
An MDD Approach to Multidimensional
Bin Packing ?

Brian Kell1 and Willem-Jan van Hoeve2

1 Department of Mathematical Sciences, Carnegie Mellon University
bkell@cmu.edu

2 Tepper School of Business, Carnegie Mellon University
vanhoeve@andrew.cmu.edu

Abstract. We investigate the application of multivalued decision dia-
grams (MDDs) to multidimensional bin packing problems. In these prob-
lems, each bin has a multidimensional capacity and each item has an
associated multidimensional size. We develop several MDD representa-
tions for this problem, and explore different MDD construction methods
including a new heuristic-driven depth-first compilation scheme. We also
derive MDD restrictions and relaxations, using a novel application of a
clustering algorithm to identify approximate equivalence classes among
MDD nodes. Our experimental results show that these techniques can
significantly outperform current CP and MIP solvers.

1 Introduction

Many related problems in combinatorial optimization are collectively referred to
as “bin packing problems.” In the classical bin packing problem, the input is a
list (s1, . . . , sn) of item sizes, each in the interval (0, 1], and the objective is to
pack the n items into a minimum number of bins of capacity 1.

In this paper we study a multidimensional variant of the bin packing problem,
presented as a satisfaction problem. An instance of this problem consists of
a list (s1, . . . , sn) of item sizes and a list (c1, . . . , cm) of bin capacities. Each
item size and each bin capacity is a d-tuple of nonnegative integers; e.g., si =
(si,1, . . . , si,d). The objective is to assign each of the n items to one of the m bins
in such a way that, for every bin and in every dimension, the total size of the
items assigned to the bin does not exceed the bin capacity.

This can be viewed as a constraint satisfaction problem (CSP) with n vari-
ables and md constraints. Each variable xi has domain {1, . . . ,m} and de-
notes the bin into which the ith item is placed. The constraints require that∑

i:xi=j si,k ≤ cj,k for all j ∈ {1, . . . ,m} and all k ∈ {1, . . . , d}.
Note that the “dimensions” in this problem should not be interpreted as

geometric dimensions. In this way the problem studied here differs from the
two- and three-dimensional bin packing problems studied, for example, in [10,

? This work was supported by the NSF under grant CMMI-1130012 and a Google
Research Grant.

11], in which the items and bins are geometric rectangles or cuboids. Rather,
the dimensions in the problem studied in this paper correspond to independent
one-dimensional bin packing constraints that must be satisfied simultaneously.

Multidimensional bin packing (MBP) problems of the kind considered in this
paper appear in practice. For example, the Google ROADEF/EURO challenge
2011–20123 involves a set of machines with several resources, such as RAM
and CPU, running processes which consume those resources. However, these
problems have received relatively little attention in the literature. Current CP
methods are weak on problems involving simultaneous bin packing constraints.
Current MIP methods do better but are still limited in their effectiveness.

In this paper we make the following contributions. We present a new generic
exploratory construction algorithm for multivalued decision diagrams (MDDs)
and a novel application of the median cut algorithm in the construction of ap-
proximate MDDs. We also describe several techniques specific to the use of
MDDs for the MBP problem. Our experimental results show that such tech-
niques can yield an improvement on existing methods.

The remainder of the paper is organized as follows. In Section 2 we present
several generic approaches to the construction of MDDs. The focus of Section 3
is approximate MDDs, which represent sets of solutions to relaxations or re-
strictions of problem instances. In Section 4 we discuss techniques that can be
used to apply MDDs to the MBP problem. In Section 5 we present experimental
results comparing the performance of the techniques described in this paper to
that of commercial CP and MIP solvers. We conclude in Section 6.

2 MDD Construction

In this section we present a generic algorithm for the construction of an MDD
representing the set of feasible solutions to a CSP. A CSP is specified by a set
of constraints {C1, . . . , Cp} on a set of variables {x1, . . . , xn} having domains
D1, . . . , Dn, respectively. A solution to a CSP is an n-tuple (y1, . . . , yn) ∈ D1 ×
· · · ×Dn. A solution is feasible if the set of assignments x1 = y1, . . . , xn = yn
satisfies every constraint Cj .

A multivalued decision diagram (MDD) [13] is an edge-labeled acyclic di-
rected multigraph whose nodes are arranged in n+ 1 layers L1, . . . , Ln+1. The
layer L1 consists of a single node, called the root. Every edge in the MDD is
directed from a node in Li to a node in Li+1. All of the edges directed out of a
node have distinct labels. The nodes in layer Ln+1 are called sinks or terminals.
In this paper we shall primarily be interested in MDDs having a single sink
(which represents feasibility), but the ideas can easily be generalized to MDDs
with multiple sinks [13].

