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Abstract In this paper we introduce a new method for generating heuris-
tic solutions to binary optimization problems. We develop a technique based
on binary decision diagrams. We use these structures to provide an under-
approximation to the set of feasible solutions. We show that the proposed
algorithm delivers comparable solutions to a state-of-the-art general-purpose
optimization solver on randomly generated set covering and set packing prob-
lems.
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1 Introduction

Binary optimization problems are ubiquitous across many problem domains.
Over the last fifty years there have been significant advances in algorithms
dedicated to solving problems in this class. In particular, general-purpose al-
gorithms for binary optimization are commonly branch-and-bound methods
that rely on two fundamental components: a relaxation of the problem, such
as a linear programming relaxation of an integer programming model, and
heuristics. Heuristics are used to provide feasible solutions during the search
for an optimal one, which in practice is often more important than providing
a proof of optimality.
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Much of the research effort dedicated to developing heuristics for binary op-
timization has primarily focused on specific combinatorial optimization prob-
lems; this includes, e.g., the set covering problem (Caprara et al, 1998) and the
maximum clique problem (Grosso et al, 2008; Pullan et al, 2011). In contrast,
general-purpose heuristics have received much less attention in the literature.
The vast majority of the general techniques are embodied in integer program-
ming technology, such as the feasibility pump (Fischetti et al, 2005) and the
pivot, cut, and dive heuristic (Eckstein and Nediak, 2007). A survey of heuris-
tics for integer programming is presented by Glover and Laguna (1997a,b) and
Berthold (2006). Local search methods for general binary problems can also
be found in Aarts and Lenstra (1997) and Bertsimas et al (2013).

We introduce a new general-purpose method for obtaining a set of fea-
sible solutions for binary optimization problems. Our method is based on an
under-approximation of the feasible solution set using binary decision diagrams
(BDDs). BDDs are compact graphical representations of Boolean functions
(Akers, 1978; Lee, 1959; Bryant, 1986), originally introduced for applications
in circuit design and formal verification (Hu, 1995; Lee, 1959). They have been
recently used for a variety of purposes in combinatorial optimization, including
post-optimality analysis (Hadzic and Hooker, 2006, 2007), cut generation in
integer programming (Becker et al, 2005), and 0-1 vertex and facet enumer-
ation (Behle and Eisenbrand, 2007). The techniques presented here can also
be readily applied to arbitrary discrete problems using multi-valued decision
diagrams (MDDs), a generalization of BDDs for discrete-valued functions.

Our method is a counterpart of the concept of relaxed MDDs, recently
introduced by Andersen et al (2007) as an over-approximation of the feasi-
ble set of a discrete constrained problem. The authors used relaxed MDDs for
the purpose of replacing the typical domain store relaxation used in constraint
programming by a richer data structure. They found that relaxed MDDs dras-
tically reduce the size of the search tree and allow much faster solution of
problems with multiple all-different constraints, which are equivalent to graph
coloring problems. Analogous methods were applied to other types of con-
straints in Hadzic et al (2008) and Hoda et al (2010).

Using similar techniques, Bergman et al (2011) proposed the use of re-
laxed BDDs to derive relaxation bounds for binary optimization problem. The
authors developed a general top-down construction method for relaxed BDDs
and reported good results for structured set covering instances. Relaxed BDDs
were also applied in the context of the maximum independent set problem,
where the ordering of the variables in the BDD were shown to have a signifi-
cant bearing on the effectiveness of the relaxation it provides (Bergman et al,
2012).

We use BDDs to provide heuristic solutions, rather than relaxation bounds.
Our main contributions include:

1. Introducing a new heuristic for binary optimization problems;
2. Discussing the necessary ingredients for applying the heuristic to specific

classes of problems;
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3. Providing an initial computational evaluation of the heuristic on the well-
studied set covering and set packing problems. We show that, on a set of
randomly generated instances, the solutions produced by our algorithm are
comparable to those obtained with state-of-the-art integer programming
optimization software (CPLEX).

The remainder of the paper is organized as follows. We begin by defining
BDDs in Section 2. Section 3 describes how to generate and use BDDs to ex-
actly represent the set of feasible solutions to a problem. Section 4 details how
the algorithm in Section 3 can be modified to provide an under-approximation
of the feasible set and to deliver a set of solutions to a problem. We discuss
the application of the algorithm to two problem classes in Section 5. Section 6
presents computational experiments.

2 Binary Decision Diagrams

Binary optimization problems (BOPs) are specified by a set of binary variables
X = {x1, . . . , xn}, an objective function f : {0, 1}n → R to be minimized, and
a set of m constraints C = {C1, . . . , Cm}, which define relations among the
problem variables. A solution to a BOP P is an assignment of values 0 or 1 to
each of the variables in X. A solution is feasible if it satisfies all the constraints
in C. The set of feasible solutions of P is denoted by Sol(P ). A solution x∗ is
optimal for P if it is feasible and satisfies f(x∗) ≤ f(x̃) for all x̃ ∈ Sol(P ).

A binary decision diagram (BDD) B = (U,A) for a BOP P is a layered
directed acyclic multi-graph that encodes a set of solutions of P . The nodes
U are partitioned into n+1 layers, L1, L2, . . . , Ln+1, where we let ℓ(u) be the
layer index of node u. Layers L1 and Ln+1 consist of single nodes; the root r
and the terminal t, respectively. The width of layer j is given by ωj = |Lj |,
and the width of B is ω(B) = maxj∈{1,2,...,n} ωj . The size of B, denoted by
|B|, is the number of nodes in B.

Each arc a ∈ A is directed from a node in some layer j to a node in the
adjacent layer j + 1, and has an associated arc-domain da ∈ {0, 1}. The arc a
is called a 1-arc when da = 1 and a 0-arc when da = 0. For any two arcs a, a′

directed out of a node u, da ̸= da′ , so that the maximum out-degree of a node
in a BDD is 2, with each arc having a unique arc-domain. Given a node u, we
let a0(u) be the 0-arc directed out of u (if it exists) and b0(u) be the node in
Lℓ(u)+1 at its opposite end, and similarly for a1(u) and b1(u).

A BDD B represents a set of solutions to P in the following way. An
arc a directed out of a node u represents the assignment xℓ(u) = da. Hence,
for two nodes u, u′ with ℓ(u) < ℓ(u′), a directed path p from u to u′ along
arcs aℓ(u), aℓ(u)+1, . . . , aℓ(u′)−1 corresponds to the assignment xj = daj , j =
ℓ(u), ℓ(u) + 1, . . . , ℓ(u′) − 1. In particular, an r–t path p = (a1, . . . , an) corre-
sponds to a solution xp, where xp

j = daj for j = 1, . . . , n. The set of solutions
represented by a BDD B is denoted by Sol(B) = {xp | p is an r–t path}. An
exact BDD B for P is any BDD for which Sol(B) = Sol(P ).
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For two nodes u, u′ ∈ U with ℓ(u) < ℓ(u′), let Bu,u′ be the BDD induced by
the nodes that belong to some directed path between u and u′. In particular,
Br,t = B. A BDD is called reduced if Sol(Bu,u′) is unique for any two nodes u,
u′ of B. The reduced BDD B is unique when the variable ordering is fixed, and
therefore the most compact representation in terms of size for that ordering
(Wegener, 2000).

