
Variable Ordering for the Application of BDDs

to the Maximum Independent Set Problem

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, J. N. Hooker

Tepper School of Business, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, U.S.A.

{dbergman,acire,vanhoeve}@andrew.cmu.edu, john@hooker.tepper.cmu.edu
⋆

Abstract. The ordering of variables can have a significant effect on the
size of the reduced binary decision diagram (BDD) that represents the set
of solutions to a combinatorial optimization problem. It also influences
the quality of the objective function bound provided by a limited-width
relaxation of the BDD. We investigate these effects for the maximum
independent set problem. By identifying variable orderings for the BDD,
we show that the width of an exact BDD can be given a theoretical upper
bound for certain classes of graphs. In addition, we draw an interesting
connection between the Fibonacci numbers and the width of exact BDDs
for general graphs. We propose variable ordering heuristics inspired by
these results, as well as a k-layer look-ahead heuristic applicable to any
problem domain. We find experimentally that orderings that result in
smaller exact BDDs have a strong tendency to produce tighter bounds
in relaxation BDDs.

1 Introduction

In recent years, Binary Decision Diagrams (BDDs) [1, 17, 7] have been regarded
as a powerful tool for a variety of purposes in Operations Research. Their appli-
cation in this domain is primarily as a graphical data structure that aims at a
compact representation of the set of feasible solutions to a Constraint Satisfac-
tion Problem (CSP). Examples of applications include the generation of cuts in
a Branch-and-cut framework [3], post-optimality analysis for Integer Program-
ming [12, 13], and 0/1 vertex and facet enumeration [4].

This perspective of BDDs is nonetheless associated with inherent difficulties.
First, constructing the exact BDD for a CSP instance is in general an NP-hard
problem, since this procedure is as hard as deciding the feasibility of the instance.
Furthermore, even for problems where feasibility can be determined efficiently,
the BDD may grow exponentially large, and thus it is not computationally prac-
tical to derive exact representations for most relevant problems.

In light of these difficulties, the work in [2] proposes the use of limited-size
BDDs as an approximate representation for CSPs. Namely, limited-size BDDs are

⋆ This work was supported by NSF under grant CMMI-1130012 and AFOSR under
grant FA-95501110180.

constructed in a way that they contain the feasible space of a particular CSP, but
may potentially include infeasible solutions due to the imposition of a polynomial
bound on their size according to an input parameter. Such approximations have
led to research along several directions, such as replacing the traditional domain
store relaxation used in Constraint Programming systems [2, 14, 15].

In this context, the work in [5] introduced a systematic approach to generate
approximate BDDs for Combinatorial Optimization problems. The authors fo-
cused on using BDDs to represent a relaxation of the set of feasible solutions to
the Set Covering Problem (SCP). These structures were introduced for the pur-
pose of proving bounds on the objective function for the SCP. It also proposes
methods for tightening the bound provided by the relaxed BDDs, analogous to
the use of cutting planes in Integer Programming (IP). It was shown by the au-
thors that for structured instances of the SCP, the relaxations based on BDDs
can provide substantially tighter bounds than the classical linear relaxation.

We further extend this line of research in the present paper, investigating
one of the crucial aspects of BDDs applied to Operations Research problems:
How does the ordering of the variables within a BDD affect the quality of the
relaxation it provides. In particular, we are interested in identifying the relation
between the size of an exact BDD for a CSP, which is directly correlated to the
variable ordering applied, and the bounds obtained through its corresponding
approximate BDD when an objective function is considered.

The development of good variable orderings requires identifying the under-
lying cause of the combinatorial explosion of the size of exact BDDs. For this
purpose, this work focuses on the Maximum Independent Set Problem (MISP),
exploring the following main topics. We first introduce a technique to efficiently
construct the BDD representing the family of independent sets of a graph. Next,
we provide a thorough study of orderings that yield polynomially-bounded BDD
sizes for particular classes of graphs. Through this analysis we uncover an in-
teresting connection between the size of exact BDDs for arbitrary graphs and
the Fibonacci numbers, yet another curious property of independent sets [8, 11,
9, 18]. Interestingly, we illustrate how the underlying principles in the proof of
these bounds on the width can be used to develop good ordering heuristics. Fi-
nally, we experimentally show in this paper that variable orderings that yield
small-sized exact BDDs are critical for their application as a bounding technique
to optimization problems, resulting in substantially better bounds for the MISP
when compared to other orderings.

The contributions of this work potentially go beyond the scope of independent
set problems. Namely, we presented the first systematic analysis and empirical
evidence of how variable orderings can positively affect approximate BDDs in
Combinatorial Optimization. This analysis may be extended to various other
problem domains. We particularly reinforce the claim that investigating order-
ings for particular problem classes can lead to good heuristics that are potentially
applicable to other problems. In particular, we introduce the general-purpose
variable ordering heuristic k-stage lookahead, that yielded the best results for
the MISP and can be directly used for any CSP.

This paper is organized as follows. In Section 2 we formally introduce BDDs.
In Section 3 we discuss how exact BDDs for the MISP can be constructed. In
Section 4 we investigate variable ordering for particular classes of instances of
the MISP and prove bounds on the size of the exact BDDs for these problems.
In Section 5 we discuss variable ordering heuristics for general graphs. Finally,
in Section 6 we provide computational results and conclude in Section 7.

2 Preliminaries and Notation

CSPs A CSP (X,D, C) is defined by a finite set of variables X, a set of discrete
domains D such that D(x) ∈ D restricts the values x ∈ X can take, and a set
of constraints C. A solution to a CSP corresponds to an assignment of values
to the variables and it is feasible if all values are within the variable domains
and are consistent with C. A Constraint Optimization Problem (COP) is given
by a CSP alongside an objective function f to be maximized. For simplicity, we
consider here only CSPs with binary domains, i.e., D(x) = {0, 1} for all x ∈ X.

