
Exploiting Semidefinite Relaxations in

Constraint Programming

W.J. van Hoeve

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Constraint programming uses enumeration and search tree pruning to solve com-
binatorial optimization problems. In order to speed up this solution process, we
investigate the use of semidefinite relaxations within constraint programming. In
principle, we use the solution of a semidefinite relaxation to guide the traversal of the
search tree, using a limited discrepancy search strategy. Furthermore, a semidefinite
relaxation generally produces a tight bound for the solution value, which improves
the pruning behaviour. Experimental results on stable set problem instances and
maximum clique problem instances show that constraint programming can indeed
greatly benefit from semidefinite relaxations.

Key words: constraint programming, semidefinite programming, search

1 Introduction

Constraint programming models for combinatorial optimization problems con-
sist of variables on discrete domains, constraints binding those variables and an
objective function to be optimized. In general, constraint programming solvers
use domain value enumeration to solve combinatorial optimization problems.
By propagation of the constraints (i.e. removal of inconsistent values), large
parts of the resulting search tree may be pruned. Because combinatorial opti-
mization problems are NP-hard in general, constraint propagation is essential
to make constraint programming solvers practically applicable. Another essen-
tial part concerns the enumeration scheme, that defines and traverses a search
tree. Variable and value ordering heuristics as well as tree traversal heuristics

Email address: W.J.van.Hoeve@cwi.nl (W.J. van Hoeve).
URL: http://homepages.cwi.nl/~wjvh/ (W.J. van Hoeve).

Preprint submitted to Elsevier Science 25 September 2003

greatly influence the performance of the resulting constraint programming
solver.

This work presents a method to exploit semidefinite relaxations in constraint
programming. In particular, we use the solution of a semidefinite relaxation
to define search tree ordering and traversal heuristics. Effectively, this means
that our enumeration scheme starts at the suggestion made by the semidefinite
relaxation, and gradually scans a wider area around this solution. Secondly,
we use the solution value of the semidefinite relaxation as a bound for the
objective function, which results in stronger pruning. By applying a semidefi-
nite relaxation in this way, we hope to speed up the constraint programming
solver significantly. These ideas were motivated by a previous work, in which
a linear relaxation was proven helpful in constraint programming [21].

We implemented our method and provide experimental results on the stable
set problem and the maximum clique problem, two classical combinatorial
optimization problems. We compare our method with a standard constraint
programming solver, and with specialized solvers for maximum clique prob-
lems. As computational results will show, our method obtains far better results
than a standard constraint programming solver. However, on maximum clique
problems, the specialized solvers appear to be much faster than our method.

The outline of the paper is as follows. The next section gives a motivation for
the approach proposed in this work. Then, in Section 3 some preliminaries on
constraint and semidefinite programming are given. A description of our solu-
tion framework is given in Section 4. In Section 5 we introduce the stable set
problem and the maximum clique problem, integer optimization formulations
and a semidefinite relaxation. Section 6 presents the computational results.
Finally, we conclude in Section 7.

This paper is an extended and revised version of [17]. In the current version,
a more general view on the proposed method is presented. Also, the subprob-
lem generation framework has been replaced by limited discrepancy search
on single values. Finally, more experimental results are presented, including
instances of the DIMACS benchmark set for the maximum clique problem.

2 Motivation

NP-hard combinatorial optimization problems are often solved with the use
of a polynomially solvable relaxation. In general, linear relaxations are chosen
for this purpose. Also within constraint programming, linear relaxations are
widely used, for instance to guide the search [1,9,21]. Let us first motivate why
in this paper a semidefinite relaxation is used rather than a linear relaxation.

2

For some problems, for instance for the stable set problem, linear relaxations
are not very tight and not informative. One way to overcome this problem
is to identify and add inequalities that strengthen the relaxation. But it is
time-consuming to identify such inequalities, and by enlarging the model the
solution process may slow down.

On the other hand, several papers on approximation theory following [12]
have shown the tightness of semidefinite relaxations. However, being tighter,
semidefinite programs are more time-consuming to solve than linear programs
in practice. Hence one has to trade strength for computation time. For some
(large scale) applications, semidefinite relaxations are well suited to be used
within a branch and bound framework (see for instance [19]). Moreover, our
intention is not to solve a relaxation at every node of the search tree. Instead,
we propose to solve only once a relaxation, before entering the search tree.
Therefore, we are willing to make the trade-off in favour of the semidefinite
relaxation.

Finally, to our knowledge the cross-fertilization of semidefinite programming
and constraint programming has not yet been investigated. This paper, how-
ever, does aim at the cooperation of constraint programming and semidefinite
programming.

3 Preliminaries

3.1 Constraint Programming

In this section we briefly introduce the basic concepts of constraint program-
ming that are used in this paper. A thorough explanation of the principles of
constraint programming can be found in [5].

A constraint programming model consists of a set of variables, corresponding
variable domains, and a set of constraints C restricting those variables. In case
of optimization problems, also an objective function is added (see Figure 1).