Finally, for a large class of objective functions, e.g. additively separa-
ble functions, optimizing over the solutions represented by a BDD B can
be reduced to finding a shortest path in B. For example, given a real cost
vector c and a linear objective function cTx, we can associate an arc-cost
c(u, v) = cℓ(u)du,v with each arc a = (u, v) in the BDD. This way, a shortest
r–t path corresponds to a minimum cost solution in Sol(B). If B is exact, then
this shortest path corresponds to an optimal solution for P .

Example 1 Consider the following BOP P .

minimize − 2x1 − 3x2 − 5x3 − x4 − 3x5

subject to 2x1 + 2x2 + 3x3 + 3x4 + 2x5 ≤ 5

xj ∈ {0, 1}, j = 1, . . . , 5

Figure 1 shows an exact reduced BDD for P . The 0-arcs are represented
by dashed lines, while the 1-arcs are represented by solid lines. There are 13
paths in the BDD, which correspond to the 13 feasible solutions of this BOP.
Assigning arc costs of 0 to all of the 0-arcs and the cost coefficient of xj to the
1-arcs on layer j, j = 1, . . . , 5, the two shortest paths in the BDD correspond
to the solutions (0, 1, 1, 0, 0) and (0, 0, 1, 0, 1), both optimal solutions for P .

3 Exact BDDs

An exact reduced BDD B = (U,A) for a BOP P can be interpreted as a
compact search tree for P , where infeasible leaf nodes are removed, isomorphic
subtrees are superimposed, and the feasible leaf nodes are merged into t. In
principle, B can be obtained by first constructing the branching tree for P
and reducing it accordingly, which is impractical for our purposes.

We present here an efficient top-down algorithm for constructing an exact
BDD B for P . It relies on problem-dependent information for merging BDD
nodes and thus reducing its size. If this information satisfies certain condi-
tions, the resulting BDD is reduced. The algorithm is a top-down procedure
since it proceeds by compiling the layers of B one-by-one, where layer Lj+1 is
constructed only after layers L1, . . . , Lj are completed.

We first introduce some additional definitions. Let x′ = (x′
1, . . . , x

′
j), j < n,

be a partial solution that assigns a value to variables x1, . . . , xj . We define

F (x′) = {x′′ ∈ {0, 1}n−j | x = (x′, x′′) is feasible for P}
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Fig. 1: Reduced BDD for the BOP in Example 1.

as the set of feasible completions of x′. We say that two distinct partial solu-
tions x1, x2 on variables x1, . . . , xj are equivalent if F (x1) = F (x2).

The algorithm requires a method for establishing when two partial solutions
are necessarily equivalent. If this is possible, then the last nodes u, u′ of the
BDD paths corresponding to these partial solutions can be merged into a single
node, since Bu,t and Bu′,t are the same. To this end, with each partial solution
x′ of dimension k we associate a state function s : {0, 1}k → S, where S is a
problem-dependent state space. The state of x′ corresponds to the information
necessary to determine if x′ is equivalent to any other partial solution on the
same set of variables.

Formally, let x1, x2 be partial solutions on the same set of variables. We say
that the function s(x) is sound if s(x1) = s(x2) implies that F (x1) = F (x2),
and we say that s is complete if the converse is also true. The algorithm requires
only a sound state function, but if s is complete, the resulting BDD will be
reduced.

For simplicity of exposition, we further assume that it is possible to identify
when a partial solution x′ cannot be completed to a feasible solution, i.e.
F (x′) = ∅. It can be shown that this assumption is not restrictive, but rather
makes for an easier exposition of the algorithm. We write s(x′) = 0̂ to indicate
that x′ cannot be completed into a feasible solution. If x is a solution to P ,
we write s(x) = ∅ if x is feasible and s(x) = 0̂ otherwise.

We now extend the definition of state functions to nodes of the BDD B.
Suppose that s is a complete state function and B is an exact (but not neces-
sarily reduced) BDD. For any node u, the fact that B is exact implies that any
two partial solutions x1, x2 ∈ Sol(Br,u) have the same feasible completions, i.e.
F (x1) = F (x2). Since s is complete, we must have s(x1) = s(x2). We hence-
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Algorithm 1 Exact BDD Compilation

1: Create node r with s(r) = s0
2: L1 = {r}
3: for j = 1 to n do
4: Lj+1 = ∅
5: for all u ∈ Lj do
6: for all d ∈ {0, 1} do
7: snew := update(s(u), d)
8: if snew ̸= 0̂ then
9: if ∃u′ ∈ Lj+1 with s(u′) = snew then
10: bd(u) = u′

11: else
12: Create node unew with s(unew) = snew
13: bd(u) = unew

14: Lj+1 ← Lj+1 ∪ unew

forth define the state of a node u as s(u) = s(x) for any x ∈ Sol(Br,u), which
is therefore uniquely defined for a complete function s.

We also introduce a function update : S × {0, 1} → S. Given a partial
solution x′ on variables x1, . . . , xj , j < n, and a domain value d ∈ {0, 1},
the function update(s(x′), d) maps the state of x′ to the state of the partial
solution obtained when x′ is appended with d, s((x′, d)). This function is
similarly extended to nodes: update(s(u), d) represents the state of all partial
solutions in Sol(Br,u) extended with value d for a node u.

The top-down compilation procedure is presented in Algorithm 1. We start
by setting L1 = {r} and s(r) = s0, where s0 is an initial state appropriately
defined for the problem. Now, having constructed layers L1, . . . , Lj , we create
layer Lj+1 in the following way. For each node u ∈ Lj and for d ∈ {0, 1}, let
snew = update(s(u), d). If snew = 0̂ we do not create arc ad(u). Otherwise, if
there exists some u′ ∈ Lj+1 with s(u′) = snew, we set bd(u) = u′; if such a node
does not exist, we create node unew with s(unew) = snew and set bd(u) = unew.

Example 2 Consider the following simple binary optimization problem:

maximize 5x1 + 4x2 + 3x3

subject to x1 + x2 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3

We define s(x) to equal the number of variables set to 1 in x. In this way,
whenever s(x1) = s(x2) for two partial solutions we have F (x1) = F (x2). For
example, s ((1, 0)) = 1 and s ((0, 1)) = 1, with the only feasible completion
being (0).

