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Abstract. We describe the constraint programming interface of the op-
timization modeling systems A1mMs. First, we present the modeling lan-
guage for basic constraint programming and advanced scheduling con-
structs, and specify how search can be controlled. Then we provide three
example applications that illustrate how AIMMS can be used for devel-
oping constraint programming applications.

1 Introduction

Over the last decades, constraint programming (CP) has proved to be an impor-
tant tool for solving combinatorial optimization problems, either as a stand-alone
technology [17], or in combination with other optimization methods such as in-
teger programming or local search [13, 7, 14]. In addition to specific solving
methodology (i.e., systematic search combined with logic-based inference meth-
ods), CP offers a wealth of modeling constructs beyond the classical (non)linear
inequalities that are used in (non)linear programming, such as logical operators
and variable-ranged indices.

The need for algebraic modeling languages, such as AMPL, GAMS, and
AIMMS, to embrace CP technology was already acknowledged and motivated
by Fourer and Gay [4]. For example, they argue that CP can provide more nat-
ural formulations that are closer to the original problem than more restricted
languages such as integer linear programming. Furthermore, CP technology can
be a very effective solving tool, especially for highly combinatorial problems
such as complex scheduling applications. Lastly, generic algebraic modeling lan-
guages (as opposed to vendor-specific systems) allow to interface with a variety
of solvers. Therefore by adding CP, modeling systems allow to express a wider
range of combinatorial problems, and to solve those with a broader set of solution
methods.

In this work, we focus on the constraint programming interface of AIMMS.
The modeling language underlying A1MMS was originally developed in a similar
spirit as GAMS [2] and AMPL [5]. Similar to those systems, it is based on an al-
gebraic syntax and offers access to (at least) integer linear programming (ILP),
quadratic programming (QP), and nonlinear programming (NLP) technology.
The main difference with these other languages, however, is that model devel-
opment in AIMMS revolves around a graphical modeling interface depicting the



hierarchical structure in a model formulation. This allows to formulate a problem
in an intuitive and naturally decomposed manner. A second important feature
of A1MMS is that it offers user-developed ‘pages’, that can be used to graphically
depict solutions or even build entire end-user applications. In fact, an important
benefit of AIMMS is that it can not only be used to quickly develop a prototype,
but also subsequently easily enhance that prototype into a user friendly end-user
application through graphical pages, or an application deployed as part of the
software framework of a company.

The goal of this paper is twofold. We first give an overview of the constraint
programming interface of AiMMS. We then illustrate how this interface can be
used to develop constraint programming applications, by providing three exam-
ples. The first is a map coloring problem that illustrates the GIS support for
visualization. The second is a column generation procedure that illustrates the
ease with which hybrid solution methods, in this case combining LP and CP,
can be implemented. The third is real-world application for inventory balancing
in bike sharing systems.

We note that a description of the implementation details of the constraint
programming interface of AmmMMs will be presented by Kuip [9] in the CP 2013
workshop on “CP Solvers: Modeling, Applications, Integration, and Standard-
ization”.

2 Related Work

Several other industrial and academic modeling languages/systems have been
developed to make the use of CP and hybrid methods more accessible. These
include IBM ILOG CPLEX Optimization Studio (with the OPL language [20]),
Fico Xpress Optimization Studio (with the Mosel language [3]), Comet [21],
Zinc [11], Essence [6], AMPL [4], and SIMPL [22]. Each of these systems provides
considerable advances in the usability of CP including the usability of CP by
non-experts. The recently introduced CP extension of AIMMS contributes to
those developments by focusing at an industrial-strength, solver-independent,
intuitive graphical modeling interface. Specific differences with existing systems
are that AIMMS supports a detailed interface for scheduling problems, based on
the intuitive activity /resource view. In addition, AIMMS supports set based type
checking on the arguments of parameters and variables when variables are used
in the indexing. Finally, AIMMS offers if-then-else expressions where variables
are allowed in the condition.

OPL, Comet and Mosel do offer support for developing GUI’s around appli-
cations but are linked to vendor specific solvers. In addition, these three systems
offer no or limited support for the nonlinear mathematical programming model
types. AMPL and Zinc are not linked to specific solvers but they do not pro-
vide support for developing GUI’s. Furthermore, Zinc and Essence do not offer
support for the nonlinear mathematical programming modeling classes. Closest
to the ATMMS interface is the constraint programming extension of AMPL [4].
However, several concepts proposed in [4] are not yet realized in AMPL, for



example the use of variables as subscript in element constraints. SIMPL is a
separate development targeted at developing applications by combining existing
templates for portions of frequently occurring sub models. It does not offer a
general algebraic syntax for describing arbitrary models.

