
Chapter 7

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

Contents

7 Global Constraints 1
Willem-Jan van Hoeve and Irit Katriel

Contents 1
7.1 Notation and Preliminaries .. 3
7.2 Examples of Global Constraints .. 9
7.3 Complete Filtering Algorithms .. . 14
7.4 Optimization Constraints .. 21
7.5 Partial Filtering Algorithms 25
7.6 Global Variables . 32
7.7 Conclusion . 35

Handbook of Constraint Programming
Francesca Rossi, Peter Van Beek, and Toby Walsh, Ed.
c©2006 Elsevier All rights reserved

This copy is for educational and scientific use only.

1

2 CONTENTS

A global constraintis a constraint that captures a relation between a non-fixed number
of variables. An example is the constraintalldifferent(x1, . . . , xn), which specifies
that the values assigned to the variablesx1, . . . , xn must be pairwise distinct. Typically, a
global constraint is semantically redundant in the sense that the same relation can be ex-
pressed as the conjunction of several simpler constraints.Having shorthands for frequently
recurring patterns clearly simplifies the programming task. What may be less obvious is
that global constraints also facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in thebest case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search spacewithout enumerating them. For
example, if the CSP contains the constraintx + y = 3 and bothx andy are set to1, we
can conclude that regardless of the values assigned to othervariables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is calledfiltering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in thedomain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, thenit is also useless with respect
to the whole CSP, but not vice versa. In other words, filteringseparately with respect
to each constraint allows false-positives (keeping a valuewhich is useless for the CSP),
but not false-negatives (removing a useful value). We then arrive at a tradeoff between
the efficiencyof the filtering (i.e., the running time) and itseffectiveness(i.e., how many
useless values were identified). “Good” constraints are constraints that address this tradeoff
by allowing significant filtering with a low computational cost.

A filtering algorithm for a constraintC is an algorithm that filters the domains of
variables with respect toC. If the algorithm removes every useless value from the domain
of every variable thatC is defined on, we say that it achievescomplete filtering. If it
removes only some of the useless values, we say that it performspartial filtering.

This chapter explores the topic of globals constraints. Ourgoal is to familiarize the
reader with the important concepts of the field, which include different types of constraints,
different measures of filtering and different compromises between efficiency and effective-
ness of filtering. We will illustrate each of the concepts with some examples, that is,
specific global constraints and filtering algorithms. We believe that our (obviously non-
exhaustive) selection of constraints and algorithms suffices to provide the reader with an
overview of the state of the art of research on global constraints.

The rest of the chapter is organized as follows. Section 7.1 provides notation and
preliminaries for the rest of the chapter. In Section 7.2 we describe some useful global

3

constraints. In Section 7.3 we describe efficient algorithms that achieve complete filtering
for several global constraints. In Section 7.4 we describe global optimization constraints,
i.e., constraints that encapsulate optimization criteria, and filtering algorithms for them.
Section 7.5 covers the topic of partial filtering algorithms, beginning with their motivation
through definitions of different measures of filtering to actual examples of partial filtering
algorithms. In Section 7.6 we describe complex variable types, constraints defined on them
and filtering algorithms for such constraints. Finally, in Section 7.7 we review some recent
ideas and directions for further research.

7.1 Notation and Preliminaries

7.1.1 Constraint Programming

Thedomainof a variablex, denotedD(x), is a finite set of elements that can be assigned to
x. For a set of variablesX we denote the union of their domains byD(X) = ∪x∈XD(x).

Let X = {x1, . . . , xk} be a set of variables. AconstraintC on X is a subset of the
Cartesian product of the domains of the variables inX , i.e.,C ⊆ D(x1) × . . . ×D(xk).
A tuple (d1, . . . , dk) ∈ C is called asolutionto C. Equivalently, we say that a solution
(d1, . . . , dk) ∈ C is an assignment of the valuedi to the variablexi, for all 1 ≤ i ≤ k, and
that this assignmentsatisfiesC. If C = ∅, we say that it isinconsistent. When a constraint
C is defined on a setX of k variables together with a certain setp of ` parameters, we will
denote it byC(X, p), but consider it to be a set ofk-tuples (and notk + `-tuples).

A constraint satisfaction problem(CSP) is a finite set of variablesX , together with a
finite set of constraintsC, each on a subset ofX . A solution to a CSPis an assignment of
a valued ∈ D(x) to eachx ∈ X , such that all constraints are satisfied simultaneously.

Given a constraintC defined on the variables{x1, . . . , xk}, the filtering task is to
shrink the domain of each variable such that it still contains all values that this variable can
assume in a solution toC. An algorithm that achieves complete filtering, computes, for
every1 ≤ j ≤ k,

D(xj)← D(xj)∩{vi | D(x1)×. . .×D(xj−1)×{vi}×D(xj+1)×. . .×D(xk)∩C 6= ∅}.
In many applications, we wish to find a solution to a CSP that isoptimal with respect

to certain criteria. Aconstraint optimization problem(COP) is a CSPP defined on the
variablesx1, . . . , xn, together with anobjective functionf : D(x1) × . . . ×D(xn) → Q

that assigns a value to each assignment of values to the variables. Anoptimal solutionto
a minimization (maximization) COP is a solutiond to P that minimizes (maximizes) the
value off(d). The objective function value is often represented by a variablez, together
with the “constraint”maximize z orminimize z for a maximization or a minimization
problem, respectively.

7.1.2 Graph Theory

Basic Notions

A graphor undirected graphis a pairG = (V, E), whereV is a finite set of vertices and
E ⊆ V ×V is a multiset1 of unorderedpairs of vertices, callededges. An edge “between”

1A multiset is a set in which an element may occur more than once.

4 CONTENTS

u ∈ V andv ∈ V is denoted by{u, v}. A graphG is bipartite if there exists a partition
S ∪̇ T of V such thatE ⊆ S × T . We then writeG = (S, T, E).

A walk in a graphG = (V, E) is a sequenceP = v0, e1, v1, . . . , ek, vk wherek ≥ 0,
v0, . . . , vk ∈ V , e1, . . . , ek ∈ E and ei = {vi−1, vi} for 1 ≤ i ≤ k. If there is no
confusion,P may be denoted byv0, v1, . . . , vk or e1, e2, . . . , ek. A walk is called apathif
v0, . . . , vk are distinct. A closed path, i.e.,v0 = vk, is called acircuit.

An induced subgraphof a graphG = (V, E) is a graphG′ = (V ′, E′) such that
V ′ ⊆ V andE′ = {{u, v} | u ∈ V ′, v ∈ V ′, {u, v} ∈ E}. A componentor connected
componentof a graphG = (V, E) is an induced subgraphG′ = (V ′, E′) of G such that
there exists au-v path inG′ for every pairu, v ∈ V ′, andG′ is maximal with respect toV ′.

A digraphor directed graphis a pairG = (V, A) whereV is a finite set of vertices and
A ⊆ V × V is a multiset oforderedpairs of vertices, calledarcs. A pair occurring more
than once inA is called a multiple arc. An arc fromu ∈ V to v ∈ V is denoted by(u, v).
The set of arcs incoming into a vertexu is denoted byδin(u) = A ∩ (V × {u}) and the
set of arcs outgoing from a vertexu is denoted byδout(u) = A ∩ ({u} × V). Similarly
to undirected bipartite graphs, a directed graphG = (V, A) is bipartite if there exists a
partitionS ∪̇ T of V such thatA ⊆ (S × T) ∪ (T × S). We then writeG = (S, T, A).

A directed walkin a directed graphG = (V, A) is a sequenceP = v0, a1, v1, . . . , ak, vk

wherek ≥ 0, v0, . . . , vk ∈ V , a1, . . . , ak ∈ A andai = (vi−1, vi) for 1 ≤ i ≤ k. Again,
if there is no confusion,P may be denoted byv0, v1, . . . , vk or a1, a2, . . . , ak. A di-
rected walk is called adirected pathif v0, . . . , vk are distinct. A closed directed path, i.e.,
v0 = vk, is called adirected circuit.

An induced subgraph of a digraphG = (V, A) is a graphG′ = (V ′, A′) such that
V ′ ⊆ V andA′ = A∩(V ′×V ′). A strongly connected componentof a digraphG = (V, A)
is an induced subgraphG′ = (V ′, A′) of G such that there exists a directedu-v path inG′

for every pairu, v ∈ V ′, andG′ is maximal with respect toV ′.

Matching Theory

Given an undirected graphG = (V, E), amatchingin G is a setM ⊆ E of disjoint edges,
i.e., no two edges inM share a vertex. A matching is said tocovera vertexv if v belongs
to some edge inM . For a setS ⊆ V , we say thatM coversS if it covers every vertex in
S. A vertexv ∈ V is calledM -free if M does not coverv. Thecardinality of a matching
M is the number of edges in it,|M |. Themaximum cardinality matching problemis the
problem of finding a matching of maximum cardinality in a graph.

Let M be a matching in a graphG = (V, E). A pathP in G is calledM -augmenting
if P has odd length, its ends are not covered byM , and its edges are alternatingly out of
and inM . A circuit C in G is calledM -alternating if its edges are alternatingly out of
and inM . Given anM -augmenting pathP , the symmetric difference2 of M andP gives
a matchingM ′ with |M ′| = |M |+1. Furthermore, the existence of anM -alternating path
is anecessarycondition for the existence of a matching of larger cardinality:

Theorem 1 (Petersen [50])Let G = (V, E) be a graph, and letM be a matching in
G. ThenM is a maximum-cardinality matching if and only if there does not exist anM -
augmenting path inG.

2For two setsA andB, thesymmetric differenceA ⊕ B is the set of elements that belong toA or B but not
both. Formally,A ⊕ B = (A ∪ B) \ (A ∩ B).

5

Hence, a maximum-cardinality matching can be found by repeatedly finding anM -
augmenting path inG and using it to extendM . On a bipartite graphG = (U, W, E), this
can be done with the following method, due to van der Waerden [67] and König [38]. Let
M be the current matching. Construct the directed bipartite graphGM = (U, W, A) by
orienting all edges inM from W to U and all other edges fromU to W , i.e.,

A = {(w, u) | {u, w} ∈M, u ∈ U, w ∈W} ∪
{(u, w) | {u, w} ∈ E \M, u ∈ U, w ∈ W}.

Then every directed path inGM starting from anM -free vertex inU and ending in an
M -free vertex inW corresponds to anM -augmenting path inG. By choosing|U | ≤ |W |,
we need to find at most|U | such paths. As each path can be identified in at mostO(|A|)
time by breadth-first search, the time complexity of this algorithm isO(|U | |A|).

Hopcroft and Karp [28] improved this running time toO(|U |1/2 |A|), where we choose
again|U | ≤ |W |. Instead of repeatedly augmentingM along a singleM -augmenting
path, the idea is to repeatedly augmentM simultaneously along a collection of disjoint
M -augmenting paths. Such a collection of paths can again be found inO(|A|) time. By
reasoning on the lengths of the alternating paths, one can show that the algorithm needs
only O(|U |1/2

) iterations, leading to a total time complexity ofO(|U |1/2 |A|).

Flow Theory

Let G = (V, A) be a directed graph and lets, t ∈ V . A functionf : A → R is called a
flow froms to t, or ans-t flow, if

(i) f(a) ≥ 0 for eacha ∈ A,
(ii) f(δout(v)) = f(δin(v)) for eachv ∈ V \ {s, t}. (7.1)

where for any setS of arcs,f(S) =
∑

a∈S f(a). Property (7.1)(ii) ensuresflow
conservation, i.e., for a vertexv 6= s, t, the amount of flow enteringv is equal to the
amount of flow leavingv.
Thevalueof ans-t flow f is defined to be

value(f) = f(δout(s)) − f(δin(s)).

In other words, the value of a flow is the net amount of flow leaving s, which by flow
conservation must be equal to the net amount of flow enteringt.

In a flow network, each arca is associated with arequirement[d(a), c(a)] wherec(a) ≥
d(a) ≥ 0. Viewing d(a) as the “demand” ofa andc(a) as its “capacity”, we say that a
flow f is feasiblein the network ifd(a) ≤ f(a) ≤ c(a) for everya ∈ A.

Let w : A → R be a “weight” (or “cost”) function for the arcs. For a directed pathP
in G we definew(P) =

∑

a∈P w(a). Similarly for a directed circuit. Theweightof any
flow f : A→ R is defined to be

weight(f) =
∑

a∈A

w(a)f(a).

A feasible flowf is called aminimum-weight flowif weight(f) ≤ weight(f ′) for any
feasible flowf ′. Given a digraphG = (V, A) with s, t ∈ V , theminimum-weight flow
problemis to find a minimum-weights-t flow in G.