Let I be an instance of a CSP. An MDD M can be used to represent a set
of solutions to I as follows [1]. The layers L1, . . . , Ln correspond respectively
to the variables x1, . . . , xn in I. An edge directed from a node in Li to a node

3 Online: http://challenge.roadef.org/2012/en/index.php.

in Li+1 and having the label yi, where yi ∈ Di, corresponds to the assignment
xi = yi. Therefore a path from the root to the sink along edges labeled y1, . . . , yn
corresponds to the solution (y1, . . . , yn). The MDD M represents the set M
of solutions corresponding to all such paths. Let F denote the set of feasible
solutions to I. If M = F , M ⊇ F , or M ⊆ F , then M is said to be an exact
MDD, a relaxation MDD, or a restriction MDD for I, respectively [1, 3, 4, 6]. We
shall consider only exact MDDs in this section; relaxation and restriction MDDs
will be considered in Section 3.

A path in an MDD from the root to a node in the layer Li+1 represents a
partial solution y = (y1, . . . , yi) ∈ D1×· · ·×Di; we shall say that the level of this
partial solution is i and write level(y) = i. Let F(y) denote the set of feasible
completions of this partial solution, that is, F(y) = { z ∈ Di+1 × · · · × Dn |
(y, z) is feasible }. If y and y′ are partial solutions with F(y) = F(y′), then we
say that y and y′ are equivalent. Note that in an exact MDD all paths from the
root to a fixed node v represent equivalent partial solutions, and conversely if
two partial solutions y and y′ are equivalent then the paths in an exact MDD
that correspond to y and y′ can lead to the same node.

Direct MDD Representation for Multidimensional Bin Packing. Let I
be an MBP instance, having n items and m bins. A direct MDD representation
of the set of feasible solutions of I has layers L1, . . . , Ln corresponding to the
variables x1, . . . , xn, and also the last layer Ln+1 which contains the sink. The
edge labels are elements of {1, . . . ,m}. A path from the root to the sink along
edges labeled y1, . . . , yn represents the feasible solution (y1, . . . , yn), that is, the
feasible solution in which item i is placed into bin yi.

For example, Figure 1a shows the direct MDD representation for a one-
dimensional bin packing instance having two bins, each of capacity 7, and four
items, with sizes 5, 3, 2, and 1. There are six paths from the root to the sink,
representing the six feasible solutions; for instance, the path following the edges
labeled 2, 1, 1, 2 corresponds to the solution in which the item of size 5 is packed
in bin 2, the items of size 3 and 2 are packed in bin 1, and the item of size 1 is
packed in bin 2. The node labels are states; we discuss these next.

Equivalence of Partial Solutions. Equivalent partial solutions have the same
set of feasible completions. Hence, the recognition that two partial solutions are
equivalent reduces the size of the MDD, because the corresponding paths can
lead to the same node.

In general, determining whether two partial solutions are equivalent is NP-
hard for the MBP problem (because it is NP-hard even to determine whether a
one-dimensional instance is feasible). However, we can sometimes determine that
two partial solutions are equivalent by associating partial solutions with “states.”
A state function for layer i is a map σi from the set Yi = D1 × · · · × Di−1 of
partial solutions at layer i into some set Si of states, such that σi(y) = σi(y

′)
implies F(y) = F(y′). In other words, two partial solutions that lead to the same
state have the same set of feasible completions. (A “perfect” state function would

7, 7

2, 7

1

7, 2

2

2, 4

 2

4, 2

 1

0, 4

1

2, 2

2 1

4, 0

2

T

2 1 2 1

(a) Direct MDD.

7×2

2, 7

 7

2, 4

 7

0, 4

2

2×2

4

T

4 2

(b) Ullage MDD.

7×2

2, 6

 7

2, 3

 6

0, 1

2

1×2

3

T

1 1

(c) Ullage MDD, with
ullages rounded down.

Fig. 1. MDD representations of a one-dimensional bin packing instance having two
bins, each of capacity 7, and four items, with sizes 5, 3, 2, and 1.

also allow us to say that two partial solutions that lead to different states have
different sets of feasible completions, and we strive for this ideal, but for practical
reasons our state function should be easy to compute, so we cannot require this.)

Consider an MBP instance. After items having sizes si1 , . . . , sik have been

placed into a bin of capacity cj , the remaining capacity of the bin is cj−
∑k

l=1 sil .
(Recall that the item sizes and bin capacities are d-tuples; here and elsewhere
addition and subtraction of d-tuples is done componentwise.) We shall call this
remaining capacity the ullage of the bin; it is a d-tuple. (The word “ullage”
means “the amount by which a container falls short of being full.”) Of course,
the ullage of each bin is nonincreasing (componentwise) as the items are placed
one by one into the bins.

A useful state function for the direct MDD representation is the map σi
from a partial solution y = (y1, . . . , yi−1) to the list (u1, . . . , um) of the ul-
lages uj of the m bins; in other words, for j ∈ {1, . . . ,m}, we take uj =
cj −

∑
k∈{1,...,i−1}:yk=j sk. For example, in Fig. 1a, the path from the root along

the edges labeled 1, 2, 2 represents a partial solution for which the ullages of
the two bins are each 2, so the state of this partial solution is (2, 2). The partial
solution corresponding to the path 2, 1, 1 has the same state. Observe that if
two partial solutions at layer i have the same lists of ullages, then they have the
same set of feasible completions, so this is indeed a state function.

