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Abstract. We study stochastic variants of flow-based global constraints
as combinatorial chance constraints. As a specific case study, we focus
on the stochastic weighted alldifferent constraint. We first show that
determining the consistency of this constraint is NP-hard. We then show
how the combinatorial structure of the alldifferent constraint can be
used to define chance-based filtering, and to compute a policy. Our propa-
gation algorithm can be extended immediately to related flow-based con-
straints such as the weighted cardinality constraint. The main benefits of
our approach are that our chance-constrained global constraints can be
integrated naturally in classical deterministic CP systems, and are more
scalable than existing approaches for stochastic constraint programming.

1 Introduction

Many, if not all, real-world optimization problems contain uncertainty in the
input data or in the actual realization of a solution to the problem. Depending
on the problem at hand, and on the methodology chosen to solve the optimiza-
tion problem, this uncertainty can be taken into account in different ways. For
example, for call-centers the uncertainty in caller volume and type is critical,
and it may be best to apply fixed policies based on analytical methods to route
incoming calls. On the other hand, planning the production level at a steel
factory involves uncertainty with much lower dynamics, which may be best cap-
tured with linear chance constraints. In operations research, the broad area of
stochastic programming collects various methodologies for solving optimization
problems under uncertainty, including stochastic integer programming [19] and
stochastic satisfiability [20].

In constraint programming, uncertainty has received relatively limited atten-
tion so far. As argued by Brown and Miguel [5], this may be due to two assump-
tions that constraint programming makes. First, each problem has a crisp and
complete description without uncertainty (i.e., the classical constraint satisfac-
tion problem). Second, problems are not dynamic; they do not change between
the initial description and the final execution. Clearly, for many practical prob-
lems these assumptions do not hold, but current constraint programming systems
offer limited support to address these issues.

Nevertheless, several extensions to constraint programming have been pro-
posed to handle uncertainty, including Probabilistic CSPs [10, 11] and stochastic



constraint programming [29]. More recently, scenario-based stochastic constraint
programming [25], and cost-based filtering for stochastic constraint programming
[24, 26] have been proposed. Lastly, the concept of global chance constraints that
was introduced by Rossi et al. [23] is of particular interest to our work.

In this work we extend the work of Rossi et al. [23] by considering global
chance constraints that combine random variables (representing the uncertain in-
put data) with a combinatorial structure on the deterministic decision variables.
In particular, we consider the chance-constrained version of the alldifferent

constraint, which is formally defined as the chance-alldifferent constraint in
Section 3. It is a stochastic variant of the weighted alldifferent constraint,
where the weight of each variable-value pair is represented by a random variable.
The constraint defines that with a given probability, the sum of all weights must
be at most a certain threshold value, while at the same time the variables take
distinct values.

The chance-constrained alldifferent constraint is closely related to stochas-
tic bipartite matching, which is broadly applied in real life applications such as
economics, healthcare, and wireless communication. Hauskrecht and Upfal [14]
analyzed stochastic contract matching problem to find an optimum portfolio
out of available buy and sell contracts for commodities. Another application is
a stochastic k-set packing problem motivated by a stochastic online matching
problem between buyers and commodities in the market [3]. Inspired by the
applications in kidney exchange and online dating markets, Chen et al. [7] stud-
ied a stochastic matching problem with patience. In the framework of two-stage
stochastic optimization with recourse, Katriel et al. [17] analyzed two versions of
the bipartite matching problem for commodity trading, reservation systems, and
scheduling under uncertainties. Moreover, an online bipartite matching problem
was studied in [6] motivated by applications in wireless communication.

An important aspect of our approach is that even though we are formally
solving a stochastic constraint programming model, in practice the chance-all-
different, or similar constraints, can be embedded in standard CP systems
without fundamental changes to the modeling interface or solving mechanism.
Namely, the stochastic information is added as an argument to the constraint
and handled internally by the propagator, while the interaction with the rest of
the model takes place through the deterministic finite domain variables.

Our contributions are the following. First, we show that deciding the feasi-
bility of the chance-alldifferent is NP-hard. Second, we propose dedicated
filtering algorithms that enable to remove provable inconsistent values from the
domains of the (deterministic) decision variables, as well as from the random
variables that represent the problem uncertainty. We show that our algorithms
are generic in that they apply immediately to related flow-based constraints
such as the weighted cardinality constraint. Lastly, we demonstrate experimen-
tally that our approach improves existing stochastic programming approaches
in terms of scalability and memory consumption.