6 CONTENTS

Algorithm 1 : Minimum-weight feasibles-t flow in G = (V, A)

setf = ~0
add the arc(t, s) with d(t, s) = 0, c(t, s) =∞, w(t, s) = 0 andf(t, s) = 0 to G
while there exists an arc(u, v) with f(u, v) < d(u, v) do

compute a directedv-u pathP in Gf minimizingw(P)
if P does not existthen stop (no feasible flow exists)
elsedefine the directed circuitC = P, u, v
resetf = f + εχC , whereε is maximal subject to~0 ≤ f + εχP ≤ ~c and
f(u, v) + ε ≤ d(u, v)

Let f be ans-t flow in G. The residual graphof G with respect tof is defined
as Gf = (V, Af) where for each(u, v) ∈ A, if f(u, v) < c(u, v) then (u, v) ∈ Af

with residual demandmax{d(u, v) − f(u, v), 0} and residual capacityc(u, v) − f(u, v),
and if f(u, v) > d(u, v) then(v, u) ∈ Af with residual demand0 and residual capacity
f(v, u) − d(v, u). Intuitively, if the capacity of an arc is not exceeded, thenthe residual
demand indicates how much more flowmustbe sent along this arc for its demand to be
fulfilled and the residual capacity indicates how much additional flow can be sent along
this arc without exceeding its capacity. If the flow on an arc is strictly higher than its
demand, then the residual capacity (on an arc which is oriented in the reverse direction)
indicates by how much we may reduce the flow on this arc, while still fulfilling its demand.

Let P be a directed path inGf . Every arca ∈ P appears inG either in the same
orientation (as the arca) or in reverse direction (as the arca−1). The characteristic vector
of P is defined as follows:

χP (a) =







1 if P traversesa,
−1 if P traversesa−1,

0 if P traverses neithera nora−1,

For a directed circuitC in Gf , we defineχC ∈ {−1, 0, 1}A similarly.
Using the above notation, a feasibles-t flow in G with minimum weight can be found

using Algorithm 1, which is sometimes referred to as thesuccessive shortest paths algo-
rithm, due to Ford and Fulkerson [18], Jewell [31], Busacker and Gowen [11], and Iri [30].
It begins by adding the arc(t, s) to G, with demand 0 and infinite capacity. This simplifies
the computations because we no longer need to considers and t as special vertices; all
we need in order to have a feasible flow is to ensure that flow conservation holds at every
vertex. Then, the algorithm repeatedly finds an arc whose demand is not respected and
adds flow along a cycle in the residual graph that contains this arc. The flow is increased
maximally along this cycle, taking into account the demand and capacity requirements of
the arcs on the cycle. Note that in order to meet the demand of an arc, it may be necessary
to increase the flow along more than one directed cycle. It canbe proved that for integer
demand and capacity functions and non-negative weights, Algorithm 1 finds an integral
feasibles-t flow with minimum weight if it exists; see for example [62, p. 175–176].

The time complexity of Algorithm 1 isO(φ·SP), whereφ is the value of the flow found
and SP is the time to compute a shortest directed path inG. Although faster algorithms
exist for general minimum-weight flow problems, this algorithm suffices for our purposes,
because we only need to find flows of relatively small values.

7

Note that the van der Waerden-König algorithm for finding a maximum-cardinality
matching in a bipartite graph is a special case of the above algorithm. Namely, letG =
(U, W, E) be a bipartite graph. Similar to the construction of the directed bipartite graph
GM in Section 7.1.2, we transformG into a directed bipartite graphG′ by orienting all
edges fromU to W . Furthermore, we add a “source”s, a “sink” t, and arcs froms to
all verticesU and from all vertices inW to t. To all arcsa of the resulting graph we
assign a capacityc(a) = 1 and a weightw(a) = 0. Now the algorithm for finding a
minimum-weights-t flow in G′ mimics exactly the augmenting paths algorithm for find-
ing a maximum-cardinality matching inG. In particular, given a flowf in G′ and the
corresponding matchingM in G, the directed graphGM corresponds to the residual graph
G′

f wheres, t and their adjacent arcs have been removed. Similarly, anM -augmenting
path inGM corresponds to a directeds-t path inG′

f .

Finally, we mention a result that, as we will see, is particularly useful for designing
incremental filtering algorithms. Given a minimum-weights-t flow, we want to compute
the increase that would occur in the weight of solution when an unused arc is forced to be
used. The following result shows that this can be done by re-routing the flow through a
minimum-cost circuit containing the unused arc, see [2, p. 338].

Theorem 2 Letf be a minimum-weights-t flow of valueφ in G = (V, A) with f(a) = 0
for somea ∈ A. Let C be a directed circuit inGf with a ∈ C, minimizingw(C). Then
f ′ = f + εχC , whereε is subject tod ≤ f + εχC ≤ c, has minimum weight among all
s-t flowsg in G with value(g) = φ andg(a) = ε. If C does not exist,f ′ does not exist.
Otherwise, weight(f ′) = weight(f) + ε · w(C).

The proof of Theorem 2 relies on the fact that for a minimum-weight flow f in G, the
residual graphGf does not contain directed circuits with negative weight.
For further reading on network flows we recommend Ahuja et al.[2] or Schrijver [62,
Chapter 6–15].

7.1.3 Linear Programming

A linear programconsists of continuous variables and linear constraints (inequalities or
equalities). The objective is to optimize a linear cost function. One of the standard forms
of a linear program is

min c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
...

am1x1 + am2x2 + . . . + amnxn = bm

x1, . . . , xn ≥ 0

or, using matrix notation,

min {cTx | Ax = b, x ≥ 0} (7.2)

8 CONTENTS

wherec ∈ Rn, b ∈ Rn, A ∈ Rm×n andx ∈ Rn. Herec represents the “cost” vector andx
is the vector of variables. Every linear program can be transformed into a linear program
in the form of (7.2); see for example [61, Section 7.4].

Recall that therankof a matrix is the number of linearly independent rows or columns
of the matrix. For simplicity, we assume in the following that the rank ofA is m, i.e. there
are no redundant equations in (7.2).

Let A = (a1, a2, . . . , an) whereaj is the j-th column ofA. For some “index set”
I ⊆ {1, . . . , n} we denote byAI the submatrix ofA consisting of the columnsai with
i ∈ I.

Because the rank ofA is m, there exists an index setB = {B1, . . . , Bm} such that the
m × m submatrixAB = (aB1

, . . . , aBm
) is nonsingular and is therefore invertible. We

call AB a basisof A. Let N = {1, . . . , n} \B. If we permute the columns ofA such that
A = (AB , AN), we can writeAx = b as

ABxB + ANxN = b,

wherex = (xB , xN). Then a solution toAx = b is given byxB = A−1
B b andxN = ~0.

This solution is called abasic solution. A basic solution isfeasibleif A−1
B b ≥ ~0. The

vectorxB contains thebasic variablesand the vectorxN contains thenonbasic variables.
If we permutec such thatc = (cB , cN), the corresponding objective value iscTx =
cT

BA−1
B b + cT

N
~0 = cT

BA−1
B b.

Given a basisAB, we can rewrite (7.2) into the following equivalent linear program

min cT

BA−1
B b + (cT

N − cT

BA−1
B AN)xN

subject to xB + A−1
B ANxN = A−1

B b

xB , xN ≥ 0.

(7.3)

Program (7.3) represents how the objective may improve if wewould replace (some) basic
variables by nonbasic variables. This means that some basicvariables will take value 0,
while some nonbasic variables will take a non-zero value instead. If we do so, feasibility
is maintained byxB + A−1

B ANxN = A−1
B b. The improvement of the objective value

is represented by(cT

N − cT

BA−1
B AN)xN . This rewritten cost vector forxN is called the

reduced-costvector and is defined on both basic and nonbasic variables ascT = cT −
cT

BA−1
B A. We have the following (cf. [46, pp. 31–32]):

Theorem 3 (xB, xN) is an optimal solution if and only ifc ≥ ~0.

Apart from this result, reduced-costs have another interesting property. Namely, they rep-
resent the marginal rate at which the solution gets worse if we insert a nonbasic variable
into the solution (by giving it a non-zero value). For example, if we insert nonbasic vari-
ablexi into the solution, the objective value will increase by at leastcixi. This property
will be exploited in Section 7.5.2.

To solve linear programs one often uses thesimplex method, invented by Dantzig [15],
which employs Theorem 3. Roughly, the simplex method moves from one basis to another
by replacing a column inAB by a column inAN , until it finds a basic feasible solution
for which all reduced-costs are nonnegative. The method is very fast in practice, although
it has an exponential worst-case time complexity. Polynomial-time algorithms for linear
programs were presented by Khachiyan [36] and Karmarkar [32, 33].
For further reading on linear programming we recommend Chv´atal [14] or Nemhauser and
Wolsey [46].

9

7.2 Examples of Global Constraints

In this section we present a number of global constraints that are practically useful and for
which efficient filtering algorithms exist.

7.2.1 The Sum and Knapsack Constraints

Thesum constraint is one of the most frequently occurring constraints in applications. Let
x1, . . . , xn be variables. To each variablexi, we associate a scalarci ∈ Q. Furthermore,
let z be a variable with domainD(z) ⊆ Q. Thesum constraint is defined as

sum(x1, . . . , xn, z, c) = {(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), d =
∑n

i=1cidi} .

We also writez =
∑n

i=1 cixi.
Theknapsack constraint is a variant of thesum constraint. Rather than constraining

the sum to be a specific value, theknapsack constraint states the sum to be within a lower
boundl and an upper boundu. Traditionally, one writesl ≤ ∑n

i=1 cixi ≤ u. Here we
representl andu by a variablez, such thatD(z) = [l, u]. Then we define theknapsack
constraint as

knapsack(x1, . . . , xn, z, c) =
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), d ≤∑n

i=1 cidi} ∩
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z),

∑n
i=1 cidi ≤ d} ,

which corresponds tomin D(z) ≤∑n
i=1 cixi ≤ maxD(z).

7.2.2 The Element Constraint

Let y be an integer variable,z a variable with finite domain, andc an array of variables, i.e.,
c = [x1, x2, . . . , xn]. Theelement constraint states thatz is equal to they-th variable in
c, or z = xy. More formally

element(y, z, x1, . . . , xn) =
{(e, f, d1, . . . , dn) | e ∈ D(y), f ∈ D(z), ∀i di ∈ D(xi), f = de}.

The element constraint was introduced Van Hentenryck and Carillon [24]. It can be
applied to model many practical problems, especially when we want to model variable
subscripts. An example is presented in Section 7.2.8 below.

7.2.3 The Alldifferent Constraint

The alldifferent constraint is probably the best-known, most influential andmost
studied global constraint in constraint programming. Apart from its simplicity and practical
applicability, this is probably due to its relationship to matching theory. This important
field of theoretical computer science has produced several classical results and provided
the basis for efficient filtering algorithms for thealldifferent constraint.

Definition 1 (Alldifferent constraint, [39]) Letx1, x2, . . . , xn be variables. Then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | ∀i di ∈ D(xi), ∀i6=j di 6= dj}.

10 CONTENTS

A famous problem that can be modeled withalldifferent constraints is then-
queens problem: Placen queens on ann × n chessboard in such a way that no queen
attacks another queen.

One way of modeling this problem is to introduce an integer variablexi for every row
i = 1, 2, . . . , n, which ranges over column 1 ton. This means that in rowi, a queen is
placed in thexi-th column. The domain of everyxi is D(xi) = {1, 2, . . . , n} and we
express the no-attack constraints by

xi 6= xj for 1 ≤ i < j ≤ n, (7.4)

xi − xj 6= i− j for 1 ≤ i < j ≤ n, (7.5)

xi − xj 6= j − i for 1 ≤ i < j ≤ n, (7.6)

The constraints (7.4) state that no two queens are allowed tooccur in the same column
and the constraints (7.5) and (7.6) state the diagonal cases. A more concise model can be
stated as follows. After rearranging the terms of constraints (7.5) and (7.6), we transform
the model into

alldifferent(x1, . . . , xn),
alldifferent(x1 − 1, x2 − 2, . . . , xn − n),
alldifferent(x1 + 1, x2 + 2, . . . , xn + n),
xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ n.

7.2.4 The Global Cardinality Constraint

The global cardinality constraintgcc(x1, . . . , xn, cv1
, . . . , cvn′

) is a generalization of
alldifferent. While alldifferent requires that every value is assigned to at
most one variable, thegcc is specified onn assignment variablesx1, . . . , xn andn′ count
variablescv1

, . . . , cvn′
and specifies that each valuevi is assigned to exactlycvi

assign-
ment variables.alldifferent, then, is the special case ofgcc in which the domain of
each count variable is{0, 1}. For any tuplet ∈ Dn and valuev ∈ D, let occ(v, t) be the
number of occurrences ofv in t.

Definition 2 (Global cardinality constraint, [47]) Letx1, . . . , xn be assignment variables
whose domains are contained in{v1, . . . vn′} and let{cv1

, . . . , cvn′
} be count variables

whose domains are sets of integers. Then

gcc(x1, . . . , xn, cv1
, . . . , cvn′

) = {(w1, . . . , wn, o1, . . . , on′) |
∀j wj ∈ D(xj), ∀i occ(vi, (w1, . . . , wn)) = oi ∈ D(cvi

)}.

An example of a problem that can be modeled with agcc is the shift assignment
problem[13, 57] in which we are given a set of workersW = {W1, . . . , Ws} and a set of
shiftsS = {S1, . . . , St} and the problem is to assign each worker to one of the shifts while
fulfilling the constraints posed by the workers and the boss:Each workerWi specifies in
which of the shifts she is willing to work and for each shiftSi the boss specifies a lower
and upper bound on the number of workers that should be assigned to this shift. In the
gcc, the workers would be represented by the assignment variables and the shifts by the
count variables. The domain of an assignment variable wouldcontain the set of shifts that
the respective worker is willing to work in and the interval corresponding to each count
variable would match the lower and upper bounds specified by the boss for this shift.