There are also features in which AIMMS is not as developed as some of the
systems mentioned above. For instance, set-valued variables are offered by OPL
and Zinc and not yet implemented in A1MMS. In addition, the languages OPL,
Zinc and Mosel offer more search directives than AtMMS does.

3 Constraint Programming Interface

Here we provide a brief overview of the A1MMS system for specifying CP applica-
tions. We provide the basic CP constructs, the interface for advanced scheduling
applications, and the search specification. More details can be found in [16].

3.1 Basic Constraint Programming Constructs

Essential to a language supporting constraint programming concepts is its rep-
resentation of discrete variables, the constraints that can be formulated using
these variables and the available global (or symbolic) constraints.

Variable types The existing non-CP variable types of AIMMS are integer vari-
ables and continuous variables, which can be used to model, e.g., MIP and
(MI)NLP problems. The integer variable type is also available to formulate CP
models. In addition, the new variable type element variable has been introduced
for CP. Analogous to the existing ‘element parameter’ type in AIMMS, these
variables can be used to represent subscripts in an array (historically modeled
through element constraints in CP). Other examples of their application include
usage in table constraints and comparison with other element variables. Element
variables can only be used in CP models. As an illustration, consider the follow-
ing partial model for a warehouse location problem, in which we are given a set
of clients, indexed by c, that must be supplied by a set of warehouses:

ELEMENT VARIABLE:

identifier :  supplyingWarehouse
index domain : ¢
range :  Warehouses
VARIABLE:
identifier : TotalCost
range : Integer
definition : sum(c, SupplyCost(c,supplyingWarehouse(c)))

Here supplyingWarehouse(c) is an element valued expression resulting in an
element of the set Warehouses. We note that this enables to detect, at compile
time, the error in the expression SupplyCost (supplyingWarehouse(c),c).



cp::ActivityBegin cp: :EndBeforeEnd

cp::ActivityEnd cp: :EndOfNext
cp::ActivityLength cp: :EndOfPrevious
cp::ActivitySize cp: :GroupOfNext
cp::AllDifferent cp::BeginAtBegin cp: :GroupOfPrevious
cp: :BinPacking cp: :BeginAtEnd cp: :LengthOfNext
cp::Cardinality cp: :BeginBeforeBegin cp::LengthOfPrevious
cp::Channel cp: :BeginBeforeEnd cp::Size0fNext
cp::Count cp: :BeginOfNext cp::Size0fPrevious
cp::Lexicographic cp: :BeginOfPrevious
cp::ParallelSchedule cp: :EndAtBegin cp::Alternative
cp::Sequence cp: :EndAtEnd cp::Span
cp: :SequentialSchedule cp: :EndBeforeBegin cp: :Synchronize
(a) Combinatorial constraints (b) Advanced scheduling constraints

Fig. 1. Global constraints supported by AIMMS.

Basic constraints Interestingly, many modeling concepts from CP were al-
ready present in the existing AIMMS syntax, albeit restricted to non-variable
identifiers. Namely, AIMMs already offers all standard arithmetic, logical, and
set related operators. For MIP models, these functions can for example be ap-
plied to condition the index set over which a constraint is defined. For use in CP
only a semantic change was made to the language, allowing variables to appear
in these expressions. The constraints thus formed can then be added to a CP
model. As an illustration, we can model a table constraint (which explicitly
represents the set of allowed tuples for a set of variables) as follows:

CONSTRAINT:
identifier : MyTableConstraint
definition : (Varl, Var2, Var3) in MyThreeDimRelation

Here, MyThreeDimRelation represents the set of allowed tuples, and the set
operator in defines the actual constraint.

Naturally, the CP interface of AiMMS allows to use the existing operators to
build any algebraic or logical expression, as is common in CP.

Global constraints AIMMS offers several global constraints, as indicated in
Fig. 1(a). Most of these global constraints will be familiar to CP users, as they
appear under the same name in the literature. There are two new names in
this list: ParallelSchedule and SequentialSchedule, corresponding to the
classical ‘cumulative resource’ and ‘unary resource’ constraints of CP. These
names were chosen because they are more intuitive to non-experts than the
names existing in the literature for these constraints, i.e., cumulative and unary
or disjunctive. An illustration of SequentialSchedule in AIMMS is presented
in Fig. 2.
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Fig. 2. Using the global constraint cp::SequentialSchedule in AIMMS. Here, t is
the index representing the set of tasks, StartTime(t), Duration(t), EndTime(t) are
variables representing the start time, duration, and end time of each task. The argument
roles such as jobBinding were entered by pressing ctrl-shift-space twice half-way typing
cp::SequentialSchedule.