Basically, a constraint programming solver tries to find a solution of the
model by enumerating all possible variable-value assignments such that the
constraints are all satisfied. Because there are exponentially many possible
assignments, constraint propagation is needed to prune large parts of the cor-
responding search tree. Constraint propagation tries to remove inconsistent
values from variable domains before the variables are actually instantiated.
Hence, one doesn’t need to generate the whole search tree, but only a part of
it, while still preserving a complete (or exact) solution scheme. The general

3

variables
domains
constraints
objective function

model:

CP

variable ordering
value ordering

search:

traversal strategy

Fig. 1. Basic ingredients of constraint programming.

solution scheme is an iterative process in which branching decision are made,
and the effects are propagated subsequently.

Variable and value ordering heuristics, that define the search tree, greatly
influence the constraint propagation, and with that the performance of the
solver. In general, constraint programming solvers use a lexicographic variable
and value ordering, and depth-first search to traverse the tree. However, when
good heuristics are available, they should be used.

When a perfect heuristic is followed, the first leaf of the search tree will be
an optimal solution (although possibly unproven). Although perfect heuristics
are often not available, some heuristics come pretty close. In such cases, one
should try to deviate from the first heuristic solution as little as possible.
This is done by traversing the search tree using a limited discrepancy search
strategy (LDS) [15] instead of depth-first search.

LDS is organized in waves of increasing discrepancy. The first wave (discrep-
ancy 0) exactly follows the heuristic. The next waves (discrepancy i, with
i > 0), explore all the solutions that can be reached when i derivations from
the heuristic are made. Typically, LDS is applied until a maximum discrep-
ancy has been reached, say 3 or 4. Although being incomplete (or inexact),
the resulting strategy often finds good solutions very fast, provided that the
heuristic is informative. Of course LDS can also be applied until all possible
discrepancies have been considered, resulting in a complete strategy.

3.2 Semidefinite Programming

In this section we introduce semidefinite programming as an extension of the
more common linear programming. Both paradigms can be used to model
polynomially solvable relaxations of NP-hard optimization problems. A large

4

number of references to papers concerning semidefinite programming are on
the web pages of Helmberg [16] and Alizadeh [2]. A general introduction on
semidefinite programming applied to combinatorial optimization is given by
Goemans and Rendl [11].

In linear programming, combinatorial optimization problems are modeled in
the following way:

max cTx

s.t. aT

j x ≤ bj (j = 1, . . . ,m)

x ≥ 0.

(1)

Here x ∈ R
n is an n-dimensional vector of decision variables and c ∈ R

n a
cost vector of dimension n. The m vectors aj ∈ R

n (j = 1, . . . ,m) and the
m-dimensional vector b ∈ R

m define m linear constraints on x. In other words,
this approach models problems using nonnegative vectors of variables.

Semidefinite programming makes use of positive semidefinite matrices of vari-
ables instead of nonnegative vectors. A matrix X ∈ R

n×n is said to be positive
semidefinite (denoted by X � 0) when yTXy ≥ 0 for all vectors y ∈ R

n.
Semidefinite programs have the form

max tr(CX)

s.t. tr(AjX) ≤ bj (j = 1, . . . ,m)

X � 0.

(2)

Here tr(X) denotes the trace of X, which is the sum of its diagonal elements,
i.e. tr(X) =

∑n
i=1 Xii. The cost matrix C ∈ R

n×n and the constraint matrices
Aj ∈ R

n×n are supposed to be symmetric. The m reals bj and the m matrices
Aj define again m constraints.

We can view semidefinite programming as an extension of linear programming.
Namely, when the matrices C and Aj (j = 1, . . . ,m) are all supposed to be
diagonal matrices 1 , the resulting semidefinite program is equal to a linear pro-
gram. In particular, then a semidefinite programming constraint tr(AjX) ≤ bj

corresponds to the linear programming constraint aT

j x ≤ bj, where aj repre-
sents the diagonal of Aj.

Applied as a continuous relaxation (i.e. the integrality constraint on the vari-

1 A diagonal matrix is a matrix with nonnegative values on its diagonal entries
only.

5

ables is relaxed), semidefinite programming in general produces solutions that
are much closer to the integral optimum than linear programming. Intuitively,
this can be explained as follows. Demanding positive semidefiniteness of a
matrix automatically implies nonnegativity of its diagonal. If this diagonal
corresponds (as in the general case described above) to the nonnegative vec-
tor of the linear relaxation, the semidefinite relaxation is stronger than a linear
relaxation. Unfortunately, it is not a trivial task to obtain a good (i.e. efficient)
semidefinite program for a given problem.

Theoretically, semidefinite programs have been proved to be polynomially solv-
able using the so-called ellipsoid method (see for instance [13]). In practice,
nowadays fast ‘interior point’ methods are being used for this purpose (see [3]
for an overview).