11

7.2.5 The Global Cardinality Constraint with Costs

Theglobal cardinality constraint with costs[58] combines agcc and a variant of thesum
constraint. As in Section 7.2.4, letX = {x1, . . . , xn} be a set of assignment variables and
let cv1

, . . . , cvn′
be count variables. We are given a functionw that associates to each pair

(x, d) ∈ X×D(X) a “cost”w(x, d) ∈ Q. In addition, the constraint is defined on a “cost”
variablez with domainD(z). Assuming that we want tominimizethe cost variablez, the
global cardinality constraint with costs is defined as

cost gcc(x1, . . . , xn, cv1
, . . . , cvn′

, z, w) = {(d1, . . . , dn, o1, . . . , on′ , d) |
(d1, . . . , dn, o1, . . . , on′) ∈ gcc(x1, . . . , xn, cv1

, . . . , cvn′
),

∀i di ∈ D(xi), d ∈ D(z),
∑n

i=1 w(xi, di) ≤ d}.
(7.7)

In other words, the cost variablez represents an upper bound on the sum ofw(xi, di)
for all i. We want to find only those solutions to thegcc whose associated cost is not
higher than this bound.

As an example of the practical use of acost gcc we extend the above shift assign-
ment problem. It is natural to assume that different workersperform shifts differently. For
example, suppose that we have a prediction of “work output” when we assign a worker to a
shift. Denote this output byO(W, S) for each workerW and shiftS. The boss now wants
to maximize the output, while still respecting the above preferences and constraints on the
shifts. We can model this as

cost gcc(W1, . . . , Wn, S1, . . . , St, z, Õ),

whereÕ(W, S) = −O(W, S) for all workersW and shiftsS. Namely, maximizingO is
equivalent to minimizing−O.

7.2.6 Scheduling with Cumulative Resource Constraints

An important application area for constraint solvers is in solving NP-hard scheduling prob-
lems. Chapter 22, “Planning and Scheduling”, explores the use of constraint programming
for scheduling in depth. Here, we mention only one problem ofthis family; that of schedul-
ing non-preemptive tasks who share a single resource with bounded capacity.

We are given a collectionT = t1, . . . , tn of tasks, such that each taskti is associated
with four variables: Itsrelease timeri is the earliest time at which it can begin executing,
its deadlinedi is the time by which it must complete, itsprocessing timepi is the amount
of time it takes to complete and itscapacity requirementci is the capacity of the resource
that it takes up while it executes. In addition, we are given the capacity variableC of the
resource. (The special case in which∀i ci = 1 andC = 1 is known as thedisjunctivecase
while the general case in which arbitrary capacities are allowed is thecumulativecase.)

A solution is a schedule, i.e., a starting timesi for each taskti such thatri ≤ si ≤
di − pi (the task completes before its deadline), and in addition,

∀u
∑

i|si≤u≤si+pi

ci ≤ C

i.e., at any time unitu, the capacity of the resource is not exceeded. Note that the starting
times si are auxiliary variables; instead ofsi we reason about the release timesri and
deadlinesdi.

12 CONTENTS

q0
q2 q3

q4

q1
a b a

c

a b a

c

Figure 7.1: A representation of a DFA with each state shown asa circle, final states as a
double circle, and transitions as arcs.

Thecumulative({r1, . . . , rn}, {d1, . . . , dn}, {p1, . . . , pn}, {c1, . . . , cn}, C) constraint
models scheduling problems as described above [1].

7.2.7 The Regular Language Membership Constraint

Theregular constraint [49] is defined on a fixed-length sequence of finite-domain vari-
ables and states that the sequence of values taken by these variables belongs to a given
regular language. Theregular constraint has applications, for example, in rostering
problems and sequencing problems.

Before we formally introduce theregular constraint, we need some definitions (see
[29]). A deterministic finite automaton(DFA) is described by a5-tupleM = (Q, Σ, δ, q0,
F) whereQ is a finite set of states,Σ is an alphabet,δ : Q×Σ→ Q is a transition function,
q0 ∈ Q is the initial state, andF ⊆ Q is the set of final (or accepting) states. Given an
input string, the automaton starts in the initial stateq0 and processes the string one symbol
at the time, applying the transition functionδ at each step to update the current state. The
string isacceptedif and only if the last state reached belongs to the set of finalstatesF .
Strings processed byM that are accepted are said to belong to the language defined byM ,
denoted byL(M). As an example, the DFAM for the regular expressionaa?bb?aa? +cc?

is shown in Figure 7.1. It accepts the stringsaaabaa andcc, but notaacbba.

Definition 3 (Regular language membership constraint, [49]) LetM = (Q, Σ, δ, q0, F)
be a DFA and letX = {x1, x2, . . . , xn} be a set of variables withD(xi) ⊆ Σ for
1 ≤ i ≤ n. Then

regular(X, M) = {(d1, . . . , dn) | ∀i di ∈ D(xi), d1d2 · · · dn ∈ L(M)} .

Returning to our example, consider the CSP

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4, M).

One solution to this CSP isx1 = a, x2 = b, x3 = a andx4 = a.
Theregular constraint allows us to express many relations between the variables

of a sequence. For example, it is possible to express the maximum length of identical
consecutive values, also known as thestretch constraint [48, 23]. A typical application
of thestretch constraint is to restrict the maximum number of night shiftsin a nurse
scheduling problem. Pesant [49] discusses even more complicated patterns.

13

7.2.8 The Circuit Constraint

Before we introduce thecircuit constraint, we need the following definition. Consider
a permutationS = s1, . . . , sn of {1, . . . , n}, i.e.,si ∈ {1, . . . , n} andsi 6= sj whenever
i 6= j. Define the setCS as follows:

1 ∈ CS ,
i ∈ CS ⇒ si ∈ CS .

We say thatS is cyclic if |CS | = n.

Definition 4 (Circuit constraint, [39]) Let X = {x1, x2, . . . , xn} be a set of variables
with respective domainsD(xi) ⊆ {1, 2, . . . , n} for i = 1, 2, . . . , n. Then

circuit(x1, . . . , xn) = {(d1, . . . , dn) | ∀i di ∈ D(xi), d1, . . . , dn is cyclic}.

To the variables in Definition 4 we can associate the digraphG = (X, A) with arc set
A = {(xi, xj) | j ∈ D(xi), 1 ≤ i ≤ n}. An assignmentx1 = d1, . . . , xn = dn

corresponds to the subset of arcsÃ = {(xi, xdi
) | 1 ≤ i ≤ n}. Thecircuit constraint

ensures that̃A is a directed circuit.
A famous combinatorial problem that can be modeled with thecircuit constraint

is the Traveling Salesperson Problem, or TSP [40]: A salesperson needs to find a shortest
route to visitn cities exactly once, and return in its starting city.

We model the TSP as follows. Letcij denote the distance between cityi andj (where
1 ≤ i, j ≤ n). For each cityi, we introduce a variablexi with domainD(xi) =
{1, . . . , n} \ {i}. The value ofxi is the city that is visited by the tour immediately af-
ter city i. We also introduce for every1 ≤ i ≤ n the variabledi to indicate the distance
from city i to city xi. The TSP can then be modeled as follows.

minimize z,
circuit(x1, . . . , xn),
z =

∑n
i=1 di,

di = cixi
1 ≤ i ≤ n.

(7.8)

To perform the assignmentdi = cixi
, we use the constraintelement(xi, di, ci∗), where

ci∗ denotes the array[cij]1≤j≤n.

7.2.9 The Soft Alldifferent Constraint

A soft constraint, as opposed to a traditionalhard constraint, is a constraint that may be
violated. Instead we measure its violation, and the goal is to minimize the total amount
of violation of all soft constraints. Soft constraints are particularly useful to model and
solve over-constrained and preference-based problems (see Chapter 9, “Soft Constraints”).
In this chapter, we follow the scheme proposed by Régin et al. [60] to soften global con-
straints.

A violation measurefor a soft constraintC(x1, . . . , xn) is a functionµ : D(x1) ×
. . . × D(xn) → Q. This measure is represented by a “cost” variablez, which is to be
minimized. There exist several useful violation measures for soft constraints. For the
soft alldifferent constraint, we consider two measures of violation, see [51]. The
first is thevariable-basedviolation measureµvar which counts the minimum number of

14 CONTENTS

variables that need to change their value in order to satisfythe constraint. The second is
the decomposition-basedviolation measureµdec which counts the number of constraints
in the binary decomposition that are violated. Foralldifferent(x1, . . . , xn) the latter
amounts toµdec(x1, . . . , xn) = |{(i, j) | ∀i < j xi = xj}|.

Definition 5 (Soft alldifferent constraint, [51]) Let x1, x2, . . . , xn, z be variables with
respective finite domainsD(x1), D(x2), . . . , D(xn), D(z). Let µ be a violation measure
for thealldifferent constraint. Then

soft alldifferent(x1, . . . , xn, z, µ) =
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), µ(d1, . . . , dn) ≤ d}

is the softalldifferent constraint with respect toµ.

As stated above, the cost variablez is minimized during the solution process. Thus,
max D(z) represents the maximum value of violation that is allowed, and min D(z) rep-
resents the lowest possible value of violation.

As an example, consider the following over-constrained CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

We have, for instance,µvar(a, a, b, b) = 2, whileµdec(a, a, b, b) = 2, andµvar(b, b, b, b) =
3, while µdec(b, b, b, b) = 6. We soften thealldifferent constraint usingµdec, and
transform the CSP into the following COP

z ∈ {0, 1, . . . , 6},
x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
soft alldifferent(x1, x2, x3, x4, z, µdec),
minimize z.

A solution to this COP isx1 = a, x2 = a, x3 = b, x4 = c andz = 1.

7.3 Complete Filtering Algorithms

As mentioned in Section 7.1, the filtering task with respect to a constraintC defined on a set
of variablesX is to remove values from the domains of variables inX without changing the
set of solutions toC. We say that the filtering is complete if the removal of any additional
value from the domain of any of the variables inX wouldchange the set of solutions toC.
Formally:

Definition 6 (Generalized arc consistency)Let C be a constraint on the variablesx1,
. . ., xk with respective domainsD(x1), . . . , D(xk). That is,C ⊆ D(x1) × . . . ×D(xk).
We say thatC is generalized arc consistent(arc consistent, for short) if for every1 ≤ i ≤ k
and v ∈ D(xi), there exists a tuple(d1, . . . , dk) ∈ C such thatdi = v. A CSP is arc
consistent if each of its constraints is arc consistent.

In the literature, arc consistency is also referred to ashyper-arc consistencyor domain
consistency. Note that arc consistency only guarantees that each individual constraint has
a solution; it doesnotguarantee that the CSP has a solution.

15

1 x3x

b c d ea

x2 x4

a. Value graph

eb c d

x x2 x3 x41

a

b. Value graph after filtering

Figure 7.2: Graph representation for thealldifferent constraint, before and after
filtering. Bold edges represent a matching, corresponding to a solution to thealldiff-
erent constraint.

In this section we present filtering algorithms that establish arc consistency. In general,
establishing arc consistency for a non-binary constraint (or global constraint) is NP-hard
(see Chapter 3, “Constraint Propagation”). For a number of global constraints, however,
it is possible to establish arc consistency quite efficiently. We present such filtering algo-
rithms in detail for thealldifferent, thegcc, and theregular constraints.

7.3.1 The Alldifferent Constraint

Régin [56] proposed an arc consistency algorithm for thealldifferent constraint
which is based on matching theory.

Definition 7 (Value graph, [56]) LetX be a set of variables andD(X) the union of their
domains. The bipartite graphG = (X, D(X), E) with E = {{x, d} | x ∈ X, d ∈ D(x)}
is called thevalue graphof X .

As an example, consider the following CSP:

x1 ∈ {b, c, d, e}, x2 ∈ {b, c}, x3 ∈ {a, b, c, d}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

The value graph of the variables in this CSP is shown in Figure7.2.a.

Theorem 4 (Ŕegin [56]) Let X = {x1, x2, . . . , xn} be a set of variables and letG be
the value graph ofX . Then(d1, . . . , dn) ∈ alldifferent(x1, . . . , xn) if and only if
M = {{x1, d1}, . . . , {xn, dn}} is a matching inG.

Proof: By definition. �

Note that the matchingM in Theorem 4 coversX , and is therefore a maximum-cardinality
matching.

Consider again the above CSP. A solution to this CSP, i.e., tothealldifferent
constraint in the CSP, isx1 = d, x2 = b, x3 = a andx4 = c. This solution corre-
sponds to a maximum-cardinality matching in the value graph, indicated with bold edges
in Figure 7.2.a.

16 CONTENTS

Corollary 5 (Régin [56]) LetG be the value graph of a set of variablesX = {x1, x2, . . . ,
xn}. The constraintalldifferent(x1, x2, . . . , xn) is arc consistent if and only if every
edge inG belongs to a matching inG coveringX .

Proof: Immediate from Definition 6 and Theorem 4. �

The following Theorem identifies edges that belong to a maximum-cardinality match-
ing. The proof follows from [50]; see also [62, Theorem 16.1].

