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Abstract

Many companies ship parts and materials from a multitude of suppliers scattered over
a large area. Because the number of supplier relationships may be large and complex, the
procurement problem is often divided among parties that scarcely coordinate. As a result,
opportunities exist to reduce total logistical costs by consolidating orders and sharing trucks.
For the North-American division of the Bosch/Siemens Home Appliances Corporation, we
study how to design and implement such coordination while maintaining flexibility with
respect to market forces and changes in demand volumes. Our proposed solution combines
the incoming freight from different suppliers in what we call ‘flex-runs’, to better utilize truck
space. The result is an expected transportation cost reduction of up to 25% with an overall
increase in robustness with respect to volume fluctuations.

Keywords: Logistics; Freight Consolidation; Integer Programming; Column Generation

1 Introduction

The Bosch/Siemens Home Appliances Corporation (abbreviated as B/S/H/) is the world’s third
largest leading manufacturer of high-end home appliances. In 1991, B/S/H/ launched its dishwasher
business in North America, which initially imported dishwashers made in Germany. But in 1997,
it started production of its European-designed dishwashers in New Bern, North Carolina. In
the years thereafter, the site at New Bern was expanded to include the production of cooktops
and laundry washers and dryers. To date, the New Bern site hosts three factories: dishwashing,
cooking, and laundry that operate almost independently.

Currently, each manufacturing plant at B/S/H/ orders its supplies separately, even though a
number of suppliers are shared among the plants. Most suppliers ship weekly or bi-weekly. Third-
party logistics providers are hired externally, and most often ‘full-truckloads’ can be negotiated.
For smaller shipments, ‘less-than-truckloads’ are usually applied. A full-truckload, or FTL, is a
full, dedicated trailer with a typical weight capacity of 45,000 lb. In contrast, freight shipped by
less-than-truckload, or LTL, is grouped with other shipments by the carrier and is subject to lower
weight limits. The exact pricing of FTL and LTL shipments depends on many factors, the most
important of which are the total distance traveled and total weight transported. In addition, the
recently introduced fuel surcharges play an increasingly important role. However, FTL shipments
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Type Amount Cost Utilization

LTL 25% 37% n/a

FTL 72% 47% 38%

Other 3% 16% n/a

Table 1: Current shipping situation. For each shipment type the relative amount shipped and
relative cost are given.

are usually more efficient (in terms of the unit cost per pound per mile) when the amount shipped
is at least 10,000 lb (see, e.g., (5)). For smaller amounts, LTL shipments typically provide a lower
unit cost.

Even though B/S/H/ uses FTL routes whenever possible, LTL routes are applied in many cases,
especially when demand is greater than anticipated. Namely, when the amount to be shipped
would cause an overload of the FTL truck, the remaining freight must be transported by an LTL
shipment. The current shipping situation at B/S/H/ is depicted in Table 1. It shows the relative
amount shipped and the relative cost spent for each of the shipment types LTL, FTL, and ‘Other’,
where ‘Other’ refers to ad-hoc shipping methods such as parcel shipment. Note that even though
25% of all freight is shipped using LTL, it constitutes 37% of the total transportation costs. FTL, on
the other hand, is used to ship 72% of all freight, and only constitutes 47% of the total cost.

Market fluctuations have a huge impact on sourcing volumes. The current operating plan is able
to react quickly to changes in volume: each supplier is ordered from independently, so a change
in volume (either positive or negative) does not affect the shipments of other suppliers. Moreover,
the addition of LTL trucks allows rapid adaptation to volume increases. This flexibility comes
with a cost, however. LTL shipments are much more expensive relatively than FTL shipments.
Furthermore, the weekly or bi-weekly FTL routes are often under-utilized: the average FTL
utilization is 38% (see Table 1). This means that, on average, FTL trucks are using only 38% of their
capacity.

The observations above have led us to identify the following opportunities for cost improve-
ment: (i) Since we have found that the three plants share a number of suppliers, is it possible to
cut costs by consolidating shipments from one supplier to different plants? (ii) Is it possible to cut
costs by consolidating shipments from different suppliers?

At first glance, it might seem impossible to put this potential into practice without giving in on
flexibility with respect to volume fluctuations. That is, shipment consolidation might appear to
be orthogonal to flexibility. Nevertheless, we show in this paper that consolidating shipments can
significantly reduce transportation costs, while the resulting solution is actually more robust with
respect to volume changes.