4 Solution Framework

The skeleton of our solution framework is formed by the constraint program-
ming enumeration scheme, or search tree, as explained in Section 3.1. Within
this skeleton, we want to use the solution of a semidefinite relaxation to define
the variable and value ordering heuristics. Hence, we assume a constraint pro-
gramming model, consisting of variables, domains and constraints, together
with an objective function. We also need to extract a semidefinite relaxation
from our constraint programming model. As was indicated in Section 3.2, we
need to transform the current model that uses a nonzero vector into a model
that uses a positive semidefinite matrix to represent our variables. For a model
with binary variables, one can always do this, as shown in [22]. Consequently,
in the remainder of this paper, we restrict ourselves to constraint programming
models using binary variables only.

The method presented in [22] is the following. Consider an array of binary
variables d ∈ {0, 1}n. We can construct a (n × n) matrix X whose entries
are defined by Xij = didj . The integrality condition on d is equivalent to the
condition d2

i = di (for all i). This condition can be obtained by adding an
extra row and column (indexed 0) to X, and linking them to the diagonal, i.e.
Xii = di (for all i). Namely, then Xii = didi = d2

i = di. Finally, one may relax
the integrality condition by requiring

1 dT

d X

 � 0, where di = Xii, (3)

where the 1 in the leftmost corner is needed to obtain positive semidefinite-
ness. Note that we replace the integrality condition on d by requiring positive

6

variables
domains
constraints
objective function

model:

CP

variable ordering

search:

traversal strategy (LDS)
value ordering

SDP

solve relaxation:

solution value

fractional solution

Fig. 2. Communication between constraint programming (CP) and semidefinite pro-
gramming (SDP).

semidefiniteness on the above matrix. The resulting positive semidefinite ma-
trix contains the variables to model our semidefinite relaxation. Obviously, the
diagonal entries (as well as the first row and column) of this matrix represent
the original binary variables. Consequently, constraints from the constraint
programming model may be added to the semidefinite relaxation, possibly
after linearizing them, in accordance to program (2).

Now that the connection between the two models has been established, we
show how to use the solution to the semidefinite relaxation, as depicted in
Figure 2. In general, the solution to the semidefinite relaxation yields fractional
values between 0 and 1 for the diagonal variables Xii. Our variable and value
ordering heuristics for the constraint programming variables are simply based
upon these values. In our implementations (stable set problem and maximum
clique problem), we select the first uninstantiated variable closest to 1. Our
value ordering heuristic is to select value 1 before value 0, if possible.

We expect the semidefinite relaxation to provide promising values. Therefore
the resulting search tree will be traversed using limited discrepancy search,
defined in Section 3.1. The first heuristic solution (of discrepancy 0) to be
followed is obtained by a randomized rounding procedure. Using the nonde-
creasing variable ordering, we accept a variable to be 1 with a probability
equal to its fractional value. This procedure is repeated n times (where n is
the number of variables), and the best solution is the heuristic solution to be
followed.

A last remark concerns the solution value of the semidefinite relaxation, which
is used as a bound on the objective function in the constraint programming
model. This (often tight) bound on the objective function leads to more prop-
agation and a smaller search space.

7

5 The Stable Set Problem and Maximum Clique Problem

This section describes the stable set problem and the maximum clique problem
(see [25,6] for a survey), on which we have tested our algorithm. First we give
their definitions, and the equivalence of the two problems. Then we will focus
on the stable set problem, and formulate it as an integer optimization problem.
From this, a semidefinite relaxation is inferred.

5.1 Definitions

Consider an undirected weighted graph G = (V,E), where V = {1, . . . , n} is
the set of vertices and E a subset of edges {(i, j)|i, j ∈ V, i 6= j} of G, with
|E| = m. To each vertex i ∈ V a weight wi ∈ R is assigned (without loss of
generality, we can assume all weights to be nonnegative in this case).

A stable set is a set S ⊆ V such that no two vertices in S are joined by an
edge in E. The stable set problem is the problem of finding a stable set of
maximum total weight in G. This value is called the stable set number of G
and is denoted by α(G) 2 . In the unweighted case (when all weights are equal
to 1), this problem amounts to the maximum cardinality stable set problem,
which has been shown to be already NP-hard [24].

A clique is a set C ⊆ V such that every two vertices in C are joined by an
edge in E. The maximum clique problem is the problem of finding a clique of
maximum total weight in G. This value is called the clique number of G and
is denoted by ω(G) 3 .

The complement graph of G is G = (V,E), with the same set of vertices
V = {1, . . . , n}, but with edge set E = {(i, j)|i, j ∈ V, (i, j) /∈ E, i 6= j}. It
is well known that α(G) = ω(G). Hence, a maximum clique problem can be
translated into a stable set problem on the complement graph. We will do
exactly this in our implementation, and focus on the stable set problem, for
which good semidefinite relaxations exist.

2 In the literature α(G) usually denotes the unweighted stable set number. The
weighted stable set number is then denoted as αw(G). In this work, it is not necessary
to make this distinction.
3 ωw(G) is defined similar to αw(G) and also not distinguished in this paper.