In addition, we let

update(s(u), d) =

 0̂ , d = 1 and s(u) = 1
1 , d = 1 and s(u) = 0
s(u) , d = 0
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With this update function, if in a partial solution there is already one variable
set to 1, the update operation will assign 0̂ to the node on the 1-arc to signify
that the solution cannot be completed to a feasible solution, and it will assign
1 to the node on the 1-arc to signify that still only one variable is set to 1.
On the other hand, if a partial solution has no variable set to 1, the 1-arc will
now be directed to a node that has state 1 and the 0-arc will be directed to a
node with state 0.

Theorem 1 Let s be a sound state function for a binary optimization problem
P . Algorithm 1 generates an exact BDD for P .

Proof We show by induction that at the end of iteration j, the set∪
u∈Lj+1

Sol(Br,u)

exactly corresponds to the set of feasible partial solutions of P on x1, . . . , xj .
This implies that after iteration n, Sol(Br,t) = Sol(P ), since all feasible solu-
tions x have the same state s(x) = ∅ and hence Ln+1 will contain exactly one
node at the end of the procedure, which is the terminal t.

Consider the first iteration. We start with the root r and s(r) = s0, which
is the initial state corresponding to not assigning any values to any variables.
r is the only node in L1. When d = 0, if there exists no feasible solution with
x1 = 0, no new node is created. Hence no solutions are introduced into B. If
otherwise there exists at least one solution with x1 = 0, we create a new node,
add it to L2, and introduce a 0-arc from r to the newly created node. This
will represent the partial solution x1 = 0. This is similarly done for d = 1.

Consider the end of iteration j. Each solution x′ = (x′′, d) that belongs to
Sol(Br,u) for some node u ∈ Lj+1 must go through some node u′ ∈ Lj with
bd(u

′) = u. By induction, x′′ is a feasible partial solution with s(u′) = s(x′′) ̸=
0̂. But when the arc ad(u

′) is considered, we must have update(u′, d) ̸= 0̂,
for otherwise this arc would not have been created. Therefore, each solution
in Sol(Br,u) is feasible. Since u ∈ Lj+1 was chosen arbitrarily, only feasible
partial solutions exists in Sol(Br,u) for all nodes u ∈ Lj+1.

What remains to be shown is that all feasible partial solutions exist in
Sol(Br,u) for some u ∈ Lj+1. This is trivially true for the partial solutions
x1 = 0 and x1 = 1. Take now any partial feasible solution x′ = (x′′, d) on
the first j variables, j ≥ 2. Since x′ is a partial feasible solution, x′′ must also
be a partial feasible solution. By induction, x′′ belongs to Sol(Br,u), for some
u ∈ Lj . When Algorithm 1 examines node u, update(s(u), d) must not return
0̂ because F (x′) ̸= ∅. Therefore, the d-arc directed out of u is created, ending
at some node bd(u) ∈ Lj+1, as desired. ⊓⊔

Theorem 2 Let s be a complete state function for a binary optimization pro-
gram P . Algorithm 1 generates an exact reduced BDD for P .
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Proof By Theorem 1, B is exact. Moreover, for each j, each node u ∈ Lj will
have a unique state because of line 9. Therefore, any two partial solutions
x′, x′′ ending at unique nodes u′, u′′ ∈ Lj will have F (x′) ̸= F (x′′). ⊓⊔

Theorem 3 Let B = (U,A) be the exact BDD outputted by Algorithm 1 for
a BOP P with a sound state function s. Algorithm 1 runs in time O(|U |K),
where K is the time complexity for each call of the update function.

Proof Algorithm 1 performs two calls of update for every node u added to B.
Namely, one call to verify if u has a d-arc for each domain value d ∈ {0, 1}. ⊓⊔

Theorem 3 implies that, if update can be implemented efficiently, then
Algorithm 1 runs in polynomial time in the size of the exact BDD B. Indeed,
there are structured problems for which one can define complete state functions
with a polynomial time-complexity for update (Andersen et al, 2007; Bergman
et al, 2011, 2012). This will be further discussed in Section 5.

4 Restricted BDDs

Constructing exact BDDs for general binary programs using Algorithm 1
presents two main difficulties. First, the update function may take time expo-
nential in the input of the problem. This can be circumvented by not requiring
a complete state function, but rather just a sound state function. The resulting
BDD is exact according to Theorem 1, but perhaps not reduced. This poses
only a minor difficulty, as there exist algorithms for reducing a BDD B that
have a polynomial worst-case complexity in the size of B (Wegener, 2000). A
more confining difficulty, however, is that even an exact reduced BDD may
be exponentially large in the size of the BOP P . We introduce the concept
of restricted BDDs as a remedy for this problem. These structures provide an
under-approximation, i.e. a subset, of the set of feasible solutions to a problem
P . Such BDDs can therefore be used as a generic heuristic procedure for any
BOP.

More formally, let P be a BOP. A BDD B is called a restricted BDD for P
if Sol(B) ⊆ Sol(P ). Analogous to exact BDDs, optimizing additively separable
objective functions over Sol(B) reduces to a shortest path computation on B
if the arc weights are assigned appropriately. Thus, once a restricted BDD is
generated, we can readily extract the best feasible solution from B and provide
an upper bound to P .

We will focus on limited-width restricted BDDs, in which we limit the size
of the BDD B by requiring that ω(B) ≤ W for some pre-set maximum allotted
width W .

Example 3 Consider the BOP from Example 1. Figure 2 shows a width-2 re-
stricted BDD. There are eight paths in the BDD, which correspond to eight
feasible solutions. Assigning arc costs as in Example 1, a shortest path from the



BDD-Based Heuristics for Binary Optimization 9

x1

x2

x3

x4

x5

Fig. 2: Width-2 restricted BDD for the BOP presented in Example 1.

Algorithm 2 delete nodes

Insert immediately after line 3 of Algorithm 1.

1: if ωj = |Lj | > W then
2: M := node select(Lj) // where |M | = ωj −W
3: Lj ← Lj \M

root to the terminal corresponds to the solution (0, 1, 0, 0, 1) with an objective
function value of −6. The optimal value is −8.

Limited-width restricted BDDs can be easily generated by performing a
simple modification to Algorithm 1. Namely, we insert the procedure described
in Algorithm 2 immediately after line 3 of Algorithm 1. This procedure is
described as follows. We first verify whether ωj = |Lj | > W . If so, we delete
a set of |Lj | − W nodes in the current layer, which is chosen by a function
node select(Lj). We then continue building the BDD as in Algorithm 1.

It is clear that the modified algorithm produces a BDD B satisfying ω(B) ≤
W . In addition, it must create a restricted BDD since we are never changing
the states of the nodes during the construction, but rather just deleting nodes.
Since Algorithm 1 produces an exact BDD, this modified algorithm must pro-
duce a restricted BDD.