Exact MDD Construction. Behle [2] described a top-down algorithm for
the construction of threshold binary decision diagrams (BDDs), which are exact
representations of solution sets of instances of 0–1 knapsack problems. A general
algorithm for a top-down, layer-by-layer (i.e., breadth-first) construction of an
MDD is presented as Algorithm 1, “Top-down MDD compilation,” in Bergman
et al. [4]. The key to the top-down construction of an MDD is the identification

of a node equivalence test, which determines when two nodes on the same layer
(each representing one or more partial solutions) have the same set of feasible
completions; this is exactly what a state function does.

So far we have spoken of the states of partial solutions. We shall now extend
this idea to states of nodes in an MDD. In the MDD that we construct, partial
solutions at layer i that lead to the same state will correspond to paths from
the root that lead to the same node; we shall associate this state with this node.
Now, given a node v in layer Li in the MDD and its state, which we shall write
as state(v), and given a value yi ∈ Di, we can determine the state of a child
node w of v if the edge (v, w) has label yi. This is simply the state of the feasible
solution (y, yi), where y is any feasible solution corresponding to the node v.
For instance, suppose v is a node in layer Li of a direct bin packing MDD, and
suppose the state of v (i.e., the corresponding list of ullages) is (u1, . . . , um). Then
the child state corresponding to yi ∈ Di is (u1, . . . , uyi−1, uyi

−si, uyi+1, . . . , um).

To be more precise, and to make these ideas applicable to generic CSPs, we
make the following definitions. Let i ∈ {1, . . . , n+ 1}. Let Yi = D1 × · · · ×Di−1
denote the set of partial solutions at level i; take Y1 = {∅}, a singleton set having
one element representing the empty partial solution. Let Si be an arbitrary
set whose elements are called states and which contains a special element ⊥
indicating infeasibility. Recall that we say that σi : Yi → Si is a state function
if σi(y) = σi(y

′) implies F(y) = F(y′); we also require that σi(y) = ⊥ implies
F(y) = ∅. We assume that we can test the feasibility of a (complete) solution, so
for y ∈ Yn+1 we require that σn+1(y) = ⊥ if F(y) = ∅. For i ∈ {1, . . . , n}, we say
that χi : Si × Di → Si+1 is a child state function if χi

(
σi(y), yi

)
= σi+1(y, yi)

for all y ∈ Yi and all yi ∈ Di.

In order to use state information effectively in the construction of an MDD,
we must maintain, for each layer Li, a mapping from states to nodes that have
already been constructed in Li. When we seek a node in Li having state s, we
consult this mapping to see if such a node already exists. Such a mapping can
be implemented with a hash table. It is often called the unique table because it
ensures that the node representing state s in layer Li is unique [9].

Algorithm 1 constructs an exact MDD. For each i ∈ {1, . . . , n + 1} let σi
be a state function, and for each i ∈ {1, . . . , n} let χi be a corresponding child
state function. Let r be the root node. The algorithm maintains a collection T of
nodes to be processed, i.e., nodes whose children need to be constructed. When
a node v in layer i is processed, each possible domain value y ∈ Di is considered,
and the corresponding child state s is computed. The unique table is consulted
to see if a node w with state s already exists in layer Li+1; if not, a new node w
is constructed and added to T . Then the edge (v, w) is added to the MDD with
label y. This is repeated until all nodes have been processed.

Exploratory Construction. The main difference between Algorithm 1 and the
top-down exact MDD compilation algorithm of Bergman et al. is the order in
which the nodes are processed. Instead of requiring that the nodes be processed
layer by layer, we allow the collection T to provide the nodes in any order. This

Algorithm 1 Exact MDD Construction

1: L1 := {r}
2: T := {r}
3: while T is not empty do
4: select v ∈ T and remove it from T
5: i := layer(v)
6: for all y ∈ Di do
7: s := χi(state(v), y)
8: if s 6= ⊥ then
9: w := unique-table(i+ 1, s)

10: if w = nil then
11: w := new node with state s
12: add w to Li+1

13: add w to T
14: add edge (v, w) with label y

generalization permits exploratory construction of the MDD. For example, if we
are constructing the MDD in order to seek a feasible solution, we can build it in
a depth-first manner by taking T to be a stack. The layer-by-layer behavior of
the algorithm of Bergman et al. can be achieved by using a queue for T . Note
that if we do construct the MDD layer by layer, we can discard the unique table
for each layer as soon as we have finished processing the previous layer.