Our proposed solution involves the careful selection of suppliers into consolidated routes that
we call flex-runs. Flex-runs are essentially flexible milk-runs (the common term for consolidated
routes in logistics) designed to handle volume swings along the route. The basic idea of route
consolidation is to reduce the relative contribution of the LTL shipments by converting them into
(consolidated) FTL shipments. This is a well-known concept that is typically used by logistics
providers to efficiently combine shipments of different customers. An illustrative example of
such consolidation is given in Figure 1. In this small example, we need to ship freight from four
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Figure 1: Shipment consolidation. The relatively expensive three LTL and one FTL routes are
combined into two relatively cheaper FTL routes.

suppliers (the nodes) to one plant. The amount to be shipped is indicated above each supplier
node. In the picture on the left, we apply the current strategy: if the amount to be shipped is less
than 10,000 lb, we use an LTL, otherwise we use an FTL. In the picture on the right, we combine
the three routes into two FTL flex-runs, FTL1 and FTL2. Given that the per-unit cost for FTL is
lower than for LTL, we expect these two flex-runs to be less expensive than the scenario on the left.
In fact, as our experimental results will show, we are able to design flex-runs that are expected to
reduce the total inbound transportation cost for B/S/H/ by up to 25%.

An important aspect of shipment consolidation is to maintain flexibility with respect to variation
in shipment volumes. To account for this, we design our flex-runs in such a way that the expected
volume change for one supplier offsets the expected volume change for the other suppliers. In
other words, by exploiting negative correlations between the volume changes of suppliers, we are
able to guarantee a lower bound (typically 90-99%) on the probability that the FTL trucks on our
flex-runs will remain within capacity. Therefore, our flex-runs turn out to be more robust than the
current situation and there is less need for ad-hoc LTL shipments.

Designing and finding the optimal set of flex-runs is a computationally challenging problem
(NP-hard to be precise). We propose to model and solve the problem as an integer linear program
using column generation. With this technology, we are able to solve the B/S/H/ problem within 1%
of optimality when we allow up to three suppliers in each flex-run. An initial set of our proposed
flex-runs is currently being implemented at B/S/H/.

The remainder of the paper is structured as follows. We first provide a detailed problem
description in Section 2. In Section 3, we present the outline of our solution, based on an integer
linear programming model using column generation. In Section 4, we describe how we generate
our columns representing the flex-runs. We provide detailed computational results and an analysis
of our proposed solution in Section 5. In Section 6, we discuss some practical implications of our
solution. Finally, we present the main conclusions in Section 7.
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2 Detailed Problem Description

B/S/H/ has about 600 active suppliers for its three assembly plants in New Bern, NC. Among these,
only 75 suppliers make up 80% of the total shipping volume. We chose to focus our study on these
highly active suppliers. Each makes at least 40 shipments per year to one or more of the B/S/H/
plants, making them practical targets for one or more weekly flex-runs.

So far, logistics planning at B/S/H/ has focused more on the production schedule of the plants
than on freight costs. Each supplier is assigned to a material planner, each of whom has several
suppliers to manage. The material planner is responsible for monitoring the production schedule
and ensuring that all parts and materials from their suppliers are present and ready when needed
by the assembly line. Material planners take quantity discounts into account when placing orders
but not shipping costs. Each order is assigned a truck based on its weight: LTL for orders under
10,000 lb, and FTL otherwise. For this reason, many orders between 10,000 and the maximum
45,000 lb are carried on partially-empty or even mostly-empty FTL trucks.

Trucks ordered from LTL carriers are priced according to published, zip code-based rate tables.
A fixed discount percentage is also applied that is negotiated annually between B/S/H/ and each
carrier. The amount of this discount depends on the quantity and frequency of LTL usage by
B/S/H/ and on how the movements of these trucks fit into the carrier’s overall network strategy.
Sometimes the discount percentage varies by the shipment’s state of origin.

Trucks ordered from FTL carriers are priced according to a fixed, negotiated rate per load. Each
year, B/S/H/ distributes a list of locations to each of its carriers from which it plans to order many
FTL shipments. A multiple-round bidding process takes place that identifies the lowest price a
carrier will accept for each shipment made from each location. An exclusive contract is granted
to each carrier for those locations on which it is the lowest bidder. B/S/H/ can then order FTL
shipments at these fixed prices when needed. Because FTL shipments are not priced by weight,
they are somewhat flexible to changes in quantities if they are under capacity.

Data was collected from records kept by a third-party logistics provider. The data identified the
date, source, type, weight, and cost of each shipment. Unfortunately, the records did not indicate
to which of the three plants each shipment was made. Thus, while we could analyze the benefits of
consolidating any set of supplier shipments, we could not analyze the intermediate, and possibly
more manageable, benefit of consolidating only within each plant.