Theorem 4 describes how the time complexity of Algorithm 1 is affected
by the choice of the maximum allotted width W .

Theorem 4 The modified version of Algorithm 1 for width-W restricted BDDs
has a worst-case time complexity of O(nL + nWK), where L and K are the
time complexity for each call of the node select and update functions, re-
spectively.

Proof Because the function node select is called once per layer, it contributes
to O(nL) to the overall time complexity. The update function is called twice
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for each BDD node. Since there will be at most O(nW ) nodes in a width-W
restricted BDD, the theorem follows. ⊓⊔

The selection of nodes in node select(Lj) can have a dramatic impact on
the quality of the solutions encoded by the restricted BDD. In fact, as long
as we never delete the nodes u1, . . . , un that are traversed by some optimal
solution x∗, we are sure to have the optimal solution in the final BDD.

We observed that the following node select procedure yields restricted
BDDs with the best quality solutions in our computational experiments. We
are assuming a minimization problem, but a maximization problem can be
handled in an analogous way. Each node u ∈ Lj is first assigned a value
lp(u) = min f(x) ∈ Sol(Br,u), where f is the objective function of P . This can
be easily computed for a number of objective functions by means of a dynamic
programming algorithm; for example linear cost functions whose arc weights
are as described in Section 2. The node select(Lj) function then deletes the
nodes in Lj with the largest lp(u) values. We henceforth use this heuristic for
node select in the computational experiments of Section 6. It can be shown
that the worst-case complexity of this particular heuristic is O(W logW ).

5 Applications

We now describe the application of restricted BDDs to two fundamental prob-
lems in binary optimization: the set covering problem and the set packing
problem. For both applications, we describe the problem and provide a sound
state function. We then present the update operation based on this state func-
tion which can be used by the modified version of Algorithm 1.

5.1 The Set Covering Problem

The set covering problem (SCP) is the binary program

minimize cTx

subject to Ax ≥ e

xj ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m× n matrix, and
e is the m-dimensional unit vector. Let ai,j be the element in the i-th row and
j-th column of A, and define Aj = {i | ai,j = 1} for j = 1, . . . , n. The SCP
asks for a minimum-cost subset V ⊆ {1, . . . , n} of the sets Aj such that for all
i, ai,j = 1 for some j ∈ V , i.e. V covers {1, . . . ,m}.

5.1.1 State Function

We now present a sound state function for the purpose of generating restricted
BDDs by means of Algorithm 1. Let Ci be the set of indices of the variables that
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participate in constraint i, Ci = {j | ai,j = 1}, and let last(Ci) = max{j | j ∈
Ci} be the largest index of Ci. We consider the state space S = 2{1,...,m}∪{0̂}.
For a partial solution x′ on variables x1, . . . , xj , we write the state function

s(x′) =


0̂, if ∃ i :

∑j
k=1 ai,kx

′
k = 0 and j ≥ last(Ci),{

i :
∑j

k=1 ai,kx
′
k = 0

}
, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution
x′ if and only if F (x′) = ∅. Indeed, the condition

∑j
k=1 ai,kx

′
k = 0, j ≥

last(Ci) for some i implies that all variables that relate to the i-th constraint∑n
k=1 ai,jxj ≥ 1 are already zero in x′, and hence the constraint can never be

satisfied. If otherwise that condition does not hold, then (1, . . . , 1) is a feasible
completion of x′.

In addition, the following Lemma shows that s is a sound state function
for the SCP.

Lemma 1 Let x1, x2 be two partial solutions on variables x1, . . . , xj. Then,
s(x1) = s(x2) implies that F (x1) = F (x2).

Proof Let x1, x2 be two partial solutions with dimension j for which s(x1) =
s(x2) = s′. If s′ = 0̂ then both have no feasible completions, so it suffices to
consider the case when s′ ̸= 0̂. Take any completion x̃ ∈ F (x1). We show that
x̃ ∈ F (x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗-th
SCP inequality,

j∑
k=1

ai∗,k x2
k +

n∑
k=j+1

ai∗,k x̃k = 0, (1)

while
j∑

k=1

ai∗,k x1
k +

n∑
k=j+1

ai∗,k x̃k ≥ 1 (2)

since (x1, x̃) is feasible.
By (1), we have that

n∑
k=j+1

ai∗,k x̃k = 0 (3)

and
j∑

k=1

ai∗,k x2
k = 0. (4)

The equality (4) implies that i∗ ∈ s(x2) and therefore i∗ ∈ s(x1). But then∑j
k=1 ai∗,k x1

k = 0. This, together with (3), contradicts (2). ⊓⊔
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{1, 2, 3} {3}
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(a) Exact reduced BDD. (b) Width-2 restricted BDD.

Fig. 3: Exact and restricted BDDs for the SCP instance in Example 4.

Assuming a partial solution x′ on variables x1, . . . , xj and that s(x′) ̸= 0̂,
the corresponding update operation is given by

update(s(x′), d) =


s(x′) \ {i | ai,j+1 = 1}, d = 1
s(x′), d = 0, ∀ i∗ ∈ s(x′) : last(Ci∗) > j + 1

0̂, d = 0, ∃ i∗ ∈ s(x′) : last(Ci∗) = j + 1

and has a worst-case time complexity of O(m) for each call.

Example 4 Consider the SCP instance with

c = (2, 1, 4, 3, 4, 3)

and

A =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1


Figure 3a shows an exact reduced BDD for this SCP instance where the

nodes are labeled with their corresponding states. If outgoing 1-arcs (0-arcs) of
nodes in layer j are assigned a cost of cj (zero), a shortest r–t path corresponds
to solution (1, 1, 0, 0, 0, 0) and proves an optimal value of 3. Figure 3b depicts
a width-2 restricted BDD where a shortest r–t path corresponds to solution
(0, 1, 0, 1, 0, 0), which proves an upper bound of 4.

Example 5 The implication in Lemma 1 is not sufficient as the state function
is not complete. Consider the set covering problem

minimize x1 + x2 + x3

subject to x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1, x2, x3 ∈ {0, 1}
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and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have s(x1) = {2}
and s(x2) = {1}. However, both have the single feasible completion x̃ = (1).

There are several ways to modify the state function to turn it into a com-
plete one (Bergman et al, 2011). The state function s can be strengthened to
a complete state function. This requires only polynomial time to compute per
partial solution, but nonetheless at an additional computational cost. Section 6
reports results for the simpler (sound) state function presented above.

5.2 The Set Packing Problem

A problem closely related to the SCP, the set packing problem (SPP) is the
binary program

maximize cTx

subject to Ax ≤ e

xj ∈ {0, 1}, j = 1, . . . , n

where c, A, and e are as in the SCP. Letting Aj be as in Section 5.1, the SPP
asks for the maximum-cost subset V ⊆ {1, . . . , n} of the sets Aj such that for
all i, ai,j = 1 for at most one j ∈ V .