2 Stochastic Constraint Programming and Related Work

A stochastic constraint program, or SCP, is defined by a tuple ⟨X,S,D, P,C, θ, L⟩
interpreted as follows [29, 23]. The set X contains decision variables which define
a solution to the SCP. Each variable x ∈ X is associated to a domain D(x) ∈ D,
containing the values variable x can take. S is a set of stochastic (or random) vari-
ables, also associated to a domain D(s) ∈ D. However, the stochastic variables
are not free to assign and follow a probability distribution Ps : D(s) → [0, 1],
Ps ∈ P . C is a set of constraints restricting the valid solution tuples. A con-
straint h ∈ C that contains at least one stochastic variable is called a chance
constraint. For each chance constraint h, the parameter θh ∈ θ is a threshold
value in the interval [0, 1] indicating the minimum satisfaction probability for
the chance-constraint h.

Each SCP model is also associated to a set L = [⟨X1, S1⟩ , . . . , ⟨Xm, Sm⟩] of
decision stages. The setsX1, . . . , Xm ⊆ X form a partition ofX, and analogously
the sets S1, . . . , Sm ⊆ S form a partition of S. To solve an m-stage SCP, we need
to first find an assignment for the variablesX1 such that, given random values for
S1, we can find an assignment for X2. This assignment of X2 must be such that,
given random values for S2, we can find an assignment for X3. This reasoning
is then applied repeatedly until an assignment for Xm can be found. This last
assignment of Xm must be such that, given random values for Sm, the hard
constraints are satisfied and the chance-constraints are satisfied within the given
probabilities θ.

The solution of an m-stage SCP is, in general, represented by a policy tree [15].
The arcs in such a tree represent values observed for stochastic variables whereas
nodes at each level represent the decisions associated with the different stages.

Global chance-constraints are a generalization of global constraints to the
context of SCPs [23]. In stochastic programs, it is common to identify simple
chance-constraints of the form Pr(x ≥ R) ≥ θ, involving a decision variable x and
a random variable R. These constraints typically appear as a set. For example, in
an inventory model mentioned in [23], one could enforce service level constraints
for every period in the planning horizon, or equivalently Pr(Ij ≥ R) ≥ θ for
every time j where Ij is on-hand inventory level and R is stochastic demand. It
is thus natural to group these constraints in a single global chance-constraint, as
together they could potentially reveal structures which are suitable for stronger
inference methods.

SCPs can be solved in different ways. For example, Walsh [29] presents a com-
plete algorithm based on backtracking and forward checking. This initial work
was then extended in [25], allowing for SCPs with multiple chance-constraints. It
also provided a reduction of SCP models to deterministic CP problems through
a scenario-based view. Essentially, in the approach of [25] all probabilistic sce-
narios (or a sample set of scenarios) are represented explicitly and linked to the
rest of the model using reified constraints.

In Rossi et al. [23] the global chance constraint serviceLevelRS was developed
for an inventory management problem with a single product and a single stock-
ing location, to reason on inventory levels at each period. A very recent work



of Hnich et al. [15], closely related to our approach, presents a general methodol-
ogy to compile global chance-constraints using the propagator of their determin-
istic counterpart as parameter. Moreover, further extensions and comparisons of
arc-consistent concepts are also presented. Another related work is [24], which
provides cost-based domain filtering for stochastic knapsack constraints, indi-
cating some relationship between chance-constraints and cost/soft-constraints.
Lastly, SCPs were also applied to queue design problems, which can be suitable
to global chance-constraints [27, 28].

The chance-constrained alldifferent constraint is contextualized in the
area of stochastic bipartite matching. Stochastic matching problems are usually
regarded in a sequential or online context. In sequential problems, as proposed
in [8], edges and nodes occur sequentially with a given probability. The goal
is to decide how to select edges so as to maximize the reward expectation at
the end of the horizon. Online matchings usually model Internet advertisement
problems. Several works, such as [12, 16], provide bounds and approximation
factors for different policies.

Another variation of stochastic matching is two-stage stochastic matching, in
which some nodes have to be matched before their stochastic weights are known
(first stage). The remaining variables are then assigned after (second stage). The
goal is to minimize the weight sum expectation. This is known to be an NP-Hard
problem, as proved in [18]. Several approximation factors to this problem are also
proposed [2, 9].