3.2 Representing Scheduling Problems

In order to exploit the full power of CP for more complex scheduling problems,
these must be represented in a specific format that can be recognized by the
solver. For this, AIMMS uses a combination of the well-known concepts of ‘ac-
tivities’ and ‘resources’ that are traditionally used in constraint-based schedul-
ing [1], and special global constraints as introduced recently for IBM ILOG CP
Optimizer [10]. Activities are the objects to be scheduled, and their execution
will impact one or more resources.

Activities With each activity Act, AIMMS automatically associates variables
to the components of such an activity such as variables Act.Begin, Act.End,
Act.Length, Act.Size and Act.Present. These correspond to the begin, end,
length, size, and presence of Act, respectively, and they can be used as normal
variables throughout the entire CP model. Length and Size are two distinct
concepts. The Act.Length is the difference between Act.End and Act.Begin.
The Act.Size is the number of time slots in the schedule domain of Act between
Act .End (exclusive) and Act.Begin (inclusive), i.e. the amount of time actively
spent on Act. The effect of an activity on the resources will be modeled at
the resource level, as discussed below. Activities have a mandatory attribute
schedule domain, representing the possible dates the activity can be executed.

Resources A resource can be declared in two ways: Sequential or Parallel.
The Sequential usage defines a disjunctive (or unary) resource, similar to the



global constraint SequentialSchedule defined above. The Parallel usage de-
fines a cumulative resource, similar to the global constraint ParallelSchedule
defined above. A resource has the mandatory attribute schedule domain which
is the set of timeslots that resource is available. The topmost superset of this
set should be equal to the topmost superset of the schedule domains of the
associated activities.

A sequential resource has the following optional sequencing attributes: FIRST
ACTIVITY, LAST ACTIVITY, COMES BEFORE, PRECEDES, and TRANSITION, repre-
senting standard sequencing requirements, and transition times between pairs of
activities.

A parallel resource has the following optional sequencing attributes: LEVEL
RANGE, INITIAL LEVEL, LEVEL CHANGE, BEGIN CHANGE, and END CHANGE. The
first two attributes specify the bounds and starting value on the resource level.
The latter three attributes are defined with respect to the activities associated
with the resource: each activity should impact the resource level either by a LEVEL
CHANGE (the level is impacted during the length of the activity), or separately
declaring a BEGIN CHANGE, END CHANGE, or both. In the BEGIN CHANGE and END
CHANGE attributes also variables can be referenced. The use of parallel resources
is illustrated in the following example, in which the activities Act are defined
on a set indexed by a, while DepositAct is defined on a set indexed by d.
AmountDeposited(d), —ActCost(a) and Profit(a) are parameters:

RESOURCE:
identifier : Budget
schedule domain : DaysPlannedFor
usage : Parallel
activities : Act(a), DepositAct(d)
level range : {0..100}
begin change : DepositAct(d) : AmountDeposited(d),
1 Act(a) : —ActCost(a)
end change : Act(a) : Profit(a)

Resources offer the basic building block for representing scheduling problems. In
addition, ATMMS allows to apply several other global constraints directly to the
activities, similar to those presented in [10]; see Fig. 1(b).

Discussion The scheduling interface was designed with the goal of being as
intuitive as possible for any OR practitioner, while at the same time offering
enough level of detail to exploit the algorithmic power. We believe that the rep-
resentation in terms of activities and resources is more appealing to non-experts
than using the elementary concepts of interval variables and cumul functions of
IBM ILOG CP Optimizer or OPL [10].

3.3 Search

Because constraint programming is often used for solving challenging combina-
torial optimization problems, problem specific search heuristics may be critical



for the successful application of CP. In A1MMS, the search can be controlled by
defining a (fixed) variable ordering, and by setting solver parameters.

The variable ordering can be specified via the Priority of the variables (a
positive integer value). Variables with a smaller priority value will be considered
first in the branching process. Variables of the same priority are subject to the
solver’s variable selection.

The search parameters that can be set in AIMMS are solver dependent, but
these normally include at least a variable selection and value selection heuris-
tic. In addition, the settings for IBM ILOG CP Optimizer include the search
type (automatic, depth-first, restart, multi-point) and restart parameters (fail-
ure limit, growth factor).