BDDs We are interested in representing the set of solutions of a CSP by a
Binary Decision Diagram (BDD). A BDD B = (U,A, d) is a directed acyclic
graph whose nodes U are partitioned into m layers, U = ∪m

i=1Li. The layer of a
node u is given by var(u). Layers L1 and Lm consist of single nodes; the root r
and the terminal t, respectively. The width ωj of a layer j is defined as ωj := |Lj |,
and the width of B is given by ω(B) := maxj ωj . Let |B| = |U | be the size of the
BDD. All arcs a ∈ A are directed from nodes in layer j to nodes in layer j + 1,
for some j ∈ {1, . . . ,m − 1}. The function d : A → {0, 1} associates each arc a
with a label d(a) = da ∈ {0, 1}; a is referred to as a one-arc if da = 1 and as a
zero-arc if da = 0. Each node u can have at most one one-arc and at most one
zero-arc directed out of it. For any node u, there must exist a directed path from
r to u and from u to t. A BDD representing a set of solutions of a CSP (X,D, C),
with n = |X|, has m = n+ 1 layers. Each layer Li is uniquely associated with a
variable x ∈ X; we denote this variable by xi. An arc a directed from layer Li to
Li+1 with label da identifies an assignment xi = da. Hence, a directed path from
r to t corresponds to a solution of the CSP. The set of solutions represented by
a BDD B (i.e., on all directed paths from r to t) is denoted by Sol(B).

For a given node u ∈ U , we let B+|u be the subgraph of B induced by the
subset of nodes composed of u, the root r ∈ U , and all nodes v ∈ U lying on some
directed path from r to u. In addition, we preserve the arc labels as in B; there-
fore, B+|u is also a BDD. Analogously, let B−|u be the subgraph of B induced by
the subset of nodes composed by u, the terminal t ∈ U , and all nodes v ∈ U such
that there is a directed path from u to t. Also, let B+|Lj

be the digraph induced
by L1, . . . , Lj and similarly B+|Lj

be the digraph induced by Lj , . . . , Ln+1, with
Sol(B+|Lj

) = ∪u∈Lj
Sol(B+|u) and Sol(B−|Lj

) = ∪u∈Lj
Sol(B−|u). A reduced

BDD is one for which Sol(B−|u) 6= Sol(B−|u′) for any two nodes u and u′ on
the same layer. It can be shown that for a particular ordering of the variables,
that is, how layers are mapped into variables, there is one unique reduced BDD
for any set of solutions [7].

MISP In this paper we study variable orderings for the Maximum Independent
Set Problem (MISP). Let G = (V,E) be a simple undirected graph. An inde-
pendent set of G is a set I ⊆ V such that (w, v) 6∈ E for any distinct w, v ∈ I.
We denote I(G) as the family of independent sets in G. The MISP consists of
finding a set I ∈ I(G) with the largest cardinality.

BDD representation for MISP For notation purposes, let G[W] be the
graph induced by a subset W ⊆ V and let W := V \W . A corresponding BDD
for the COP above defines a bijection between the vertices v ∈ V and the layers
L1, . . . , Ln; let vj be the associated layer of vertex v, with Vj = {v1, . . . , vj}.
With every path p = (a1, . . . , an) from the root r to the terminal t we associate
a subset Ip ⊆ V defined by Ip := {vj : daj

= 1}. Likewise, for a node u, any
path p = (a1, . . . , aj−1) in B+|u corresponds to a vertex subset in G[Vj−1] and
any path p = (aj , . . . , an) in B−|u corresponds to a vertex subset in G[V j−1].
Note that each solution corresponds to at most one path in any BDD because
no node has two arcs with the same label directed out of it.

A BDD B is exact for a graph G if Sol(B) = I(G), and it is a relaxation for G
if Sol(B) ⊇ I(G). In an exact BDD, I(G[Vj−1]) = Sol(B+|Lj

) and I(G[V j−1]) =
Sol(B−|Lj

). In a relaxation BDD, we similarly have I(G[Vj−1]) ⊆ Sol(B+|Lj
)

and I(G[V j−1]) ⊆ Sol(B−|Lj
).

By associating a cost da to each arc in a BDD B, the longest path from r to
t yields a maximum cardinality independent set of G, if B is an exact BDD. If
otherwise B is a relaxation BDD, the longest path corresponds to a subset of the
vertices whose cardinality is greater than or equal to the size of the maximum
independent set, thereby establishes an upper-bound on the value of the optimal
solution to the MISP on G. We note that since BDDs are layered graphs, the
longest path can be computed in polynomial time in |B|.

Additional Notation For a graph G = (V,E), two disjoint subsets I, J ⊂ V
are independent if (w, v) /∈ E for any w ∈ I, v ∈ J . The neighborhood N(v) of
v ∈ V is defined as N(v) = {w : (w, v) ∈ E}. A partial solution with respect to
W ⊆ V corresponds to any subset I ⊆ W , which is feasible if I ∈ I(G[W]). Given
a partial feasible solution I with respect to W , the set of feasible completions of
I with respect to W is given by C(I | W) = {J | J ⊆ W, I ∪ J ∈ I(G)}.

Example 1. Consider the MISP on the graph in Figure 1. An exact BDD repre-
sentation of the feasible set is given next to the graph, where arc (u, v) is solid
or dashed if it is labelled as 1 or 0, respectively. Assigning arc costs as described
above yields a longest path with value 3 in the BDD.

3 Exact BDD Compilation

A general method for creating exact BDDs for CSPs, known as top-down com-
pilation, is presented in [5]. It consists of constructing layers L1, . . . , Ln in that
order, adding one node at a time at each layer. A node u is removed if the paths
from r to u do not correspond to feasible partial solutions (i.e., u is infeasible),

u

v

w

y

x

z

u

x

v

w

y

z

0-arc

1-arc

Fig. 1: Example of the exact BDD for a graph G.

and two nodes u, w are merged if all the partial solutions on paths from r to
u and from r to w have the same set of feasible completions (i.e., u and w are
equivalent). The key of this technique is that the infeasibility and equivalence
conditions are determined efficiently through the analysis of a state associated
with each node, which is defined according to the problem constraints.

In order to apply the top-down exact BDD compilation algorithm for the
MISP, we first establish a condition for identifying when two independent sets
I1, I2 ∈ I(G[Vj−1]) have the same set of feasible completions.

Theorem 1. Given a graph G = (V,E), a subset {v1, . . . , vj−1} = Vj−1 ⊆ V of
the vertices of G, and two independent sets I1, I2 ⊆ I(G[Vj−1]),

C(I1 | V j−1) = C(I2 | V j−1) ⇐⇒ V j−1\ ∪v∈I1 N(v) = V j−1\ ∪v∈I2 N(v).