3 The Chance-Alldifferent Constraint

Before introducing the chance-constrained alldifferent constraint, we first
recall the definition of the deterministic weighted alldifferent constraint [22].

Let X = {x1, x2, . . . , xn} be a set of finite domain deterministic variables.
Let w be a matrix of given ‘weights’ wi,d for i = 1, 2, . . . , n and d ∈ D(xi). Let t
be a given threshold value. Then the weighted alldifferent constraint can be
defined as

cost-alldifferent(X,w, t) := alldifferent(X) ∧
n∑

i=1

wi,xi ≤ t.

That is, it restricts the set of feasible solutions to those variable assignments that
consist of distinct values and the total weight of which meets the threshold t.1

However, as argued before, in most practical cases the input data (in this case,
the weight matrix w) is uncertain. Incorporating this uncertainty naturally leads
to the following definition of the chance-constrained alldifferent constraint.

Let W be a matrix of random variables Wi,d for i = 1, 2, . . . , n and d ∈
D(xi), with given independent discrete distributions, representing the uncertain

1 Observe that for the weighted alldifferent constraint the threshold t can be a
variable, in general.



weights. Furthermore, let α be a given constant between 0 and 1. We define the
chance-alldifferent as:

chance-alldifferent(X,W, t, α) := alldifferent(X) ∧

Pr

(
n∑

i=1

Wi,xi ≤ t

)
≥ α.

(1)

It is well-known that a solution to the alldifferent constraint corresponds
to a maximum matching in the bipartite ‘value graph’ G(X) = (X ∪ D,E)
where D = ∪x∈XD(x) and E = {(x, d) | x ∈ X, d ∈ D(x)} [21]. Similarly,
for the chance-alldifferent constraint, a solution corresponds to a maximum
matching in G such that the total edge weight is at most t, with probability at
least α:

Lemma 1. Let C be chance-alldifferent(X,W, t, α). A variable assignment
(x1, . . . , xn) = (d1, . . . , dn) is a solution to C if and only if the set {(xi, di) | i ∈ {1,
. . . , n}} is a matching in G(X) and Pr (

∑n
i=1 Wxi,di ≤ t) ≥ α.

Proof. Immediate from definition (1) and the definition of the value graph. ⊓⊔

Example 1. Consider the following illustrative buy-seller problem, in which a set
of traders S1 = {u1, u2} wishes to buy contracts from S2 = {v1, v2, v3}. We are
required to assign one contract to each trader. All possible pairs are allowed,
except for pair (u1, v3) that has been excluded (see Fig. 1a).

We wish to find matchings with a high total gain, and we will model this
by limiting the total loss. The loss for the allowed pairs (u, v), u ∈ S1, v ∈ S2

is given as the discrete probability distribution in Fig. 1b, and collected in the
matrix W (the probability of each outcome is indicated in parentheses).

v1 v2

u1 u2

v3

(a) Possible combinations

Wu1,v1 = { 5 (0.2), 9 (0.8) }
Wu1,v2 = { 5 (0.3), 14 (0.7) }
Wu2,v1 = { 6 (0.5), 15 (0.5) }
Wu2,v2 = { 1 (0.9), 18 (0.1) }
Wu2,v3 = { 6 (0.5), 15 (0.5) }
(b) Probability distributions

Fig. 1: The possible combinations and probability distributionsW for Example 1.

Let the deterministic decision variable xi represent the matched element
from S2 for each i ∈ S1. Thus, D(xu1) = {v1, v2} and D(xu2) = {v1, v2, v3}. Let
X = {xu1 , xu2}. We can impose that the total loss must be at most 20, with
probability at least 0.8, by posting the constraint

chance-alldifferent(X,W, 20, 0.8).



Observe that the variable assignment xu1 = v1, xu2 = v2 is a feasible solution.
Namely, it respects the alldifferent constraint, and moreover

Pr (Wu1,v2 +Wu2,v1 ≤ 20) = 0.2 ∗ 0.9 + 0.8 ∗ 0.9 = 0.9 ≥ 0.8,

where the terms on the right-hand side correspond, respectively, to the proba-
bilities of the weight pairs (Wu1,v2 ,Wu2,v1) = (5, 1), (9, 1). On the other hand,
the variable assignment xu1 = v2, xu2 = v1 is not feasible, as the valid weight
pairs (Wu1,v2 ,Wu2,v1) = (5, 6), (5, 15), (14, 6) yield Pr (Wu1,v2 +Wu2,v1 ≥ 20) =
0.65 < 0.8. ⊓⊔

We note that the definition of chance-alldifferent can be readily extended
to any weighted global constraint in which the stochastic weights are defined on
variable-value pairs.