3 Proposed Solution

Our proposed solution is to group suppliers into carefully-designed flex-runs. As stated before,
these flex-runs are consolidated routes (or milk-runs) that are flexible with respect to fluctuations
in shipping volumes. Our experimental results demonstrate that transportation costs can be
decreased up to 25%, while changes in demand are better handled and trucks are better utilized.

The computational heart of our approach is an integer programming model based on column
generation, where the columns of the model correspond to truck routes. This idea is originally due
to (1), and has been successfully applied to several (large-scale) vehicle routing applications, see
e.g., (3, 2, 6). In our approach, we specify for each route the suppliers visited as well as the amount
picked up at each supplier and the expected cost to execute the route. In a pre-processing phase,
we generate routes that include all possible combinations of up to three suppliers. Naturally, we
could include more than three suppliers per route and use delayed column generation to manage
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the increased problem size. However, routes of such length are not desirable for B/S/H/. As will be
discussed in the next section, we generated several million routes from which we selected about
600,000 useful candidates. To find a solution, the integer programming model selects those routes
that satisfy all demand constraints, while minimizing the total cost.

More formally, let R denote the set of all generated routes. Let S denote the set of all suppliers.
For each route r ∈ R, let cr denote the cost. For each route r ∈ R and each supplier s ∈ S, let prs

denote the proportion of the freight picked up at supplier s by route r. We introduce variables xr

for all routes r ∈ R representing the weekly frequency of route r, where xr is a non-negative integer.
The problem of finding the set of routes that pick up all freight at minimum total cost can then be
formulated as the following set-covering problem:

min
∑

r∈R

crxr

s.t.
∑

r∈R

prsxr ≥ 1 ∀s ∈ S (1)

xr ≥ 0, integer ∀r ∈ R.

Note that constraints (1) are of the form ‘greater than or equal’, whereas commonly equality is
used in set covering problems. The reason for this is that we allow some of our generated routes
to be combined to (artificially) pick up slightly more than the required amount, provided that this
would dominate other solutions in terms of cost and overload risk; see the Flex-Run Design section
for more details.

This integer programming model contains one variable for each candidate route and one
constraint for each supplier. It has one nonzero coefficient for each supplier visited by each
route. In our experiments, this model found optimal or near-optimal solutions for problems of 75
suppliers and about 600,000 routes.

4 Flex-Run Design

To find an optimal trucking plan, we generate a set of flex-runs (routes) from which our integer
program chooses an optimal (or near-optimal) set. The design of our flex-runs consists of three
components: route generation, route pricing, and modeling flexibility.

4.1 Route Generation

The routing aspect of a flex-run consists of the supplier stops, and for each stop a pickup proportion
of the weekly shipment volume. Therefore, we first divide each supplier’s weekly shipment into
a set of equally-weighted packets, each to be assigned to one route. This allows shipments to be
split up in a variety of ways, but with finitely many combinations. We chose to divide shipments
into packets of around 2,000 lb, though a higher or lower precision may be used in general. For
suppliers shipping more than 10,000 lb per week, we divided the delivery into ⌊weight/2000⌋ equal
packets. For suppliers shipping less than 10,000 lb per week, we decided not to allow delivery
splitting as it would impose an excessive inconvenience on the supplier. In other words, for each
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supplier s ∈ S, the number of packets is given by:

# packets(s) =

{

1 if weight(s) < 10,000 lb/week
⌊

weight(s)/2000
⌋

if weight(s) ≥ 10, 000 lb/week

where weight(s) denotes the total weight of the weekly freight to be picked up at supplier s.

We first generated one-stop LTL routes for all suppliers. If the shipping requirement for a route
is less than 10,000 lb, we added a single LTL route for the entire shipment. Otherwise, we added
an LTL route for each integer number of packets not exceeding 10,000 lb, which is a reasonable
LTL upper bound. An example is shown in the table below, for two suppliers A and B with weekly
shipments of 8,000 lb and 11,000 lb, respectively.

Supplier Weekly Shipment Capacity of LTL Routes Added

A 8,000 lb 8,000 lb

B 11,000 lb

(1/5)×11,000 lb = 2,200 lb
(2/5)×11,000 lb = 4,400 lb
(3/5)×11,000 lb = 6,700 lb
(4/5)×11,000 lb = 8,800 lb

We next generated FTL routes for all combinations of one, two and three suppliers; it is unde-
sirable for B/S/H/ to have more than three stops on a route. The number of all such combinations

is
∑3

k=1

(75
k

)

= 70, 375. Note that each supplier combination can be used with various shipment
configurations. For each combination, we checked all possible orders in which the suppliers could
be visited before driving to B/S/H/, and selected the sequence with the lowest total mileage. We
used Microsoft MapPoint NA 2006 with the MileCharter add-in to compute a distance matrix for this
calculation.

