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Abstract. We propose a polyhedral cutting plane procedure for com-
puting a lower bound on the optimal solution to multi-agent path finding
(MAPF) problems. We obtain our cuts by projecting the polytope rep-
resenting the solutions to MAPF to lower dimensions. A novel feature
of our approach is that the projection polytopes we used to derive the
cuts can be viewed as ‘templates’. By translating these templates spatio-
temporally, we obtain different projections, and so the cut generation
scheme is reminiscent of the template matching technique from image
processing. We use decision diagrams to compactly represent the tem-
plates and to perform the cut generation. To obtain the lower bound, we
embed our cut generation procedure into a Lagrangian Relax-and-Cut
scheme. We incorporate our lower bounds as a node evaluation func-
tion in a conflict-based search procedure, and experimentally evaluate
its effectiveness.

Keywords: MAPF · Projection Cuts · Template polytopes · Decision
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1 Introduction

Multi-agent path finding (MAPF) is the problem of finding paths for individual
robots (agents), given a start and end vertex for each robot on some layout
(graph), such that the paths are spatio-temporally conflict-free and an objective
resembling travel costs is minimized. MAPF has found many applications in
warehouse logistic systems [18] and robotics. MAPF is known to be NP-Hard to
solve optimally on general graphs [20], nonetheless many techniques have been
proposed and they come in different flavors.

Current approaches for MAPF can be broadly classified into search based
methods [14, 16], and solution methods that rely on polyhedral techniques such
as the integer programming formulation of [19], and the branch-cut-price method
of [11]. A significant challenge for either of these approaches is in developing
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strong lower bounding techniques. Such techniques are needed to prune search
regions that do not lead to an optimal solution. From the point of view of search
based methods, this translates into developing strong admissible heuristics. For
polyhedral techniques, strong lower bounds are typically obtained by developing
cutting planes that tighten the linear description of the solution space.

In this paper, we propose a cut generation scheme that can be incorporated
into search based methods for MAPF as well as polyhedral approaches. Incor-
porating cuts into techniques that use polyhedral approaches is common, but
incorporating cuts into search based methods for MAPF is somewhat rare, and
will be the focus of this paper.

Contributions. Main contributions of this work are 1) a new polyhedral ap-
proach for MAPF based on lower-dimensional ‘templates’ that can be translated
spatio-temporally over the input graph, 2) the development of a cut generation
scheme from these templates, which utilizes a decision diagram representation,
3) a Lagrangian Relax-and-Cut procedure to compute the lower bound, and
4) incorporating the resulting lower bound as a node evaluation function in a
conflict-based search (CBS) procedure. Experimental evaluation shows that our
lower bounds can be very effective when the MAPF problem is more constrained.

2 MAPF Problem Description

We consider the makespan-constrained version of the MAPF problem in this
paper. We are given an undirected graph G = (V,E), a set of N robots R =
{r1, ..., rN}, and a makespan upper bound T ∈ Z+, where Z+ represents the set
of positive integers. Corresponding to each robot ri ∈ R, we are given a start
vertex si ∈ V , and goal vertex gi ∈ V . The task is to find a path for each robot,
such that the robot paths do not conflict while minimizing the cumulative sum
of path costs. A path p can be viewed as a function p : {0, 1, ...,T} → V , where
p(t) returns a vertex in V corresponding to time t. If P = {p1, ..., pN} is a set of
robot paths with 1 path for each robot, P is feasible to the MAPF problem iff:
1. pi(0) = si and pi(T) = gi, ∀i ∈ {1, 2, ...,N}.
2. For each robot ri ∈ R and for all t ∈ {0, 1, ...,T− 1}, we require pi(t) =
pi(t+1), or (pi(t), pi(t+1)) ∈ E. The robot either stays in its current vertex
or moves to a neighbor.

3. To prevent vertex collisions, we require that pi(t) 6= pj(t), for all pairwise
distinct i, j ∈ {1, ...,N} and time t ∈ {0, 1, ...,T}.

4. To prevent edge collisions, there should not exist a pair of robots ri, rj and
time t ∈ {0, 1, ...,T− 1} such that, pi(t) = pj(t+ 1) and pi(t+ 1) = pj(t).