Discussion Modeling systems for constraint programming often allow the ex-
plicit specification of a search procedure within the language. However, Puget
[15] argued that this limits the use of CP to a small set of experts, and instead
black-box solvers with automated search procedure are needed for the broad ap-
plicability of CP. This contrast between ‘model and run’ and ‘model and search’
was more recently discussed by Michel [12], who argues for hybrid systems that
offer automated search but retain the flexibility of CP to specify the search, if
needed.

In order to appeal to operations research practitioners, AIMMS indeed offers
a ‘model and run’ approach. For most applications, setting the priority level
of the variables is the single most important decision to influence the search
behavior and obtain useful results. Offering language support for more sophisti-
cated search specifications would require a substantial development effort, while
only few users would benefit from this feature. Ultimately, in order to widen
the applicability of CP technology, a model and run approach using black-box
CP solvers seems unavoidable. As a consequence, it also seems unavoidable that
search be automated even more, and therefore search declarations within the
modeling language would become less important.

4 Applications

4.1 GIS Support for Visualization

We first illustrate the visualization support of AIMMS, on a map coloring prob-
lem. We are given the set of states of the USA, together with an adjacency list,
except for the states Alaska and Hawai. The goal is to assign a color to each
state such that no two adjacent states are assigned the same color.

To represent this problem we use as index sets USAStates, indexed by s,
s1, s2, and SelectedColors, containing four elements. The adjacency list for a
state s is given by AdjacentStates(s). Then we model the problem as follows:

ELEMENT VARIABLE:
identifier : stateColor



Fig. 3. Map coloring applied to the states of USA

index domain : s
range : SelectedColors
CONSTRAINT:
identifier :  AdjacentStatesHaveDifferentColors
index domain : (s1,s2)| s1 < s2 and
s2 in AdjacentStates(sl)
definition : stateColor(sl) <> stateColor(s2)

Since AmMMS supports GIS technology! for visualization, we can use this to
display our solution. Using the AIMMS ‘network’ object with a GIS background,
the result can be displayed as in Figure 3. A detailed description of this appli-
cation, together with the AiMMS model, can be downloaded from
http://blog.aimms.com/2012/12/coloring-the-states-of-the-usa/.

4.2 Column Generation for Vehicle Routing

The next example is a column generation procedure for capacitated vehicle rout-
ing. The problem is to serve a set of clients C' from a given depot with multiple
trucks. Each client ¢ € C has a given (unsplittable) load . that must be deliv-
ered from the depot by a truck. The total load to be picked up by a truck must
not exceed the truck capacity Q). The goal is to serve all clients with minimum
total travel distance.

The column generation procedure consists of two models, the master problem
and the subproblem. The master problem is defined on a set Routes of feasible

1 QIS stands for Geographic Information System.



truck routes. For each route r, binary parameter ClientInRoute(r,c) specifies
whether client c is visited by r. Parameter LengthOfRoute (r) specifies the length
of r. The master problem selects a subset of routes such that all clients are visited,
with minimum total length:

VARIABLE:

identifier :  SelectRoute

index domain : «r

range : binary
CONSTRAINT:

identifier : ClientServed

index domain : ¢

property :  ShadowPrice

definition : sum(r, SelectRoute(r)*ClientInRoute(c, r)) >= 1
VARIABLE:

identifier : TotalDistance

range : free

definition : sum(r, LengthOfRoute(r)*SelectRoute(r))

This model can be solved either as an integer program, or as a continuous linear
programming relaxation. The latter provides us with a shadow price for each
constraint.

In the subproblem, the goal is to find an improving truck route, relative to
the shadow prices of the current LP relaxation. That is, we need to select a set of
clients to visit, such that the sum of the shadow prices of these clients outweighs
the total length of the route to visit these clients. In other words, the reduced
cost of the new route must be negative.

This subproblem can be modeled as a CP scheduling problem, based on
activities and resources [8, 18]. That is, for each client ¢ we introduce an optional
activity ClientVisit(c). We moreover introduce activities StartAtDepot and
EndAtDepot representing the start and end of the route. Lastly, we introduce a
sequential resource Vehicle representing the truck route:

RESOURCE:

identifier : Vehicle

usage :  sequential

schedule domain : ScheduleHorizon

activities : ClientVisit(c), StartAtDepot, EndAtDepot

property : TransitionOnlyNext

group set : Locations

group definition : ClientVisit(c) : c,
StartAtDepot : ’depot’,
EndAtDepot : ’depot’

group transition : (i,j) : DistancelInTime(i,j)

first activity :  StartAtDepot

last activity :  EndAtDepot

That is, the client visits cannot overlap in time, and moreover they have to
respect the transition times (reflecting the distance between two visits).
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a. Column generation procedure b. Output page

Fig. 4. Column generation example for a vehicle routing problem.