Theorem 6 Let G be a graph andM a maximum-cardinality matching inG. An edgee
belongs to some maximum-cardinality matching inG if and only ife ∈ M , or e is on an
even-lengthM -alternating path starting at anM -free vertex, ore is on an even-length
M -alternating circuit.

Proof: Let M be a maximum-cardinality matching inG = (V, E). Suppose edgee
belongs to a maximum-cardinality matchingN , ande /∈ M . The graphG′ = (V, M ⊕
N) consists of even-length paths (possibly empty) and circuits with edges alternatingly
in M and N . If the paths are not of even length, eitherM or N can be made larger
by interchanging edges inM andN along this path (a contradiction because they are of
maximum cardinality).

Conversely, letM be a maximum-cardinality matching inG and letP be an even-
lengthM -alternating path starting at anM -free vertex or anM -alternating circuit. Lete
be an edge such thate ∈ P \M . ThenM ⊕ P is a maximum-cardinality matching that
containse. �

Using Theorem 6, we construct the following arc consistencyalgorithm. First we com-
pute a maximum-cardinality matchingM in the value graphG = (X, D(X), E). This
can be done inO(m

√
n) time, using the algorithm by Hopcroft and Karp [28], where

m =
∑n

i=1 |D(xi)|. Next we identify the evenM -alternating paths starting at anM -free
vertex, and the evenM -alternating circuits in the following way.

Define the directed bipartite graphGM = (X, D(X), A) with arc setA = {(x, d) |
x ∈ X, {x, d} ∈ M} ∪ {(d, x) | x ∈ X, {x, d} ∈ E \M}. In other words, edges inM
are oriented fromX (the variables) toD(X) (the domain values) and edges not inM are
oriented in reverse direction. We first compute the stronglyconnected components inGM

in O(n + m) time [65]. Arcs between vertices in the same strongly connected component
belong to an evenM -alternating circuit inG, and are marked as “used”. Next we search
for the arcs that belong to a directed path inGM , starting at anM -free vertex. This takes
O(m) time, using breadth-first search. Arcs belonging to such a path belong to anM -
alternating path inG starting at anM -free vertex, and are marked as “used”. For all edges
{x, d} whose corresponding arc is not marked “used” and that do not belong toM , we
updateD(x) = D(x) \ {d}. Then, by Theorem 6, the correspondingalldifferent
constraint is arc consistent.

It follows from the above that thealldifferent constraint can be checked for
consistency, i.e., determined to contain a solution, inO(m

√
n) time and that it can be

made arc consistent inO(m) additional time.
In Figure 7.2.b we have shown the corresponding value graph for our example CSP,

after establishing arc consistency. Note that the remaining edges are either in the matching

17

E1 E2 E3 E4

[1,3] [1,2] [1,1] [1,1]

D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

{1} {1,2} {1,2} {2} {2,3,4} {3,4}

v1 v2 v3 v4

x1 x2 x3 x4 x6x5

Figure 7.3:gcc example: On the left are the domainsD(xi) of the assignment variables
and the fixed intervalsEi that replace the count variables. On the right is the corresponding
value graph with a solution marked by bold edges.

M (for examplex1d), or on an even-lengthM -alternating path starting at anM -free ver-
tex (for exampleex1dx3a), or on an even-lengthM -alternating circuit (namelyx2bx4cx2).

During the whole solution process of the CSP, constraints other thanalldiffer-
ent might also be used to remove values from variable domains. Insuch cases, we must
update the filtering of ouralldifferent constraint. As pointed out by Régin [56],
this can be done incrementally, i.e., we can make use of our current value graph and our
current maximum-cardinality matching to compute a new maximum-cardinality matching.
For example, if the domain ofk variables has changed, we can recompute our matching
in O(min{km, m

√
n}) time, and establish arc consistency inO(m) additional time again.

The same idea has been used by Barták [4] to make thealldifferent constraint dy-
namic with respect to the addition of variables during the solution process.

7.3.2 The Global Cardinality Constraint

Figure 7.3 shows an example of agcc and one of its solutions. Unfortunately, it is NP-hard
to filter the domains of all variables to arc consistency [53]. However, if we replace the
count variablescv1

, . . . , cvn′
by constant intervalsEi = [Li, Ui] (i = 1, . . . , n′), we can

use a generalization of the arc consistency algorithm for thealldifferent constraint
to efficiently filter the domains of all assignment variablesto arc consistency [57]: We
construct the value graphG as before, orient the arcs from the variables to the values and
assign to each of them a requirement of[0, 1]. Then, we add two verticess andt, such that
for each variablexi there is an arc with requirement[1, 1] from s to xi, and for each value
vj , there is an arc with requirement[Lj, Uj] from vj to t (see Figure 7.4.a). The following
theorem states that a solution to thegcc corresponds to an integral feasibles-t flow in this
network.

Theorem 7 (Ŕegin [57]) Let C = gcc(x1, . . . , xn, cv1
, . . . , cvn′

) and letG be the aug-
mented value graph described above. Then there is a one-to-one correspondence between
the solutions toC and integral feasibles-t flows inG.

Proof: Given a solutionS = (vi1 , . . . , vin
, o1, . . . , on′) to the constraint, we construct

a feasible flow inG as follows. For each variablexj , f(xj , vij
) = 1 and for any value

v 6= vij
, f(xj , v) = 0. For each valuevi, we setf(vi, t) = oi and for each variablexj we

setf(s, xj) = 1. It is not hard to verify that the capacities of the arcs are respected byf
and that flow conservation holds, sof is an integral feasibles-t flow.

18 CONTENTS

1

1

1

1

1

1

1

1

1

1

1

[1,2]

[1,1]

[1,1]

[1,3]
2

1

1

2

1

x1

x2

x3

x4

x5

x6

v1

v2

v3

v4

ts

[0,1]

[1,1]

a. Flow network and feasible flow

[0,1]

[0,1]

[0,1]

x1

x2

x3

x4

x5

x6

v1

v2

v3

v4

ts

[0,1]

b. Residual graph

Figure 7.4: a. The flow network for the example of Figure 7.3. The requirements of the
arcs are shown as intervals above each equal-requirement group. The numbers above the
arcs indicate a feasible flow. b. The residual capacity of an arc (vi, t) indicates how many
more variables can be assigned the valuevi without exceeding its capacity and the resid-
ual capacity of an arc(t, vi) indicates how many variables which are assignedvi can be
assigned another value without going belowvi’s demand.

Conversely, letf be a feasible flow inG. Then by the demand and capacity require-
ment, for every arca from a variable vertex to a value vertex,f(a) ∈ {0, 1}. By flow
conservation, and by our selection of capacities for the arcs froms to the variable vertex,
we know that every variable vertex is incident to exactly onevariable-value arc that carries
flow 1.

Let S = (vi1 , . . . , vin
, o1, . . . , on′) be a tuple such that for each1 ≤ j ≤ n, the arc

(xj , vij
) is the unique arc such thatf(xj , vij

) = 1 and for each1 ≤ j′ ≤ n′, oj′ is the
number of occurrences of the valuevj′ in (vi1 , . . . , vin

). To see thatS is a solution to the
constraint, it remains to show that every variable is assigned a value in its domain. For
the assignment variables this is obvious: If a variable-value arc carries flow it must exist
in the graph, and this can hold only when the value is in the domain of the variable. For
the count variables, this holds, again, by flow conservationand by our choice of capacities
for the arcs in the network: The value of the flow on an arc from the value vertexvi to t
is, by construction of the flow network, some valuefi in Ei. By flow conservation, the
amount of flow entering this value vertex is alsofi, and since flow can only enter through
variable-value arcs, we get that the number of variables that are assigned the valuevi is fi.

�

We say that the arca belongs to a flowf if f(a) > 0. Once again, we conclude that:

Corollary 8 (Régin [57]) LetG be the value graph of a set of variablesX = {x1, . . . , xn},
augmented into a flow network as described above. The constraint gcc(x1, . . . , xn, E1,
. . . , En′), where eachEi is a fixed interval, is arc consistent if and only if every variable-
value arc inG belongs to some feasible integral flow inG.

19

The following theorem characterizes the arcs ofG that belong to feasible flows, in
terms of the residual graph ofG with respect to a given flow (see Figure 7.4.b). Its proof is
along the same lines as the proof of Theorem 6 and belongs to the folklore of flow theory.

Theorem 9 LetG be a graph andf a feasible flow inG. An arc belongs to some feasible
flow in G if and only if it belongs tof or both of its endpoints belong to the same SCC of
the residual graph ofG with respect tof .

Therefore, given agcc whose count variables are fixed intervals, we can filter the do-
mains of the assignment variables to arc consistency by an algorithm that follows the same
approach as the arc consistency algorithm for thealldifferent constraint, except that
the maximum cardinality matching computation is replaced by a feasible flow computa-
tion. If we were to use a generic flow algorithm such as Algorithm 1, the running time
deteriorates toO(mn). However, Quimper et al. [53] recently showed that the structure of
the value graph can be exploited to compute the flow inO(m

√
n) time, using an adaptation

of the Hopcroft-Karp algorithm [28] for maximum cardinality bipartite matchings.

7.3.3 The Regular Language Membership Constraint

A filtering algorithm for theregular constraint, establishing arc consistency, was pre-
sented by Pesant [49]. It makes use of a specific digraph representation of the DFA, which
has similarities to dynamic programming.

Let M = (Q, Σ, δ, q0, F) be a DFA and letX = {x1, . . . , xn} be a set of vari-
ables withD(xi) ⊆ Σ for each1 ≤ i ≤ n. We construct the digraphR representing
regular(X, M) as follows. The vertex setV consists ofn + 1 duplicates of the set of
states of the DFA:

V = V1 ∪ V2 ∪ . . . ∪ Vn+1,

where

∀1≤i≤n+1Vi = {qi
k | qk ∈ Q}.

The arc setA of the graph represents the transition functionδ of the DFA:

A = A1 ∪A2 ∪ . . . ∪An,

where

∀1≤i≤nAi = {(qi
k, qi+1

l) | δ(qk, d) = ql for d ∈ D(xi)}.

Figure 7.5.a shows the graphR corresponding to the DFA in Figure 7.1.

Theorem 10 (Pesant [49])A solution toregular(X, M) corresponds to a directed path
in R from q1

0 in V1 to a final state inVn+1.

20 CONTENTS

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

x1 x2 x3 x4

V1

a

c

c c c

a

b b

b

a a

a

V5V4V3V2

a a

b

b

a. Graph representation

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q0

q3

q4

q1

x1 x2 x3 x4

V1

q2

a

c

c c c

a

b b

b

a a

a

V5V4V3V2

b. Graph after filtering

Figure 7.5: Graph representation for theregular constraint, before and after filtering. A
double circle represents a final state. Arcs outgoing from a vertex which is not reachable
from q1

0 were omitted for clarity.

Proof: Follows immediately from the construction ofR and the definition of theregu-
lar constraint. �

We apply Theorem 10 to establish arc consistency for theregular constraint:

Corollary 11 (Pesant [49]) LetM = (Q, Σ, δ, q0, F) be a DFA and letX = {x1, . . . , xn}
be a set of variables withD(xi) ⊆ Σ for 1 ≤ i ≤ n. The constraintregular(X, M)
is arc consistent if and only if for allxi ∈ X and d ∈ D(xi), there exists an arc
a = (qi

k, qi+1
l) such thatδ(qk, d) = ql anda belongs to a path fromq1

0 to a final state
in Vn+1.

Consider again the example presented in Section 7.2.7, i.e.,

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4, M).

The CSP is not arc consistent. For example, valueb can never be assigned tox1. If we
make the CSP arc consistent we obtain

x1 ∈ {a, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, c},
regular(x1, x2, x3, x4, M).

In Figure 7.5.b, the graphR corresponding to this example is shown after establishing arc
consistency.

Corollary 11 implies the following filtering algorithm. First, we construct the graphR,
referred to in [49] as the “forward” phase. During this phasewe omit all arcs that are not
on a directed path starting inq1

0 . Then we remove all arcs that are not on a path fromq1
0 to a

final state inVn+1. This can be done in a “backward” phase, starting from vertices inVn+1

which are not final states. The total time complexity of this algorithm is dominated by the
time to construct the graph, which is inO(n |Σ| |Q|). This is also the space complexity of
the algorithm.

21

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q0

q3

q4

q1

x1 x2 x3 x4

V1

q2

a

c

c c c

a

b

a

V5V4V3V2

Figure 7.6: Updated graph after the removal of elementa from D(x3).

Note that the algorithm can be made incremental. Whenever the domain of a variable
has changed, we remove the corresponding arc from the graph.Then we simply perform a
forward and backward phase on the affected parts of the graph, while leaving the rest un-
changed. An example is given in Figure 7.6. It shows the updated graph after the removal
of elementb from D(x2). As a result,a is removed fromD(x3).

It should be noted that this algorithm resembles the filtering algorithm for theknap-
sack constraint proposed by Trick [66]. Trick’s algorithm applies dynamic programming
techniques to establish arc consistency on theknapsack constraint. The same algorithm
can be applied to make thesum constraint arc consistent. It has a pseudo-polynomial run-
ning time however, as its complexity depends on the actual values of the domain elements
of the variable which represents the sum.

