieresults to automatically
generate new constraints that strengthen the model byialjomwore filtering. They point
out that out of the 227 global constraints listed in the gl@oastraints catalog [5], about
200 can be described in terms of graph properties. Thergfoe approach seems to be
widely applicable. Bessiere et al. [8] defined a declaealanguage that can be used to
specify many known constraints which model counting anduoence problems. In this
language, a constraint is specified as the conjunction dftcaints, each of which can be
a simple (binary) constraint on scalar or set variables,nar af two globals constraints
calledr ange andr oot s.

5A bridgein a graph is an edge whose removal increases the numbermécted components.

36 CONTENTS

Another approach is to view the filtering task in the contéthe tree search. We have
already mentioned the problem of dynamic filtering, i.ecomaputing arc consistency af-
ter a small change such as the removal of a few values frorablardomains. Recently,
Katriel [34] pointed out that in a flow network with nodes andn edges where every
edge belongs to at least one feasible flow, there are@fly edges whose removal would
renderother edges useless. This implies that if the filtering is random, the edge re-
moved from the value graph of & | di f f er ent orgcc is always selected at random
among all possibilities, the expected number of edges teed no be removed before it
makes sense to recompute arc consistené(is/n). It would be interesting to evaluate
experimentally whether the assumption that filtering isd@an is realistic, and whether
delayed filtering is a good compromise between filtering iefficy and effectiveness. If
this approach is to be pursued, it is necessary to eitheyzmelch global constraint in-
dependently and determine a reasonable filtering frequenéind a generic or automated
way to do this for many global constraints.

In the area of partial filtering for NP-hard global consttajithere seems to be a lot of
potential for enhancements. Here we would like to suggesidiba of approximate filter-
ing. Recall that an approximation algorithm for an optinti@a problem is an algorithm
that finds a solution whose value, according to the objeétimetion of the problem, does
not deviate too much from the value of the optimal solutioor & filtering problem, the
objective function counts the sum of the cardinalities & domains of the variables. An
optimal solution minimizes this number, and hencevaapproximate solution, fot > 1,
is a solution that removes all butOpt values from the variable domains. Formally,

Definition 11 (Approximate filtering) LetC(z1,...,z,) be a constraintand assume that
after filtering it to arc consistency, the sum of the carditie$ of the domains afy, ..., z,

is Opt. An a-approximate filtering algorithrfor C' is an algorithm that removes values
from the domains of the variables, ..., x,, such that the solution set éf remains un-
changed and the sum of the cardinalities of the domains ofdhiables is at most Opt.

Note that approximate filtering is different from the notifrapproximated consistency
that was described in Section 7.5.3 in two ways. First, agprate filtering applies to
any constraint while approximated consistency is define@fidimization constraints. In
addition, with approximated consistency, what is beingrapimated is the value of the
solutions to the constraint that remain, while approxinfétiering directly approximates
the effectiveness of the filtering algorithm.

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order tbveacomplex schedul-
ing and placement problemslournal of Mathematical and Computer Modelling
17(7):57-73, 1993.

[2] R.K.Ahuja, T.L. Magnanti, and J.B. OrlimMetwork Flows Prentice Hall, 1993.

[3] K. Artiouchine and P. Baptiste. Inter-distance ConisitraAn Extension of the All-
Different Constraint for Scheduling Equal Length Jobs. .Indh Beek, editorPro-
ceedings of the Eleventh International Conference on Hylas and Practice of Con-
straint Programming (CP 2005yolume 3709 of ecture Notes in Computer Science
pages 62-76. Springer, 2005.

(4]
(5]
(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

37

R. Bartak. Dynamic Global Constraints in BacktrackBased Environmenténnals
of Operations Research18(1-4):101-119, 2003.

N. Beldiceanu, M. Carlsson, and J.X.-Rampon. Globalst@int catalog. Technical
Report T2005-06, Swedish Institute of Computer Scienc@520

N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Hiltgy Algorithms from Con-
straint Checkers. In M. Wallace, edit®roceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programgn{CP 2004) volume
3258 ofLecture Notes in Computer Scienpages 107-122. Springer, 2004.

N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truch@raph invariants as
necessary conditions for global constraints. In P. van Bedkor, Proceedings of
the Eleventh International Conference on Principles andd®ice of Constraint Pro-
gramming (CP 2005)volume 3709 ofLecture Notes in Computer Sciengages
92-106. Springer, 2005.