Proof. For I ∈ I(G[Vj−1]), we must have C(I | V j−1) = I(G[V j−1\∪v∈I1N(v)]),
since V j−1\ ∪v∈I1 N(v) is exactly the set of remaining vertices in G that are
independent of I. Conversely, suppose V j−1\ ∪v∈I1 N(v) 6= V j−1\ ∪v∈I2 N(v).
Without loss of generality, suppose there exists some w ∈ V j−1\∪v∈I1 N(v) that
is not in V j−1\∪v∈I2 N(v). Then, w ∈ C(I1 | V j−1) but w /∈ C(I1 | V j−1), hence
{v} ∪ I1 is an independent set while {v} ∪ I2 is not, concluding the proof. ⊓⊔

Let E(I | V j−1) := V j−1\ ∪v∈I N(v) be the set of eligible vertices of I ∈
I(G[Vj−1]); i.e., the vertices v ∈ V j−1 for which I ∪ {v} is an independent set.
According to Theorem 1, we can directly use the eligible vertex set as the state
for each node in order to perform the top-down compilation. Namely, since two
independent sets I1, I2 ∈ I(G[Vj]) with the same set of feasible completions
have E(I1 | V j) = E(I2 | V j), we label a BDD node u ∈ Lj with a state
E(u) = E(I | V j) for any I ∈ Sol(B+|u), as they must be all equal for any
such I. Hence, all paths from r to u correspond to partial solutions with the
same set of feasible completions. A node u can only have an one-arc directed
out of it if vj ∈ E(u) (infeasibility), and two nodes u and w are equivalent if
E(u) = E(w). These tests are complete, i.e., they are necessary and sufficient to
determine when a node is infeasible or two nodes are equivalent. Thus, as noted
in [5], the top-down compilation using the tests above yields the reduced BDD
with respect to a particular variable ordering.

Algorithm 1 Top-Down BDD Compilation for MISP

1: Let L1 = {r}, E(r) = V, V0 = ∅
2: for j = 1 to n do

3: Choose vertex vj /∈ Vj−1 and let Vj := Vj−1 ∪ {vj}, Lj+1 := ∅
4: for all u ∈ Lj do

5: if ∃w ∈ Lj+1 with E(w) = E(u)\{vj} then

6: add arc (u,w) with du,w = 0
7: else

8: add node w to Lj+1 with E(w) = E(u)\{vj} and arc (u,w) with du,w = 0
9: if vj ∈ E(u) then
10: if ∃w ∈ Lj+1 with E(w) = E(u)\ ({vj} ∪N(vj)) then
11: add arc (u,w) with du,w = 1
12: else

13: add node w to Lj+1 with E(w) = E(u)\ ({vj} ∪N(vj))
14: add arc (u,w) with du,w = 1

The top-down compilation for the MISP is outlined in Algorithm 1, which is
a specialization of the procedure presented in [5]. We start with the root r of B
having E(r) = V , since Sol(B+|L1

) = ∅ and hence all vertices in G are eligible.
The construction is then performed layer by layer: For each node u ∈ Lj , we
compute the state of the nodes corresponding to the zero-arcs and the one-arcs
extensions of u, according to E(u). If there exists some node w ∈ Lj+1 with the
same state, we add an arc (u,w) to the BDD. Otherwise, we create a new node w
in Lj+1 and add an arc (u,w). The state of the zero-arc and one-arc extensions
of u can be shown to be E(u) \ {u} and E(u) \ ({u} ∪N(u)), respectively.

4 Variable Ordering for Exact BDD Compilation

The order of variables plays a key role in the size of exact BDDs. The impact
of different orderings can be substantial, as shown in Figure 2. The example
demonstrates two orderings for the graph presented in Figure 2a. The first or-
dering is constructed by alternating between the endpoints of the path, yielding
a BDD of width 4 as depicted in Figure 2b. If vertices are taken according to
the path order, the exact BDD has half the width, as presented in Figure 2c.

An optimal ordering minimizes the size of the exact BDD representing a
given set of solutions. Previous works have focused on generating procedures to
find optimal variable orderings for general BDDs (e.g., [10]). It was shown in
[6] that improving a given variable ordering, in terms of reducing the size of an
BDD, is in general an NP-hard problem.

In this section we analyze variable orderings for the BDD representing the
family of independent sets of a problem. We first examine particular classes of
graphs, namely cliques, paths, and trees. We establish polynomial bounds on the
widths (and hence size) of the exact BDDs with respect to the graph size. This
is achieved by providing an ordering of the vertices that forces the width to be
within a certain bound. Finally, we discuss the width for general graphs.

v w x y z

(a) Path graph

v

z

x

w

z

(b) Width 4

v

w

x

y

z

0-arc

1-arc

(c) Width 2

Fig. 2: Graph and exact BDD for two different orderings.

Let S(Lj) be the set of states on nodes in Lj , S(Lj) = ∪u∈Lj
E(u). To bound

the width of a given layer j, we need only count the number of states that may
arise from independent sets on {v1, . . . , vj−1}. This is because each layer will
have one and only one node for each possible state, and so there is a one-to-one
correspondence between the number of states and the size of a layer. We now
show the following Theorems.

Theorem 2. Let G = (V,E) be a clique. Then, for any ordering of the vertices,
the width of the exact reduced BDD will be 2.

Proof. Consider any layer j. The only possible independent sets on {v1, . . . , vj+1}
are ∅ or {vi}, i = 1, . . . , j − 1. For the former, E(∅ | {vj , . . . , vn}) = {vj , . . . , vn}
and for the latter, E({vi} | {vj , . . . , vn}) = ∅, establishing the bound. ⊓⊔

Theorem 3. Let G = (V,E) be a path. Then, there exists an ordering of the
vertices for which the width of the exact reduced BDD will be 2.

Proof. Let the ordering of the vertices be given by the positions in which they
appear in the path. Consider any layer j. Of the remaining vertices in G, namely
{vj , . . . , vn}, the only vertex with any adjacencies to {v1, . . . , vj−1} is vj . There-
fore, for any independent set I ⊆ {v1, . . . , vj−1}, E(I | V j−1) will either be
{vj , . . . , vn} (when vj−1 /∈ I) and {vj+1, . . . , vn} (when vj−1 ∈ I). Therefore
there can be at most 2 states in any given layer. ⊓⊔

Theorem 4. Let G = (V,E) be a tree. Then, there exists an ordering of the
vertices for which the width of the exact reduced BDD will be no larger than n,
the number of vertices in G.

Proof. We proceed by induction on n. For the base case, a tree with 2 vertices is
a path, which we already know has width 2. Now let T be a tree on n vertices.
Any tree on n vertices contains a vertex v for which the connected components
C1, . . . , Ck created upon deleted v from T have sizes |Ci| ≤

n
2 [16]. Each of these

connected components are trees with fewer than n
2 vertices, so by induction, there

exists an ordering of the vertices on each component Ci for which the resulting
BDD Bi will have width ω(Bi) ≤

n
2 . For component Ci, let vi1, . . . , v

i
|Ci|

be an
ordering achieving this width.