It is useful to have a heuristic to estimate the “promise” of a partial solution,
that is, the likelihood that it has a feasible completion. Such a heuristic can
be used to guide the depth-first construction of an MDD in search of a feasible
solution. For the MBP problem, we propose the following heuristic. Given a
partial solution (y1, . . . , yi) describing the packing of the first i items into bins,
we perform a non-backtracking random packing of the remaining items (i + 1,
. . . , n) as well as we can without violating the bin packing constraints. In other
words, we iterate through the remaining items in order, and we pack each item
into one of the bins that has sufficient ullage, chosen at random; if no such bin
exists, we put the item into a trash pile. At the end we count the total size of the
items in the trash pile, along all d dimensions, and this number is the score of this
packing. This random packing of the remaining items is repeated several times,
and the total score of these packings is used as the heuristic value of the partial
solution; a low score is better. (Occasionally, while we are computing the heuristic
for a partial solution in this way, we may luckily find a feasible completion: the
trash pile will be empty. In this case, if we are constructing the MDD merely to
seek a feasible solution, we can immediately return the solution thus found.)

With such a heuristic, we can use a priority queue for T to select the most
promising nodes to process next. Alternatively, we can use a stack for T and
modify Algorithm 1 slightly so that when we process a node we construct all
its children, evaluate their heuristics, and then add them to T in reverse order
of their promise. This will yield a depth-first algorithm that explores the most
promising child of each node first.

This depth-first MDD construction process, especially if it is being used sim-
ply to find a feasible solution, is very similar to a backtracking search. It is an
improvement, however, because the MDD nodes act as a memoization technique
to prevent the exploration of portions of the search tree that can be recognized
as equivalent to portions already explored.

3 Approximate MDDs

In general, exact MDDs can be of exponential size, so the use of Algorithm 1
may not be practical because of space limitations. In this case we may be able
to use an approximate MDD to get useful results.

The MDDs described in this section are called approximate because their
structure approximates the structure of the exact MDD. An approximate MDD
represents a set of solutions to a relaxation or a restriction of the problem in-
stance. Hence, if a restriction MDD indicates that an instance is feasible, then
every solution it represents (i.e., every path from the root to the sink) is an exact
feasible solution to the original instance. Similarly, an indication of infeasibility
from a relaxation MDD is a proof that the original instance is infeasible. In this
way, relaxation and restriction MDDs can be used together to determine the
feasibility or infeasibility of an instance, and to get an exact feasible solution if
the instance is feasible. Of course, it is possible for a relaxation MDD to indicate
that an instance is feasible while a restriction MDD indicates it is infeasible, in
which case nothing is learned. In response, one could construct MDDs represent-
ing tighter relaxations or restrictions (probably at the cost of greater time and
space requirements), or could embed the MDDs inside a complete search.

Approximation MDDs by Merging. MDDs of limited width were proposed
by Andersen et al. [1] to reduce space requirements. In this approach, the MDD
is constructed in a top-down, layer-by-layer manner; whenever a layer of the
MDD exceeds some preset value W an approximation operation is applied to
reduce its size to W before constructing the next layer. For this approximation,
Bergman et al. [4] use a relaxation operation ⊕ defined on states of nodes so
that, given nodes v and v′, the state given by state(v)⊕state(v′) is a “relaxation”
of both state(v) and state(v′); see also [8].

We can formalize this idea as follows. Let Ci = Di × · · · ×Dn denote the set
of completions at level i (independent of any particular partial solution). For a
partial solution y ∈ Yi, the set of feasible completions of y is some subset of Ci,
so F(y) ∈ P(Ci), where P denotes the power set. Recall that a state function
σi : Yi → Si is such that σi(y) = σi(y

′) implies F(y) = F(y′), and σi(y) = ⊥
implies F(y) = ∅. The existence of such a function implies the existence of a
completion function τi : Si → P(Ci) such that τi

(
σi(y)

)
= F(y) for all y ∈ Yi.

For i ∈ {1, . . . , n}, we say that a binary operation ∨i : Si×Si → Si is a relaxation
merge if for all y, y′ ∈ Yi we have τi

(
σi(y) ∨i σi(y′)

)
⊇ F(y) ∪ F(y′). In other

words, the set of feasible completions implied by the state σi(y)∨iσi(y′) contains
all feasible completions implied by the state σi(y) and all feasible completions

Algorithm 2 Approximate MDD Construction by Merging

1: L1 := {r}
2: for i = 1 to n do
3: Li+1 := ∅
4: for all v ∈ Li do
5: for all y ∈ Di do
6: s := χi(state(v), y)
7: if s 6= ⊥ then
8: w := unique-table(i+ 1, s)
9: if w = nil then

10: w := new node with state s
11: add w to Li+1

12: add edge (v, w) with label y
13: if |Li+1| > W then
14: partition Li+1 into W clusters A1, . . . , AW

15: for j = 1 to W do
16: wj := new node with state

∨
Aj (or

∧
Aj)

17: for all v ∈ Aj do
18: change every edge (u, v) to (u,wj) with the same label
19: Li+1 := {w1, . . . , wW }

implied by the state σi(y
′). Similarly, we call ∧i : Si×Si → Si a restriction merge

if for all y, y′ ∈ Yi we have τi
(
σi(y)∧i σi(y′)

)
⊆ F(y)∩F(y′). For simplicity, we

shall omit the subscript and just write ∨ or ∧. These merge operations need not
be associative or commutative. However, in a slight abuse of notation, we shall
write

∨
A to denote a combination of all elements s ∈ A ⊆ Si using the relaxation

merge operation ∨, in any order and parenthesized in any way; likewise for
∧
A.