4 Hardness of Determining Consistency

In this section, we show the following.

Theorem 1. Deciding whether an arbitrary chance-alldifferent constraint
has a solution is NP-hard.

Proof. We show that the K-th Largest m-Tuple problem ([SP21] in [13]), or KM,
is a special case of chance-alldifferent. The KM is defined as follows. Given
m sets X1, . . . , Xm ⊆ Z+ and positive integers K and B, we want to find K or
more distinct m-tuples (x1, . . . , xm) ∈ X1 × · · · ×Xm for which

∑m
i=1 xi ≥ B.

We now construct an instance of chance-alldifferent to solve KM. We
define variables {v1, . . . , vm} with domains D(vi) = {ui} for i = 1, . . . ,m. Notice
that there exists only one variable assignment A: vi = ui for i = 1, . . . ,m. For
each pair (vi, ui), 1 ≤ i ≤ m, define a stochastic domain Di = Xi where each
element in Xi has probability pi = 1/|Xi|. All possible realization scenarios of
the assignment A have the same probability, which is given by α =

∏
1≤i≤m pi.

Finally, we formulate an instance of chance-alldifferent with the variables
and domains above, and the constraint

chance-alldifferent(v1, . . . , vm, p, B, αK). (2)

Since every scenario has probability α, this instance is satisfiable only if there
exists at least K scenarios such that the sum of the weights are greater than or
equal to B. But each scenario corresponds to an m-tuple of X1 × · · · ×Xm by
construction. The theorem then follows. ⊓⊔

We note that although the two-stage stochastic matching problem is known
to be NP-Hard, as shown in [18], we were not able to directly use that fact to show
the hardness of our particular structure. Also, we are not aware if the problem
of deciding whether there exists a feasible solution to chance-alldifferent is
in NP.



Theorem 1 indicates that it is worthwhile to invest in incomplete filter-
ing methods for the chance-alldifferent constraint, that do not necessarily
achieve domain consistency. We developed two distinct propagation algorithms
that, given a partial variable assignment, help eliminating infeasible stochastic
domain values as well as inconsistent values from the domains of deterministic
decision variables. These algorithms are described in the next section.

5 Filtering the Chance-Alldifferent Constraint

5.1 Policy Tree Representation

The key idea in our methodology is to cast chance-alldifferent as an n-
stage stochastic problem. However, we take advantage of the fact that the
chance-alldifferent constraint does not contain temporal relations, contrary
to existing approaches such as n-stage problems in inventory management.

A solution to an n-stage problem is usually defined by means of a policy tree,
as described in Section 2. In our case, the policy tree will represent all decision
variables that have been fixed to a singleton, and the (allowed) realizations of
their corresponding stochastic weights. That is, it is a layered graph with at most
2n+1 layers: Each layer corresponds to a deterministic variable assignment, and
the possible weight realizations. Each node (state) in the tree will be assigned
the total accumulated weight so far, and the accumulated probability of reaching
that state. The root node of the policy tree is a state with total value 0 and
probability 1. Let u be a node at level i, representing assignment xi = j for
some j ∈ D(xi), with value vu and probability pu. We create |D(Wi,j)| child
nodes, where for each e ∈ D(Wi,j), the associated node has value vu + e and
probability pu ·Pr(e), where Pr(e) represents the probability of e. We can remove
from the policy tree all nodes that do not lead to a total value of at most t. The
policy tree thus certifies the feasibility of a solution, as the total probability (the
sum of the leaf nodes) of the full variable assignment must be at least α. We
next illustrate these concepts on Example 1.