7.4 Optimization Constraints

In this section we consider global constraints in the context of constraint optimization
problems, or COPs. Recall that a COP contains an objective function to be optimized,
and the goal is to find a solution that minimizes or maximizes its value. Anoptimization
constraintis a constraint that is linked to the objective function of the problem at hand.
For example, thecost gcc is an optimization constraint. Every solution to it inducesa
“cost” that is represented by a variablez. The assumption is thatz appears in the objective
function, and is to be minimized. Whenever a solution to the COP is found, we obtain an
upper bound for the variablez. Then the domain ofz is filtered accordingly, and from that
point on, we will only be searching for improving solutions.

Traditionally, COPs were solved in the following way. Assume that the objective func-
tion is represented by a variablez, which is to be minimized. If we find a solution to the
problem, we compute its corresponding objective valueopt and add the constraintz < opt .
In that way, we search only for improving solutions. By reasoning on the domains of the
variables present in the objective function, we may even detect sub-optimality before in-
stantiating all variables, and backtrack. A major deficiency of this method, however, is that

22 CONTENTS

there is no inference from the domain ofz to the domains of the other variables. Optimiza-
tion constraints do take this two-way inference into account. They are global constraints,
i.e., they specify a complex relation on a set of variables, but in addition they are also de-
fined on a variable such asz above, which represents the value of the best solution found
so far. Since we are only interested in improving solutions,a minimization (maximization)
constraint is satisfied only when the value of the solution isat most (at least)z.

In this section we present complete filtering algorithms fortwo types of optimization
constraints. First, we consider thecost gcc, which embodies the natural extension of
global constraints to optimization constraints. Next, we consider thesoft alldiffer-
ent constraint, which can be applied to over-constrained and preference-based problems.
In Section 7.5.2 we discusspartial filtering methods for optimization constraints.

7.4.1 The Global Cardinality Constraint with Costs

The filtering algorithm for the global cardinality constraint with costs (thecost gcc) is
an extension of the filtering algorithm of thegcc without costs. As in Section 7.3.2, we
replace the count variablescv1

, . . . , cvn′
by constant intervalsE1, . . . , En′ and filter the

domains of the assignment variables.
Let X = {x1, . . . , xn}, E = {E1, . . . , En′} and letcost gcc(X, E, z, w) be the

constraint under consideration in this section. We extend the graphG of Section 7.3.2
by applying a “weight” function to its arcs. The weight of arc(xi, d) is w(xi, d) for all
1 ≤ i ≤ n andd ∈ D(xi). To all other arcs we assign a weight 0. The filtering algorithm
is based on finding a flow in the weighted version ofG, which we denote byCG.

Theorem 12 (Ŕegin [58]) The constraintcost gcc(X, E, z, w) is arc consistent if and
only if

i) for all x ∈ X andd ∈ D(x) there exists an integral feasibles-t flow f in CG with
f(x, d) = 1 and weight(f) ≤ max D(z), and

ii) min D(z) ≥ weight(f) for some integral feasibles-t flowf in CG.

Proof: If we ignore the costs, we know from thegcc case that there is a one-to-one
correspondence between integral feasibles-t flows and solutions to the constraint. By our
choice of weights for the arcs, the weight of a flow is equal to the cost of the corresponding
solution. Hence, a flow corresponds to a solution only if its weight is at mostmaxD(z)
and every value inD(z) (in particular,min D(z)) must be larger than the weight of at least
one feasible integrals-t flow. �

Theorem 12 gives rise to the following filtering algorithm for thecost gcc. We first
build the digraphCG that represents the constraint. Then, for every variable-value pair
(xi, d) we check whether the pair belongs to a solution, i.e., whether there exists a flow in
CG that represents a solution containingxi = d, with cost at mostmax D(z). If this is not
the case, we can removed from D(xi). Finally, we updatemin D(z) to be the maximum
between its current value and the weight of a minimum-weights-t flow of valuen in CG.

By applying the successive shortest paths algorithm described in Section 7.1, we can
compute a minimum-weight flow inCG in O(n(m + n logn)) time. Hence, the time
complexity of this filtering algorithm isO(n2d(m + n log n)) whered is the maximum

23

domain size. However, we can improve the efficiency by applying Theorem 2, as proposed
by Régin [58, 59].

The resulting, more efficient, algorithm is as follows. We first compute an initial
minimum-weight flowf in CG representing a solution. Then for each arca = (u, v)
representing(xi, d) with f(a) = 0, we compute a minimum-weight directed pathP from
v to u in the residual graphCGf . Together witha, P forms a directed circuit. Because
f represents a solution, it is an integer flow. This means that we can reroute one unit of
flow along the circuit and obtain a flowf ′. Then cost(f ′) = cost(f) + cost(P), following
Theorem 2. If cost(f ′) > maxD(z) we removed from the domain ofxi.

An initial solution is still computed inO(n(m + n log n)) time, but we can reduce
the time complexity to establish arc consistency. A first attempt is to compute for all arcs
(xi, d) with f(xi, d) = 0 a shortest path in the residual graph. That would yield a time
complexityO((m−n)(m+n log n)). We can do better, however, see [58, 59]. We compute
for each (variable) vertex inX the distance to all other vertices inO(m + n log n) time.
Alternatively, this may be done for all (value) vertices inD(X) instead. This gives us the
lengths of all paths inO(∆(m + n log n)) time, where∆ = min(n, |D(X)|).

In addition, this algorithm is incremental. When the domainof k variables has changed,
it takesO(k(m + n log n)) time to recompute a feasible flow, starting from the previous
flow. Establishing arc consistency is done again inO(∆(m + n log n)) additional time.

Note that, by definition (7.7), we don’t restrict all values of D(z) to belong to a solution.
This would however be the case if we had defined

∑n
i=1 w(xi, di) = d in (7.7). The reason

for omitting this additional restriction onz is that it makes the task of establishing arc
consistency NP-hard. This follows from a reduction from the“subset sum” problem (see
[20]). Definition (7.7) does allow an efficient filtering algorithm, as we have seen above. In
a sense, one could argue that while establishing arc consistency, the algorithm mimics the
establishment of bound consistency (see Section 7.5.1) with respect to the cost variablez.

7.4.2 The Soft Alldifferent Constraint

In this section we present filtering algorithms for thesoft alldifferent constraint.
Each of the violation measuresµvar andµdec gives rise to a different arc consistency prob-
lem, and we describe an algorithm for each of them.

Variable-Based Violation Measure

Recall that the variable-based violation measureµvar counts how many variables need to
change their values in order for the constraint to be satisfied.

Theorem 13 (Petit et al. [51]) Let G be the value graph of the variablesx1, . . . , xn and
let M be a maximum-cardinality matching inG. The constraintsoft alldiffer-
ent(x1, . . . , xn, z, µvar) is arc consistent if and only if one of the following conditions
holds

i) min D(z) ≤ n− |M | < maxD(z), or

ii) min D(z) ≤ n − |M | = maxD(z) and all edges inG belong to a matching inG
with cardinality|M |.

24 CONTENTS

Proof: We can assign|M | variables to a different value. Thus we need to change the
value of at leastn− |M | variables, i.e.,µvar ≥ n− |M |. Given an assignment with min-
imum violation, every change in this assignment can only increaseµvar by 1. Hence, if
min D(z) ≤ n − |M | < maxD(z) all domain values belong to a solution. On the other
hand, ifn−|M | = max D(z), only those edges that belong to a matching with cardinality
|M | belong to a solution. �

The constraintsoft alldifferent(x1, . . . , xn, z, µvar) can be filtered to arc con-
sistency by an algorithm which is similar to the one in Section 7.3.1. First we com-
pute a maximum-cardinality matchingM in the value graphG in O(m

√
n) time, where

m =
∑n

i=1 |D(xi)|. If n− |M | > maxD(z), the constraint is inconsistent. Otherwise, if
n− |M | = maxD(z), we identify all edges that belong to a maximum-cardinalitymatch-
ing. Here we apply Theorem 6, i.e., we identify the evenM -alternating paths starting at an
M -free vertex, and the evenM -alternating circuits. This takesO(m) time, as we saw in
Section 7.3.1. Note that in this case vertices inX may also beM -free. Finally, we update
min D(z)← max{min D(z), n− |M |} if min D(z) < n− |M |.

Decomposition-Based Violation Measure

Recall that the decomposition-based violation measure counts the number of constraints in
the binary decomposition (i.e., the set of pairwise not-equal constraints) that are violated.

Once again, we construct a directed graphS = (V, A), this time with

V = {s, t} ∪X ∪D(X) and A = AX ∪As ∪At

whereX = {x1, . . . , xn} and

AX = {(xi, d) | d ∈ D(xi)},
As = {(s, xi) | 1 ≤ i ≤ n},
At = {(d, t) | d ∈ D(xi), 1 ≤ i ≤ n}.

Note thatAt contains parallel arcs if two or more variables share a domain value. If there
arek parallel arcs(d, t) between somed ∈ D(X) andt, we distinguish them by numbering
the arcs as(d, t)0, (d, t)1, . . . , (d, t)k−1 in a fixed but arbitrary order.

To the arcs inAs we assign a requirement[1, 1] while the arcs inA \As have require-
ment[0, 1]. We also assign a “cost” functionw to the arcs. Ifa ∈ As∪AX , thenw(a) = 0.
If a ∈ At, such thata = (d, t)i for somed ∈ D(X) and integeri, the value ofw(a) = i.

Figure 7.7.a shows the graphS corresponding to thesoft alldifferent example
presented in Section 7.2.9.

Theorem 14 (van Hoeve [26])The constraint soft alldifferent(x1, . . . , xn, z,
µdec) is arc consistent if and only if

i) every arca ∈ AX belongs to some feasible integral flowf in S with weight(f) ≤
maxD(z), and

ii) min D(z) ≥ weight(f) for a minimum-weights-t flowf in S.

25

x2

1x

x3
=0w

=1w
=2w
=3w

=1
w

=0
w

=2
w

=0
w

x4

ts

a

b

c

[0,1]

1

1

1

1

1

1

1

1
1

1

1
1

[0,1]

[1,1]

a. Flow network and feasible flow

x
2

1
x

x
3

=0w

=1w

=2w

=3w

=
2

w

=0
w

=
0

w

=
−
1

w

s

x
4

t

a

b

c

[0,1]
[0,1]

b. Residual graph

Figure 7.7: Graph representation for thesoft alldifferent constraint. The require-
ments of the arcs are shown as intervals above each equal-requirement group. Unless
indicated otherwise, the weightw of an arc is0. The numbers next to the arcs describe a
feasible flow with weight1.

Proof: Similar to the proof of Theorem 12. The weights on the arcs inAt are chosen
such that the weight of a minimum-cost flow is exactly the smallest possible value ofµdec.
Namely, the first unit of flow entering a valued ∈ D(X) causes no violation and chooses
the outgoing arc with weight 0. Thek-th unit of flow that entersd causesk − 1 violations
and chooses the outgoing arc with weightk − 1. �

Once again, we can filter the constraintsoft alldifferent(x1, . . . , xn, z, µdec)
to arc consistency by an algorithm which is similar to the onein Section 7.3.1. First we
compute a minimum-cost flowf in S. We apply the successive shortest paths algorithm,
i.e., we need to computen shortest paths in the residual graph. Because there are non-
zero weights only on arcs inAt, each shortest path computation takesO(m) time, using a
breadth-first search. Hence we can findf in O(nm) time. If weight(f) > maxD(z), we
know that the constraint is inconsistent.

To identify the arcsa = (xi, d) ∈ AX that belong to a feasible integral flowg with
weight(g) ≤ maxD(z), we again apply Theorem 2. Thus, we search for a shortestd-xi

path inSf that together witha forms a directed circuitC. We can compute all such shortest
paths inO(m) time, using again the fact that only arcsa ∈ At contribute to the cost of
such paths (more details are given in [26]).

In [27], the above algorithm was extended to other soft global constraints, such as the
soft regular constraint and the softgcc constraint. The result for the softregular
constraint was obtained independently in [6].

7.5 Partial Filtering Algorithms

The algorithms we have presented so far achieve perfect filtering: The removal of any
additional value from the domain of any variable would change the solution set of the
constraint. Sometimes, achieving this utopic goal is too costly, even intractable, and it
makes sense to compromise on a weaker level of filtering. Thissection describes some of
the approaches that have been suggested for partial filtering of global constraints.

26 CONTENTS

7.5.1 Bound Consistency

Assume that the elements of the variable domains are drawn from a total order (e.g., the
integers) and that the domain of each variablexi is an interval of this total order. Thus,
a domainD(x) = [L(x), U(x)] is specified by a lower bound and an upper bound on the
values that variablex can take.

Definition 8 (Bound consistency)LetC be a constraint on the variablesx1, . . . , xk with
respective interval domainsD(x1), . . . , D(xk). We say thatC is bound consistentif for
every1 ≤ i ≤ k, there exists a tuple(d1, . . . , dk) ∈ C such thatdi = L(xi) and there
exists a tuple(e1, . . . , ek) ∈ C such thatei = U(xi).

Computing bound consistency, then, amounts to shrinking the domain intervals as
much as possible without losing any solutions.

Bound Consistency foralldifferent and gcc

The assumption that the domain of each variable is an interval of the values, implies that
the value graph is convex:

Definition 9 (Convex graph) A bipartite graphG = (X, Y, E) is convexif the vertices
of Y can be assigned distinct integers from[1, |Y |] such that for every vertexx ∈ X , the
numbers assigned to its neighbors form a subinterval of[1, |Y |].