Let the final ordering of the vertices in T be v11 , . . . , v
1
|C1|

, v21 , . . . , v
k
|Ck|

, v which
we use to create BDD B for the set of independent sets in T . Consider layer
ℓ ≤ n−1 of B corresponding to vertex vij . We claim that the only possible states

in S(ℓ) are s∪Ci+1∪· · ·∪Ck and s∪Ci+1∪· · ·∪Ck∪{v}, for s ∈ Si(j), where Si(j)
is the set of states in BDD Bi in layer j. Take any independent set on the vertices
I ⊆ {v11 , . . . , v

1
|C1|

, v21 , . . . , v
i
j−1}. All vertices in I are independent of the vertices

in Ci+1, . . . , Ck, and so E(I | {vij , . . . , v
i
|Ci|

}∪Ci+1 ∪ · · · ∪Ck) ⊇ Ci+1 ∪ · · · ∪Ck.
Now, consider Ii = I ∩ Ci. Ii is an independent set in the tree induced on the
variables in Ci and so it will correspond to some path in Bi from the root of
that BDD to layer j, ending at some node u. The state s of node u contains
all of the vertices {vij , . . . , v

i
|Ci|

} that are independent of all vertices in Ii. As

vi1, . . . , v
i
j−1 are the only vertices in the ordering up to layer ℓ in B that have

adjacencies to any vertices in Ci, we see that the set of vertices in the state of
I from component Ci are exactly s. Therefore, E(I | {vij , . . . , v

i
|Ci|

} ∪ Ci+1 ∪

· · · ∪ Ck) ⊇ s ∪ Ci+1 ∪ · · · ∪ Ck. The only remaining vertex that may be in the
state is v, finishing the claim. Therefore, as the only possible states on layer ℓ
are s ∪ Ci+1 ∪ · · · ∪ Ck and s ∪ Ci+1 ∪ · · · ∪ Ck ∪ {v}, for s ∈ Si(j), we see that
ωℓ ≤

n
2 · 2 = n, as desired. The only layers remaining to bound is Ln: the only

possible states on layer n are {v} and ∅. ⊓⊔

Theorem 5. Let G = (V,E) be any graph. There exists an ordering of the
vertices for which ωj ≤ Fj+1, where Fk is the kth Fibonacci number.

Theorem 5 provides a bound on the width of the exact BDD for any graph.
The importance of this theorem goes further than the actual bound provided
on the width of the exact BDD for any graph. First, it illuminates another con-
nection between the Fibonacci numbers and the family of independent sets of a
graph, as investigated throughout the Graph Theory literature (see for example
[8, 11, 9, 18]). In addition to this theoretical consideration, the underlying prin-
ciples in the proof provide insight into what heuristic ordering for the vertices in
a graph could lead to BDDs with small width. We show in Section 6 that find-
ing vertex orderings for which the exact BDD has small width correlates with
the bound provided by relaxation BDDs using the same ordering. The ordering
inspired by the underlying principle in the proof yields strong relaxation BDDs.

Proof (proof of Theorem 5).

Let P = P 1, . . . , P k, P i = {v11 , . . . , v
1
ik
}, be a maximal path decomposition

of the vertices of G, where by a maximal path decomposition we mean a set of
paths that partition V satisfying that vi1 and viik are not adjacent to any vertices

in ∪k
j=i+1P

j . Hence, P i is a maximal path (in that no vertices can be appended

to the path) in the graph induced by the vertices not in the paths, P 1, . . . , P i−1.

Let the ordering of the vertices be given by v11 , . . . , v
1
i1
, v21 , . . . , v

k
ik
, i.e., or-

dered by the paths and by the order that they appear on the paths. Let the
vertices also be labeled, in this order, by y1, . . . , yn.

We proceed by induction, showing that if layers Lj and Lj+1 have widths ωj

and ωj+1, respectively, then the width of layer Lj+3 is bounded by ωj +2 ·ωj+1,
thereby proving that each layer Lj is bounded by Fj+1 for every layer j =
1, . . . , n+ 1, since Fj+3 = Fj + 2 · Fj+1.

First we show that L4 has width bounded by F5 = 5. We can assume that
G is connected and has at least 4 vertices, so that P1 has at least 3 vertices.
ω1 = 1. Also, ω2 = 2, with layer L2 having nodes u2

1, u
2
2 arising from the partial

solutions I = ∅ and I = {w1}, respectively. The corresponding states will be
E(u2

1) = V \{y1} and E(u2
2) = V \({y1} ∪N(y1)). Now, consider layer L3. The

partial solution ending at node E(u2
2) cannot have y2 added to the independent

set because y2 does not appear in E(u2
2) since y2 ∈ N(w1). Therefore, there will

be exact 3 outgoing arcs from the nodes in L2. If no nodes are combined on the
third layer, there will be 3 nodes u3

i , i = 1, 2, 3 with states E(u3
1) = V \{y1, y2},

E(u3
2) = V \({y1, y2} ∪N(y2)), and E(u3

3) = V \({y1, y2} ∪N(y1)). Finally, as
P 1 has length at least 3, vertex y3 is adjacent to y2. Therefore, we cannot add
y3 under node u3

2, so layer 4 will have width at most 5, finishing the base case.

Now let the layers of the partially constructed BDD be given by L1, . . . , Lj , Lj+1

with corresponding widths ωi, i = 1, . . . , j + 1. We break down into cases based
on where yj+1 appears in the path that it belongs to in P , as follows.

Case 1: yj+1 is the last vertex in the path that it belongs to. Take any
node u ∈ Lj+1 and its associated state E(u). Including or not including yj+1

results in state E(u)\{yj+1} since yj+1 is independent of all vertices yi, i ≥ j+2.
Therefore, ωj+2 ≤ ωj+1 since each arc directed out of u will be directed at the
same node, even if the zero-arc and the one-arc are present. And, since in any
BDD ωk ≤ 2 · ωk−1, we have ωj+3 ≤ 2 · ωj+2 ≤ 2 · ωj+1 < ωj + 2 · ωj+1.