Example 2. (Continuing Example 1.) As we have two variables in our example,
we have two stages. If we fix the assignments (u1, v2) and (u2, v1) in this order,
the possible stages we analyze during search are presented in Figure 2. Each
stage is composed by the fixed assignments so far and their valid realizations. In
stage 1 (Figure 2a), we have selected (u1, v2) (solid edge) and its possible weight
realizations are 5 and 14 (dashed arcs). In stage 2, we extend the tree with
(u2, v1), as shown in Figure 2b. Since this completes the variable assignment,
we need to check if it defines a feasible solution. For this purpose, we compute
the weights and probabilities of each leaf of the tree, since the leaf indicates
a complete realization of the random variables. The weights are computed by
summing up the values of the dashed arcs, while the probabilities are the product
of the probability of these values. We can eliminate all leaves with weight more
than t, and then verify if the sum of the leaf probabilities is above α. In this
example, we removed the realization of 15 for the right-hand edge (u2, v1). The
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(b) Stage 2

Fig. 2: Two stages for Example 2, when fixing edge (u1, v2) (stage 1) and edge (u2, v1)
(stage 2). Solid arcs correspond to decision variables, while dashed arcs correspond to
stochastic variable realizations. The total weight must be at most 20.

sum of the remaining leaf probabilities is 0.65, from which we conclude that the
assignment is infeasible. ⊓⊔

In principle, our policy tree can be defined for any order of the variables.
However, we propose to follow the order in which variables have been assigned a
fixed value. This has the advantage that for search strategies that are based on
variable assignments, the policy tree can be updated incrementally (only the last
layers have to be removed upon backtracking to an earlier state in the search
tree). Alternatively, it suffices to represent only the leaves of the policy tree, as
it has the Markov property, i.e., we can generate new leaves by only considering
information from the leaves at the current stage of the algorithm. This saves
memory, but requires to apply a recomputation upon backtracking.

5.2 Filtering Based on Minimum-Cost Network Flows

Let us first recall some basic definitions from network flow theory [1]. Let X =
{x1, x2, . . . , xn} be a set of finite domain variables. The ‘value network’ of X
is defined as a directed graph G = (V,A) with node set V = X ∪ D ∪ {s, t}
where s represents the source and t the sink. The arc set is defined as A =
{(s, x) | x ∈ X} ∪ {(x, d) | x ∈ X, d ∈ D(x)} ∪ {(d, t)|d ∈ D}. Arcs a ∈ {(s, x) |
x ∈ X} have lower capacity l(a) = 1 and upper capacity u(a) = 1, while arcs
a ∈ {(x, d) | x ∈ X, d ∈ D(x)} ∪ {(d, t) ∈ d ∈ D} have lower capacity l(a) = 0
and upper capacity u(a) = 1. A flow is a function f(A) → R≥0 such that∑

(i,j)∈A f(i, j) =
∑

(j,k)∈A f(j, k), for all j ∈ V \ {s, t}. A flow f is feasible if

l(a) ≤ f(a) ≤ u(a) for all a ∈ A. A weighted value network G = (V,A,w) has an
arc weight function w : A → R. The weight of a flow f is w(f) =

∑
a∈A w(a)f(a).

A minimum-cost flow inG is a feasible flow with minimum weight. If all capacities
are integer and a feasible flow exists, then also an integer feasible flow exists [1].
We therefore assume in the remainder that flows are binary in our case.



Given a flow f , the residual value network Gf = (V,Af ) is defined on the
arc set Af = {(i, j) | (i, j) ∈ A, f(i, j) = 0} ∪ {(j, i) | (i, j) ∈ A, f(i, j) = 1}.
Furthermore, for a weighted value network G = (V,A,w), the residual weights
are defined as wf (a) = w(a) if f(a) = 0, and wf (a) = −w(a) if f(a) = 1.

The next lemma provides a filtering rule based on a minimum weight flow in
the value network. For this, we first define the edge weight function wmin(a) =
min{D(Wj,d)} if a = (xj , d) ∈ {(x, d) | x ∈ X, d ∈ D(x)}, and 0 otherwise.

Lemma 2. The constraint chance-alldifferent(X,W, t, α) is inconsistent if
no feasible flow exists in G = (V,A,wmin), or if the total weight of the minimum-
cost flow in G exceeds t.

Proof. Immediate from the definition of wmin. ⊓⊔

Since Lemma 2 applies a deterministic weighted value graph, we can define a
sound filtering algorithm based on shortest path computations in the residual
value graph, similar to the weighted cardinality constraint [22].

For a flow f in G = (V,A,w) and i, j ∈ V , we let SPf (i, j) represent the
weight of the shortest i-j path in Gf , where the weight of such path P is defined
as
∑

a∈P wf (a) if it exists, and ∞ otherwise.

Lemma 3. For chance-alldifferent(X,W, t, α), let f represent a minimum-
cost flow in G = (V,A,wmin), if it exists. For all arcs (xi, d) ∈ {(x, d) | x ∈
X, d ∈ D(x)} and all e ∈ D(Wi,d), if

e > t− w(f)− SPf (d, xi),

then e is inconsistent with respect to chance-alldifferent(X,W, t, α).