Algorithms for computing bound consistency exploit this property of the value graph
(either directly or implicitly). Naturally, filtering algorithms for alldifferent ap-
peared first and the generalizations togcc followed. Two parallel approaches were ex-
plored (see Table 7.1). The first is an adaption of the matching/flow method described
above and the second is based on Hall’s marriage theorem.

Theorem 15 (Hall’s Marriage Theorem [22]) A bipartite graphG = (X, Y, E) has a
matching coveringX if and only if for any subsetX ′ of X , we have that|D(X ′)| ≥ |X ′|.

In our terminology: there is a solution to analldifferent constraint if and only
if for every subset of the variables, the union of their domains contains enough values to
match each of them with a different value. This theorem implies that if there is a setS of
k variables whose domains are contained in a size-k intervalI of values, then the values
of I can be safely removed from the domain of any variable outsideof S. It also implies
that this filtering step suffices: If it cannot be applied, thealldifferent constraint is
bound consistent.
As we saw, the flow-based approach yields both arc consistency and bound consistency
algorithms. The second approach, using Hall’s marriage theorem, was first applied by
Leconte [41] who obtained an algorithm that computesrange consistency, a filtering level
which is stronger than bound consistency but weaker than arcconsistency. Subsequently,
Hall’s theorem was also used in bound consistency algorithms.

In the following,n denotes the number of variables,n′ denotes the number of values in
the union of their domains andm denotes the sum of the cardinalities of the domains (so
the value graph hasn + n′ vertices andm edges). Sincem may be as large asnn′, bound
consistency algorithms typically do not construct the graph explicitly.

27

Hall’s Theorem Matchings/Flows
bound consistency arc consistency bound consistency

alldifferent Puget [52], Régin [56] Mehlhorn and Thiel [44]
López-Ortiz et al. [43]

gcc Quimper et al. [54] Régin [57] Katriel and Thiel [35]

Table 7.1: The two approaches for filtering ofalldifferent andgcc constraints.

Puget designed the first bound consistency algorithm foralldifferent, which is
based on Hall’s theorem and runs inO(n log n) time [52]. Mehlhorn and Thiel [44] later
showed that since the matching and SCC computations of Régin’s algorithm [56] can be
performed faster on convex graphs compared to general graphs, it is possible to achieve
bound consistency foralldifferent using the matching approach inO(n + n′) time
plus the time required to sort the variables according to theendpoints of their domains.
Katriel and Thiel [35] later generalized this algorithm forthegcc case. Simultaneously,
Quimper et al. [54] discovered an alternative bound consistency algorithm forgcc, based
on the Hall interval approach. The latter algorithm narrowsthe domains of only the assign-
ment variables, while the former narrows the domains of the assignment variables as well
as the count variables, to bound consistency.

As mentioned in Section 7.3.2, it is NP-hard to filter all variables to arc consistency.
It is therefore significant that we can achieve at leastsomefiltering for the domains of the
count variables.

Glover’s Algorithm

In order to demonstrate how much simpler convex bipartite graphs are from general bi-
partite graphs, we describe a simple, greedy algorithm thatfinds a maximum cardinality
matching in a convex value graph. Glover [21] was the first whosuggested this algo-
rithm as anO(nn′)-time solution. Using sophisticated data structures, the complexity was
later reduced toO(n′ + nα(n)) by Lipski and Preparata [42] and finally toO(n′ + n) by
Gabow and Tarjan [19]. The latter solutions assume that the values are integers in the in-
terval [1, n′] (which can be achieved inO(n′ log n′) time by sorting and relabeling them).
We will restrict our description to a simple implementationof Glover’s algorithm, which
uses only a priority queue and does not require that the values are in[1, n′]. This imple-
mentation runs inO(n′ + n log n) time. It is much faster than the best known solution for
general value graphs which, recall, runs inO(m

√
n) time [28].

The algorithm traverses the value vertices from smaller to larger and greedily decides,
for each value vertex, whether it is to be matched and if so, with which variable vertex.
For this purpose, it maintains a priority queue that contains variable vertices which are
candidates for matching, sorted by the upper endpoints of their domains. When considering
the value vertexvi, the algorithm first inserts into the queue all variable vertices whose
domains begin atvi; they were not candidates for matching before, but they are now.

Next, there are two cases to consider. If the priority queue is empty,vi will remain
unmatched. Otherwise, the minimum priority variable vertex xj is extracted, and there are
two subcases. Ifxj ’s priority is at leastvi, then it is matched withvi. Otherwise, it should
have been matched earlier, and the algorithm terminates andreports that there is no solution

28 CONTENTS

(the graph does not have a matching coveringX , or, equivalently, thealldifferent
constraint does not have a solution).

The intuition behind this algorithm is that it always matches the candidate variable ver-
tex whose domain ends earliest, so whenxj is matched, any candidate vertex that remains
unmatched can be matched with at least as many value verticesasxj , but perhaps more.
For a formal proof of correctness see [21] or [44].

7.5.2 Reduced-Cost Based Filtering

Next we consider a partial filtering method for optimizationconstraints of the following
type. LetX = {x1, . . . , xn} be a set of variables with corresponding finite domains
D(x1), . . . , D(xn). We assume that each pair(xi, j) with j ∈ D(xi) induces a “cost”
cij . We now extend any global constraintC onX to an optimization constraintopt C by
introducing a cost variablez and defining

opt C(x1, . . . , xn, z, c) = {(d1, . . . , dn, d) |
(d1, . . . , dn) ∈ C(x1, . . . , xn),
∀i di ∈ D(xi), d ∈ D(z),

∑n
i=1 cidi

≤ d}.

where we assume thatz is to be minimized. For example, thecost gcc is a particular
instance of such constraint. We have seen that its arc consistency algorithm is efficient
because of its correspondence with a minimum-weight flow. For many other optimization
constraints of this type, however, such correspondence does not exist, or is difficult to
identify. In such situations we may be able to applyreduced-cost based filteringinstead,
using a linear programming relaxation of the optimization constraint. This method was
first introduced in this form by Focacci et al. [17], althoughthe technique is part of the
linear programming folklore under the namevariable fixing. Note that in general, such a
filtering algorithm does not establish arc consistency.

In order to apply reduced-cost based filtering, we need to infer a linear programming
relaxation from the optimization constraint. First, we introduce binary variablesyij for all
i ∈ {1, . . . , n} andj ∈ D(xi), such that

xi = j ⇔ yij = 1,
xi 6= j ⇔ yij = 0.

(7.9)

To ensure that each variablexi is assigned to a single value in its domain we state the linear
constraints

∑

j∈D(xi)

yij = 1 for i = 1, . . . , n.

The linear objective function is stated as

n
∑

i=1

∑

j∈D(xi)

cijyij .

The next, most difficult, task is to rewrite (a part of) the optimization constraint as a system
of linear constraints using the binary variables. This is problem dependent, and no general

29

recipe exists. However, for many problems such descriptions are known, see, e.g., [55].
For example, for analldifferent constraint we may add the linear constraints

n
∑

i=1

yij ≤ 1 for all j ∈
n
⋃

i=1

D(xi)

to ensure that every domain value is assigned to at most one variable.
Finally, in order to obtain a linear programming relaxation, we remove the integrality

constraint on the binary variables and state

0 ≤ yij ≤ 1 for i ∈ {1, . . . , n}, j ∈ D(xi).

When we solve this linear programming relaxation to optimality, we obtain a lower
bound onz, and reduced-costsc. Recall from Section 7.1.3 that reduced-costs estimate the
increase of the objective function when we force a variable into the solution. Hence, if we
enforce the assignmentxi = j, the objective function value will increase by at leastcij .
Let z∗ be the objective value of the current optimal solution of thelinear program. Then
we apply the following filtering rule:

if z∗ + cij > max D(z) thenD(xi)← D(xi) \ {j}.

A huge advantage of this approach is that it can be applied very efficiently. Namely,
reduced-costs are obtained automatically when solving a linear program. Hence, the filter-
ing rule can be applied without additional computational costs.

7.5.3 Intractable Global Constraints

As already noted, global constraints serve to break up the CSP into a conjunction of simpler
CSPs, each of which can be filtered efficiently. We show below that if it is NP-hard to
determine whether a constraint has a solution, it is also NP-hard to compute arc consistency
for the constraint. The following is a special case of a Theorem due to Bessière et al. [10].

Theorem 16 LetC be a constraint. If there is a polynomial-time algorithm that computes
arc consistency forC then there is a polynomial-time algorithm that finds a singlesolution
to C.

Proof: Assume that we have an algorithmA that prunes the variable domains to arc
consistency in polynomial time. Then we can find a solution tothe constraint as follows:

1. Use algorithmA to compute arc consistency. The constraint has a solution ifand
only if all domains are now non-empty.

2. Repeat until a solution is found:

a) Letx be a variable such that|D(x)| > 1 and letv ∈ D(x).

b) SetD(x)← {v}
c) Use algorithmA to compute arc consistency.

30 CONTENTS

In each iteration the value of one variable is determined, sothe total number of itera-
tions is at most equal to the number of variables and the running time of the algorithm is
polynomial. �

The converse of Theorem 16 does not hold; there are constraints for which arc consis-
tency is NP-hard while checking feasibility is not (see, e.g., [64]). A weaker version which
does hold is stated below. The crucial point to note is that there are constraints for which
it is possible to efficiently check whether the constraint has a solution, but it is NP-hard to
check whether it has a solution in which a certain variable isassigned a specific value in
its domain.

Theorem 17 Let C be a constraint defined on the variablesX = {x1, . . . , xk}. If there
is an algorithmA that, for anyxi ∈ X andd ∈ D(xi), determines in polynomial time
whether there is a solution to the constraintC ∧ (xi ← d), then there is a polynomial-time
algorithm that computes arc consistency forC.

Proof: For every variablexi and valued ∈ D(xi), use algorithmA to check if there is a
solution whenxi ← d and removed from D(xi) otherwise. �

A consequence of Theorem 16 is that there is a very large classof practically useful
global constraints for which we probably cannot achieve perfect filtering. In some cases,
a possible remedy is to compromise on bound consistency; as already mentioned, bound
consistency can be computed in almost-linear time for thegcc, while arc consistency, for
the assignment and count variables, is NP-hard.

Filtering for the Cumulative Constraint

Another method to cope with NP-hardness is torelax the constraint. That is, to transform
our NP-hard constraintC into a constraintC′ such thatC′ can be efficiently filtered to a
guaranteed consistency level (e.g., arc consistency or bound consistency) andC ⊂ C′, i.e.,
every solution toC is also a solution toC′. For example, the reduced-cost based filtering
method described above applies a linear programming relaxation of the constraint. Here
we will demonstrate this approach by describing a filtering algorithm for a relaxation of
the cumulative3 constraint [45]. We assume for simplicity that the capacityof the
resource and the capacity requirements and processing times of the tasks are fixed, i.e.,
|D(C)| = 1 and |D(ci)| = |D(pi)| = 1 for all i. The filtering task is to increase the
minimum start times and decrease the maximum completion times of the tasks, without
losing any solutions to the constraint. We will describe thealgorithm that tightens the
earliest start times; the solution for the latest completion times is symmetric. The relaxation
of thecumulative constraint will be defined below, but first we wish to build up the
intuition behind the definition.

Let theenergyof taskti beei = cipi; it represents the total capacity of the resource
that is consumed by the task. For a setΩ ⊆ T of tasks, letrΩ be the earliest release time
of a task inΩ, dΩ the latest deadline of a task inΩ andeΩ the sum of the energies of tasks
in Ω. Clearly, if there is a subsetΩ ⊆ T of the tasks such thateΩ > C(dΩ − rΩ), the

3Thecumulative constraint is, in general, NP-hard. Recently, Artiouchineand Baptiste [3] developed a
bound consistency algorithm for the special case in which all processing times are equal.

31

problem is infeasible: Between timerΩ anddΩ, the tasks need more of the resource than
is available.

Now, let Ω be a set of tasks andti /∈ Ω another task such thateΩ∪{ti} > C(dΩ −
rΩ∪{ti}). If ti is scheduled such that it completes executing before any task in Ω, then it
completes beforedΩ, so the total energy of the tasks scheduled in the interval[rΩ∪{ti}, dΩ]
is above the capacity of the resource, a contradiction. Soti completes execution last among
the tasks inΩ ∪ {ti}.

Once we have found such a pair(Ω, ti), we can use it to adjust the starting time ofti as
follows. For each subsetΘ ⊆ Ω, we examine the time intervalI = [rΘ, dΘ] and determine
what is the earliest time in this interval at whichti can start executing. Since we know that
ti cannot complete before any task inΘ, we get that ifti is scheduled at time unitu ∈ I,
then in the interval[u, dΘ] the schedule allocates onlyC − ci capacity units of the resource
for tasks inΘ.