Finally, we need several copies of each route to cover all meaningful combinations of pickup
proportions. We first generated all possible combinations for each route,which totaled

∏

s # packets(s)
combinations, where # packets(s) again denotes the number of packets into which the shipment of
supplier s is divided.

Note that not all generated routes will be included in the model. We describe below how we
select the flex-runs that are flexible enough to handle volume changes without overloading. In
addition to excluding potential route combinations that exceed the allowed overload risk, we also
exclude combinations that are unnecessarily small. For example, an FTL route shipping one tenth
of a 20,000 lb shipment would be a waste of capacity. However, since lower weight assignments
are less likely to overload, we included them as long as their expected excess weight, computed
as E[max(0,weight − 45000)], was at least 1 lb less than that of another included route.

4.2 Route Pricing

For each of the generated LTL routes, we looked up a rate quote on the web site of the LTL carrier
used by B/S/H/ in the region of the supplier. For the FTL routes, we created a model that captures
the cost structure as follows.

For a list of previously negotiated FTL routes used by B/S/H/, we plot the cost against the length
of those routes in Figure 2. From this figure, it is apparent that a close relationship exists between
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Figure 2: Cost (in USD) of previously negotiated FTL routes with respect to their length (in miles).
The cost numbers are rescaled for confidentiality.

the mileage of a route and the minimum price an FTL carrier would accept to haul it. We fit a
quadratic curve to this data and used it to estimate prices for our proposed FTL routes. We also
added a stopover charge found on the carrier’s website for those routes visiting more than one
supplier.

4.3 Modeling Flexibility

As mentioned above, we only wish to include those routes that are flexible enough to handle
volume swings. To model the probability that a generated route would overload, we define a
random variable Xs for each supplier s ∈ S representing its weekly shipment. We define µs as the
average of Xs and σst as the covariance between the weekly shipment two suppliers s, t ∈ S. We
denote the covariance matrix byΣ. For a multiple-stop route r, we compute the mean and variance
of the total weekly shipment as follows:

µr =
∑

s∈S

prsµs, σ
2
r =
∑

s∈S

∑

t∈S

pT
rsΣprt

From this we generate for each route a Gamma distribution Gamma(k, θ) with the same mean µr

and variance σ2
r to model the probability distribution of the load of the route. We compute the

parameters k and θ as follows:
k = µ2

r/σ
2
r , θ = σ

2
r/µr

We then select a service level α, the minimum probability that the route will be within capacity. If
the α%-quantile of the Gamma(k, θ) is over the truck capacity, the requirement is not met and the
route is excluded. That is, if more that 1−α% of the distribution is above the 45,000 lb, that weight
combination is considered a high overload risk and excluded from consideration.
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While a normal distribution may seem more applicable for the load distribution, we find it
significantly underestimates the frequency of capacity overload, since much of the outlying area of
the normal distribution lies in negative values when variances are as high as those we encountered.

Example 1 Consider the following illustrative weekly pick-up amounts for two suppliers A and B:

week 1 2 3 4 5 mean

supplier A 20,000 10,000 10,000 30,000 30,000 20,000
supplier B 15,000 10,000 5,000 20,000 25,000 15,000

Suppose we design a weekly route r that picks up 50% of the weight of supplier A, and 100% of the weight
of supplier B. That is, prA = 0.5 and prB = 1.0. The total expected mean weekly load of route r, based on
the data, is 25,000 lb, with a standard deviation of approximately 11,401 lb. The Gamma distribution that
models the load of this route has parameters k = 4.81 and θ = 5200, and is depicted in the figure below.

0.00000

0.00001

0.00002

0.00003

0.00004

 0  10000  20000  30000  40000  50000  60000

weight (lb)

Gamma(4.81,5200)

The cumulative distribution of Gamma(4.81, 5200) at 45,000 lb is 0.9421, which means that this route
would be accepted if we impose an non-overload guarantee of 95%.

The resulting set of flex-runs, containing all LTLs and FTLs of one to three suppliers using all
sensible weight combinations, number around 600,000. Consequently, our IP model consists of
600,000 variables and 75 constraints (for 75 suppliers).