To complete the model of our subproblem, we next define the truck capacity
constraint and the objective:

CONSTRAINT:

identifier : CapacityConstraint

definition : sum(c, ClientVisit(c).Present*Load(c)) <= TruckCapacity
VARIABLE:

identifier : ReducedCostOfRoute

range : free

definition : EndAtDepot.End - StartAtDepot.Begin
- sum(c, ClientVisit(c).Present*ClientServed(c) .ShadowPrice)

Lastly, we define the column generation procedure as shown in Figure 4.a.
After generating initial routes on single clients and pairs of clients in proce-
dure generateInitialRoutes, we start the column generation process. We first
solve the LP relaxation of the master problem FindOptimalRoutes (the keyword
‘rmip’ stands for relaxed MIP). We then solve the subproblem FindNewRoute
with a given time limit. If the reduced cost is not improving, we exit the column
generation loop. Otherwise, we add the newly found route to the set of routes.
Here, Routes is an integer set starting with element 0, which allows to add the
new route as element Card (Routes), the cardinality of the set.

To illustrate again the visualization offered by Aivwms, Figure 4.b shows
the output page. It displays the depot and the clients in a Network object,
together with the truck routes as arcs. The bottom table presents a detailed
list of selected routes. We note that this visualization is dynamic, in that the
displayed routes are updated each time a new solution is found (to this end,
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we solve FindOptimalRoutes as an additional MIP in the column generation
procedure).

A detailed description of this application, together with the AIMMS model,
can be downloaded from
http://www.andrew.cmu.edu/user/vanhoeve/summerschool/exercises/.

4.3 Inventory Balancing in Bike Sharing Systems

Our last example is a real-world application for inventory rebalancing and ve-
hicle routing in in the context of bike sharing systems. Bike sharing systems
have been installed in many major cities around the world. In these systems,
users can pickup and return bikes at designated bike sharing stations with a
finite number of docks. Unfortunately, user behavior results in spatial imbalance
of the bike inventory over time. The system equilibrium is often characterized
by unacceptably low availability of bikes or open docks, for pickups or returns
respectively. Therefore, operators deploy a fleet of trucks to rebalance the bike
inventory.

This problem consists of two main components. First, determining the de-
sired inventory level at each bike station, which is typically done by an analysis
of historic user data. Second, designing truck routes that will perform the neces-
sary pickups and deliveries in order to reach the target inventory levels. In this
example, we will assume for simplicity that we are given minimum and maximum
target inventory thresholds for each bike station. The problem is then to find
truck routes that will pickup and deliver the bikes at the visited stations such
that the inventory level for each station is between its minimum and maximum
threshold, with minimum total distance.

We can represent this problem as a CP scheduling problem with alterna-
tive resources; for each pair (i,j) of station ¢ and vehicle j we define an op-
tional activity representing whether j visits i. We use the global constraint
cp: :Alternative to ensure that at most one truck (or more) will perform the
visit. Similar to the previous routing example we define a sequential resource for
each vehicle representing its route. In addition, we need parallel resources for
the bike stations and the vehicles to represent the inventory level over time. A
complete description of the CP model can be found in [19].

One of the main benefits of the CP model for this application was the rel-
atively fast development process. As described in [19], the CP model was com-
pared with an exact MIP model as well as a heuristic MIP-based clustering
approach. Even though the clustering approach outperforms the CP model in
terms of solution quality (and solving time), it took several months to develop.
In contrast, the CP model was implemented and tested within a few days, de-
livering competitive results in many cases.

Using AmMMs for this particular application demonstrated several advan-
tages:

— We were able to develop all models (MIP, clustering heuristic, and CP)
within one system. This greatly reduced the overhead of sharing data, as
well as model development time.
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— We were able to experiment with different MIP solvers for the same model,
including CPLEX and Gurobi.

— Our application relied on large amounts of historic data that were processed
on a separate server. We were able to quickly import necessary data using
the external database functionality of AIMMS.

5 Conclusions

We have presented the CP interface of the modeling system AiMMS, and provided
three examples that illustrate some of the benefits of developing CP applications
using AIMMS. The benefits include visualization of the results, representation of
scheduling problems using activities and resources, and easy development of
hybrid approaches such as CP-based column generation.
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