5.2.1 State Function

For the SPP, the state function identifies the set of constraints for which no
variables have been assigned a one and could still be violated. More formally,
consider the state space S = 2{1,...,m} ∪ {0̂}. For a partial solution x′ on
variables x1, . . . , xj , we write the state function

s(x′) =


0̂, if ∃ i :

∑j
k=1 ai,kx

′
k > 1{

i :
∑j

k=1 ai,kx
′
k = 0 and last(Ci) > j

}
, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution
x′ if and only if F (x′) = ∅. Indeed, the condition

∑j
k=1 ai,kx

′
k > 1 for some

i immediately implies that x′ is infeasible; otherwise, (0, . . . , 0) is a feasible
completion for x′.

As the following lemma shows, if the states of two partial solutions on the
same set of variables are the same, then the set of feasible completions for
these partial solutions are the same, thus proving that this state function is
sound.

Lemma 2 Let x1, x2 be two partial solutions on variables x1, . . . , xj. Then,
s(x1) = s(x2) implies that F (x1) = F (x2).
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Proof Let x1, x2 be two partial solutions for which s(x1) = s(x2) = s′. If
s′ = 0̂ then both have empty sets of feasible completions, so it suffices to
consider the case when s′ ̸= ∅. Take any partial solution x̃ ∈ F (x1). We show
that x̃ ∈ F (x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗-th
SPP inequality,

j∑
k=1

ai∗,k x2
k +

n∑
k=j+1

ai∗,k x̃k > 1, (5)

while
j∑

k=1

ai∗,k x1
k +

n∑
k=j+1

ai∗,k x̃k ≤ 1, (6)

since (x1, x̃) is feasible.

First suppose that
∑n

k=j+1 ai∗,k x̃k = 1. By (6),
∑j

k=1 ai∗,k x1
k = 0. This

implies that F (x1) contains i∗ since no variables in Ci∗ are set to 1 and there
exists ℓ ∈ Ci∗ with ℓ > j. Therefore F (x2) also contains i∗, implying that no

variable in Ci∗ is set to one in the partial solution x2. Hence
∑j

k=1 ai∗,kx
2
k = 0,

contradicting (5).

Now suppose that
∑n

k=j+1 ai∗,k x̃k = 0. Then
∑j

k=1 ai∗,k x2
k > 1, contra-

dicting the assumption that s′ = s(x2) ̸= ∅. ⊓⊔

Given a partial solution x′ on variables x1, . . . , xj with s(x′) ̸= 0̂, the
corresponding update operation is

update(s(x′), d) =


s(x′) \ {i | last(Ci) = j + 1}, d = 0
s(x′) \ {i | j + 1 ∈ Ci}, d = 1, Aj+1 ⊆ s(x′)

0̂, d = 1, Aj+1 ̸⊆ s(x′)

and has a worst-case time complexity of O(m) for each call.

Example 6 Consider the SPP instance with the same constraint matrix A as
in Example 4, but with weight vector

c = (1, 1, 1, 1, 1, 1).

Figure 4a shows an exact reduced BDD for this SPP instance. The nodes
are labeled with their corresponding states, and we assign arc costs 1/0 to
each 1/0-arc. A longest r–t path, which can be computed by a shortest path
on arc weights c′ = −c because the BDD is acyclic, corresponds to solution
(0, 0, 1, 0, 1, 1) and proves an optimal value of 3. Figure 4b depicts a width-2
restricted BDD where a longest r–t path, for example, corresponds to solution
(1, 0, 0, 0, 0, 1), which has length 2.
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{1, 2, 3}

{1,2,3} {3}

{1,2,3} {2} {3}

{2,3} {2} {3}

{2,3} ∅ {2} {3}

{3} ∅

∅

(a) Exact reduced BDD. (b) Width-2 restricted BDD.

Fig. 4: Exact and restricted BDDs for the SPP instance in Example 6.

Example 7 As in the case of the SCP, the above state function is not complete.
For example, consider the problem

maximize x1 + x2 + x3

subject to x1 + x3 ≤ 1

x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have distinct states
s(x1) = {2} and s(x2) = {1}, but both have the single feasible completion,
x̃ = (0).

There are several ways to modify the state function above to turn it into
a complete one. For example, one can reduce the SPP to an independent set
problem and apply the state function defined in Bergman et al (2012). We
only consider the sound state function in this work.

6 Computational Experiments

In this section, we perform a computational study on randomly generated set
covering and set packing instances. We evaluate our method by comparing the
bounds provided by a restricted BDD with the ones obtained via state-of-the-
art integer programming technology (IP). We acknowledge that a procedure
solely geared toward constructing heuristic solutions for BOPs is in principle
favored against general-purpose IP solvers. Nonetheless, we sustain that this is
still a meaningful comparison, as modern IP solvers are the best-known general
bounding technique for 0-1 problems due to their advanced features and overall
performance. This method of testing new heuristics for binary optimization
problems was employed by the authors in Bertsimas et al (2013) and we provide
a similar study here to evaluate the effectiveness of our algorithm.
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The tests ran on an Intel Xeon E5345 with 8 GB of RAM. The BDD code
was implemented in C++. We used Ilog CPLEX 12.4 as our IP solver. In
particular, we took the bound obtained from the root node relaxation. We
set the solver parameters to balance the quality of the bound value and the
CPU time to process the root node. The CPLEX parameters that are distinct
from the default settings are presented in Table 1. We note that all cuts were
disabled, since we observed that the root node would be processed orders of
magnitude faster without adding cuts, which did not have a significant effect
on the quality of the heuristic solution obtained for the instances tested.

Table 1: CPLEX Parameters

Parameters (CPLEX internal name) Value
Version 12.4
Number of explored nodes (NodeLim) 0 (only root)
Parallel processes (Threads) 1
Cuts (Cuts, Covers, DisjCuts, ...) -1 (off)
Emphasis (MIPEmphasis) 4 (find hidden feasible solutions)
Time limit (TiLim) 3600

Our experiments focus on instances with a particular structure. Namely,
we provide evidence that restricted BDDs perform well when the constraint
matrix has a small bandwidth. The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j ,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given
by the constraint matrix, between any two variables that share a constraint.
The smaller the bandwidth, the more structured the problem, in that the
variables participating in common constraints are close to each other in the
ordering. The minimum bandwidth problem seeks to find a variable ordering
that minimizes the bandwidth (Mart́ı et al (2008); Corso and Manzini (1999);
Feige (2000); Gurari and Sudborough (1984); Mart́ı et al (2001); Piñana et al
(2004); Saxe (1980)). This underlying structure, when present in A, can be
captured by BDDs, resulting in good computational performance.