C. Bessiére, E. Hebrard, B. Hnich, Z. Kiziltan, and T.Ig¥a The range and roots con-
straints: Specifying counting and occurrence problem®rticeedings of the Twen-
tieth International Joint Conference on Artificial Intgjénce (IJCAI 2005)pages
60-65. Professional Book Center, 2005.

C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Digjoartition and intersection
constraints for set and multiset variables. In M. Wallacitog, Proceedings of the
Tenth International Conference on Principles and PractéeConstraint Program-
ming (CP 2004)volume 3258 of_ecture Notes in Computer Scienpages 138-152.
Springer, 2004.

C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Theté#faility of global con-
straints. In M. Wallace, editoRroceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CF02}) volume 3258 of
Lecture Notes in Computer Scienpages 716—720. Springer, 2004.

R.G. Busacker and P.J. Gowen. A Procedure for DetengiaiFamily of Minimum-
Cost Network Flow Patterns. Technical Report ORO-TP-15¢r@jions Research
Office, The Johns Hopkins University, Bethesda, MD, 1960.

J. Carlier and E. Pinson. Adjustment of heads and tailgtie job-shop problem.
Euro. J. Oper. Res78:146-161, 1994.

Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive @ject-Oriented Approach
to a Complex Scheduling Problem.Proceedings of Deductive and Object-Oriented
Databases, Third International Conference (DOOD’933ges 67—-80, 1993.

V. Chvatal.Linear programming Freeman, 1983.

G.B. Dantzig. Maximization of a linear function of valiles subject to linear in-
equalities. In Tj.C. Koopmans, edit@kctivity Analysis of Production and Allocation
— Proceedings of a conferenqeages 339-347. Wiley, 1951.

G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introohg a Graph Compu-
tation Domain in Constraint Programming. In P. van BeekicedPProceedings of
the Eleventh International Conference on Principles anddice of Constraint Pro-
gramming (CP 2005)volume 3709 ofLecture Notes in Computer Sciengages
211-225. Springer, 2005.

F. Focacci, A. Lodi, and M. Milano. Cost-based domaitefing. In J. Jaffar, ed-
itor, Proceedings of the Fifth International Conference on Piphes and Practice
of Constraint Programming (CP 1999jolume 1713 of_ecture Notes in Computer
Sciencepages 189-203. Springer, 1999.

38 CONTENTS

[18] L.R. Ford, Jr and D.R. Fulkerson. Constructing maxichatamic flows from static
flows. Operations Researcl$:419-433, 1958.

[19] H.N. Gabow and R.E. Tarjan. A linear-time algorithm fospecial case of disjoint
set union. InProceedings of the Fifteenth Annual ACM Symposium on Thefory
computing (STOC 1983pages 246—251. ACM, 1983.

[20] M.R. Garey and D.S. Johnso@omputers and Intractability - A Guide to the Theory
of NP-Completenes&reeman, 1979.

[21] F. Glover. Maximum matching in convex bipartite grapNsaval Research Logistics
Quarterly, 14:313-316, 1967.

[22] P. Hall. On representatives of subseisurnal of the London Mathematical Society
10:26-30, 1935.

[23] L. Hellsten, G. Pesant, and P. van Beek. A Domain Coascst Algorithm for the
Stretch Constraint. In M. Wallace, edit®roceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programgn{CP 2004) volume
3258 ofLecture Notes in Computer Scienpages 290-304. Springer, 2004.

[24] P. Van Hentenryck and J.-P. Carillon. Generality vedficity: an experience with
Al and OR techniques. IRroceedings of the National Conference on Articial Intel-
ligence (AAAIl)pages 660—664, 1988.

[25] D.S. Hochbaum, editoApproximation Algorithms for NP-Hard ProblemBrooks /
Cole Pub. Co., 1996.

[26] W.-J. van Hoeve. A Hyper-Arc Consistency Algorithm fbe Soft Alldifferent Con-
straint. In M. Wallace, editorProceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CF02)) volume 3258 of
Lecture Notes in Computer Scienpages 679-689. Springer, 2004.

[27] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On GWheming: Flow-Based
Soft Global Constraintslournal of Heuristics2006. To appear.

[28] J.E. Hopcroftand R.M. Karp. An®/2 algorithm for maximum matchings in bipartite
graphs.SIAM Journal on Computing(4):225-231, 1973.