Proof. The expression e > t − w(f) − SPf (d, xi) stems from evaluating the
marginal weight increase when arc (xi, d) is used with realization w(xi, d) = e.
The weight of the minimum-cost flow subject to f(xi, d) = 1 and w(xi, d) = e
is equal to the w(f) + SPf (j, i) + e. Hence, if this value exceeds t, or e > t −
w(f)− SP(d, xi), e is inconsistent, by Lemma 2. ⊓⊔

Observe that Lemma 3 allows two types of filtering. First, inconsistent realiza-
tions from the stochastic domains can be removed. Second, if a stochastic do-
main D(Wi,d) becomes empty, we can remove d from D(xi). We propose to apply
Lemma 3 with respect to the leaves of the policy tree, each of which represents a
partial variable assignment with fixed realization of the corresponding stochas-
tic weights. For each leaf node we compute a minimum-cost flow restricted to
the value network associated with that node, and perform the domain filtering.
Note that because the leaf represents fixed variables and fixed realizations, we
can effectively discard those from the network, and compute the flow only with
respect to the remaining free variables.

Each application of Lemma 3 first requires the computation of one minimum-
cost network flow, which takes O(n(m + n log n)) time when applying the suc-
cessive shortest path algorithm [1]. Then, for each edge (xi, d), we only need one



iteration to update max{Wi,d} ≤ t−w(f)−SP(d, xi). For this, we can compute
the shortest paths between all nodes in D and X in total O(|D| (m + n log n))
time. We remark that the residual networks can be maintained incrementally
between propagation events. Moreover, these time complexities are independent
of the number of stochastic domain elements.

5.3 Filtering Based on Most Likely Solutions

We next describe a filtering rule based on the following idea. We compute, for
each leaf node in the policy tree, an upper bound on the probability of finding
solutions completing that node, of value at most t. If the sum of the upper
bounds of all leaves is less than α, then the chance-alldifferent cannot be
satisfied.

In order to find the most likely solution to an instance of chance-alldiff-
erent, we extend the value network of Section 5.2 with arc weights wmost(a) =
− log (max{Pr(e) | e ∈ D(Wi,d)}) if a = (xi, d) ∈ {(x, d) | x ∈ X, d ∈ D(x)},
and 0 otherwise. In parallel, we maintain the corresponding weights w′(a) =
argmax{Pr(e) | e ∈ D(Wi,d)} if a = (xi, d) ∈ {(x, d) | x ∈ X, d ∈ D(x)}, and 0
otherwise. In case of ties, we let w′(a) be the largest value.

Lemma 4. A minimum-cost flow f in G = (V,A,wmost) corresponds to a vari-
able assignment with maximum total probability that satisfies alldifferent(X).

Proof. Similar to Lemma 2, we know that a feasible flow in G corresponds to
a solution to alldifferent(X). The maximum total probability of a variable
assignment for X is given by the function T (X) =

∏n
i=1 max{Pr(e) | e ∈ Wi,xi}.

As T (X) is increasing, we can instead maximize log T (X), which is equivalent
to maximizing

∑n
i=1 log (max{Pr(e) | e ∈ Wi,xi}). This is in turn equivalent to

minimizing − log T (X), or minimizing
∑

a∈A f(a)wmost(a), for feasible flows f
in G. ⊓⊔

For a constraint chance-alldifferent(X,W, t, α), let L be the set of leaves
in the policy tree. For each leaf l ∈ L, let Xl be the set of fixed variables. We
define the restricted value network Gl as G \Xl, i.e., removing all nodes in Xl,
the nodes corresponding to their assigned values, and the corresponding arcs.
We let Pl denote the probability of reaching l, and wl the total accumulated
weight of l.

We next let fl represent the minimum-cost flow in Gl, with total associated
probability P ′

l = exp(−
∑

a∈A fl(a)wmost(a)). The total associated weight is de-
noted by w′

l =
∑

a∈A fl(a)w
′(a). Lastly, we define an upper bound Ul on the

probability that l can be extended to a solution that satisfies the threshold t, as

Ul =

Pl(1− P ′
l ) if wl + w′

l > t

P ′
l otherwise.



Lemma 5. Let C be a constraint chance-alldifferent(X,W, t, α) and L the
set of leaves of its policy tree. C is inconsistent if

∑
l∈L Ul < α .