6.1 Problem Generation

Our random matrices are generated according to three parameters: the number
of variables n, the number of ones per row k, and the bandwidth bw. For a
fixed n, k, and bw, a random matrix A is constructed as follows. We first
initialize A as a zero matrix. For each row i, we assign the ones by selecting k
columns uniformly at random from the index set corresponding to the variables
{xi, xi+1, . . . , xi+bw}. As an example, a constraint matrix with n = 9, k = 3,
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and bw = 4 may look like

A =


1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1

 .

Consider the case when bw = k. The matrix A has the consecutive ones
property and is totally unimodular (Fulkerson and Gross, 1965) and IP finds
the optimal solution for the set packing and set covering instances at the root
node. Similarly, we argue that an (m + 1)-width restricted BDD is an exact
BDD for both classes of problems, hence also yielding an optimal solution
for when this structure is present. Indeed, we show that A containing the
consecutive ones property implies that the state of a BDD node u is always of
the form {j, j + 1, . . . ,m} for some j ≥ ℓ(u) during top-down compilation.

To see this, consider the set covering problem. We claim that for any partial
solution x′ that can be completed to a feasible solution, s(x′) = {i(x′), i(x′)+
1, . . . ,m} for some index i(x′), or s(x′) = ∅ if x′ satisfies all of the constraints
when completed with 0’s. Let j′ ≤ j be the largest index in x′ with x′

j = 1.
Because x′ can be completed to a feasible solution, for each i ≤ bw + j − 1
there is a variable xji with ai,ji = 1. All other constraints must have xj = 0
for all i with ai,j = 0. Therefore s(x′) = {bw+ j, bw+ j+1, . . . ,m}, as desired.
Hence, the state of every partial solution must be of the form i, i+ 1, . . . ,m
or ∅. Because there are at most m+1 such states, the size of any layer cannot
exceed (m+ 1). A similar argument works for the SPP.

Increasing the bandwidth bw, however, destroys the totally unimodular
property of A and the bounded width of B. Hence, by changing bw, we can test
how sensitive IP and the BDD-based heuristics are to the staircase structure
dissolving.

We note here that generating instances of this sort is not restrictive. Once
the bandwidth is large, the underlying structure dissolves and each element
of the matrix becomes randomly generated. In addition, as mentioned above,
algorithms to solve the minimum bandwidth problem exactly or approximately
have been investigated. To any SCP or SPP one can therefore apply these
methods to reorder the matrix and then apply the BDD-based algorithm.

6.2 Relation between Solution Quality and Maximum BDD Width

We first analyze the impact of the maximum width W on the solution quality
provided by a restricted BDD. To this end, we report the generated bound
versus maximum width W obtained for a set covering instance with n = 1000,
k = 100, bw = 140, and a cost vector c where each cj was chosen uniformly at
random from the set {1, . . . , ncj}, where ncj is the number of constraints in
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Fig. 5: Restricted BDD performance versus the maximum allotted width for
a set covering instance with n = 1000, k = 100, bw = 140, and random cost
vector.

which variable j participates. We observe that the reported results are common
among all instances tested.

Figure 5a depicts the resulting bounds, where the width axis is in log-scale,
and Figure 5b presents the total time to generate the W -restricted BDD and
extract its best solution. We tested all W in the set {1, 2, 3, . . . , 1000}. We see
that as the width increases, the bound approaches the optimal value, with a
super-exponential-like convergence in W . The time to generate the BDD grows
linearly in W , as expected from the complexity result in Section 4.

6.3 Set Covering

First, we report the results for two representative classes of instances for the set
covering problem. In the first class, we studied the effect of bw on the quality
of the bound. To this end, we fixed n = 500, k = 75, and considered bw as a
multiple of k, namely bw ∈ {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.6k⌋}. In the second class, we
analyzed if k, which is proportional to the density of A, also has an influence
on the resulting bound. For this class we fixed n = 500, k ∈ {25, 50, . . . , 250},
and bw = 1.6k. For each configuration, we generated 30 instances for each
triple (n, k, bw) and fixed 500 as the restricted BDD maximum width.

It is well-known that the objective function coefficients play an important
role in the bound provided by IP solvers for the set covering problem. We
considered two types of cost vectors c in our experiments. The first is c =
1, which yields the combinatorial set covering problem. For the second cost
function, let ncj be the number of constraints that include variable xj , j =
1, . . . , n. We chose the cost of variable xj uniformly at random from the range
[0.75ncj , 1.25ncj ]. As a result, variables that participate in more constraints
have a higher cost, thereby yielding harder set covering problems to solve. This
cost vector yields the weighted set covering problem.

The feasible solutions are compared with respect to their optimality gap.
The optimality gap of a feasible solution is obtained by first taking the absolute
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Fig. 6: Average optimality gaps for combinatorial and weighted set covering
instances with n = 500, k = 75, and varying bandwidth.

difference between its objective value and a lower bound to the problem, and
then dividing this by the solution’s objective value. In both BDD and IP cases,
we used the dual value obtained at the root node of CPLEX as the lower bound
for a particular problem instance.

The results for the first instance class are presented in Figure 6. Each data
point in the figure represents the average optimality gap, over the instances
with that configuration. We observe that the restricted BDD yields a signifi-
cantly better solution for small bandwidths in the combinatorial set covering
version. As the bandwidth increases, the staircase structure is lost and the
BDD gap becomes progressively worse in comparison to the IP gap. This is
a result of the increasing width of the exact reduced BDD for instances with
larger bandwidth matrices. Thus, more information is lost when we restrict
the BDD size. The same behavior is observed for the weighted set covering
problem, although we notice that the gap provided by the restricted BDD
is generally better in comparison to the IP gap even for larger bandwidths.
Finally, we note that the restricted BDD time is also comparable to the IP
time, which is on average less than 1 second for this configuration. This time
takes into account both BDD construction and extraction of the best solution
it encodes by means of a shortest path algorithm.

The results for the second instance class are presented in Figure 7. We
note that restricted BDDs provide better solutions when k is smaller. One
possible explanation for this behavior is that a sparser matrix causes variables
to participate in fewer constraints thereby decrease the possible number of
BDD node states. Again, less information is lost by restricting the BDD width.
Moreover, we note once again that the BDD performance, when compared with
CPLEX, is better for the weighted instances tested. Finally, we observe that
the restricted BDD time is similar to the IP time, always below one second
for instances with 500 variables.