We refer to any path pi satisfying 1 and 2 as a start-end path for robot ri. The
cost of start-end path pi is given by ci(pi) =

∑T−1
t=0 ci(pi(t), pi(t+ 1)), where

ci(pi(t), pi(t+ 1)) =

{
0, if pi(t) = pi(t+ 1) = gi

1, otherwise
(1)

Equation (1) assigns a cost of 0 if the robot is waiting at its goal vertex, else
assigns a cost of 1. The goal of MAPF is to find a set of conflict-free robot paths
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p1, ..., pN that minimizes the objective
∑N
i=1 ci(pi). The cost function in (1)

slightly differs from the sum of completion times used in [9, 12], where completion
time is the earliest time the robot reaches its goal and remains stationary until
time T at the goal vertex. We adopt the cost function shown in (1) to simplify
the presentation of template construction presented in a later section.

3 Integer programming model for MAPF

We next provide a multi-commodity flow based Integer Programming (IP) model
for the MAPF problem, similar to [19]. The IP model will be useful in deriving
valid inequalities for the lower bounding procedure we propose in later sections.
In the descriptions below, for any n ∈ Z+ we will use the notation [n] to denote
the set {1, 2, ..., n}.

The IP model will make use of the so-called “time expanded graph”. The time
expanded graph is an arc-weighted directed acyclic graph defined for each robot,
where the nodes can be partitioned into T + 1 layers, and arcs into T layers.
We shall denote the time expanded graph for robot ri by Fi(Ni, Ai). Denote the
nodes in layer t ∈ Z+ ∪{0} by Ni(t). Corresponding to each vertex v ∈ V , there
exists a node in Ni(t) if the shortest path from si to v in G(V,E) passes through
at most t edges, and the shortest path from v to gi passes through at most T− t
edges. With a slight abuse of notation, we shall denote the node corresponding
to vertex v ∈ V in Ni(t) by vti . Throughout this paper, if a node from any of the
graphs in the set {Fi}i∈[N] is specified, we will assume that the vertex, time and
robot associated with that node can be deduced from our notation. Arcs in Ai
connect nodes between adjacent layers, with the tail of the arc emanating from
the node belonging to the lower indexed layer. Denote the arcs in level t by Ai(t).
If uti ∈ Ni(t) and vt+1

i ∈ Ni(t+ 1), then there exists an arc (uti, v
t+1
i ) ∈ Ai(t) iff

u = v, or (u, v) ∈ E. We let ci(u
t
i, v

t+1
i ) denote the weight of arc (uti, v

t+1
i ), where

ci(u
t
i, v

t+1
i ) = 0 if u = v = gi, and 1 otherwise. There is a 1:1 correspondence

between start-end paths for robot ri and s0
i − gTi paths in Fi(Ni, Ai).

In describing our IP model, we will make use of the following notation. For
any node vti ∈ Ni(t), we denote δ+

Fi
(vti) as the set of arcs in Ai whose tail is the

node vti , and δ−Fi
(vti) as the set of arcs in Ai whose head is the node vti . For any

vertex u ∈ V , we introduce the set V
t
(u) = {i ∈ [N]|uti ∈ Ni(t)} for representing

vertex collision constraints. For representing edge collision constraints, we define,
for (u,w) ∈ E:

E
t
(u,w) = {(i, j) ∈ [N]× [N]|(uti, wt+1

i ) ∈ Ai(t), (wtj , ut+1
j ) ∈ Aj(t), i 6= j}

For each robot ri ∈ R, and each arc a ∈ Ai, we introduce a binary variable
x(a) ∈ {0, 1} to indicate whether robot ri traverses arc a in a feasible solution
to the MAPF problem. Let |A| =

∑
i∈[N]|Ai|, where |Ai| denotes cardinality of

set Ai. The 0-1 IP formulation for the MAPF problem is:

minimize
x∈{0,1}|A|

N∑
i=1

∑
a∈Ai

ci(a)x(a) (2)
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s.t.
∑

a∈δ+
Fi

(s0i )

x(a) = 1, ∀i ∈ [N] (3)

∑
a∈δ−

Fi
(ut

i)

x(a) =
∑

a∈δ+
Fi

(ut
i)

x(a), ∀i ∈ [N], ∀t ∈ [T− 1], ∀uti ∈ Ni(t) (4)

∑
i∈V t

(u)

∑
a∈δ−1

Fi
(ut

i)

x(a) ≤ 1, ∀u ∈ V, ∀t ∈ [T] (5)

x(uti, w
t+1
i ) + x(wtj , u

t+1
j ) ≤ 1, ∀(u,w) ∈ E,∀t ∈ {0, 1, ...,T− 1}, ∀(i, j) ∈ Et(u,w)

(6)

Equations (3) and (4) (a.k.a flow balance constraints) ensure that a start-end
path is chosen for every robot, while Eqns (5) and (6) prevent vertex and edge
collisions respectively.