8

5.2 Integer Optimization Formulation

Let us first consider an integer linear programming formulation for the stable
set problem. We introduce binary variables to indicate whether or not a vertex
belongs to the stable set S. So, for n vertices, we have n integer variables xi

indexed by i ∈ V , with initial domains {0, 1}. In this way, xi = 1 if vertex i
is in S, and xi = 0 otherwise. We can now state the objective function, being
the sum of the weights of vertices that are in S, as

∑n
i=1 wixi. Finally, we

define the constraints that restrict two adjacent vertices to be both inside S
as xi + xj ≤ 1, for all edges (i, j) ∈ E. Hence the integer linear programming
model becomes:

α(G) = max
∑n

i=1 wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V.

(4)

Another way of describing the same solution set is presented by the following
integer quadratic program

α(G) = max
∑n

i=1 wixi

s.t. xixj = 0 ∀(i, j) ∈ E

x2
i = xi ∀i ∈ V.

(5)

Note that here the constraint xi ∈ {0, 1} is replaced by x2
i = xi, as was also

done in Section 4. This quadratic formulation will be used below to infer a
semidefinite relaxation of the stable set problem.

In fact, both model (4) and model (5) can be used as a constraint programming
model. We have chosen the first model, since the quadratic constraints take
more time to propagate than the linear constraints, while having the same
pruning power.

5.3 Semidefinite Programming Relaxation

The integer quadratic program (5) gives rise to a semidefinite relaxation intro-
duced by Lovász [20] (see Grötschel et al. [13] for a comprehensive treatment).
The value of the objective function of this relaxation has been named the theta

number of a graph G, indicated by ϑ(G). For its derivation into a form similar

9

to program (2), we will follow the same idea as in Section 4 for the general
case.

Let us start again from model (5). We can construct a matrix X ∈ R
n×n by

defining Xij = xixj. Let us also construct a n×n cost matrix W with Wii = wi

for i ∈ V and Wij = 0 for all i 6= j. Since Xii = x2
i = xi, the objective

function becomes tr(WX). The edge constraints are easily transformed as
xixj = 0 ⇔ Xij = 0. The integrality condition will be transformed as in
Section 4. Namely, extend X with another row and column (both indexed by
0) that contain vector x, and define the (n + 1) × (n + 1) matrix Y as

Y =

1 xT

x X

where Xii = xi. Finally, we will relax the integrality constraint on x by de-
manding Y to be a positive semidefinite matrix.

In order to maintain equal dimension to Y , a row and a column (both indexed
by 0) should be added to W , all entries of which containing value 0. Denote the
resulting matrix by W̃ . The theta number of a graph G can now be described
as

ϑ(G) = max tr(W̃Y)

s.t. Yii = 1
2
Yi0 + 1

2
Y0i ∀i ∈ V

Yij = 0 ∀(i, j) ∈ E

Y � 0.

(6)

By construction, the diagonal value Yii serves as an indication for the value of
variable xi (i ∈ V) in a maximum stable set. In particular, this program is a
relaxation for the stable set problem, i.e. ϑ(G) ≥ α(G). Note that program (6)
can easily be rewritten into the general form of program (2). Namely, Yii =
1
2
Yi0 + 1

2
Y0i is equal to tr(AY) where the (n + 1) × (n + 1) matrix A consists

of all zeroes, except for Aii = 1, Ai0 = −1
2

and A0i = −1
2
, which makes the

corresponding b entry equal to 0. Similarly for the edge constraints.

The theta number also arises from other formulations, different from the above,
see [13]. In our implementation we have used the formulation that has been
shown to be computationally most efficient among those alternatives [14].
Let us introduce that particular formulation (called ϑ3 in [13]). Again, let
x ∈ {0, 1}n be a vector of binary variables representing a stable set. Define

the n × n matrix X = ξξT where ξi =
√

wi
√

∑n

j=1
wjxj

xi. Furthermore, let the

10

n × n cost matrix U be defined as Uij =
√

wiwj for i, j ∈ V . Observe that in
these definitions we exploit the fact that wi ≥ 0 for all i ∈ V . The following
semidefinite program

ϑ(G) = max tr(UX)

s.t. tr(X) = 1

Xij = 0 ∀(i, j) ∈ E

X � 0

(7)

gives exactly the theta number of G. When (7) is solved to optimality, the
scaled diagonal element ϑ(G)Xii (a fractional value between 0 and 1) serves
as an indication for the value of xi (i ∈ V) in a maximum stable set (see for
instance [14]). Again, it is not difficult to rewrite program (7) into the general
form of program (2).

Program (7) uses matrices of dimension n and m + 1 constraints, while pro-
gram (6) uses matrices of dimension n + 1 and m + n constraints. This gives
an indication why program (7) is computationally more efficient.