Next, we compare solution quality and time as the number of variables n in-
creases. To this end, we generated random instances with n ∈ {250, 500, 750, . . . , 4000},
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Fig. 7: Average optimality gaps for combinatorial and weighted set covering
instances with n = 500, varying k, and bw = 1.6k.
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Fig. 8: Average optimality gaps and times for weighted set covering instances
with varying n, k = 75, and bw = 2.2k = 165. The y axis in the time plot is in
logarithm scale.

k = 75, and bw = 2.2k = 165. The choice of k and bw was motivated by Fig-
ure 6b, corresponding to the configuration where IP outperforms BDD with
respect to solution quality when n = 500. As before, we generated 30 instances
for each n. Moreover, only weighted set covering instances are considered in
this case.

The average optimality gap and time are presented in Figures 8a and 8b,
respectively. The y axis in Figure 8b is in logarithm scale. For n > 500, we
observe that the restricted BDDs yield better-quality solutions than the IP
method, and as n increases this gap remains constants. However, IP times
grow in a much faster rate than restricted BDD times. In particular, with
n = 4000, the BDD times are approximately two orders-of-magnitude faster
than the corresponding IP times.
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Fig. 9: Average optimality gaps for combinatorial and weighted set packing
instances with n = 500, k = 75, and varying bandwidth.

6.4 Set Packing

We extend the same experimental analysis of the previous section to set pack-
ing instances. Namely, we initially compare the quality of the solutions by
means of two classes of instances. In the first class we analyze variations of the
bandwidth by generating random instances with n = 500, k = 75, and setting
bw in the range {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.5k⌋}. In the second class, we analyze
variations in the density of the constraint matrix A by generating random
instances with n = 500, k ∈ {25, 50, . . . , 250}, and with a fixed bw = 1.6k. In
all classes, we created 30 instances for each triple (n, k, bw) and set 500 as the
restricted BDD maximum width.

The quality is also compared with respect to the optimality gap of the
feasible solutions, which is obtained by dividing the absolute difference between
the solution’s objective value and an upper bound to the problem by the
solution’s objective value. We use the the dual value at CPLEX’s root node
as the upper bound for each instance.

Similarly to the set covering problem, experiments were performed with two
types of objective function coefficients. The first, c = 1, yields the combina-
torial set packing problem. For the second cost function, let ncj again denote
the number of constraints that include variable xj , j = 1, . . . , n. We chose
the objective coefficient of variable xj uniformly at random from the range
[0.75ncj , 1.25ncj ]. As a result, variables that participate in more constraints
have a higher cost, thereby yielding harder set packing problems since this
is a maximization problem. This cost vector yields the weighted set packing
problem.

The results for the first class of instances are presented in Figure 9. For all
tested instances, the solution obtained from the BDD restriction was at least
as good as the IP solution for all cost functions. As the bandwidth increases,
the gap also increases for both techniques, as the upper bound obtained from
CPLEX’s root node deteriorates for larger bandwidths. However, the BDD
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Fig. 10: Average optimality gaps for combinatorial and weighted set packing
instances with n = 500, varying k, and bw = 1.6k.

gap does not increase as much as the IP gap, which is especially noticeable for
the weighted case. We note that the difference in times between the BDD and
IP restrictions are negligible and lie below one second.

The results for the second class of instances are presented in Figure 10. For
all instances tested, the BDD bound was at least as good as the bound obtained
with IP, though the solution quality from restricted BDDs was particularly
superior for the weighted case. Intuitively, since A is sparser, fewer BDD node
states are possible in each layer, implying that less information is lost by
restricting the BDD width. Finally, we observe that times were also comparable
for both IP and BDD cases, all below one second.

Next, we proceed analogous to the set covering case and compare solu-
tion quality and time as the number of variables n increases. As before, we
generated random instances with n ∈ {250, 500, 750, . . . , 4000}, k = 75, and
bw = 2.2k = 165, and 30 instances per configuration. Only weighted set pack-
ing instances are considered.

The average optimality gap and solving times are presented in Figures 11a
and 11b, respectively. Similar to the set covering case, we observe that the
BDD restrictions outperform the IP heuristics with respect to both gap and
time for this particular configuration. The difference in gaps between restricted
BDDs and IP remains approximately the same as n increases, while the time
to generate restricted BDDs is orders–of-magnitude less than the IP times for
the largest values of n tested.

7 Conclusion

Unlike problem-specific heuristics, general-purpose heuristics for binary opti-
mization problems have received much less attention in the literature. Often,
the latter end up incorporated into integer programming software, many of
which have dozens of such heuristics at their disposal. With each heuristic
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Fig. 11: Average optimality gaps and times for weighted set packing instances
with varying n, k = 75, and bw = 2.2k = 165. The y axis in the time plot is in
logarithm scale.

likely to be better suited for BOPs with different mathematical structures, IP
solvers typically run many of them at the root node, as well as during search,
hoping to find strong primal bounds to help with node pruning and variable
fixing. Therefore, it is important for these heuristics to produce high-quality
solutions quickly.

We introduce a new structure, restricted BDDs, and describe how they
can be used to develop a new class of general-purpose heuristics for BOPs. A
restricted BDD is a limited-size directed acyclic multigraph that represents an
under-approximation of the feasible set. One of the advantages of representing
BOPs with BDDs is that finding the best feasible solution for any separable
objective function only requires solving a shortest path problem. Secondly,
adapting a generic restricted BDD to a particular problem type is simple; it
amounts to defining two criteria used while building the BDD: how to delete
nodes from layers that grow beyond the maximum allowed width, and how to
combine equivalent nodes in a given layer. Our empirical observations indicate
that a good rule of thumb for the first criterion is to keep nodes whose paths
to the root of the BDD are the shortest when dealing with minimization objec-
tives, or the longest when dealing with maximization objectives. The second
criterion is more problem-specific, as detailed in Section 5, but still often easy
to implement.

To test its effectiveness, we apply our restricted-BDD approach to ran-
domly generated set covering and set packing instances, and compare its
performance against the heuristic solution-finding capabilities of the state-
of-the-art IP solver CPLEX. Our first empirical observation is that, among all
instances tested, the quality of the solution obtained by the restricted BDD
approaches the optimal value with a super-exponential-like convergence in the
value of the maximum BDD width W , whereas the time to build the BDD
and calculate the solution only grows linearly in W . For both the set covering
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and set packing problems we consider combinatorial instances, which have all
costs equal to 1, as well as weighted instances, which have arbitrary costs.

For the set covering problem, solutions obtained by the restricted BDD
can be up to 30% better on average than solutions obtained by CPLEX. This
advantage progressively decreases as either the bandwidth of the coefficient
matrix A increases, or the sparsity of A decreases. In general, the BDD per-
forms better on weighted instances. In terms of execution time, the BDD
approach has a slight advantage over the IP approach on average, and can
sometimes be up to twice as fast.