Case 2: yj+1 is the first vertex in the path that it belongs to. In this
case, yj must be the last vertex in the path that it belongs to. By the reasoning
in Case 1, it follows that ωj+1 ≤ ωj . In addition, we can assume that yj+1 is
not the last vertex in the path that it belongs to because then we are in case 1.
Therefore, yj+2 is in the same path as yj+1 in P . Consider Lj+2. In the worst
case, each node in Lj+1 has yj+1 in its state so that ωj+2 = 2 · ωj+1. But, any
node arising from a one-arc will not have yj+2 in its state. Therefore, there are
at most ωj+1 nodes in Lj+2 with yj+2 in their states and at most ωj+1 nodes
in Lj+2 without yj+2 in their states. For the set of nodes without yj+2 in their
states, we cannot make a one-arc, showing that ωj+3 ≤ ωj+2 + ωj+1. Therefore,
we have ωj+3 ≤ ωj+1 + ωj+2 ≤ 3 · ωj+1 ≤ ωj + 2 · ωj+1.

Case 3: yj+1 is not first or last in the path that it belongs to. As in
case 2, ωj+1 ≤ 2 · ωj , with at most ωj nodes on layer Lj+1 with wj+2 in it’s
corresponding state label. Therefore, Lj+2 will have at most ωj more nodes in
it than layer Lj+1. As the same thing holds for layer Lj+3, in that it will have

at most ωj+1 more nodes in it than layer Lj+2, we have ωj+3 ≤ ωj+2 + ωj+1 ≤
ωj+1 + ωj + ωj+1 = ωj + 2 · ωj+1, as desired, and finishing the proof. ⊓⊔

We note here that using instance C2000.9 from the benchmark set discussed
in Section 6, a maximal path decomposition ordering of the vertices yields widths
approximately equal to the Fibonacci numbers, as seen in Table 1.

Table 1: Widths of Exact BDD for C.2000.9
j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
wj 1 2 3 5 8 13 21 31 52 65 117 182 299 481 624 · · ·

Fib(j + 1) 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 · · ·

5 Variable Ordering for Relaxation BDDs

In this section we provide heuristic orderings for the vertices to be used during
the top-down compilation of relaxation BDDs. These orderings are based on the
Theorems proved in Section 4, with the idea that by examining simple struc-
tured problems, we can gain intuition as to what is controlling the width of the
exact BDD for general graphs, hopefully yielding tighter upper bounds. First, we
describe an alteration to the top-down exact BDD compilation for the purpose
of generating relaxation BDDs, and then present the heuristic orderings.

A method for generating relaxation BDDs is developed in [5]. It alters the
top-down exact compilation algorithm by restricting the maximum width of the
BDD according to an input parameterW . This is done as follows. After a layer Lj

is built, the method verifies if its width exceeds W . If so, nodes are merged based
on some heuristic choice. Along with merging the nodes, a merging operation
defined on the states of the nodes that are to be merged must be defined so that
the feasible solutions are preserved during the construction of the remaining
layers. For the MISP, the Theorem below defines a proper merging operation.

Theorem 6. Setting the state of the merged nodes as the union of their original
states ensures that a relaxation BDD is created. ⊓⊔

We now present the following heuristic orderings.

Maximal Path Decomposition (MPD). As show in Theorem 5, such an ordering
yields an exact BDD with width bounded by the Fibonnaci numbers, yielding a
theoretical worst-case bound on the width for any instance. This ordering can be
pre-computed in worst-case time complexity O(|V |+ |E|). We note that different
maximal path decompositions may yield different sized BDDs.

Minimum Number of States (MIN). In this ordering, we select the next vertex
in the BDD as the vertex which appears in the fewest states of the layer we
are currently building. The driving force behind the proof of Theorem 5 is that

when constructing a layer, if a vertex does not belong to the state of a node on a
previous layer, we cannot include this vertex: i.e. we cannot add a one-arc, only
the zero-arc. This suggests that selecting a variable appearing the fewest number
of times in the states on a layer will yield a small width BDD. The worst-case
time complexity to perform this selection is O(W |V |) per layer.

k-Look Ahead Ordering (kLA). This ordering can be employed for any COP. In
1LA, after selecting the first j vertices and constructing the top j + 1 layers,
the next chosen vertex is the one that yields the smallest width for layer j + 2
if it were selected next. This procedure can be generalize for arbitrary k < n by
considering subsets of yet to be selected vertices. The worst case running time
for selecting a vertex can be shown to be O(

(

n
k

)

·W |V |2 log |W |) per layer.

6 Experimental Results

Our experiments focus on the complement graphs of the well-known DIMACS
problem set for the Maximum Clique Problem, which can obtained by accessing
http://dimacs.rutgers.edu/Challenges/. The experiments ran on an Intel Xeon
E5345 with 8 GB RAM. The BDD was implemented in C++.

6.1 Exact BDDs for Trees

The purpose of the first set of experiments is to demonstrate empirically that
variable orderings potentially play a key role in the width of exact BDDs repre-
senting combinatorial optimization problems. To this end, we have selected a par-
ticular graph structure, namely trees, for which we can define an ordering yield-
ing a polynomial bound on its width (Theorem 4). We then compare the ordering
that provides this bound with a set of randomly generated orderings. We also
compare with the MPD heuristic, which has a known bound for general graphs
according to Theorem 5. The trees were generated from the benchmark problems
C125.9, keller4, c-fat100-1, p hat300-1, brock200 1, and san200 0.7 1

by selecting 5 random trees each on 50 vertices from these graphs. The tree-
specific ordering discussed in Theorem 4 is referred to as the CV (due to the
computation of cut-vertices in the corresponding proof). We generated exact
BDDs using 100 uniform-random orderings for each instance, and report the
minimum, average, and maximum obtained widths.

The results are shown in Table 2. In all cases, none of the 100 random or-
derings yielded exact BDDs with width smaller than the ones generated from
the CV or MPD orderings. Moreover, the average was consistently more than an
order of magnitude worse than either of the structured orderings. This confirms
that investigating variable orderings can have a substantial effect on the width
of the exact BDDs produced for independent set problems. In addition, we see
that also across all instances, the CV ordering, that is specific to trees, outper-
forms the MPD ordering that can be applied to general graphs, suggesting that
investigating orderings specific to particular classes of instances can also have a
positive impact on the width of exact BDDs.