For the direct MDD representation of an MBP instance, in which node states
are lists of ullages (u1, . . . , um), an appropriate relaxation (respectively, restric-
tion) merge is the componentwise maximum (respectively, minimum).

Bergman et al. give an algorithm to construct a limited-width MDD which
iteratively merges pairs of nodes in a layer using a relaxation merge. We propose
a refinement of this technique that uses a clustering algorithm to partition the
nodes in the layer into W clusters; the nodes in each cluster are then merged
into a single node. This is outlined in Algorithm 2.

To perform the clustering of nodes on line 14 of Algorithm 2, we adapted the
median cut algorithm of Heckbert [7], which was originally designed for color
quantization of images. The median cut algorithm operates on a set of points in
q-dimensional Euclidean space (in the original version, q = 3, representing the
red, green, and blue components of each pixel in the image) and partitions the
points into clusters. Initially all of the points are grouped into a single cluster,
which is tightly enclosed by a q-dimensional rectangular box. Then the following
operation is repeatedly performed: the box having the longest length (among
all boxes in all q dimensions) is selected, and it is divided into two boxes along
this longest length at the median point, that is, in such a way that each of
the two smaller boxes contains approximately half of the points in the original

Algorithm 3 Restriction MDD Construction by Deletion

1: (lines 1–12 are the same as in Algorithm 2)
13: if |Li+1| > W then
14: use heuristic to select most promising nodes w1, . . . , wW ∈ Li+1

15: for all w ∈ Li+1 \ {w1, . . . , wW } do
16: delete w from Li+1 and delete all edges (u,w)

box; the two smaller boxes are then “shrunk” to fit tightly around the points
they contain. This process continues until the desired number of clusters (boxes)
have been generated. The median cut algorithm can be implemented to run in
O
(
K(pq + logK)

)
time, where K is the desired number of clusters, p is the

number of points, and q is the number of dimensions.

To apply the median cut algorithm to the nodes in a layer of an MDD, we
interpret the state of each node as a point in q-dimensional Euclidean space, for
some value of q. For the direct MDD representation of an MBP instance, the
state of a node is a list of d-dimensional ullages, one for each of the m bins; so
we view this state directly as an md-dimensional point.

If a merged MDD reports that a CSP is feasible, it is desirable to extract a
(possibly) feasible solution from it. One way to do this is to maintain a represen-
tative partial solution for each node as the MDD is constructed; when two nodes
are merged, either of the two corresponding partial solutions can be selected
(perhaps in accordance with a heuristic) as the representative partial solution
for the merged node. Then the representative (complete) solution at the sink will
be a (possibly) feasible solution for the CSP. The representative partial solution
can be viewed as auxiliary state information of the node.

Restriction MDDs by Deletion. Algorithm 2 can be used to construct a
limited-width MDD by merging nodes when the size of a layer becomes too
large. If we are constructing a restriction MDD, however, then another option
is simply to delete some of the nodes in the layer [3]. The selection of nodes to
keep can be guided by a heuristic. This is described in Algorithm 3.

We note that this deletion algorithm does not use a partitioning algorithm to
cluster the nodes in each layer as the merging algorithm does; instead it incurs
the cost of computing a heuristic for each node. So the deletion algorithm may
be especially beneficial if partitioning the nodes in a layer of the MDD is slower
than computing a heuristic for a node.

4 MDD Techniques for Bin Packing

In the previous sections we have presented generic MDD construction algorithms,
suitable for any CSP. In this section we specialize some of these techniques to
the MBP problem.

Ullage MDD Representation. Let I be an MBP instance, having n items
and m bins. One difficulty with the direct MDD representation of I is that it
does not take into account the possible symmetry of the bins. For example,
suppose that item 1 will fit in any of the m bins. Then the root of the direct
MDD will have m outgoing edges labeled 1 through m, indicating the possible
bins into which item 1 can be packed. However, if the bins are all identical,
these possibilities are essentially equivalent (up to a reordering of the bins). The
direct MDD representation cannot recognize this equivalence, because the sets
of feasible completions, corresponding to edge-labeled paths in the MDD, are
different. For example, in Fig. 1a, the two edges directed out of the root node
represent essentially equivalent choices.

To address the possible symmetry of the bins, we can reduce the number of
distinct descriptions of feasible solutions by expressing the solutions differently.
Rather than assigning items directly to bins, we assign each item to an ullage.
For example, instead of saying that item 3 is packed into bin 2, we say that it is
packed into a bin with ullage 4. We call this the ullage description of the solution;
it consists of a list (u1, . . . , un) of d-tuples, assigning an ullage to each item.