For the set packing problem, the BDD approach exhibits even better per-
formance on both the combinatorial and weighted instances. Its solutions can
be up to 70% better on average than the solutions obtained by CPLEX, with
the BDD performing better on weighted instances than on combinatorial in-
stances once again. Unlike what happened in the set covering case, on aver-
age, the BDD solutions were always at least as good as the ones produced by
CPLEX. In addition, the BDD’s performance appears to improve as the band-
width of A increases. As the sparsity of A changes, the BDD’s performance
is good for sparse instances, drops at first as sparsity starts to increase, and
tends to slowly increase again thereafter. In terms of execution time, the BDD
approach can be up to an order of magnitude faster than CPLEX.

In summary, our results indicate that restricted BDDs can become a useful
addition to the existing library of heuristics for binary optimization problems.
Several aspects of our algorithm may still need to be further investigated,
including the application to broader classes of problems and how BDDs can
be incorporated into existing complete or heuristic methods. For example,
they could be used as an additional primal heuristic during a branch-and-
bound search. Moreover, restricted BDDs could also be applied to problems
for which no strong linear programming relaxation is known, since they can
accommodate constraints of arbitrary form.

References

Aarts E, Lenstra JK (1997) Local Search in Combinatorial Optimization. John
Wiley & Sons, New York

Akers SB (1978) Binary decision diagrams. IEEE Transactions on Computers
C-27:509–516

Andersen HR, Hadzic T, Hooker JN, Tiedemann P (2007) A constraint store
based on multivalued decision diagrams. In: Bessière C (ed) Principles and
Practice of Constraint Programming (CP 2007), Springer, Lecture Notes in
Computer Science, vol 4741, pp 118–132

Becker B, Behle M, Eisenbrand F, Wimmer R (2005) BDDs in a branch and cut
framework. In: Nikoletseas S (ed) Experimental and Efficient Algorithms,
Proceedings of the 4th International Workshop on Efficient and Experimen-
tal Algorithms (WEA 05), Springer, Lecture Notes in Computer Science,
vol 3503, pp 452–463



BDD-Based Heuristics for Binary Optimization 25

Behle M, Eisenbrand F (2007) 0/1 vertex and facet enumeration with BDDs.
In: Proceedings of the Workshop on Algorithm Engineering and Experiments
(ALENEX), SIAM, pp 158–165

Bergman D, van Hoeve WJ, Hooker JN (2011) Manipulating MDD relaxations
for combinatorial optimization. In: Achterberg T, Beck J (eds) CPAIOR,
Springer, Lecture Notes in Computer Science, vol 6697, pp 20–35

Bergman D, Cire AA, van Hoeve WJ, Hooker JN (2012) Variable ordering
for the application of BDDs to the maximum independent set problem. In:
Beldiceanu N, Jussien N, Pinson E (eds) 9th International Conference on
Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR’12), Springer Verlag, Nantes,
France, Lectures Notes in Computer Science, vol 7298, pp 34–49

Berthold T (2006) Primal heuristics for mixed integer programs. Master’s the-
sis, Zuze Institute Berlin

Bertsimas D, Iancu DA, Katz D (2013) A new local search algorithm for binary
optimization. INFORMS Journal on Computing 25(2):208–221

Bryant RE (1986) Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers C-35:677–691

Caprara A, Fischetti M, Toth P (1998) Algorithms for the set covering prob-
lem. Annals of Operations Research 98:2000

Corso GMD, Manzini G (1999) Finding exact solutions to the bandwidth
minimization problem. Computing 62(3):189–203

Eckstein J, Nediak M (2007) Pivot, cut, and dive: a heuristic for 0-1 mixed
integer programming. J Heuristics 13(5):471–503

Feige U (2000) Approximating the bandwidth via volume respecting embed-
dings. J Comput Syst Sci 60(3):510–539

Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program
104(1):91–104

Fulkerson DR, Gross OA (1965) Incidence matrices and interval graphs. Pac J
Math 15:835–855

Glover F, Laguna M (1997a) General purpose heuristics for integer program-
ming – Part I. Journal of Heuristics 2(4):343–358

Glover F, Laguna M (1997b) General purpose heuristics for integer program-
ming – Part II. Journal of Heuristics 3(2):161–179

Grosso A, Locatelli M, Pullan W (2008) Simple ingredients leading to very
efficient heuristics for the maximum clique problem. Journal of Heuristics
14(6):587–612

Gurari EM, Sudborough IH (1984) Improved dynamic programming algo-
rithms for bandwidth minimization and the mincut linear arrangement prob-
lem. Journal of Algorithms 5:531–546

Hadzic T, Hooker JN (2006) Postoptimality analysis for integer programming
using binary decision diagrams, presented at GICOLAG workshop (Global
Optimization: Integrating Convexity, Optimization, Logic Programming,
and Computational Algebraic Geometry), Vienna. Tech. rep., Carnegie Mel-
lon University



26 David Bergman et al.

Hadzic T, Hooker JN (2007) Cost-bounded binary decision diagrams for 0-
1 programming. In: Loute E, Wolsey L (eds) Proceedings of the Interna-
tional Workshop on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR 2007), Springer, Lecture Notes in Computer
Science, vol 4510, pp 84–98

Hadzic T, Hooker JN, O’Sullivan B, Tiedemann P (2008) Approximate compi-
lation of constraints into multivalued decision diagrams. In: Stuckey PJ (ed)
Principles and Practice of Constraint Programming (CP 2008), Springer,
Lecture Notes in Computer Science, vol 5202, pp 448–462

Hoda S, Hoeve WJv, Hooker JN (2010) A systematic approach to MDD-based
constraint programming. In: Proceedings of the 16th International Confer-
ence on Principles and Practices of Constraint Programming, Springer, Lec-
ture Notes in Computer Science, vol 6308, pp 266–280

Hu AJ (1995) Techniques for efficient formal verification using binary deci-
sion diagrams. Thesis CS-TR-95-1561, Stanford University, Department of
Computer Science

Lee CY (1959) Representation of switching circuits by binary-decision pro-
grams. Bell Systems Technical Journal 38:985–999

Mart́ı R, Laguna M, Glover F, Campos V (2001) Reducing the bandwidth of a
sparse matrix with tabu search. European Journal of Operational Research
135(2):450–459
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Piñana E, Plana I, Campos V, Mart́ı R (2004) GRASP and path relinking
for the matrix bandwidth minimization. European Journal of Operational
Research 153(1):200–210

Pullan W, Mascia F, Brunato M (2011) Cooperating local search for the max-
imum clique problem. Journal of Heuristics 17(2):181–199

Saxe J (1980) Dynamic programming algorithms for recognizing small-
bandwidth graphs in polynomial time. SIAM J Algebraic Discrete Meth
1:363–369

Wegener I (2000) Branching programs and binary decision diagrams: theory
and applications. SIAM monographs on discrete mathematics and applica-
tions, Society for Industrial and Applied Mathematics