5 Computational Results

In this section we provide a detailed analysis of the solution we proposed to B/S/H/. In addition to
a single solution, B/S/H/ management wanted us to test the robustness of our model parameters.
These parameters include the maximum number of stops on each flex-run, the minimum service
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level α that we require for each flex-run, and the shape of the weight distribution assumed for
each flex-run load. We performed several experiments to test different values of the parameters
and confirm the accuracy of the model. Throughout this section, cost figures have been rescaled
by a fixed multiplier for confidentiality.

For our experiments we have used the integer programming solver CPLEX 11 (4) on a 2.4Ghz
machine with 8GB of RAM running Windows Vista 64 Pro. For the 75-supplier instances, we report
the solutions after a duality gap of 1% was reached, i.e., the solution found is provably within 1%
of the optimal solution. Finally, we note that for the larger problem instances on around 600,000
variables, most of the available RAM was used. All reported solutions were found within 24 hours
total.

5.1 Number of Stops per Route

Our truck routing model contains 75 supplier locations that must be visited by one or more
trucks each week. As described in our route generation procedure, we considered only those
routes visiting at most three suppliers. This both limits the size of the model for computational
tractability and limits the amount of coordination required for B/S/H/ to implement the solution.
To study the effects of this maximum-stops parameter on an optimal routing cost, we tested the
inclusion of routes with more stops on a smaller example problem containing 15 suppliers. For
a problem of this size, the number of these routes is small enough to enumerate and solve to
optimality. We also used a distribution of weight and locations similar to our B/S/H/ data.

In Figure 3 we display the results of this experiment by means of a table and a plot. In this
figure, ‘# Suppliers’ indicates the number of suppliers in the problem, ‘Max Stops per Route’
indicates the maximum number of stops (i.e., suppliers) on each route, ‘Min Reliability’ indicates
the reliability of each route to be within the truck capacity (in this experiment it is set to 95%), and
‘Optimal Cost’ indicates the optimal weekly shipping cost for this problem.

As the results show, cost savings improve as more stops are added to the feasible routes,
but the marginal value of the extra stops diminishes quickly. To observe this effect on our full
75-supplier problem, we tested our model with a maximum of one, two and three stops per

# Suppliers
Max Stops Min Optimal

per Route Reliability Cost

15 1 95% $30,553

15 2 95% $19,292

15 3 95% $14,427

15 4 95% $12,916

15 5 95% $12,714

15 6 95% $12,714

15 7 95% $12,714

15 8 95% $12,714  0

 5000

 10000

 15000

 20000

 25000

 30000

 1  2  3  4  5  6  7  8

op
tim

al
 s

hi
pp

in
g 

co
st

 (
U

SD
)

maximum number of suppliers (stops) per route

Figure 3: The effect of increasing the number of stops per route on the optimal shipping cost, for a
15-supplier benchmark problem.
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Schedule # Suppliers
Max Stops Min # Feasible Est. Weekly

Savings
per Route Reliability Routes Fixed Cost

Original 75 1 - 75 $134,063 -

Optimization 1 75 1 95% 293 $123,331 8.0%

Optimization 2 75 2 95% 13,052 $105,337 21.4%

Optimization 3 75 3 95% 592,975 $100,000 25.4%

Table 2: The effect of increasing the number of stops per route on the shipping cost and expected
savings, for the 75-supplier problem of B/S/H/.

Schedule # Suppliers
Max Stops Min # Feasible Est. Weekly

Savings
per Route Reliability Routes Fixed Cost

Original 75 1 - 75 $134,063 -

Optimization 3a 75 3 99% 291,110 $121,899 9.1%

Optimization 3b 75 3 95% 592,975 $100,000 25.4%

Optimization 3c 75 3 90% 851,446 $87,518 34.7%

Table 3: The effect of increasing the reliability for each route to remain within capacity on the
shipping cost and expected savings, for the 75-supplier problem of B/S/H/.

route. The results are depicted in Table 2. In this table, we compare four different transportation
schedules: the original schedule of B/S/H/, and our three optimized schedules based on routes
including a maximum of one, two, and three stops per route, respectively. Here ‘# Feasible Routes’
indicates the number of feasible routes that were generated, ‘Est. Weekly Fixed Cost’ indicates the
estimated weekly fixed transportation cost of the schedule, and ‘Savings’ indicates the savings of
the optimized schedules with respect to the original schedule.

Note that the optimized schedule with 1 stop per route has a lower cost than the original
schedule. This is the result of multiple LTL routes being consolidated into single FTL routes for
suppliers shipping to multiple plants at B/S/H/.