6 Computational Results

All our experiments are performed on a Sun Enterprise 450 (4 X UltraSPARC-
II 400MHz) with maximum 2048 Mb memory size, on which our algorithms
only use one processor of 400MHz at a time. As constraint programming solver
we use the ILOG Solver library, version 5.1 [18]. As semidefinite programming
solver, we use CSDP version 4.1 [7], with the optimized ATLAS 3.4.1 [28] and
LAPACK 3.0 [4] libraries for matrix computations. The reason for our choices
is that both solvers are among the fastest in their field, and because ILOG
Solver is written in C++, and CSDP is written in C, they can be hooked
together relatively easy.

As constraint programming model we have used model (4), as was argued in
Section 5.2. We distinguish two algorithms to perform our experiments. The
first algorithm is a sole constraint programming solver, which uses a standard
labeling strategy. This means we use a lexicographic variable ordering, and
we select domain value 1 before value 0. The resulting search tree is traversed
using a depth-first search strategy. After each branching decision, its effect is
directly propagated through the constraints.

The second algorithm is the one proposed in Section 4. It first solves the
semidefinite program (7), and then calls the constraint programming solver. In

11

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

nu
m

be
r

of
 b

ac
kt

ra
ck

s

edge density

n=30
n=40
n=50
n=60

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

tim
e

(s
)

edge density

n=30
n=40
n=50
n=60

Fig. 3. Performance of the constraint programming solver on random instances with
n vertices.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

tim
e

(s
)

edge density

n=30
n=40
n=50
n=60

Fig. 4. Performance of the semidefinite programming solver on random instances
with n vertices.

this case, we use a variable ordering defined by the solution of the semidefinite
relaxation. The resulting search tree is traversed using a limited discrepancy
search strategy.

6.1 Characterization of Problem Instances

We will first identify general characteristics of the constraint programming
solver and semidefinite programming solver to obtain a maximum stable set
on random graphs. It appears that both solvers are highly dependent on the
edge density of the graph, i.e. m

1

2
(n2−n)

for a graph with n vertices and m edges.

We therefore generated random graphs on 30, 40, 50 and 60 vertices, with
density ranging from 0.01 up to 0.95. Our aim is to identify the hardness of
the instances for both solvers, parametrized by the density. Based upon this
information, we can make decisions on what kind of problems our algorithm
is suitable for.

We have plotted the performance of both solvers in Figure 3 and Figure 4. For
the constraint programming solver, we depict both the number of backtracks

12

and the time needed to prove optimality. For the semidefinite programming
solver we only plotted the time needed to solve the relaxation. Namely, this
solver does not use a tree search, but a so-called primal-dual interior point
algorithm. Note that we use a log-scale for time and number of backtracks in
these pictures.

From these figures, we can conclude that the constraint programming solver
has the most difficulties with instances up to density around 0.2. Here we see
the effect of constraint propagation. As the number of constraints increases,
the search tree can be heavily pruned. On the other hand, our semidefinite
relaxation suffers from every edge that is added. As the density increases,
the semidefinite program increases accordingly, as well as its computation
time. Fortunately, for the instances up to 0.2, the computation time for the
semidefinite relaxation is very small. Consequently, our algorithm is expected
to behave best for graphs that have edge density up to around 0.2. For graphs
with a higher density, the constraint programming solver is expected to use less
time than the semidefinite programming solver, which makes the application
of our method unnecessary.

6.2 Random Weighted and Unweighted Graphs

Our first experiments are performed on random weighted and unweighted
graphs. We generated graphs with 50, 75, 100, 125 and 150 vertices and edge
density from 0.05, 010 and 0.15, corresponding to the interesting problem
area. The results are presented in Table 1. Unweighted graphs on n vertices
and edge density r are named ‘gndr’. Weighted graphs are similarly named
‘wgndr’.

The first five columns of the table are dedicated to the instance, reporting its
name, the number of vertices n and edges m, the edge density and the (best
known) value of a stable set, α. The next three columns (CP) present the
performance of the constraint programming solver, reporting the best found
estimate of α, the total time and the total number of backtracks needed to
prove optimality. The last five columns (SDP+CP) present the performance
of our method, where also a column has been added for the discrepancy of
the best found value (best discr), and a column for the time needed by the
semidefinite programming solver (sdp time).

Table 1 shows that our approach always finds a better (or equally good) esti-
mate for α than the standard constraint programming approach. This becomes
more obvious for larger n. However, there are two (out of 30) instances in which
our method needs substantially more time to achieve this result (g75d015 and
wg75d010). A final observation concerns the discrepancy of the best found so-

13

Table 1
Computational results on random graphs, with n vertices and m edges. All times
are in seconds. The time limit is set to 1000 seconds.