Proof. Consider a leaf node l ∈ L. If wl + w′
l > t, then with probability

P ′
l , l will not lead to any solution with total weight at most t, by Lemma 4.

Thus, we will have valid solutions with at most probability (1 − P ′
l ). There-

fore, Pl(1 − P ′
l ) is a valid upper bound for the probability that l leads to suc-

cess. If otherwise wl + w′
l ≤ t, we cannot draw such conclusion, and take Pl

as a valid upper bound. Lastly, the leaves L represent all possible scenarios for
chance-alldifferent(X,W, t, α), and therefore if

∑
l′∈L Ul < α, the constraint

cannot be satisfied. ⊓⊔

We can apply Lemma 5 to identify individual inconsistent variable-value
combinations. For this, given a minimum-cost flow fl in Gl, for all arcs (xi, d) ∈
{(x, d) | x ∈ X, d ∈ D(x)} and e ∈ Wi,d, we extend the definition of Ul to

Ue
l =

Pl(1− e−(
∑

a∈A fl(a)wmost(a)+SP (d,xi)+log(Pr(e)))) if wl + SP ′
l + e > t

P ′
l otherwise,

where SP (d, xi) again represents the shortest path in the residual graph, with
respect to fl and wmost, while SP

′
l represents the associated weight of that same

path, with respect to w′.

Lemma 6. For chance-alldifferent(X,W, t, α), let L be the set of leaves in
the policy tree. For all arcs (xi, d) ∈ {(x, d) | x ∈ X, d ∈ D(x)} and all e ∈
D(Wi,d), if ∑

l∈L

Ue
l < α

then e is inconsistent with respect to chance-alldifferent(X,W, t, α).

Proof. Similar to the proof of Lemma 3, Ue
l represents a network flow in which

the realization of e is forced in the solution. By Lemma 5, this is a valid upper
bound for l, and therefore

∑
l∈L Ue

l represents a valid upper bound for all sce-
narios under which outcome e is realized. ⊓⊔

We note that similar to the application of Lemma 3, it suffices here to com-
pute only one shortest path for each value-variable pair (d, xi) to remove infea-
sible elements from D(Wi,d).

5.4 Extension to Other Flow-Based Constraints

The only assumption we have made in our algorithms is that the constraint is
representable as a minimum-cost network flow and variable assignments (xi, d)
appear as arcs in this network. Therefore, the algorithms immediately apply
to other chance-constrained versions of weighted global constraints that can be
represented by a minimum-cost network flow, including the weighted cardinality
constraint [22] and the weighted same constraint [4].



6 Computational Results

In this section we compare our proposed method with one of the current tech-
nologies considered in this area, namely the scenario-based view [25] discussed
in Section 2: Suppose the random variables W representing the weights are asso-
ciated with K scenarios, where each scenario is a realization of all the variables
W . Let W k

i,d represent the observed value of Wi,d at a scenario k and pk be the
probability of scenario k where k = 1, . . . ,K. The chance-alldifferent can
be written as the following deterministic CSP:

alldifferent(X),

zk = 1 ⇐⇒
∑n

i=1 W
k
i,xi

≤ t, k = 1, . . . ,K∑K
k=1 pkzk ≥ α,

zk ∈ {0, 1}, k = 1, . . . ,K.

(3)

The scenario-based formulation (3) allows us to take full advantage of state-
of-the-art constraint solvers. Nevertheless, its memory requirement is impractical
for most realistic instances, unless scenario reduction techniques are applied,
at the cost of losing completeness. The work of Hnich et al. [15] tackles this
requirement issue by reformulating the problem in the space of policy trees, in
which variables PT represent the value of the decision variable at the tree nodes.
It also strengthens the propagation by replacing the reified constraints with
deterministic versions of the global chance-constraints. However, it still requires
the policy tree to be explicitly represented during all stages of the algorithm in
terms of the policy tree variables PT .

Our approach differs from the methods above in that it constructs the policy
tree during search, since we only require the subtree that corresponds to valid
realizations (with respect to the threshold) to certify the feasibility of solutions.
The advantage is that, by exploring the combinatorial structure of the flow-
based constraints, we hopefully generate sufficiently small subtrees that may
still be manageable by existing solvers. Nonetheless, this requires us to take into
account incomplete scenario information during search, in comparison to the
formulation (3) and the approach in [15]. As a result, we expect our filters to
be less effective than these methods, but relatively more scalable, in particular
for instances where the combinatorial structure of the chance-alldifferent

plays a key role for the instance feasibility. (In particular, note that for 1-point
distributions our approach reduces to an arc-consistency algorithm for weighted
alldifferent, which is stronger than Formulation (3) for a single scenario).