4 Lower bounds from Cut Generation

We provide lower bounds to the MAPF problem using a Lagrangian relax and cut
(LRC) scheme [8] that makes use of a cut generation procedure. In this section
we describe our cut generating procedure, which will later be incorporated into
the Lagrangian relax and cut (LRC) scheme described in Sec. 7.

Let P denote the MAPF polytope as shown below:

P = conv(x ∈ {0, 1}|A||x satisfies (3)− (6)) (7)

where conv denotes convex hull. Given a x̄ ∈ {0, 1}|A| that violates some con-
straint in (5) - (6), we develop a cut generating procedure that outputs a cut
aTx ≤ b that strictly separates x̄ from P i.e. max

x∈P
aTx ≤ b < aT x̄.

The cuts generated by our procedure are a form of projection cuts. The idea
is to select a subset of arcs S ⊂ A, where assume |S| = n. We will construct
a polytope P (S) ⊂ Rn such that Projx(S)(P) ⊆ P (S), where x(S) denotes
the variables corresponding to the arcs in S, and Projx(S)(P) is the orthogonal
projection of P onto the space spanned by the variables in x(S):

Projx(S)(P) = {y ∈ Rn : ∃w ∈ R|A|−n, s.t. (y, w) ∈ P} (8)

In order to generate a cut that separates x̄ from P we will output a face of P (S),
which separates Projx(S)(x̄) and P (S). Clearly, if P (S) is a tight relaxation for
Projx(S)(P), then the cut obtained will also be deep.

Different choices for S give rise to different P (S), so different cuts separating
x̄ and P can be derived by varying S. From the perspective of projection cuts,
the collision avoidance constraints in Eqns (5), (6) contain variables belonging to
a small spatio-temporal neighbourhood. For instance, if x̄ violates Eqn (6), then
Eqn (6) can be viewed as a cut which separates Projx(S)(P) and Projx(S)(x̄),

where S = {(uti, w
t+1
i ), (wtj , u

t+1
j )}. In this work, we will typically choose larger

spatio-temporal neighbourhoods for selecting the arcs in S. Consequently, the
cuts that are generated by our approach tend to be deeper.
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On selecting S for an infeasible x̄ : The choice of S for a given infeasible x̄ will
not be made arbitrarily. An arbitrary choice for S can lead to poor cuts, and
computing a good approximation to Projx(S)(P) is challenging. To specify S,
we first parameterize S by the sets R(S), T (S), L(S). R(S) ⊆ [N] is a set of
indices of robots, T (S) = {l, l + 1, ...,u} is a discrete interval where l,u ∈ Z+

and u < T. For each i ∈ R(S) and each time t ∈ T (S), let Lti(S) denote a set of
nodes in Ni(t). Denote L(S) = ∪

i∈R(S),t∈T (S)
Lti(S), S is defined as the set of all

incoming and outgoing arcs associated with nodes in L(S)

S = ∪
i∈R(S),t∈T (S)

∪
vti∈Lt

i(S)

(
δ+
Fi

(vti) ∪ δ−Fi
(vti)

)
(9)

W.l.o.g let x̄ contain a conflict between robots r1, r2 at time tc, and let us
denote the set of nodes from N1, N2 involved in the conflict by Zcf . Note that
if the conflict is a vertex conflict, then Zcf contains 2 nodes, while for an edge
conflict Zcf contains 4 nodes. We say that S is an appropriate selection for x̄
iff 1, 2 ∈ R(S), tc ∈ T (S) and Zcf ⊆ L(S) i.e. loosely speaking S contains arcs
relevant to the conflict present in x̄. We provide an example for S below.

Consider the set of robot paths for r1 and r2 shown in Fig. 1. Robot r1

moves from location (3, 3) at time 4 to (4, 3) at time 5, while r2 moves from
(4, 3) at time 4 to (3, 3) at time 5, so we have an edge collision at time 4.