instance CP SDP + CP

edge total back- best sdp total back-

name n m density α α time tracks α discr time time tracks

g50d005 50 70 0.06 27 27 5.51 50567 27 0 0.26 0.27 0

g50d010 50 114 0.09 22 22 28.54 256932 22 0 0.35 0.36 0

g50d015 50 190 0.16 17 17 5.83 48969 17 0 0.49 0.49 0

g75d005 75 138 0.05 36 ≥ 35 limit 36 0 0.72 0.73 0

g75d010 75 282 0.10 ≥ 25 ≥ 25 limit ≥ 25 5 1.4 limit

g75d015 75 426 0.15 21 21 170.56 1209019 21 0 2.81 664.92 1641692

g100d005 100 254 0.05 43 ≥ 40 limit 43 0 2.07 2.1 0

g100d010 100 508 0.10 ≥ 31 ≥ 30 limit ≥ 31 0 4.94 limit

g100d015 100 736 0.15 ≥ 24 ≥ 24 limit ≥ 24 4 9.81 limit

g125d005 125 393 0.05 ≥ 49 ≥ 44 limit ≥ 49 1 4.92 limit

g125d010 125 791 0.10 ≥ 33 ≥ 30 limit ≥ 33 6 12.58 limit

g125d015 125 1160 0.15 ≥ 27 ≥ 24 limit ≥ 27 1 29.29 limit

g150d005 150 545 0.05 ≥ 52 ≥ 44 limit ≥ 52 3 10.09 limit

g150d010 150 1111 0.10 ≥ 38 ≥ 32 limit ≥ 38 4 27.48 limit

g150d015 150 1566 0.14 ≥ 29 ≥ 26 limit ≥ 29 8 57.86 limit

wg50d005 50 70 0.06 740 740 4.41 30528 740 0 0.29 0.3 0

wg50d010 50 126 0.10 636 636 3.12 19608 636 0 0.41 0.41 0

wg50d015 50 171 0.14 568 568 4.09 25533 568 0 0.59 4.93 13042

wg75d005 75 128 0.05 1761 1761 744.29 4036453 1761 0 1.05 1.07 0

wg75d010 75 284 0.10 1198 1198 325.92 1764478 1198 13 1.9 924.2 1974913

wg75d015 75 409 0.15 972 972 40.31 208146 972 0 3.62 51.08 87490

wg100d005 100 233 0.05 2302 ≥ 2176 limit 2302 0 2.59 2.62 0

wg100d010 100 488 0.10 ≥ 1778 ≥ 1778 limit ≥ 1778 2 6.4 limit

wg100d015 100 750 0.15 ≥ 1412 ≥ 1412 limit ≥ 1412 2 15.21 limit

wg125d005 125 372 0.05 ≥ 3779 ≥ 3390 limit ≥ 3779 3 5.39 limit

wg125d010 125 767 0.10 ≥ 2796 ≥ 2175 limit ≥ 2796 0 18.5 limit

wg125d015 125 1144 0.15 ≥ 1991 ≥ 1899 limit ≥ 1991 4 38.24 limit

wg150d005 150 588 0.05 ≥ 4381 ≥ 3759 limit ≥ 4381 3 13.57 limit

wg150d010 150 1167 0.10 ≥ 3265 ≥ 2533 limit ≥ 3265 9 40.68 limit

wg150d015 150 1630 0.15 ≥ 2828 ≥ 2518 limit ≥ 2828 11 82.34 limit

lutions. Our method appears to find those (often optimal) solutions at rather
low discrepancies.

6.3 Graphs Arising from Coding Theory

The next experiments are performed on structured (unweighted) graphs aris-
ing from coding theory, obtained from [27]. We have used those instances that
were solvable in reasonable time by the semidefinite programming solver (here
reasonable means within 1000 seconds). For these instances, the value of α
happened to be known already.

The results are reported in Table 2, which follows the same format as Ta-
ble 1. It shows the same behaviour as the results on random graphs. Namely,
our method always finds better solutions than the standard constraint pro-
gramming solver, in less time or within the time limit. This is not surprising,

14

Table 2
Computational results on graphs arising from coding theory, with n vertices and m

edges. All times are in seconds. The time limit is set to 1000 seconds.

instance CP SDP + CP

edge total back- best sdp total back-

name n m density α α time tracks α discr time time tracks

1dc.64 64 543 0.27 10 10 11.44 79519 10 0 5.08 5.09 0

1dc.128 128 1471 0.18 16 ≥ 16 limit 16 0 49.95 49.98 0

1dc.256 256 3839 0.12 30 ≥ 26 limit 30 0 882.21 882.33 0

1et.64 64 264 0.13 18 18 273.06 2312832 18 0 1.07 1.08 0

1et.128 128 672 0.08 28 ≥ 28 limit ≥ 28 0 11.22 limit

1et.256 256 1664 0.05 50 ≥ 46 limit ≥ 50 0 107.58 limit

1tc.64 64 192 0.10 20 ≥ 20 limit 20 0 0.78 0.79 0

1tc.128 128 512 0.06 38 ≥ 37 limit 38 0 8.14 8.18 0

1tc.256 256 1312 0.04 63 ≥ 58 limit ≥ 63 4 72.75 limit

1tc.512 512 3264 0.02 110 ≥ 100 limit ≥ 110 2 719.56 limit

1zc.128 128 2240 0.28 18 ≥ 18 limit ≥ 18 4 129.86 limit

because the edge density of these instances are exactly in the region in which
our method is supposed to behave best (with the exception of 1dc.64 and
1zc.128), as analyzed in Section 6.1. Again, our method finds the best solu-
tions at a low discrepancy. Note that the instance 1et.64 shows the strength of
the semidefinite relaxation with respect to standard constraint programming.
The difference in computation time to prove optimality is huge.