[29] J.E. Hopcroft and J.D. Ullmanlintroduction to automata theory, languages, and
computation Addison-Wesley, 1979.

[30] M. Iri. A new method of solving transportation-netwqgokoblems. Journal of the
Operations Research Society of Japar27-87, 1960.

[31] W.S. Jewell. Optimal Flows Through Networks. Techhigaport 8, Operations
Research Center, MIT, Cambridge, MA, 1958.

[32] N. Karmarkar. A new polynomial-time algorithm for liae programming. IrPro-
ceedings of the Sixteenth Annual ACM Symposium on Theorgrop@ing (STOC
1984) pages 302-311. ACM, 1984.

[33] N. Karmarkar. A new polynomial-time algorithm for limeprogrammingCombina-
torica, 4:373-395, 1984.

[34] I. Katriel. Expected-case analysis for delayed filgri2006.

[35] I. Katriel and S. Thiel. Complete bound consistencytfer global cardinality con-
straint. Constraints 10(3):191-217, 2005.

[36] L.G. Khachiyan. A polynomial algorithm in linear pragmming.Soviet Mathematics
Doklady, 20:191-194, 1979.

[37] W. Kocjan and P. Kreuger. Filtering methods for symneatardinality constraint. In
J.-C. Régin and M. Rueher, editoPspceedings of the First International Conference
on the Integration of Al and OR Techniques in Constraint Paoagming for Combi-

39

natorial Optimization Problems (CPAIOR 2004)plume 3011 ofLecture Notes in
Computer Scienc@ages 200-208. Springer, 2004.

[38] D. Konig. Graphok és matrixokMatematikaies Fizikai Lapok38:116—-119, 1931.

[39] J.-L. Lauriere. A language and a program for stating salding combinatorial prob-
lems. Artificial Intelligence 10(1):29-127, 1978.

[40] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.Bhmoys, editors.The
Traveling Salesman Problem — A Guided Tour of Combinat@jatimization Wiley,
1985.

[41] M. Leconte. A bounds-based reduction scheme for camgt of difference. In
Proceedings of the Second International Workshop on Caimétbased Reasoning
(Constraint 1996)pages 19-28, 1996.

[42] W. Lipski and F.P. Preparata. Efficient algorithms faiding maximum matchings in
convex bipartite graphs and related problesta Informatica 15:329-346, 1981.

[43] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Be@ fast and simple al-
gorithm for bounds consistency of the alldifferent conistraln Proceedings of the
Eighteenth International Joint Conference on Atrtificiatdhigence (IJCAI 2003)
pages 245-250. Morgan Kaufmann, 2003.

[44] K. Mehlhorn and S. Thiel. Faster Algorithms for Bounar@istency of the Sorted-
ness and the Alldifferent Constraint. In R. Dechter, edifwoceedings of the Sixth
International Conference on Principles and Practice of €maint Programming (CP
2000) volume 1894 of_ecture Notes in Computer Scienpages 306—-319. Springer,
2000.

[45] L. Mercier and P. Van Hentenryck. Edge finding for cuntiviascheduling, 2005.

[46] G.L. Nemhauser and L.A. Wolseynteger and Combinatorial Optimizatiorwiley,
1988.

[47] A. Oplobedu, J. Marcovitch, and Y. Tourbier. CHARME: Uangage industriel de
programmation par contraintes, illustré par une appboathez Renault. IRProceed-
ings of the Ninth International Workshop on Expert Systentstheir Applications:
General Conferencevolume 1, pages 55-70, 1989.

[48] G. Pesant. A Filtering Algorithm for the Stretch Cormétt. In T. Walsh, editor,
Proceedings of the Seventh International Conference oncipries and Practice of
Constraint Programming (CP 200.1yolume 2239 ofLecture Notes in Computer
Sciencepages 183-195. Springer, 2001.

[49] G. Pesant. A Regular Language Membership Constramfiioite Sequences of
Variables. In M. Wallace, editoRroceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CF02}) volume 3258 of
Lecture Notes in Computer Scienpages 482-495. Springer, 2004.

[50] J. Petersen. Die Theorie der regularen graplosa Mathematical5:193-220, 1891.

[51] T. Petit, J.-C. Régin, and C. Bessiere. Specific Rilig Algorithms for Over-
Constrained Problems. In T. Walsh, edit®rpceedings of the Seventh International
Conference on Principles and Practice of Constraint Pragraing (CP 2001)vol-
ume 2239 ol ecture Notes in Computer Scienpages 451-463. Springer, 2001.