Because the number of feasible routes increases exponentially with respect to the maximum
number of stops, we found it impossible to add routes with more than three stops using out model.
The problem files became to large to load into memory. However, we felt that the above data was
sufficient to conclude that most of the available savings is captured by our one- to three-stop routes.

5.2 Reliability of Remaining within Truck Capacity

The significant cost reduction of our solution is attributable to an increased use of FTL routes,
since FTL costs less per pound of capacity than LTL. But to exploit this cost reduction, one must
consistently have enough freight to utilize the large, fixed capacity of the FTL. This can be difficult
to achieve under conditions of high demand variability: while assigning several suppliers to
an FTL route may reduce per-unit costs, it may also result in frequent overloading of the truck
capacity. In this case, an additional LTL route may be necessary, negating the savings of the FTL
route and increasing managerial costs.
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Figure 4: The probability of overloading the route of Example 1, indicated by the shaded region.

To balance the two goals of minimizing cost and maintaining reliability, we consider only those
routes in our model which achieve some minimum threshold of reliability. That is, the proportion
of supplier freight assigned to the route must be within its capacity during some fraction of the
times it operates. In Table 3 we report the results of an experiment comparing the savings at
various thresholds of reliability, namely 99%, 95% and 90%, referred to as Optimization 3a, 3b,
and 3c, respectively. In these experiments, the maximum number of stops is always three: The
experiment ‘Optimization 3’ in Table 2 is equal to ‘Optimization 3b’ in Table 3, both costs are
indicated in bold. Based on these results, we decided the solution with 95% reliability was the best
trade-off of route costs and managerial costs.

5.3 Estimating the Capacity Overload

In order to further quantify the cost of unreliability in our solution, we wished to measure the
expected cost incurred during the 5% or less of cases in which FTL route capacity is overloaded.
For this we used the gamma distribution fit to each route’s weekly load in our route-generation
procedure. To find the expected overload weight of each FTL route, we integrated the excess
function max(0,weight − 45000) over the distribution. We then multiplied this weight by the
approximate cost per pound of an additional LTL route to find the expected overload cost of the
FTL route. Recalling Example 1, a route with mean load 25,000 lb and standard deviation 12,000
lb has an expected overload weight of 455 lb; this corresponds to the shaded area in Figure 4.

Table 4 shows the expected overload cost associated with our proposed solution. We estimate
this cost for all feasible routes that were included in the model (‘All Feasible Routes’), and for the
subset of routes included in the solution to two optimizations. The first (‘Min Fixed Cost Routes’)
corresponds to the optimal solution that we have considered thus far, using a fixed cost for each
route. The second (‘Min Total Cost Routes’) adds to the fixed cost the overload cost for each route.
Therefore, the objective is slightly higher, and the solution changes slightly.

For each of these three route sets, we report the approximate weekly fixed cost of the routes,

11



All Feasible Min Fixed Min Total

Routes Cost Routes Cost Routes

Approximate Weekly Fixed Cost $2,874,994,855 $100,000 $100,144

Expected Weekly Overload Cost + $19,177,002 + $4,091 + $3,489

Total Weekly Cost = $2,894,171,856 = $104,090 = $103,634

Actual Overload Cost $11,063,102 $1,821 $1,561

Table 4: Estimating the overload cost for the complete set of generated routes, and for the routes
that are included in the optimal solution. These results are based on the 2007 data (12 months)
from B/S/H/.

All Feasible Min Fixed Min Total

Routes Cost Routes Cost Routes

Approximate Weekly Fixed Cost $2,850,174,001 $98,059 $98,431

Expected Weekly Overload Cost + $17,916,572 + $3,873 + $3,391

Total Weekly Cost = $2,868,090,573 = $101,932 = $101,822

8-Month Calibrated Overload Cost $21,776,023 $1,701 $1,583

4-Month Uncalibrated Overload Cost $8,233,524 $5,696 $5,174

Table 5: Estimating the accuracy of the overload cost model based on the Gamma distribution, by
calibrating it on eight months of the 2007 B/S/H/ data, and testing it against the remaining four
months.

the expected weekly overload cost, and the total weekly cost of the routes. For all these numbers,
the load of the routes are modeled by a Gamma distribution. We compare this (in the last row
of Table 4) to the actual overload costs, based on the B/S/H/ routes of 2007. Note that the latter is
computed from the data itself, not the distribution fit to the data.