Table 2: Random Trees
Instance Min Avg Max CV MPD Instance Min Avg Max CV MPD

brock200 1.t-1 2336 22105.1 116736 16 160 C125.9.t-1 768 7530.72 24576 12 228
brock200 1.t-2 672 8532.92 86016 16 312 C125.9.t-2 1600 19070 131072 12 528
brock200 1.t-3 672 7977.92 28608 8 120 C125.9.t-3 1024 8348.04 30720 12 288
brock200 1.t-4 2880 17292.9 67200 16 132 C125.9.t-4 736 4279.62 16704 16 312
brock200 1.t-5 1200 12795.2 55680 8 54 C125.9.t-5 480 18449.3 221184 16 120

c-fat200-1.t-1 896 17764.3 221184 8 112 keller4.t-1 952 9558.76 115200 8 248
c-fat200-1.t-2 1152 10950.9 55040 16 144 keller4.t-2 768 8774.12 71680 12 444
c-fat200-1.t-3 2048 23722.6 150528 10 72 keller4.t-3 2688 16942.1 74240 10 40
c-fat200-1.t-4 624 5883.96 46656 12 180 keller4.t-4 2048 14297.8 77440 16 368
c-fat200-1.t-5 864 7509.66 27648 10 480 keller4.t-5 720 11401.8 73728 8 288

p hat300-1.t-1 792 15149.3 54720 10 200 san200 0.7 1.t-1 1920 22771.2 139776 10 28
p hat300-1.t-2 1280 14618.5 86016 16 192 san200 0.7 1.t-2 1024 7841.42 44160 12 92
p hat300-1.t-3 624 11126.6 69120 12 138 san200 0.7 1.t-3 768 8767.76 36864 8 88
p hat300-1.t-4 1152 13822.9 73984 16 74 san200 0.7 1.t-4 960 9981.28 43008 16 84
p hat300-1.t-5 1536 16152 82944 14 160 san200 0.7 1.t-5 1536 9301.92 43008 12 288

6.2 Exact BDD Width versus Relaxation BDD Bound

The second set of experiments aims at providing an empirical evidence to the
main hypothesis considered in this paper. Namely, that a problem instance with
a smaller exact BDD results in a relaxation BDD that yields a tighter bound. The
instances in this test were generated as follows. We first selected 5 instances from
the DIMACS benchmark: brock200 1, gen200 p.0.9 55, keller4, p hat300-2,
and san200 0.7 1. Then, we uniformly at random extracted 5 connected induced
subgraphs with 50 vertices for each instance, which is approximately the largest
graph size that the exact BDD can be built within our memory limits.

The tests are described next. For each instance and all orderings MPD, MIN,
random, and 1LA, we collected the width of the exact BDD and the bound
obtained by a relaxation BDD with a maximum width of 10 (the average over
100 orderings for the random procedure). This corresponds to sampling different
exact BDD widths and analyzing their respective bounds, since distinct variables
orderings may yield BDDs with very different exact widths.

Figure 3 presents a scatter plot of the derived upper bound as a function of
the exact widths in log-scale, also separated by the problem class from which
the instance was generated. Analyzing each class separately, we observe that
the bounds and width increase proportionally, reinforcing our hypothesis. In
particular, this proportion tends to be somewhat constant, that is, the points
tend to a linear curve for each class. We notice that this shape has different
slopes according to the problem class, hence indicating that the effect of the
width might be more significant for certain instances.

In Figure 4 we plot the bound as a function of the exact width for a single
random instance extracted from san200 0.7 1. In this particular case, we ap-
plied a procedure that generated 1000 exact BDDs with a large range of widths:
the minimum observed BDD width was 151 and the maximum was 27684, and
the widths were approximately uniformly distributed in this interval. We then
computed the corresponding upper-bounds for a relaxed BDD, constructed using
the orderings described above, with width 10. The width is given in a log-scale.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 100

U
pp

er
-b

ou
nd

 -
 w

id
th

 =
 1

0

Exact BDD width

brock200-1
gen200-p.0.9-55

keller4
p-hat300-2

san200-0.7-1

Fig. 3: Bound of relaxation BDD vs. exact BDD width.

 22

 24

 26

 28

 30

 32

 34

 36

 38

 10 100 1000 10000 100000

U
pp

er
-b

ou
nd

 -
 w

id
th

 =
 1

0

Exact BDD width

Fig. 4: Bound of relaxation BDD vs. exact BDD width for san200 0.7 1.

The Figure also shows a strong correlation between the width and the obtained
bound, analogous to the previous set of experiments. A similar behavior is ob-
tained if the same chart is plotted for other instances.

6.3 Relaxation Bounds

We now report the upper bound provided by the relaxation BDD for the original
benchmark set, considering all heuristic orderings described in Section 5 for max-
imum widths 100, 500, and 1000. In addition, we generate 100 random orderings
generated uniformly at random, denoted here by RAND, and the bound reported

Table 3: Benchmark Problems Relaxations
Maximum Width 100 500 1000 1000

Instance OPT MIN MAX RAND 1LA MIN MAX RAND 1LA MIN MAX RAND 1LA CPLEX(1 minute) MIN

C1000.9.clq 68 261 419 585.42 259 244 394 528.25 241 240 384 506.63 238 221.78 240
C125.9.clq 34 46 55 71.68 44 45 52 64.51 42 43 50 61.78 41 41.2846 43
C2000.5.clq 16 153 353 368.34 152 121 249 252.27 120 110 218 218 110 1.00E+75 110

C2000.9.clq 77 480 829 1170.91 479 447 788 1055.26 447 436 767 1012.4 433 1.00E+75 436

C250.9.clq 44 80 107 144.84 78 74 99 130.46 73 72 98 125.21 72 70.9322 72
C4000.5.clq 18 281 708 736.31 280 223 497 504.46 223 202 429 435.31 203 1.00E+75 202

C500.9.clq 57 142 215 291.48 142 134 203 262.57 133 132 198 251.8 131 123.956 132
gen200 p0.9 44.clq 44 62 84 115.69 62 61 79 103.98 59 59 78 99.78 56 44 59
gen200 p0.9 55.clq 55 67 88 116.39 65 63 84 104.88 62 61 81 100.57 59 55 61
gen400 p0.9 55.clq 55 100 168 233.15 100 99 161 210.21 96 94 156 201.84 94 55 94
gen400 p0.9 65.clq 65 112 168 233.63 110 105 161 210.55 105 103 159 202.11 101 65 103
gen400 p0.9 75.clq 75 118 170 234.23 118 109 164 211.2 109 108 158 202.73 105 75 108
brock200 1.clq 21 42 64 72.12 41 36 54 58.61 36 34 50 54.01 35 38.9817 34