[52] J.-F. Puget. A fast algorithm for the bound consisteatwlldiff constraints. In
Proceedings of the Fifteenth National Conference on Aidifiatelligence and Tenth
Innovative Applications of Artificial Intelligence Conégrce (AAAI / IAAI) pages
359-366. AAAI Press / The MIT Press, 1998.

[53] C.-G. Quimper, A. Lopez-Ortiz, P. van Beek, and A. Galti. Improved Algorithms

40 CONTENTS

for the Global Cardinality Constraint. In M. Wallace, edjt@roceedings of the Tenth
International Conference on Principles and Practice of €maint Programming (CP
2004) volume 3258 of ecture Notes in Computer Scienpages 542-556. Springer,
2004.

[54] C.-G. Quimper, P. van Beek, A. Lopez-Ortiz, A. Golyhsand S.B. Sadjad. An
Efficient Bounds Consistency Algorithm for the Global Cawlity ConstraintCon-
straints 10(2):115-135, 2005.

[55] P. Refalo. Linear Formulation of Constraint ProgramgniModels and Hybrid
Solvers. In R. Dechter, editoBroceedings of the Sixth International Conference
on Principles and Practice of Constraint Programming (CF0Q)) volume 1894 of
Lecture Notes in Computer Scienpages 369-383. Springer, 2000.

[56] J.-C. Régin. A Filtering Algorithm for Constraints Bifference in CSPs. IRroceed-
ings of the Twelfth National Conference on Artificial Inigdince (AAAIl)volume 1,
pages 362-367. AAAI Press, 1994.

[57] J.-C. Régin. Generalized Arc Consistency for Globatdinality Constraint. IriPro-
ceedings of the Thirteenth National Conference on Artificitelligence and Eighth
Innovative Applications of Artificial Intelligence Conégrce (AAAL/ IAAl)volume 1,
pages 209-215. AAAI Press / The MIT Press, 1996.

[58] J.-C. Régin. Arc Consistency for Global Cardinalitgrtraints with Costs. In J. Jaf-
far, editor,Proceedings of the Fifth International Conference on Pipitees and Prac-
tice of Constraint Programming (CP 1999olume 1713 oL ecture Notes in Com-
puter Sciencgpages 390-404. Springer, 1999.

[59] J.-C. Régin. Cost-Based Arc Consistency for Globald@slity Constraints.Con-
straints 7:387-405, 2002.

[60] J.-C. Régin, T. Petit, C. Bessiere, and J.-F. PugatO#iginal Constraint Based Ap-
proach for Solving over Constrained Problems. In R. Decle@itor, Proceedings
of the Sixth International Conference on Principles andd®ie of Constraint Pro-
gramming (CP 200Q)volume 1894 ofLecture Notes in Computer Sciengages
543-548. Springer, 2000.

[61] A. Schrijver. Theory of Linear and Integer Programmin@/iley, 1986.

[62] A. Schrijver.Combinatorial Optimization - Polyhedra and Efficien8pringer, 2003.

[63] M. Sellmann. Approximated consistency for knapsachstaints. In F. Rossi, ed-
itor, Proceedings of the Ninth International Conference on Agles and Practice
of Constraint Programming (CP 2003)olume 2833 ol ecture Notes in Computer
Sciencepages 679-693. Springer, 2003.

[64] M. Sellmann. Cost-based filtering for shorter path ¢ists. In F. Rossi, edi-
tor, Proceedings of the Ninth International Conference on Hples and Practice
of Constraint Programming (CP 2003)olume 2833 of_ecture Notes in Computer
Sciencepages 694—-708. Springer, 2003.

[65] R. Tarjan. Depth-first search and linear graph algarghSIAM Journal on Comput-
ing, 1:146-160, 1972.

[66] M.A. Trick. A Dynamic Programming Approach for Congsty and Propagation
for Knapsack Constraint#®innals of Operations Researctil8:73—-84, 2003.

[67] B.L. van der Waerden. Ein Satz Uber Klasseneintedumgon endlichen Mengen.
Abhandlungen aus dem mathematischen Seminar der HamthegigJniverskt,
5:185-188, 1927.

[68] V. Vazirani. Approximation AlgorithmsSpringer, 2001.