Conceptually, split the resource into two parts, with capacitiesC1 = C−ci andC2 = ci.
Assume that the schedule placedti on the second part and thatti was the last task scheduled
there. Clearly, on the first part we can schedule at most(C − ci)(dΘ − rΘ) units of energy
in the time intervalI. This means that at leastrest(Θ, ci) = eΘ− (C − ci)(dΘ− rΘ) units
of energy must be scheduled in this time interval on the second part just to schedule all the
tasks ofΘ. Even if all of this energy is scheduled as early as possible,it takes up at least
the first 1

ci
rest(Θ, ci) time units of the second part and thereforeti cannot begin before

time unitrΘ + 1
ci

rest(Θ, ci).
An algorithm that performs all such adjustments to the starting times of tasks is called

anedge-findingalgorithm (because the algorithm discovers edges in the precedence-graph
of the completion times of the tasks). The basic idea of such an algorithm is to efficiently
identify a small number of pairs(Θ, ti) for which the rule described above needs to be
applied.

Edge-finding algorithms were first developed for the disjunctive case, which is much
simpler than the most general case. The fastest algorithm runs in O(n log n) time [12].
For the cumulative case, the fastest known solution is by Mercier and Van Hentenryck [45]
and runs inO(kn2) wherek is the number of different capacity requirements of the tasks
(a previously developedO(n2)-time solution was shown to be incomplete).

After giving an outline of the algorithm, we are ready to define the constraint that it
filters, i.e., the relaxation of thecumulative constraint. Since edge-finding algorithms
existed in the scheduling literature beforecumulative was a global constraint, this def-
inition may seem opportunistic: We define the problem to be whatever we already know
how to solve. Nevertheless, scheduling is an important application in constraint program-
ming so we believe that the edge-finding algorithm deserves adescription in constraint
programming terminology: It is a bound consistency algorithm for the relaxation of the
cumulative constraint (where the processing times and capacities of the tasks, as well
as the capacity of the resource are fixed) which is satisfied iffor every taskti

min{D(ri)} ≥ max max rΘ + d 1

ci
rest(Θ, ci)e

Ω ⊆ T Θ ⊆ Ω

i /∈ Ω rest(Θ, ci)

α(Ω, i)

32 CONTENTS

whereα(Ω, i)⇔
(

C(dΩ − rΩ∪{i}) < eΩ∪{i})
)

.

Intractable Optimization Constraints

Sellmann [63, 64] suggested two forms of partial consistency, which are specifically mo-
tivated by NP-hard optimization constraints. The first is anadaptation of relaxed con-
sistency [64] to optimization constraints. That is, we transform the constraintC into a
constraintC′ such thatC ⊆ C′ andC′ can be filtered efficiently. The idea is similar to
the relaxation of thecumulative constraint described above, except that hereC and
C′ are both optimization constraints. The reduced-cost basedfiltering based on a linear
relaxation, which was described in Section 7.5.2, also employs this idea.

Sellmann demonstrates this technique by way of the shorter-path constraint, which is
defined on a digraphG, a source vertexs and a target vertext in G, an upper boundW and
a variableP whose domain is all subsets of arcs ofG (see Section 7.6.1). The constraint
is satisfied ifP is a set of arcs that form a path inG from s to t whose length is at most
W . Since it is NP-hard to determine whether there is a path froms to t that uses a certain
arc (while visiting each node at most once), it is NP-hard to compute bound consistency
for the set variablesP . However, it is easy to determine whether there is an “almost-path”
from s to t that uses the arc(u, v) and whose length is at most the upper bound: Find the
length of the shortest path froms to u and the length of the shortest path fromv to t. The
concatenation of these two paths through the arc(u, v) is a walk froms to t that visits
every vertex at most twice. The relaxed shorter-path constraint, then, excludes from the set
assigned toP any arc that does not belong to a path or almost-path froms to t in G whose
length is at mostW .

Sellmann’s second form of partial consistency is termedapproximated consistency[63].
Here, the idea is to use efficient approximation algorithms for NP-hard problems as com-
ponents of the filtering algorithm. Recall that anα-approximation algorithm for a mini-
mization (maximization) problemP is a polynomial-time algorithmA such that for every
instancex of P , A finds a solution whose value is at most(1 + ε) · Opt(P, x) (at least
(1 − ε) · Opt(P, x)), whereOpt(P, x) is the value of the optimal solution to instancex
of problemP . Clearly, the smaller the value ofα, the better the quality of approximation.
1+α (resp.1−α) is referred to as theapproximation factorachieved by algorithmA. For
more details, see any text on approximation algorithms, such as [25, 68].

For a minimization (maximization) constraint that is defined on a variablez which
holds the upper (lower) bound on the value of a solution, we say thatC is ε-arc consistent
if every value in the domain of every variable participates in a solution of value at most
z + εOpt (at leastz − εOpt). The motivation behind this definition is that approximation
algorithms allow us to efficiently identify problem instances whose optimal solutions are
much better or much worse than the best solution found so far,but may give inconclusive
replies for instances which are of comparable quality. In such cases, approximate consis-
tency allows one-sided errors: we keep the respective valuein the variable domain, to be
on the safe side.

7.6 Global Variables

In recent years, some of the work of global constraints, i.e., that of providing more struc-
tured information to the solver and simplifying the syntax of CSPs, is taken up by complex

33

variable types, which we will collectively refer to asglobal variables. Our focus in this
section is on constraints defined on global variables and thedesign of filtering algorithms
for such constraints. We will discuss two important examples: sets and graphs. Chapter 17,
“Beyond Finite Domains”, is devoted to the topic of complex variable types, and describes
many examples and aspects that are not mentioned here.

7.6.1 Set Variables

Let us revisit the shift-assignment problem for which we used the global cardinality con-
straint in Section 7.2.4. We assumed that each worker is to work exactly one shift. It is
more realistic, however, that we have a lower bound and an upper bound on the number
of shifts that each worker is to staff. The result is known as the symmetric cardinality
constraint[37]:

Definition 10 The symmetric cardinality constraintsymcc(x1, . . ., xn, cx1
, . . ., cxn

, cv1
,

. . ., cvn′
) is defined on a collection of assignment variablesx1, . . . , xn and two sets of

count variables,cx1
, . . . , cxn

andcv1
, . . . , cvn′

. It specifies that the value assigned toxj

is a subset of{v1, . . . , vn′} of cardinality cxj
, and that the number of such subsets that

containvi is cvi
.

We still have one variable for each worker, but the value of this variable is thesetof
shifts that the worker will staff. One way to handle this is tosay that the domain contains
all subsets of the shifts. This results in an exponential growth in the number of values (and
hence in the size of the value graph).

An alternative is to useset variables. A set variablex is a variable that has a discrete
domainD(x) = [lb(x), ub(x)]. Thus, the domain of a set variable consists of two sets, the
setlb(x) of mandatoryelements and the setub(x) \ lb(x) of possibleelements. The value
assigned tox should be a sets(x) such thatlb(x) ⊆ s(x) ⊆ ub(x).

For a constraint on set variables, we are not interested in arc consistency because the
individual values that a set variable can take do not explicitly exist; we only have their
intersection (lb) and their union (ub). Viewing the intersection as a lower bound and the
union as an upper bound, we speak of bound consistency when filtering the domain of a
set variable. A bound consistency computation for a constraint C defined on a set variable
x requires that we:

• Remove a valuev from ub(x) if there is no solution toC in whichv ∈ s(x).

• Include a valuev ∈ ub(x) in lb(x) if in all solutions toC, v ∈ s(x).

To demonstrate such a computation4, we sketch how the flow-based filtering algorithm
for gcc can be adapted to compute bound consistency for the assignment variables of
symcc, assuming that the domains of all count variables are fixed intervals. The flow
network constructed from the value graph is almost identical, except that the requirement
of an arc froms to a variable vertex reflects the cardinality requirement for the set assigned
to the variable. That is, the capacity of the arc(s, xj) is equal to the intervalD(cxj

).
Then, we once again have a one-to-one correspondence between the integrals-t flows in

4Additional examples can be found in [9].

34 CONTENTS

the network and the solutions to the constraint. As before, after finding a flow we have that
a non-flow arc belongs to some integrals-t flow if and only if its endpoints belong to the
same SCC of the residual graph.

However, unlike in thegcc case, this does not complete the filtering task: we must also
identify arcs that belong toany integrals-t flow, and make sure that they are in the lower
bounds of the domains of the relevant set variables. It is notdifficult to verify that this is
exactly the set of flow arcs whose endpoints belong to different SCCs of the residual graph
(recall that the requirement of an arc from a variable vertexto a value vertex is[0, 1]).

The bottleneck of the algorithm is the flow computation, which takesO(mn) time. It
is interesting to note that the cardinality of the domain of any of the set variables may well
be exponential in the running time of this algorithm, which handles all of these domains at
once.

7.6.2 Graph Variables

A graph variable[16] is simply two set variablesV andE, with an inherent constraint
E ⊆ V ×V . As with set variables, the domainD(G) = [lb(G), ub(G)] of a graph variable
G consists of mandatory vertices and edgeslb(G) (the lower bound graph) and possible
vertices and edgesub(G) \ lb(G) (the upper bound graph). The value assigned to the
variableG must be a subgraph ofub(G) and a super graph of thelb(G).

The usefulness of graph variables depends on the existence of efficient filtering algo-
rithms for useful constraints defined on them, i.e., constraints that force graph variables to
have certain properties or certain relations between them.As a simple example, the con-
straintSubgraph(G, S) specifies thatS is a subgraph ofG. Note that bothS andG are
variables, so computing bound consistency for theSubgraph constraint means the follow-
ing:

1. If lb(S) is not a subgraph ofub(G), the constraint has no solution.

2. For eache ∈ ub(G) ∩ lb(S), includee in lb(G).

3. For eache ∈ ub(S) \ ub(G), removee from ub(S).

The conditions above can be checked in time which is linear inthe sum of the sizes of
ub(G) andub(S). As with set variables, we are in the interesting situation in which the
number of graphs that the bound consistency algorithm reasons about may be exponential
in the running-time of the algorithm.

The Spanning Tree Constraint

As a slightly more sophisticated example, we consider the constraintST (G, T), which
states that the graphT is a spanning tree of the graphG. Since a spanning tree is a sub-
graph, the conditions described above should be checked when computing bound consis-
tency forST . In addition, (1) the vertex-sets ofG andT must be equal, and (2)T must be
a tree.

To enforce (1), we remove fromub(G) any vertex which is not inub(T) and we include
in lb(T) any vertex which is inlb(G). As for (2), if lb(T) contains a circuit thenT cannot
be a tree and ifub(T) is not connected thenT cannot be connected. In both cases, the

35

constraint has no solution. Finally, any edge inub(T) \ lb(T) whose endpoints belong
to the same connected component oflb(T) must be removed (including it in any solution
would introduce a circuit inT) and any bridge5 in ub(T) must be placed inlb(T) (T cannot
be connected if it is excluded).

The running time of the algorithm we described is linear in the sum of the sizes of the
upper bounds ofG andT . To prove that it achieves bound consistency, one needs to show
that the following three conditions hold:

1. Every vertex or edge that was removed, does not participate in any solution.

2. Every remaining vertex or edge inub(T) or ub(G) participates in at least one solu-
tion and every remaining vertex or edge inub(T)\lb(T) orub(G)\lb(G) is excluded
from at least one solution to the constraint.

3. Every vertex or edge that the algorithm inserts intolb(G) or lb(T) participates in all
solutions.

Note that in item 3 above we do not say that every element inlb(G) andlb(T) belongs
to all solutions. This is only required of those elements that the filtering algorithm decided
to include in the lower bound sets. The input may include any vertex or edge in the lower
bound graph, and the filtering algorithm does not ask why: It may only remove values from
variable domains, and never add them.

7.7 Conclusion

The search for useful global constraints and the design of efficient filtering algorithms for
them is an ongoing research effort that tackles many challenging and interesting problems.
We have already mentioned some of the fundamental questions: What are the frequently
recurring sub-problems that we would like to capture by global constraints? For a specific
constraint, what is the computational complexity of filtering it to arc consistency? Should
we compromise on partial consistency? We would like to briefly mention several other
ideas on global constraints that have been proposed in recent years.

Given the large number of global constraints that were and will be defined, several
researchers are attempting to find generic methods to specify and handle constraints. Beldi-
ceanu et al. [7] describe a constraint solver that views a global constraint in terms of a
collection of graph properties (such as the number of strongly connected components in a
digraph). Then, the solver uses a database of known graph theoretic results to automatically
generate new constraints that strengthen the model by allowing more filtering. They point
out that out of the 227 global constraints listed in the global constraints catalog [5], about
200 can be described in terms of graph properties. Therefore, their approach seems to be
widely applicable. Bessière et al. [8] defined a declarative language that can be used to
specify many known constraints which model counting and occurrence problems. In this
language, a constraint is specified as the conjunction of constraints, each of which can be
a simple (binary) constraint on scalar or set variables, or one of two globals constraints
calledrange androots.

5A bridge in a graph is an edge whose removal increases the number of connected components.

36 CONTENTS

Another approach is to view the filtering task in the context of the tree search. We have
already mentioned the problem of dynamic filtering, i.e., recomputing arc consistency af-
ter a small change such as the removal of a few values from variable domains. Recently,
Katriel [34] pointed out that in a flow network withn nodes andm edges where every
edge belongs to at least one feasible flow, there are onlyO(n) edges whose removal would
renderother edges useless. This implies that if the filtering is random, i.e., the edge re-
moved from the value graph of analldifferent or gcc is always selected at random
among all possibilities, the expected number of edges that need to be removed before it
makes sense to recompute arc consistency isΘ(m/n). It would be interesting to evaluate
experimentally whether the assumption that filtering is random is realistic, and whether
delayed filtering is a good compromise between filtering efficiency and effectiveness. If
this approach is to be pursued, it is necessary to either analyze each global constraint in-
dependently and determine a reasonable filtering frequency, or find a generic or automated
way to do this for many global constraints.