6.4 Graphs from the DIMACS Benchmarks Set

Our final experiments are performed on a subset of the DIMACS benchmark
set for the maximum clique problem [8]. Although our method is not intended
to be competitive with the best heuristics and exact methods for maximum
clique problems, it is still interesting to see its performance on this standard
benchmark set. As pointed out in Section 5, we have transformed these max-
imum clique problems to stable set problems on the complement graph.

The results are reported in Table 3, which again follows the same format as
Table 1. The choice for this particular subset of instances is made by the
solvability of an instance by a semidefinite programming solver in reasonable
time (again, reasonable means 1000 seconds). For all instances with edge den-
sity smaller than 0.24, our method outperforms the standard constraint pro-
gramming approach. For higher densities however, the opposite holds. This
is exactly what could be expected from the analysis of Section 6.1. A special
treatment has been given to instance MANN a45. We stopped the semidefinite
programming solver at the time limit of 1000 seconds, and used its interme-
diate feasible solution as if it were the optimal fractional solution. We then
proceeded our algorithm for a couple of seconds more, to search for a solution
up to discrepancy 1.

15

Table 3
Computational results on graphs from the DIMACS benchmark set for maximum
clique problems, with n vertices and m edges. All times are in seconds. The time
limit is set to 1000 seconds.

instance CP SDP + CP

edge total back- best sdp total back-

name n m density α α time tracks α discr time time tracks

hamming6-2 64 192 0.095 32 32 20.22 140172 32 0 0.68 0.69 0

hamming6-4 64 1312 0.651 4 4 0.28 804 4 0 27.29 28.10 706

hamming8-2 256 1024 0.031 128 ≥ 128 limit 128 0 45.16 45.55 0

johnson8-2-4 28 168 0.444 4 4 0.05 255 4 0 0.35 0.35 0

johnson8-4-4 70 560 0.232 14 14 15.05 100156 14 0 4.82 4.83 0

johnson16-2-4 120 1680 0.235 8 ≥ 8 limit 8 0 43.29 43.32 0

MANN a9 45 72 0.072 16 16 162.81 1738506 16 1 0.17 82.46 411104

MANN a27 378 702 0.010 126 ≥ 103 limit ≥ 125 3 70.29 limit

MANN a45 1035 1980 0.004 345 ≥ 156 limit ≥ 338 1 1047.06 limit

san200 0.9 1 200 1990 0.100 70 ≥ 45 limit 70 0 170.01 170.19 0

san200 0.9 2 200 1990 0.100 60 ≥ 36 limit 60 0 169.35 169.51 0

san200 0.9 3 200 1990 0.100 44 ≥ 26 limit 44 0 157.90 157.99 0

sanr200 0.9 200 2037 0.102 42 ≥ 34 limit ≥ 41 4 131.57 limit

Table 4
A comparison of different methods on graphs from the DIMACS benchmark set for
maximum clique problems, with n vertices and m edges. All times are in seconds.

instance Österg̊ard Régin CP + SDP

edge total total back- total back-

name density α α time α time tracks α time tracks

hamming6-2 0.095 32 32 0.01 32 0.00 17 32 0.69 0

hamming6-4 0.651 4 4 0.01 4 0.00 42 4 28.10 706

hamming8-2 0.031 128 128 0.04 128 0.00 65 128 45.55 0

johnson8-2-4 0.444 4 16 0.01 4 0.00 14 4 0.35 0

johnson8-4-4 0.232 14 14 0.01 14 0.00 140 14 4.83 0

johnson16-2-4 0.235 8 8 0.27 8 11.40 250505 8 43.32 0

MANN a9 0.073 16 16 0.01 16 0.00 50 16 82.46 411104

MANN a27 0.010 126 > 10000 126 55.44 1258768 ≥ 125 > 1000

MANN a45 0.004 345 > 10000 ≥ 345 > 43200 ≥ 338 > 1000

san200 0.9 1 0.100 70 70 0.27 70 3.12 1040 70 170.19 0

san200 0.9 2 0.100 60 60 4.28 60 7.86 6638 60 169.51 0

san200 0.9 3 0.100 44 > 10000 44 548.10 758545 44 157.99 0

sanr200 0.9 0.102 42 > 10000 42 450.24 541496 ≥ 41 > 1000

In Table 4 we compare our method with two methods that are specialized for
maximum clique problems. The first method was presented by Österg̊ard [23],
and follows a branch-and-bound approach. The second method is a constraint
programming approach, using a special constraint for the maximum clique
problem. This idea was introduced by Fahle [10] and extended and improved by
Régin [26]. Since all methods are performed on different machines, we need to
identify a time ratio between them. A machine comparison from SPEC 4 shows
that our times are comparable with the times of Österg̊ard. We have multiplied
the times of Régin with 3, following the time comparison made in [26]. In

4 http://www.spec.org/

16

general, our method is outperformed by the other two methods, although
there is one instance on which our method performs best (san200 0.9 3).