A first observation is that the expected overload cost for the routes included in the optimal
solution is relatively high, around 4% of the weekly cost, compared to that of all feasible routes,
which is around 0.67%. From Table 4 we further derive that the overload costs are somewhat over-
estimated, but at the same time constitute only a marginal amount of the overall transportation
costs. Further, adding the overload costs to the objective did only slightly change the optimal
solution, and we therefore omitted the overload costs in our basic model.

Finally, we wish to evaluate how well our model using the Gamma distribution fits the overload
cost estimations. To this end, we decided to rebuild our model using only eight months of our
available 2007 historical data, and test the resulting solution against the data of the remaining
months. That is, estimations of load distribution and reliability used for designing routes were
based on only eight of our 12 months of data. We used months 1,2,4,5,7,8,10, and 11 to eliminate
seasonality effects. After optimizing this new model, we compared estimated overload costs
during the eight calibration months and the remaining four months. The results are reported in
Table 5.

From this experiment we see that overload costs will inevitably be minimized during the
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Original Routes

Route Type #/week Avg. Mileage $/week ton·mi/week $/ton·mi

1-Stop LTL 126 623 mi $ 62,853 122,706 $ 0.49

1-Stop FTL 39 436 mi $ 71,210 258,966 $ 0.29

Optimized Routes, 95% Reliability Level

Route Type #/week Avg. Mileage $/week ton·mi/week $/ton·mi

1-Stop LTL 19 880 mi $ 11,873 30,813 $ 0.39

1-Stop FTL 9 128 mi $ 7,871 23,612 $ 0.33

2-Stop FTL 9 305 mi $ 11,807 49,309 $ 0.24

3-Stop FTL 23 897 mi $ 68,449 341,852 $ 0.20

Table 6: The structure of the original and optimized routes.

period over which the routes are calibrated, as reflected in the row ‘8-Month Calibrated Overload
Cost’. Also, the optimization tends to select routes for which the overload cost is underestimated.
However, the overload cost of the four uncalibrated months (‘4-Month Uncalibrated Overload
Cost’) is fairly accurate in the sense that the weekly costs are comparable to those of Table 4, which
are based on the model that was calibrated on the entire 2007 data set. Therefore, we consider our
estimate to be sufficiently accurate to conclude that overload costs negate only a small fraction of
the total savings achieved.

5.4 Analyzing the Proposed Solution

As indicated above, we chose to submit to B/S/H/ the optimal solution using the 95% reliability
level with respect to the overload risk. We next provide a detailed analysis of this solution and
compare it to the original shipping situation at B/S/H/.

We first discuss the structure of the original routes and the optimized routes in terms of the
amount of LTL and FTL shipments, presented in Table 6. To allow a meaningful comparison, the
reported costs of the original routes are based on the model we presented in the Flex-Run Design
section. In Table 6, we report for each route type the average mileage, the average cost per week,
the average ton-mileage per week, and the average cost per ton-mile. A first observation is that
the number of routes dramatically decreased from 165 to 60 routes in total, most of which are
3-stop FTLs. Interestingly, the average mileage for the resulting optimized LTL routes is higher
than the original LTL routes. Indeed, an analysis of our solution showed that the best candidates
for optimized LTL routes are those that are geographically isolated from the others, while other
factors are low shipping weight and high variability.

To identify which routes (and suppliers) attribute most to the total cost savings of about
25%, we present in Table 7 the average unit costs for the different route conversion: from LTL to
Optimized LTL, from LTL to Optimized FTL, and from FTL to Optimized FTL. The most important
contribution stems from the conversion of LTL routes into Optimized FTL routes (from $0.44 to
$0.21 per ton-mile), while converting LTLs and FTLs into optimized LTLs and FTLs contribute
relatively less to the savings.
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Optimized Routes

Original Routes 95% reliability

Type Conversion $/ton·mi ton·mi/week $/ton·mi

LTL→ LTL Optimized $ 0.44 30,813 $ 0.39

LTL→ FTL Optimized $ 0.44 91,893 $ 0.21

FTL→ FTL Optimized $ 0.29 258,966 $ 0.21

Table 7: Cost savings appear when converting the original routes into optimized routes.

FTL Original 95% reliability 90% reliability

Average Utilization 38.1% 48.5% 55.5%

10%-Peak Utilization - 81.9% 96.5%

5%-Peak Utilization - 96.6% 115.6%

Table 8: Comparing the average and peak FTL truck utilization of the optimized solution with the
original shipping situation.