In the area of partial filtering for NP-hard global constraints, there seems to be a lot of
potential for enhancements. Here we would like to suggest the idea of approximate filter-
ing. Recall that an approximation algorithm for an optimization problem is an algorithm
that finds a solution whose value, according to the objectivefunction of the problem, does
not deviate too much from the value of the optimal solution. For a filtering problem, the
objective function counts the sum of the cardinalities of the domains of the variables. An
optimal solution minimizes this number, and hence anα-approximate solution, forα ≥ 1,
is a solution that removes all butαOpt values from the variable domains. Formally,

Definition 11 (Approximate filtering) LetC(x1, . . . , xn) be a constraint and assume that
after filtering it to arc consistency, the sum of the cardinalities of the domains ofx1, . . . , xn

is Opt . An α-approximate filtering algorithmfor C is an algorithm that removes values
from the domains of the variablesx1, . . . , xn such that the solution set ofC remains un-
changed and the sum of the cardinalities of the domains of thevariables is at mostαOpt .

Note that approximate filtering is different from the notionof approximated consistency
that was described in Section 7.5.3 in two ways. First, approximate filtering applies to
any constraint while approximated consistency is defined for optimization constraints. In
addition, with approximated consistency, what is being approximated is the value of the
solutions to the constraint that remain, while approximatefiltering directly approximates
the effectiveness of the filtering algorithm.

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems.Journal of Mathematical and Computer Modelling,
17(7):57–73, 1993.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin.Network Flows. Prentice Hall, 1993.
[3] K. Artiouchine and P. Baptiste. Inter-distance Constraint: An Extension of the All-

Different Constraint for Scheduling Equal Length Jobs. In P. van Beek, editor,Pro-
ceedings of the Eleventh International Conference on Principles and Practice of Con-
straint Programming (CP 2005), volume 3709 ofLecture Notes in Computer Science,
pages 62–76. Springer, 2005.

37

[4] R. Barták. Dynamic Global Constraints in BacktrackingBased Environments.Annals
of Operations Research, 118(1–4):101–119, 2003.

[5] N. Beldiceanu, M. Carlsson, and J.X.-Rampon. Global constraint catalog. Technical
Report T2005-06, Swedish Institute of Computer Science, 2005.

[6] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Filtering Algorithms from Con-
straint Checkers. In M. Wallace, editor,Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming (CP 2004), volume
3258 ofLecture Notes in Computer Science, pages 107–122. Springer, 2004.

[7] N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truchet. Graph invariants as
necessary conditions for global constraints. In P. van Beek, editor,Proceedings of
the Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2005), volume 3709 ofLecture Notes in Computer Science, pages
92–106. Springer, 2005.

[8] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots con-
straints: Specifying counting and occurrence problems. InProceedings of the Twen-
tieth International Joint Conference on Artificial Intelligence (IJCAI 2005), pages
60–65. Professional Book Center, 2005.

[9] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. Disjoint, partition and intersection
constraints for set and multiset variables. In M. Wallace, editor, Proceedings of the
Tenth International Conference on Principles and Practiceof Constraint Program-
ming (CP 2004), volume 3258 ofLecture Notes in Computer Science, pages 138–152.
Springer, 2004.

[10] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global con-
straints. In M. Wallace, editor,Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 716–720. Springer, 2004.

[11] R.G. Busacker and P.J. Gowen. A Procedure for Determining a Family of Minimum-
Cost Network Flow Patterns. Technical Report ORO-TP-15, Operations Research
Office, The Johns Hopkins University, Bethesda, MD, 1960.

[12] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.
Euro. J. Oper. Res., 78:146–161, 1994.

[13] Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive andObject-Oriented Approach
to a Complex Scheduling Problem. InProceedings of Deductive and Object-Oriented
Databases, Third International Conference (DOOD’93), pages 67–80, 1993.

[14] V. Chvátal.Linear programming. Freeman, 1983.
[15] G.B. Dantzig. Maximization of a linear function of variables subject to linear in-

equalities. In Tj.C. Koopmans, editor,Activity Analysis of Production and Allocation
– Proceedings of a conference, pages 339–347. Wiley, 1951.

[16] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a Graph Compu-
tation Domain in Constraint Programming. In P. van Beek, editor, Proceedings of
the Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2005), volume 3709 ofLecture Notes in Computer Science, pages
211–225. Springer, 2005.

[17] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar, ed-
itor, Proceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming (CP 1999), volume 1713 ofLecture Notes in Computer
Science, pages 189–203. Springer, 1999.

38 CONTENTS

[18] L.R. Ford, Jr and D.R. Fulkerson. Constructing maximaldynamic flows from static
flows. Operations Research, 6:419–433, 1958.

[19] H.N. Gabow and R.E. Tarjan. A linear-time algorithm fora special case of disjoint
set union. InProceedings of the Fifteenth Annual ACM Symposium on Theoryof
computing (STOC 1983), pages 246–251. ACM, 1983.

[20] M.R. Garey and D.S. Johnson.Computers and Intractability - A Guide to the Theory
of NP-Completeness. Freeman, 1979.

[21] F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistics
Quarterly, 14:313–316, 1967.

[22] P. Hall. On representatives of subsets.Journal of the London Mathematical Society,
10:26–30, 1935.

[23] L. Hellsten, G. Pesant, and P. van Beek. A Domain Consistency Algorithm for the
Stretch Constraint. In M. Wallace, editor,Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming (CP 2004), volume
3258 ofLecture Notes in Computer Science, pages 290–304. Springer, 2004.

[24] P. Van Hentenryck and J.-P. Carillon. Generality vs. specificity: an experience with
AI and OR techniques. InProceedings of the National Conference on Articial Intel-
ligence (AAAI), pages 660–664, 1988.

[25] D.S. Hochbaum, editor.Approximation Algorithms for NP-Hard Problems. Brooks /
Cole Pub. Co., 1996.

[26] W.-J. van Hoeve. A Hyper-Arc Consistency Algorithm forthe Soft Alldifferent Con-
straint. In M. Wallace, editor,Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 679–689. Springer, 2004.

[27] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-Based
Soft Global Constraints.Journal of Heuristics, 2006. To appear.

[28] J.E. Hopcroft and R.M. Karp. Ann5/2 algorithm for maximum matchings in bipartite
graphs.SIAM Journal on Computing, 2(4):225–231, 1973.

[29] J.E. Hopcroft and J.D. Ullman.Introduction to automata theory, languages, and
computation. Addison-Wesley, 1979.

[30] M. Iri. A new method of solving transportation-networkproblems. Journal of the
Operations Research Society of Japan, 3:27–87, 1960.

[31] W.S. Jewell. Optimal Flows Through Networks. Technical Report 8, Operations
Research Center, MIT, Cambridge, MA, 1958.

[32] N. Karmarkar. A new polynomial-time algorithm for linear programming. InPro-
ceedings of the Sixteenth Annual ACM Symposium on Theory of Computing (STOC
1984), pages 302–311. ACM, 1984.

[33] N. Karmarkar. A new polynomial-time algorithm for linear programming.Combina-
torica, 4:373–395, 1984.

[34] I. Katriel. Expected-case analysis for delayed filtering, 2006.
[35] I. Katriel and S. Thiel. Complete bound consistency forthe global cardinality con-

straint.Constraints, 10(3):191–217, 2005.
[36] L.G. Khachiyan. A polynomial algorithm in linear programming.Soviet Mathematics

Doklady, 20:191–194, 1979.
[37] W. Kocjan and P. Kreuger. Filtering methods for symmetric cardinality constraint. In

J.-C. Régin and M. Rueher, editors,Proceedings of the First International Conference
on the Integration of AI and OR Techniques in Constraint Programming for Combi-

39

natorial Optimization Problems (CPAIOR 2004), volume 3011 ofLecture Notes in
Computer Science, pages 200–208. Springer, 2004.

[38] D. König. Graphok és matrixok.Matematikaíes Fizikai Lapok, 38:116–119, 1931.
[39] J.-L. Lauriere. A language and a program for stating andsolving combinatorial prob-

lems.Artificial Intelligence, 10(1):29–127, 1978.
[40] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B.Shmoys, editors.The

Traveling Salesman Problem – A Guided Tour of CombinatorialOptimization. Wiley,
1985.

[41] M. Leconte. A bounds-based reduction scheme for constraints of difference. In
Proceedings of the Second International Workshop on Constraint-based Reasoning
(Constraint 1996), pages 19–28, 1996.

[42] W. Lipski and F.P. Preparata. Efficient algorithms for finding maximum matchings in
convex bipartite graphs and related problems.Acta Informatica, 15:329–346, 1981.

[43] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple al-
gorithm for bounds consistency of the alldifferent constraint. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003),
pages 245–250. Morgan Kaufmann, 2003.

[44] K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of the Sorted-
ness and the Alldifferent Constraint. In R. Dechter, editor, Proceedings of the Sixth
International Conference on Principles and Practice of Constraint Programming (CP
2000), volume 1894 ofLecture Notes in Computer Science, pages 306–319. Springer,
2000.

[45] L. Mercier and P. Van Hentenryck. Edge finding for cumulative scheduling, 2005.
[46] G.L. Nemhauser and L.A. Wolsey.Integer and Combinatorial Optimization. Wiley,

1988.
[47] A. Oplobedu, J. Marcovitch, and Y. Tourbier. CHARME: Unlangage industriel de

programmation par contraintes, illustré par une application chez Renault. InProceed-
ings of the Ninth International Workshop on Expert Systems and their Applications:
General Conference, volume 1, pages 55–70, 1989.

[48] G. Pesant. A Filtering Algorithm for the Stretch Constraint. In T. Walsh, editor,
Proceedings of the Seventh International Conference on Principles and Practice of
Constraint Programming (CP 2001), volume 2239 ofLecture Notes in Computer
Science, pages 183–195. Springer, 2001.

[49] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In M. Wallace, editor,Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 482–495. Springer, 2004.

[50] J. Petersen. Die Theorie der regulären graphs.Acta Mathematica, 15:193–220, 1891.
[51] T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-

Constrained Problems. In T. Walsh, editor,Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP 2001), vol-
ume 2239 ofLecture Notes in Computer Science, pages 451–463. Springer, 2001.

[52] J.-F. Puget. A fast algorithm for the bound consistencyof alldiff constraints. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), pages
359–366. AAAI Press / The MIT Press, 1998.

[53] C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved Algorithms

40 CONTENTS

for the Global Cardinality Constraint. In M. Wallace, editor, Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Programming (CP
2004), volume 3258 ofLecture Notes in Computer Science, pages 542–556. Springer,
2004.

[54] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S.B. Sadjad. An
Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint.Con-
straints, 10(2):115–135, 2005.

[55] P. Refalo. Linear Formulation of Constraint Programming Models and Hybrid
Solvers. In R. Dechter, editor,Proceedings of the Sixth International Conference
on Principles and Practice of Constraint Programming (CP 2000), volume 1894 of
Lecture Notes in Computer Science, pages 369–383. Springer, 2000.

[56] J.-C. Régin. A Filtering Algorithm for Constraints ofDifference in CSPs. InProceed-
ings of the Twelfth National Conference on Artificial Intelligence (AAAI), volume 1,
pages 362–367. AAAI Press, 1994.

[57] J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. InPro-
ceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), volume 1,
pages 209–215. AAAI Press / The MIT Press, 1996.

[58] J.-C. Régin. Arc Consistency for Global Cardinality Constraints with Costs. In J. Jaf-
far, editor,Proceedings of the Fifth International Conference on Principles and Prac-
tice of Constraint Programming (CP 1999), volume 1713 ofLecture Notes in Com-
puter Science, pages 390–404. Springer, 1999.

[59] J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints.Con-
straints, 7:387–405, 2002.

[60] J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An Original Constraint Based Ap-
proach for Solving over Constrained Problems. In R. Dechter, editor,Proceedings
of the Sixth International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2000), volume 1894 ofLecture Notes in Computer Science, pages
543–548. Springer, 2000.

[61] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1986.
[62] A. Schrijver.Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
[63] M. Sellmann. Approximated consistency for knapsack constraints. In F. Rossi, ed-

itor, Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP 2003), volume 2833 ofLecture Notes in Computer
Science, pages 679–693. Springer, 2003.

[64] M. Sellmann. Cost-based filtering for shorter path constraints. In F. Rossi, edi-
tor, Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP 2003), volume 2833 ofLecture Notes in Computer
Science, pages 694–708. Springer, 2003.

[65] R. Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on Comput-
ing, 1:146–160, 1972.

[66] M.A. Trick. A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints.Annals of Operations Research, 118:73–84, 2003.

[67] B.L. van der Waerden. Ein Satz über Klasseneinteilungen von endlichen Mengen.
Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universiẗat,
5:185–188, 1927.

[68] V. Vazirani. Approximation Algorithms. Springer, 2001.