7 Conclusion

We have presented a method to use semidefinite relaxations within constraint
programming. The fractional solution values of the relaxation serve as an
indication for the corresponding constraint programming variables. Moreover,
the solution value of the relaxation is used as a bound for the corresponding
constraint programming cost function.

We have implemented our method to find the maximum stable set in a graph.
Experiments are performed on random weighted and unweighted graphs, struc-
tured graphs from coding theory, and on a subset of the DIMACS benchmarks
set for maximum clique problems. Computational results show that constraint
programming can greatly benefit from semidefinite programming. Indeed, the
solution to the semidefinite relaxations turn out to be very informative. Com-
pared to a standard constraint programming approach, our method obtains
far better results. Specialized algorithms for the maximum clique problem
however, still outperform our method, except for one problem instance.

Acknowledgements

Many thanks to Michela Milano, Monique Laurent and Sebastian Brand for
fruitful discussions and helpful comments while writing (earlier drafts of) this
paper.

References

[1] F. Ajili and H. El Sakkout. LP probing for piecewise linear optimization
in scheduling. In Third International Workshop on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CP-AI-OR’01), pages 189–203, 2001.

[2] F. Alizadeh. The Semidefinite Programming Page.
http://new-rutcor.rutgers.edu/~alizadeh/sdp.html.

[3] F. Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM Journal on Optimization,
5(1):13–51, 1995.

17

[4] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J.J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, third edition, 1999.
http://www.netlib.org/lapack/.

[5] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[6] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The Maximum Clique
Problem. In D.-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial
Optimization, volume 4. Kluwer, 1999.

[7] B. Borchers. A C Library for Semidefinite Programming. Optimization Methods
and Software, 11(1):613–623, 1999.
http://www.nmt.edu/~borchers/csdp.html.

[8] DIMACS. DIMACS maximum clique benchmark, 1993.
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique.

[9] H. El Sakkout and M. Wallace. Probe Backtrack Search for Minimal
Perturbation in Dynamic Scheduling. Constraints, 5(4):359–388, 2000.

[10] T. Fahle. Simple and Fast: Improving a Branch-And-Bound Algorithm for
Maximum Clique. In 10th Annual European Symposium on Algorithms (ESA
2002), volume 2461 of LNCS, pages 485–498. Springer Verlag, 2002.

[11] M. Goemans and F. Rendl. Combinatorial Optimization. In H. Wolkowicz,
R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite
Programming, pages 343–360. Kluwer, 2000.

[12] M.X. Goemans and D.P. Williamson. Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems Using Semidefinite Programming.
Journal of the ACM, 42(6):1115–1145, 1995.

[13] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. John Wiley & Sons, 1988.

[14] G. Gruber and F. Rendl. Computational experience with stable set relaxations.
SIAM Journal on Optimization, 13(4):1014–1028, 2003.

[15] W. D. Harvey and M. L. Ginsberg. Limited Discrepancy Search. In C. S.
Mellish, editor, Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95); Vol. 1, pages 607–615, 1995.

[16] C. Helmberg. Semidefinite Programming website.
http://www-user.tu-chemnitz.de/~helmberg/semidef.html.

[17] W.J. van Hoeve. A Hybrid Constraint Programming and Semidefinite
Programming Approach for the Stable Set Problem. In F. Rossi, editor,
Ninth International Conference on Principles and Practice of Constraint
Programming (CP’03), volume 2833 of LNCS, pages –. Springer Verlag, 2003.

[18] ILOG. ILOG Solver 5.1, Reference Manual, 2001.

18

[19] S. E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with
semidefinite programming. INFORMS Journal on Computing, 12(3):177–191,
2000.

[20] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, 25:1–7, 1979.

[21] M. Milano and W.J. van Hoeve. Reduced cost-based ranking for generating
promising subproblems. In P. van Hentenryck, editor, Eighth International
Conference on the Principles and Practice of Constraint Programming (CP’02),
volume 2470 of LNCS, pages 1–16. Springer Verlag, 2002.

[22] M.Laurent, S. Poljak, and F. Rendl. Connections between semidefinite
relaxations of the max-cut and stable set problems. Mathematical Programming,
77:225–246, 1997.

[23] P.R.J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120:197–207, 2002.

[24] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

[25] P.M. Pardalos and J. Xue. The Maximum Clique Problem. SIAM Journal of
Global Optimization, 4:301–328, 1994.

[26] J.-C. Régin. Solving the Maximum Clique Problem with Constraint
Programming. In Fifth International Workshop on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CP-AI-OR’03), pages 166–179, 2003.

[27] N.J.A. Sloane. Challenge Problems: Independent Sets in Graphs.
http://www.research.att.com/~njas/doc/graphs.html.

[28] R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.
http://math-atlas.sourceforge.net/.

19