To specify the domains of the variables ui in the ullage description of a
solution, we define the ullage multiset function U . If C = (c1, . . . , cm) is the list
of bin capacities in I, then U

(
C, (u1, . . . , ui)

)
denotes the multiset of ullages after

the first i items have been placed into bins as described by the list (u1, . . . , ui).
This is the same as the multiset of ullages after the first i − 1 items have been
placed, except that an item of size si was placed into a bin having ullage ui;
so an element ui of the multiset should be removed and replaced by an element
ui − si. Formally, we can define U recursively as follows:

– U(C, ∅) = C (viewing C as a multiset).
– For i ∈ {1, . . . , n}, if Ui−1 = U

(
C, (u1, . . . , ui−1)

)
is defined and ui ∈ Ui−1,

then U
(
C, (u1, . . . , ui)

)
= (Ui−1 \ ui) ∪ {ui − si}.

With this definition of U , the domain of the variable ui in the ullage description
of a solution is U

(
C, (u1, . . . , ui−1)

)
. Note that this domain depends on the values

that have previously been assigned to u1, . . . , ui−1.
An ullage MDD representation of the set of feasible solutions of I has layers

L1, . . . , Ln+1. The label of an edge directed out of a node in layer Li in an ullage
MDD is a d-tuple, representing the ullage of the bin into which item i is to be
placed (after items 1 through i − 1 have been placed into bins). Therefore the
edge labels u1, . . . , un along a path from the root to the sink in an ullage MDD
correspond to an ullage description (u1, . . . , un) of a feasible solution to I.

Fig. 1b illustrates the ullage MDD representation for the one-dimensional
bin packing instance having two bins of capacity 7 and items with sizes 5, 3, 2,
and 1. At the root, the state is {7× 2}, i.e., a multiset containing the element 7
with multiplicity 2. The first item, of size 5, must be placed in a bin having
ullage 7; this leads to the state {2, 7}. Then the second item, of size 3, must be
placed in the bin that now has ullage 7, and so forth. Of course, a path from the
root to the sink in this ullage MDD can easily be converted into an explicit list
of bin assignments if desired.

State Function for the Ullage MDD Representation. For the ullage MDD
representation, it is useful to consider the state of a partial solution having
ullage description (u1, . . . , ui−1) to be U

(
C, (u1, . . . , ui−1)

)
, that is, the multiset

of ullages of the bins.

This idea can be extended to handle side constraints in the CSP. For example,
the steel mill slab problem [12] is essentially a (one-dimensional) bin packing
problem with the additional constraint that each item has a color and no bin
can contain items of more than two colors. To handle a side constraint like this,
we can simply augment the state information of a node to include the colors of
items that have been packed into it so far.

A few observations can be used to identify further equivalent partial solu-
tions. Let uj,k denote the ullage of bin j, in the kth dimension, after we have
placed items 1 through i into bins. Let a denote the greatest possible sum of
a subset of the sizes of items i + 1 through n, in the kth dimension, that does
not exceed uj,k. If a < uj,k, then we may consider the ullage of bin j, in the
kth dimension, to be a rather than uj,k without changing the set of feasible
completions. If the order of the items is fixed, the relevant sets of possible sums
of remaining items can be computed once at the beginning of the MDD con-
struction in O(nc2max) time, where cmax is the largest bin capacity in a single
dimension. Using this technique of “rounding down” the ullages across all bins in
all dimensions, we can sometimes identify additional equivalent partial solutions
(their states may be the same after they are rounded down, even if they were
not the same before). Moreover, after rounding down ullages, we may discover
that the total ullage in all bins is not enough for the remaining items; then we
know that the current state has no feasible completions.

If, after we have placed items 1 through i into bins, there is any bin that
is so small that none of the remaining items will fit, we can declare that bin
dead and remove it from further consideration. This is potentially stronger than
rounding down, because it may be that in each dimension, considered separately,
there is some remaining item that will fit into the bin; but no remaining item is
small enough in every dimension to fit into the bin. Conversely, if after we have
placed items 1 through i into bins, there is some bin that is large enough in every
dimension that all of the remaining items will fit in it, then we know that the
instance is feasible. We call such a bin free. Once we discover a free bin, we can
immediately return a feasible solution: extend a partial solution corresponding
to the current node to a complete solution by packing all remaining items into
the free bin. The ideas underlying the concepts of dead and free bins are present
in Behle’s threshold BDD algorithm [2].

In Fig. 1c we apply the rounding-down technique to the ullage MDD. If we
additionally check for dead and free bins, we will discover a free bin in the second
layer (the bin with rounded-down ullage of 6).

Variable Ordering. The variable ordering used in an MDD can have a very sig-
nificant effect on the size of the MDD. Behle [2] investigated the optimal variable

ordering problem for threshold BDDs. In general, the problem of determining
whether a given variable ordering of a BDD can be improved is NP-complete [5].

For the MBP problem, we take a simple heuristic approach. We observe that
identifying dead bins and free bins is beneficial, and we would like to make such
identifications as soon as possible. If we pack the largest items first, then the
total size of the remaining unpacked items will decrease quickly in the begin-
ning, which suggests that we may reach free bins early; additionally, we will
tend to fill bins quickly in the beginning, which suggests that we may exhaust
the bins’ capacity quickly and reach dead bins early. However, these ideas are
somewhat contradictory, and the latter idea is opposed by the observation that
the unpacked items will be small, so they can fit into small spaces.