brock200 2.clq 12 22 35 35.6 22 17 24 24.68 18 16 22 21.69 16 22.3764 16

brock200 3.clq 15 28 48 48.87 29 24 36 36.22 25 23 33 32.39 23 28.3765 23

brock200 4.clq 17 32 53 56.61 32 29 42 43.32 27 26 37 39.12 25 31.5437 26

brock400 1.clq 27 72 127 145.81 71 63 108 118.75 63 60 102 109.32 61 67.2201 60

brock400 2.clq 29 75 128 147.35 72 63 107 119.47 61 61 101 110.16 60 67.9351 61

brock400 3.clq 31 72 127 146.19 73 64 109 118.63 64 60 102 109.12 60 67.4939 60

brock400 4.clq 33 70 129 146.43 71 63 110 119.54 63 63 106 109.59 61 67.3132 63

brock800 1.clq 23 99 204 222.01 100 85 160 168.39 86 79 145 151.21 78 136.103 79

brock800 2.clq 24 101 201 224.38 100 86 162 170.65 85 79 145 153.29 79 136.538 79

brock800 3.clq 25 101 203 222.61 100 84 164 169.05 84 81 149 151.31 79 130.832 81

brock800 4.clq 26 101 205 223.41 100 84 161 169.81 84 80 145 152.66 78 132.696 80

c-fat200-1.clq 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
c-fat200-2.clq 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
c-fat200-5.clq 58 58 58 58 58 58 58 58 58 58 58 58 58 61.6953 58

c-fat500-1.clq 14 14 15 16.62 14 14 14 14 14 14 14 14 14 230.513 14

c-fat500-10.clq 126 126 126 126 126 126 126 126 126 126 126 126 126 246 126

c-fat500-2.clq 26 26 26 26 26 26 26 26 26 26 26 26 26 240 26

c-fat500-5.clq 64 64 64 64 64 64 64 64 64 64 64 64 64 244.5 64

hamming10-2.clq 512 512 512 892.69 515 512 512 871.68 512 512 512 862.99 512 512 512
hamming10-4.clq 40 106 91 456.63 105 96 76 385.13 93 79 72 359.76 79 206.047 79

hamming6-2.clq 32 32 32 37.01 32 32 32 34.03 32 32 32 33.28 32 32 32
hamming6-4.clq 4 4 4 5.98 4 4 4 4 4 4 4 4 4 5.33333 4

hamming8-2.clq 128 128 128 194.42 128 128 128 184.51 128 128 128 180.71 128 128 128
hamming8-4.clq 16 20 21 62.23 19 18 18 45.66 18 17 17 40.56 17 16 17
johnson16-2-4.clq 8 11 11 38.75 11 9 9 29.24 9 8 8 25.64 8 8 8
johnson32-2-4.clq 16 40 35 250.07 42 38 29 215.06 39 35 25 202.36 40 16 35
johnson8-2-4.clq 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
johnson8-4-4.clq 14 14 15 24.57 14 14 14 19.82 14 14 14 18.54 14 14 14
keller4.clq 11 19 22 43.38 18 16 17 31.24 16 15 16 27.54 15 14.75 15
keller5.clq 27 58 98 280.74 59 56 77 225.75 55 48 72 207.08 49 32.875 48
keller6.clq 59 171 417 1503.26 174 142 332 1277.98 144 123 307 1197.76 125 1.00E+75 123

MANN a27.clq 126 142 138 327.2 135 140 137 318.93 137 139 137 315.25 136 133.331 139
MANN a45.clq 345 371 365 954.51 366 368 362 942.45 363 368 362 937.06 365 357.162 368
MANN a81.clq 1100 1154 1143 3186.21 1141 1150 1143 3166.06 1143 1148 1143 3158.78 1141 1131.82 1148
MANN a9.clq 16 18 18 27.21 17 16 16 23.9 16 16 16 22.88 16 17 16

p hat1000-1.clq 10 47 86 88.73 48 35 52 52.71 36 31 43 43.37 31 413.5 31

p hat1000-2.clq 46 130 210 225.57 129 116 171 178.1 112 112 159 163.47 108 376.5 112

p hat1000-3.clq 68 202 324 383.76 197 187 286 322.62 179 179 272 302.07 175 245.674 179

p hat1500-1.clq 12 68 136 139.02 68 51 83 83.08 51 46 69 68.33 45 1.00E+75 46

p hat1500-2.clq 65 199 344 357.01 193 176 285 286.03 174 168 267 263.95 163 1.00E+75 168

p hat1500-3.clq 94 298 511 594.04 296 277 452 502.22 270 272 433 470.91 266 1.00E+75 272

p hat300-1.clq 8 17 27 26.05 18 14 16 15.89 14 12 13 13.39 12 18.2278 12

p hat300-2.clq 25 48 64 66.46 45 42 51 52.29 40 40 48 47.83 39 35.2878 40
p hat300-3.clq 36 70 99 114.66 67 65 89 95.93 61 62 84 89.86 60 55.2598 62
p hat500-1.clq 9 28 45 45.33 27 21 28 27.3 21 18 23 22.7 19 158 18

p hat500-2.clq 36 77 112 116.55 72 69 92 92.8 64 66 84 85.54 63 160.25 66

p hat500-3.clq 50 111 172 195.67 109 106 155 165.35 102 104 147 154.88 99 90.7331 104
p hat700-1.clq 11 36 62 63.27 36 27 39 37.83 27 24 31 31.33 24 272.5 24

p hat700-2.clq 44 101 155 163.03 99 90 128 130.39 88 85 118 120.19 83 272.5 85

p hat700-3.clq 62 153 234 272.83 147 142 208 230.14 141 137 198 215.93 134 160.333 137

san1000.clq 15 28 184 202.02 26 21 101 104.09 19 19 78 79.84 19 462.5 19

san200 0.7 1.clq 30 32 66 73.67 31 30 57 60.3 30 30 52 55.37 30 30 30
san200 0.7 2.clq 18 23 58 71.76 21 20 48 56.2 20 19 46 50.23 18 18 19
san200 0.9 1.clq 70 71 86 118.89 70 70 82 108.56 70 70 81 105.13 70 70 70
san200 0.9 2.clq 60 68 86 116.48 64 64 83 105.39 60 60 81 101.05 60 60 60
san200 0.9 3.clq 44 57 84 115 54 55 78 103.23 53 51 77 99 52 44 51
san400 0.5 1.clq 13 17 66 69.02 18 14 35 35.6 14 13 28 28.31 13 13 13
san400 0.7 1.clq 40 50 142 160.35 51 46 127 136.08 43 42 119 126.86 41 40 42
san400 0.7 2.clq 30 44 129 147.55 45 38 108 119.96 39 37 103 109.84 35 30 37
san400 0.7 3.clq 22 36 118 137.72 38 29 98 108.29 31 29 91 97.98 29 22 29
san400 0.9 1.clq 100 117 175 236.22 118 109 169 214.05 108 108 164 205.73 108 100 108
sanr200 0.7.clq 18 34 58 63 36 31 46 49.56 32 30 44 45.18 29 34.5339 30