Finally, we analyze the truck utilization of our optimized solution, as compared to the original
shipping situation at B/S/H/. As was reported in Table 1, the current shipping situation uses only
38% of the FTL truck capacity, on average. We report in Table 8 the average truck utilization of
our proposed solution, as well as the ‘peak utilization’. The latter is defined as the average of the
highest loads over all trucks. For example, the 10% peak utilization collects for all trucks the 10%
highest load volumes, and the average is reported as the 10%-peak volume (in percentage of the
capacity). Similarly for the 5%-peak volume. The results in Table 8 clearly show an improvement
in average truck utilization with respect to the original situation (from 38.1% to 48.5%). We note
that the average truck utilization is deliberately kept at a relatively low level by our optimization
model, to allow a reliability buffer for the flex-runs. That this is indeed needed is shown by the
peak utilization of the trucks. For example, for the 95% reliability level, the 10%-peak utilization
is 81.9% of the truck capacity. This means that many flex-runs will in fact be almost completely
filled during roughly 10% of the schedule execution. We note that for the 90% reliability level,
the higher chance of overloading is witnessed by the 5%-peak utilization of 115.6% of the truck
capacity (i.e., an overload of 15.6%).

6 Implementation in Practice

From the perspective of B/S/H/, the initial goal of this project was to gain insight in the potential cost
savings for their inbound freight logistics operations. If these cost savings are high, a company-
wide implementation could be worthwhile. B/S/H/ further envisioned that the insight gained by
this project (particularly the cost savings) could be useful during the contract negotiations with
their logistics providers.

We provided B/S/H/with the findings reported in this work. In particular, we presented them
the optimal solution with a 95% reliability level for the overload risk. Our reported expected cost
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savings of up to 25% led B/S/H/ to initiate an implementation of our solution, first on a small scale.
Based on the solution we reported, B/S/H/ selected a subset of most profitable felx-runs and

locations, as candidates to implement in a first phase. For this subset, B/S/H/ provided more
detailed information and restrictions that needed to be taken into account. For example, for some
of the routes stacking and volume restrictions were added, while for other routes it was important
to respect a certain order to visit the suppliers. Our model can easily handle all these additional
restrictions during the route generation process: we only include those routes that are feasible
with respect to all restrictions. From the solution that was obtained by re-optimizing this model,
B/S/H/ selected five flex-runs for actual implementation in practice.

It should be noted that our proposed solution can have major implications throughout the
organization at B/S/H/. Most importantly, it requires communication between different logistics
planners, sometimes even between different plants. It could therefore be useful in practice to limit
such communication by introducing certain planning protocols for shared trucks. Alternatively,
one could try to make the communication more transparent through a web-based plant-wide
planning tool. In any case, this is an important issue that must not be ignored during the imple-
mentation.

Another important issue is the reward and incentive structure at manufacturing companies
such as B/S/H/. Currently at B/S/H/, logistics planners are mainly evaluated based on inventory
levels (the lower the better), while transportation costs are mostly ignored. Since our proposed
solution focuses on optimizing the transportation costs, there is no immediate incentive for logistics
planners to put extra effort in the successful implementation of our solution. It would therefore be
advisable if the evaluation of the logistics planners would take transportation costs into account
as well.

7 Summary and Conclusions

We have described an approach to optimize the inbound freight logistics for Bosch/Siemens in
North America, a leading manufacturer of home appliances. The computational model of our
approach is based on combining individual supplier’s shipments into ‘flex-runs’ (milk-runs that
are flexible with respect to shipping volume fluctuations) such that total logistic costs are reduced
while maintaining, if not increasing, the reliability of the shipping schedule. To this end, we exploit
correlations between the variations in shipping volume for different supplier locations, to ensure
that each potential route does not overload with respect to a given level of reliability. The design
of our routes further allows the shipping volumes to be combined in various proportions using
any desired level of precision. Our approach applies integer linear programming and column
generation, where the columns of the model correspond to feasible (flex-run) routes.

We have demonstrated the benefits of our approach on real-life data from Bosch/Siemens. For
this data set, we pool volumes from up to three suppliers onto a single route, which allows us to
generate the required feasible routes in a pre-processing phase. When more than three stops are
demanded, the number of feasible routes quickly grows too large, and delayed column generation
can be employed instead.

Our most important finding is that with our optimized solution, expected cost savings of up
to 25% can be achieved with respect to the current shipping situation, while at the same time,
the robustness of the schedule with respect to changes in shipping volume increases. An initial
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implementation of our proposed solution is currently initiated at Bosch/Siemens. Our approach is
not restricted to the situation at Bosch/Siemens however, but in fact is broadly applicable.
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