The behavior outlined above is indicated by the following experiment. We
have generated random instances with |X| = 4. Variables were first initialized
with domain D(xi) = {1, . . . , 4}, and values were removed uniformly at random
so that the number of edges in the corresponding value graph was between 16
and 18. Each Wi,d was then assigned a two-point distribution. Three types of



distribution were considered in this work. Case I : The higher possible value
of the weight has high probability (i.e. larger than 0.50); Case II : The higher
possible value of the weight has low probability (i.e. smaller than 0.50); and
Case III : The probabilities of high and low possible values of the weights are
created randomly. We uniformly at random selected values for t and α, from the
minimum Wi,d to the sum of all variables in W .

We have experimented our technique and formulation (3) with 75 instances,
equally divided among the three types. For formulation (3), we preprocessed
instances by eliminating the scenarios for which the sum of the observations
were less than the threshold weight. This yielded models with an average size of
64,963 variables and 194,876 constraints. We note that we were not able to model
problems with formulation (3) for which the value graph had more than 18 edges,
since this would require on average more than 1 million element constraints.

Our method and formulation (3) were implemented in C++ using the Ilog CP
Optimizer 2 framework, which provided the search control and the all-different
propagation. In particular, we fixed a lexicographic search only on variables X
for both techniques. Minimum-cost flow were computed using the Lemon COIN-
OR library. The experiments ran in an Intel Core 2 computer with 3.0 GHz and
8.0GB RAM.
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Fig. 3: Number of fails: flow-based approach and formulation (3)

Figures 3 and 4 present scatter plots of the number of fails (i.e., backtracks)
and time, respectively, to either find a feasible solution or to prove that the
constraint cannot be satisfied. As described earlier, Figure 3 indicates that the
filtering provided by the flow-based approach is potentially weaker as the ex-
plicit scenario representation of formulation (3). The scenario-based view was
particularly effective to perform filtering for Cases 1 and 2, while the cases
where flow-based model explored less nodes were concentrated on the random
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Fig. 4: Time comparison between flow-based approach and formulation (3)

instances. On the other hand, Figure 4 show that all instances were solved in
less than 0.01 seconds for the flow-based model using as much as 50MB, while it
took on average 1.835 seconds for the scenario-based approach due to the large
CSP size.
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Fig. 5: Number of fails: flow-based approach and formulation for |X| = 10

To measure if our approach is scalable to larger domains, we have gener-
ated additional 1,344 instances for each case, considering now |X| = 10 and
value graphs containing between 70 and 80 edges. In this particular experiment,
we have only considered a weaker version of Lemmas 3 and 5 for filtering due
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Fig. 6: Time comparison between flow-based approach and formulation for |X| = 10

to limits in our implementation. We compared the flow-based approach with
a method that fixes a matching and computes the probability that α is satis-
fied. This method is equivalent to not performing any filtering except for the
alldifferent. Figures 5 and 6 present scatter plots of the corresponding num-
ber of fails and time for such instances, respectively. Figure 5 indicates that the
filtering provided by the flow-based approach is stronger than the method with-
out any filtering. As a result, Figure 6 shows that, except for a few instances,
the flow-based approach solves the instances in much less time than the method
without any filtering.

Finally, we also observe that the flow-based approach was able to solve a
few structured instances (Case 1) with |X| = 25 and more than 100 vertices. In
particular, all instances tested up to this size never exceeded a memory limit of
5 GB. We note that, for such large instances, we might take advantage of the
partial information from the policy tree to provide better search strategies, since
here only lexicographic ordering was considered.

7 Conclusion and Future Work

We have proposed filtering algorithms for chance-constrained versions of flow-
based global constraints, in which the weights are given a discrete stochastic
domain. As a particular case study, we focused on the weighted alldifferent

constraint. We first showed that it is NP-hard to prove consistency for this
constraint. However, we proposed partial filtering algorithms based on specific
bounding mechanisms that can be computed by means of minimum-cost network
flows. We have shown experimentally that our method improves upon existing
methods from stochastic constraint programming in terms of memory consump-
tion and scalability.
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