sanr200 0.9.clq 42 67 86 114.78 66 63 83 103.25 60 61 80 98.89 61 59.5252 61
sanr400 0.5.clq 13 40 70 73.32 39 33 50 50.5 31 29 45 43.73 29 43.1544 29

sanr400 0.7.clq 21 64 115 128.44 64 55 96 101.06 54 52 89 91.69 52 62.078 52

is obtained by taking the average over the 100 generated orderings. The average
compilation time for maximum width 100, 500 and 1000 were 0.21, 1.49, and
3.01 seconds, respectively, for the MIN ordering (which was similar to RAND
and MPD), while the average time for maximum width 100, 500, and 1000 were
65.01, 318.68, and 659.02, respectively, for the 1LA ordering. For comparison
purposes, we have also included the upper bound obtained by considering the
IP formulation of the MISP, since this corresponds to a well-known bounding
technique for general domains. We ran these instances with CPLEX 12.2 with
default settings and took the resulting bound obtained after the root node was
computed. We impose a time limit of 60 seconds so that the results were compa-
rable to the MIN ordering with width 1000 since the longest time to create any
relaxation BDD with these parameters was C.4000.5, which took 50.42 seconds.

The results are presented in Table 3. We report for each instance the optimal
or the best known feasible solution and the bounds, where CPLEX is the bound
obtained by the root node relaxation using CPLEX (the symbol +∞ indicates
that a bound was not obtained in the 60 seconds time-limit). By first comparing
the results obtained between orderings, we see that the MIN ordering and the
general purpose 1LA heuristic provide the best bounds for most instances. We
highlight here that the MIN and 1LA were the heuristics that provided the
smallest BDD widths for the instances tested in Section 6.2. We note that MIN
is generates BDDs an average of an order of magnitude faster than 1LA.

To compare the obtained bounds with CPLEX, we consider the relative bound
measure, which is given by (upper bound/optimum). The average relative bound
for CPLEX (omitting the instances for which CPLEX was unable to provide a
bound) is given by 3.85, while for MIN and 1LA they are given by 2.34 and
2.32, respectively, for a width of 100; and 1.92 and 1.90, respectively, for a width
of 1000 (the averages are not significantly different at the 5% level between
MIN and 1LA). The average relative ordering for RAND was 5.51 and 4.25 for
widths of 100 and 1000, respectively. This indicates that variable orderings are
crucial to obtain tighter and relevant bounds, which showed to be particularly
significant for larger instances when comparing with CPLEX, explaining the
smaller average relative bound. We further observe that, since times were very
small for the structured heuristics, the bounds obtained here can be improved
using the general purpose bound improving procedures in [5].

7 Conclusion

In this paper we analyzed the impact of variable ordering on the quality of the
relaxation provided by binary decision diagrams. We focus on the Maximum
Independent Set Problem, providing theoretical bounds on the BDD width for
general and particular classes of graphs. In addition, we utilize the developed
theory to propose specific and general-purpose variable ordering heuristics. Ex-
perimental results indicate that there is a strong correlation between variable
ordering heuristics that yield small-sized exact BDDs and the bounds obtained
by relaxed BDDs that use these orderings.

References

1. S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-
27:509–516, 1978.

2. H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store
based on multivalued decision diagrams. In C. Bessière, editor, Principles and
Practice of Constraint Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, pages 118–132. Springer, 2007.

3. B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDs in a branch and
cut framework. In S. Nikoletseas, editor, Experimental and Efficient Algorithms,
Proceedings of the 4th International Workshop on Efficient and Experimental Al-
gorithms (WEA 05), volume 3503 of Lecture Notes in Computer Science, pages
452–463. Springer, 2005.

4. Markus Behle and Friedrich Eisenbrand. 0/1 vertex and facet enumeration with
bdds. In ALENEX. SIAM, 2007.

5. David Bergman, Willem Jan van Hoeve, and John N. Hooker. Manipulating mdd
relaxations for combinatorial optimization. In Tobias Achterberg and J. Christo-
pher Beck, editors, CPAIOR, volume 6697 of Lecture Notes in Computer Science,
pages 20–35. Springer, 2011.

6. Bollig and Wegener. Improving the variable ordering of OBDDs is NP-complete.
IEEETC: IEEE Transactions on Computers, 45, 1996.

7. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35:677–691, 1986.

8. Neil J. Calkin and Herbert S. Wilf. The number of independent sets in a grid
graph. SIAM J. Discrete Math., 11(1):54–60, 1998.

9. Martin E. Dyer, Alan M. Frieze, and Mark Jerrum. On counting independent sets
in sparse graphs. SIAM J. Comput., 31(5):1527–1541, 2002.

10. Rudiger Ebendt, Wolfgang Gunther, and Rolf Drechsler. An improved branch and
bound algorithm for exact BDD minimization. IEEE Trans. on CAD of Integrated
Circuits and Systems, 22(12):1657–1663, 2003.

11. Florence Forbes and Bernard Ycart. Counting stable sets on cartesian products of
graphs. Discrete Mathematics, 186(1-3):105–116, 1998.

12. T. Hadzic and J. N. Hooker. Postoptimality analysis for integer programming using
binary decision diagrams, presented at GICOLAG workshop (Global Optimization:
Integrating Convexity, Optimization, Logic Programming, and Computational Al-
gebraic Geometry), Vienna. Technical report, Carnegie Mellon University, 2006.

13. T. Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1 pro-
gramming. Technical report, Carnegie Mellon University, 2007.

14. T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compi-
lation of constraints into multivalued decision diagrams. In P. J. Stuckey, editor,
Principles and Practice of Constraint Programming (CP 2008), volume 5202 of
Lecture Notes in Computer Science, pages 448–462. Springer, 2008.

15. S. Hoda, W.-J. van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In Proceedings of the 16th International Conference
on Principles and Practices of Constraint Programming, Lecture Notes in Com-
puter Science. Springer, 2010.

16. C. Jordan. Sur les assemblages de lignes. J. Reine Angew Math, 70:185–190, 1869.
17. C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell

Systems Technical Journal, 38:985–999, 1959.
18. Yufei Zhao. The number of independent sets in a regular graph. Combinatorics,

Probability & Computing, 19(2):315–320, 2010.