Fig 1. One possible choice of S for the edge conflict
between r1 and r2 is: R(S) = {1, 2}, and T (S) =
{3, 4, 5}. For all i ∈ [1, 2] and ∀t ∈ T (S), Lti(S) is
set to nodes in Ni(t) corresponding to all locations
in the 3 × 3 grid centered at (3, 3) (highlighted in
yellow). S for our example can be obtained from the
parameters specified by applying Eqn (9). Clearly
the arcs in the edge conflict are present in S.

Defining P (S): We retain as many relevant inequalities from the IP formulation
in Sec. 3 for defining P (S), thereby providing a tight relaxation for Projx(S)(P).

P (S) = conv (x(S) ∈ {0, 1}n|x satisfies (11)− (14)) (10)∑
a∈δ−

Fi
(vti)

x(a) =
∑

a∈δ+
Fi

(vti)

x(a), ∀i ∈ R(S), ∀t ∈ T (S), ∀vti ∈ Lti(S) (11)

∑
j∈V t

(v)∩R(S)

∑
a∈δ−1

Fj
(vtj)

x(a) ≤ 1, ∀t ∈ T (S), ∀i ∈ R(S), ∀vti ∈ Lti(S) (12)

x(uti, w
t+1
i ) + x(wtj , u

t+1
j ) ≤ 1,

∀t∈{l−1}∪T (S),∀(i,j)∈{(k,l)∈R(S)×R(S)|k 6=l},
∀(u,w)∈{(p,q)∈E|(pti,q

t+1
i ),(qtj ,p

t+1
j )∈S} (13)∑

a∈S∩Ai(t)

x(a) ≤ 1, ∀i ∈ R(S), ∀t ∈ {l − 1} ∪ T (S) (14)
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Algorithm 1 PSGA for CGLP

1: Initialize: k := 1, w(k) = 0,∆ = 0, z = Projx(S)(x̄).
2: while Stopping criterion is not met do
3: v(k) ∈ arg max

v∈V ert(P (S))
vTw(k)

4: w(k+1) := Proj‖w‖2≤1

(
w(k) + ρ(k)(z− v(k))

)
, where ρ(k) := 1

k

5: if H(w(k+1)) > max(0,∆) then
6: ∆← H(w(k+1)), w∗ ← w(k+1)

7: k := k + 1
8: if ∆ > 0 then
9: return w∗

Eqn (11) ensures flow balance for all nodes in L(S). Eqn (12) prohibits vertex
collisions on nodes in L(S). Eqn (13) prohibits edge collisions over arcs in S.
Eqn (14) ensures no two arcs present in S and belonging to the same arc layer
in the time expanded graph of a robot are both simultaneously selected. Clearly
Eqns (12) and (14) are implied from the MAPF IP formulation, while Eqns (11)
and (13) are present in the MAPF IP formulation, hence Projx(S)(P) ⊆ P (S).

Separating x̄ and P (S): Recall, we assumed that x̄ violates some constraint from
the set of Eqns (5)-(6). Assuming we have selected an S that is appropriate for x̄,
then we know that some constraint in the set of Eqns (12)-(13) must be violated
by x̄. So by the strict hyper-plane separation theorem, we know that ∃w ∈ Rn
such that wT z < wTProjx(S)(x̄), ∀z ∈ P (S). We can obtain such a w by solving
the optimization problem CGLP in Eqn (15). V ert(P (S)) shown in Eqn (16)
refers to the vertices of polytope P (S).

CGLP : max
‖w‖2≤1

H(w), where H(w) = wT (Projx(S)(x̄))− h(w), and (15)

h(w) = max
y∈P (S)

{wT y} ⇐⇒ max
v∈V ert(P (S))

{wT v} (16)

The objective in CGLP is a piece-wise concave function, so CGLP can
be solved using the well known projected sub-gradient ascent (PSGA) method,
shown in Alg. 1. For performing the maximization in line 3 of Alg. 1, we require
the vertices of P (S). Drawing inspiration from the works of [2, 7, 15], in Sec. 5 we
propose a compact representation for the vertices of P (S) in terms of a decision
diagram. The compact representation will enable us to perform maximization in
a reasonable amount of time, at least when |R(S)|, |L(S)| are not too large. We
provide details on how cuts are utilized for obtaining lower bounds to the MAPF
problem in Sec. 7, and how the bound is incorporated into a CBS procedure in
Sec. 8. Sections 7 and 8 may be read independently of Sections 5 and 6.