We therefore use an “interleaved” ordering, in which the largest item is
packed first, then the smallest item, then the second largest item, then the
second smallest item, and so on, packing the median-sized item last. (Our item
sizes are multidimensional, so we use the total size of the item in all dimen-
sions: si =

∑d
k=1 si,k.) This ordering seemed to work well for our experimental

instances. This straightforward approach means that we can implement variable
ordering by sorting the items in this manner as a preprocessing step.

5 Experimental Results

We implemented the MDD-based algorithms described above in Java, using
the exploratory construction method described in Section 2, the approxima-
tion methods from Section 3, and the ullage MDD representation and the other
techniques described in Section 4.

Our test instances were generated as follows. Given the parameters d (the
number of dimensions), n (the number of items), m (the number of bins), and
β (percentage bin slack), we first generate a list of n item sizes (s1, . . . , sn),
each of which is a d-tuple whose coordinates are integers chosen uniformly and
independently at random from {0, . . . , 1000}. Then the sum t =

∑n
i=1 si is com-

puted, and the m bin capacities are all taken to be d(1 + β/100)t/me; these
computations are done componentwise. (If β = 20, for example, then the total
bin capacity, in each dimension, will be 20% more than the total item size.) An
instance is rejected and regenerated if it contains any single item that is too
large to be placed into a bin, as such an instance is obviously infeasible. Our
test instances have 6 dimensions, 18 items, and 6 bins; we generated 52 such
instances for each integer value of β from 0 to 35. These instances are available
at http://www.math.cmu.edu/~bkell/6-18-6-instances.txt or by request.

By their construction, these instances have identical bins. The ullage MDD
representation can exploit this symmetry effectively to reduce the number of
branches in the search tree. This is especially evident in the infeasible instances,
where infeasibility must be established by some kind of exhaustive search.

The experiments were run on a 32-bit Intel Pentium 4 CPU at 3.00 GHz
with 1 GiB of RAM using Windows 7 Professional. The maximum Java heap
size was set to 512 MiB. We used AIMMS 3.13 with CPOptimizer 12.4 as the CP

solver and CPLEX 12.4 as the MIP solver, with their default settings. The CP
model has n variables x1, . . . , xn, each with domain {1, . . . ,m}; the assignment
xi = j indicates that item i is packed into bin j. These variables are subject
to d independent cp::BinPacking constraints. The MIP model has mn binary
variables xi,j , for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}; the assignment xi,j = 1
indicates that item i is packed into bin j. The MIP model also has a nonnegative
“overflow” variable ωj for each bin, representing the maximum amount by which
the bin is overfull in any dimension, and there is a nonnegative “total overflow”
variable Ω =

∑m
j=1 ωj . The MIP model appears below. It is formulated as a

minimization problem only because that is the form the solver requires; the
constraint Ω = 0 means it is really just a feasibility problem.

min Ω

s.t.

m∑
j=1

xi,j = 1;

n∑
i=1

si,kxi,j ≤ cj,k + ωj for all k ∈ {1, . . . , d}, j ∈ {1, . . . ,m};

Ω =

m∑
j=1

ωj ;

xi,j ∈ {0, 1}, ωj ≥ 0, Ω = 0.

We compared the performance of CP and MIP to our MDD approaches: the
exact MDD (using depth-first, heuristic-driven exploratory construction), a re-
laxation MDD using the relaxation merge operation, and restriction MDDs using
the restriction merge operation or deletion. All instances were run to completion
using each method. The maximum width for the approximation MDDs was set
to 5000 nodes. With this width, the approximation MDDs returned “feasible”
or “infeasible” correctly in all instances except two: the restriction merge MDD
returned “infeasible” incorrectly for one instance with 25% bin slack and one in-
stance with 26% bin slack. The combination of the relaxation merge MDD and
the deletion (restriction) MDD was enough to correctly solve all 1872 instances.

Fig. 2 shows a clear feasibility phase transition centered around approxi-
mately 20% bin slack, with a corresponding hardness peak. In the infeasible
region, on instances having bin slack between about 2% and 22%, the average
run time of the exact MDD method is consistently less than that of MIP and
significantly less than that of CP (by over three orders of magnitude at 20% bin
slack). On the other hand, in the feasible region, on instances having bin slack
more than about 25%, CP and MIP both tend to outperform the exact MDD
method. A notable exception (visible as a spike in the hardness profile) occurs
at 27% bin slack, for which one of the 52 generated instances happened to be
infeasible; this single infeasible instance greatly increased the average run time
of CP and MIP without noticeably affecting the performance of the exact MDD.

We investigated the instances at the hardness peak, i.e., those having 20%
bin slack, in more detail. A performance profile for these instances appears in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35
 0.01

 0.1

 1

 10

 100

 1000

 10000

F
ra

c
ti
o
n
 o

f
in

s
ta

n
c
e
s
 f
e
a
s
ib

le

A
v
e
ra

g
e
 r

u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Percentage bin slack

Feasibility
CP

MIP
Exact MDD

Fig. 2. Feasibility and hardness profiles for instances having 6 dimensions, 18 items,
and 6 bins.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

F
ra

c
ti
o
n
 o

f
in

s
ta

n
c
e
s
 s

o
lv

e
d

Time (seconds)

CP
MIP

Exact MDD
Relaxation merge + deletion

Fig. 3. Performance profile on the subset of instances having 20% bin slack.

Fig. 3, including CP, MIP, the exact MDD, and the combination of the relax-
ation merge MDD and the deletion (restriction) MDD. The CP solver required
over 400 seconds for 35 instances (67%), taking almost 14000 seconds in the
extreme case. The MIP solver did much better, solving every instance in less
than 12 seconds. The exact MDD method, which solved each instance in less
than 6 seconds, was faster than MIP in 32 instances (62%), while the relaxation
MDD and the deletion MDD together (sufficient in all 52 instances to establish
feasibility or infeasibility) were faster than MIP in 24 instances (46%).

When we look only at the 37 infeasible instances with 20% bin slack, as seen
in Fig. 4a, the difference between CP/MIP and the MDD approaches becomes
clearer. (Restriction MDDs do not give useful results for infeasible instances, so
they are omitted from this plot merely for clarity. All of the approximate MDD
methods we implemented ran about equally fast on all instances with 20% bin
slack, so using a restriction MDD together with the relaxation approximately

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

F
ra

c
ti
o
n
 o

f
in

s
ta

n
c
e
s
 s

o
lv

e
d

Time (seconds)

CP
MIP

Exact MDD
Relaxation merge

(a) Infeasible instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10

F
ra

c
ti
o
n
 o

f
in

s
ta

n
c
e
s
 s

o
lv

e
d

Time (seconds)

CP
MIP

Exact MDD
Restriction merge

Deletion

(b) Feasible instances.

Fig. 4. Performance profiles on infeasible and feasible instances having 20% bin slack.

doubles the run time.) On the other hand, in the performance profile on the
15 feasible instances with 20% bin slack, shown in Fig. 4b (with the relaxation
MDD omitted), the various methods are not as clearly separated.

The advantage of the ullage MDD representation on infeasible instances
comes from its ability to exploit the symmetry among identical bins in order to
reduce the number of branches taken in an exhaustive search. However, on fea-
sible instances, our Java code, which is not particularly optimized, does not find
solutions as quickly as the commercial CP and MIP solvers do. The depth-first,
heuristic-driven algorithm tends to solve feasible instances more quickly than
the layer-by-layer approximation algorithms, but limited-width MDDs tend to
be faster than exact MDDs on infeasible instances.

6 Conclusions

Our aim was to investigate the use of MDDs for the MBP problem. We de-
scribed several variations of a generic algorithm for the construction of exact
and approximate MDDs representing sets of feasible solutions to CSPs, includ-
ing a heuristic-driven depth-first method to construct an exact MDD and an
application of a clustering algorithm to construct approximate MDDs. We also
examined several techniques to work with MBP instances effectively with MDDs,
including the ullage MDD representation to handle symmetry, a rounding-down
technique to more reliably detect equivalent nodes, and the identification of free
and dead bins to quickly recognize feasibility and infeasibility. Experimental re-
sults show that our MDD algorithms, when combined with these representation
techniques, can significantly outperform currently used CP techniques and can
also consistently outperform MIP.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store
based on multivalued decision diagrams. Principles and Practice of Constraint
Programming–CP 2007 (2007) 118–132

2. Behle, M.: On threshold BDDs and the optimal variable ordering problem. Journal
of Combinatorial Optimization 16 (2008) 107–118

3. Bergman, D., Cire, A.A., Hoeve, W.-J. van, Yunes, T.: BDD-based heuristics for
binary optimization. Submitted (2013)

4. Bergman, D., Hoeve, W.-J. van, Hooker, J.N.: Manipulating MDD relaxations
for combinatorial optimization. In Achterberg, T., Beck, J. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Berlin (2011)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers 45(9) (1996) 993–1002

6. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 448–462. Springer, Berlin (2008)

7. Heckbert, P.: Color image quantization for frame buffer display. In: SIGGRAPH
’82, pp. 297–307. ACM, New York (1982)

8. Hoda, S., Hoeve, W.-J. van, Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Berlin (2010)

9. Knuth, D.E.: The Art of Computer Programming, volume 4, fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley (2009)

10. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey.
European Journal of Operational Research 141(2) (2002) 241–252

11. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem.
Operations Research 48 (2000) 256–267

12. Schaus, P., Van Hentenryck, P., Monette, J.-N., Coffrin, C., Michel, L., Deville,
Y.: Solving steel mill slab problems with constraint-based techniques: CP, LNS,
and CBLS. Constraints 16(2) (2011) 125–147

13. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and
Applications. SIAM, Philadelphia (2000)