5 Decision Diagram Representation

Borrowing notation from [7], we denote the decision diagram (DD) for P (S)
by D(S) = (U ,A, f), where U represents a set of nodes, A represents arcs in



Template Matching and Decision Diagrams for Multi-Agent Path Finding 7

a top-down multi-graph, f labels each an arc in A to some subset of arcs in
S. U can be decomposed into |T (S)|+ 2 layers U0,U1, ...,U|T (S)|+1, and A into
|T (S)| + 1 layers A0,A1, ...,A|T (S)|. U0 contains a single node sr called source
and U|T (S)|+1 contains a single node sk called sink. The tail of any arc in layer
j is connected to a node in Uj and its head to a node in Uj+1.

To construct D(S) we will use the concept of a state transition diagram.
The idea is to interpret each node in U as a state, a practice widely used for
optimization using Decision Diagrams [5]. A state maps each i ∈ R(S) to a robot
state. For i ∈ R(S), if robot ri occupies location v ∈ V at time t ∈ T (S), then
the state of robot ri is defined as:{

vti , if vti ∈ Lti(S)

o, otherwise

We motivate introducing o as a state for a robot with an example. Say robot
r1 traverses from location a at time 1 to location b at time 2 i.e r1 traverses
the arc (a1

1, b
2
1) ∈ A1(1) (refer Ai(t) notation from Sec. 3), and then traverses

the arc (c21, d
3
1) ∈ A1(2), then first observe that such a path for r1 is infeasible

to the MAPF problem. However, when b21, c
2
1 6∈ L2

1(S) recall that P (S) does not
enforce flow balance at the nodes b21, c

2
1, and so P (S) may contain a vertex corre-

sponding to the infeasible MAPF path, since after-all P (S) is only a relaxation
to Projx(S)(P). As we chose to adopt a state space representation for building

D(S), introducing o allows us to interpret our example as: r1 traverses state a1
1

to state o using arc (a1
1, b

2
1), and then transitions from o to d3

1 using arc (c21, d
3
1).

Observe that since P (S) is parameterized with arc variables and any vertex
of P (S) corresponds to a series of arc traversals for the robots in R(S), we
can interpret each vertex as a series of state transitions much the same way
as we did earlier for the single robot. In constructing D(S), the overall aim
is to ensure that there is a 1:1 correspondence between vertices in P (S) and
state transition paths in D(S). We next construct the nodes in D(S). Let us
assume that T (S) = {l, l + 1, ...,u}. At time t ∈ T (S), observe there are at
most

∏
i∈R(S)

(|Lti(S)|+ 1) states for the robots. For each of those states at time

t ∈ T (S), we introduce a node in layer t − l + 1 of D(S) i.e. Ut−l+1. For any
node u ∈ U , we shall use the notation u[i] to denote the state of robot ri in
u. The node sr in layer U0 and node sk in layer UT (S)+1, both correspond to a
state where sr[i] = sk[i] = o, ∀i ∈ R(S). Some of the nodes (states) populated
in U , may contain vertex collisions. A node u ∈ U is said to contain a vertex
collision iff ∃i, j ∈ R(S) such that both u[i] and u[j] are different from o, and
u[i], u[j] correspond to the same vertex in V . We remove all nodes that contain
vertex collisions from U , as such states can never be attained from any vertex of
P (S). Vertex collision checking with o was skipped because Eqn (12) has vertex
collision constraints only for nodes in L(S). The states for sr, sk was defined that
way because Eqn (12) is unconcerned with vertex collisions at times l− 1,u+ 1.

Before describing how to populate arcs in D(S), we take a brief detour. For
the choice of parameters of S in Fig. 1, we show a portion of its corresponding
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Fig. 2: A portion of the DD for the choice of S in Fig. 1 is shown above, where
→
A=(

(2, 2)3
1, (2, 1)4

1

)
,
→
B=

(
(2, 3)3

2, (2, 3)4
2

)
,
→
C=

(
(2, 2)3

1, (1, 2)4
1

)
,
→
D=

(
(2, 2)3

1, (3, 2)4
1

)
,

→
E=

(
(2, 3)3

2, (2, 4)4
2

)
,
→
F=

(
(2, 3)3

2, (1, 3)4
2

)
,
→
G=

(
(3, 1)3

1, (3, 2)4
1

)
.

DD in Fig. 2. Only a few states in layers U1,U2, and arcs in A1 with their labels
are shown. For robot r1 to transition from location (2, 2) at time 3 (denoted by
state (2, 2)3

1) to (3, 2) at time 4, r1 needs to transition with arc
→
D (refer Fig. 2

for definition). Likewise, for r2 to transition from state (2, 3)3
2 to (2, 4)4

2, r2 needs
to transition with arc

→
E. Since the transition between those states for r1 and r2

does not lead to a collision, we connect states S0, S2 with an arc in A1 and label
the arc with the set {

→
D,
→
E}, see Fig. 2. From the definition of L4

1(S) provided in
the example in Fig. 1, the reader can easily verify that r1 can transition to state
o at time 4 from (2, 2)3

1 using either
→
A or

→
C. Consequently, note that r1, r2 can

transition from S0 to S1 in 2 different ways as shown in Fig. 2.
Moving on from the example, we now provide a formal procedure to populate

the arcs in D(S). Consider any node v ∈ Uk and any node w ∈ Uk+1.To decide
whether we should connect arcs from v to w, reduces to first determining whether
w is a feasible state transition of v, and if yes, then determining all different ways
in which the robots may transition from v to w. By repeating this process for
all pairs of nodes in U occurring between consecutive layers, we can populate A.
To establish whether a state transition from v to w is feasible, for each i ∈ R(S)
we will establish all the different ways in which robot ri can transition from
v[i] to w[i] by traversing some arc in S, and store this information in the set
h(v, w, i) ⊂ S. One of the cases below will be applicable for populating h(v, w, i):

1. If k = 0 and w[i] ∈ Ll
i(S), then first observe that v[i] = o since v is the sr

node. Robot ri can use any one of the arcs from the set δ−Fi
(w[i]) to transition

to w[i], and so h(v, w, i) = δ−Fi
(w[i]).

2. If 1 ≤ k < |T (S)| , we consider separately the following 3 cases:
– If v[i] ∈ Lk+l−1

i (S), w[i] ∈ Lk+l
i (S) and (v[i], w[i]) ∈ δ+

Fi
(v[i]), then clearly:

h(v, w, i) = {(v[i], w[i])}.
– If v[i] = o and w[i] ∈ Lk+l

i (S), then :

h(v, w, i) = {(pk+l−1
i , w[i]) ∈ δ−Fi

(w[i])|pk+l−1
i 6∈ Lk+l−1

i (S)}

– If v[i] ∈ Lk+l−1
i (S) and w[i] = o, then:

h(v, w, i) = {(v[i], pk+l
i ) ∈ δ+

Fi
(v[i])|pk+l

i 6∈ Lk+l
i (S)}
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3. If k = |T (S)| and v[i] ∈ Lki (S), then h(v, w, i) = δ+
Fi

(v[i]). Also note that w
is sk node, and so w[i] = o.
4. If v[i] = w[i] = o, then h(v, w, i) = ∅ since there are no arcs in S that the
robot can use to traverse between such a pair of states. However a state transition
for the robot is still be feasible without using any arcs from S. For example, if
at all times t ∈ T (S) robot ri does not use any arc in S in some start-end path
which is feasible to the MAPF problem, then ri is in state o at all t ∈ T (S).

If for some i ∈ R(S), v[i], w[i] are not both o, and no arc could be found for
h(v, w, i) by analyzing 1, 2 and 3, then robot ri cannot transition from v[i] to
w[i]. In such a case, we can safely conclude that the transition from v to w is not
feasible, and so we do not need to insert any arc from v to w in A. Assuming that
this is not the case for v, w, we then proceed to check whether arcs can be added
from v to w. As the function h(v, w, i) corresponds to the different ways in which
the robot ri transitions from state v[i] to w[i], it is only natural that the elements
of the set H(v, w) =

∏
i∈R(S)

h(v, w, i) correspond to all the different ways in which

robots can transition from v to w. Note that H(v, w) is a set product, and so
each element of H(v, w) is itself a subset of S (includes the empty set). For any
i ∈ R(S), note that each element of H(v, w) contains at most one arc from Ai.
Some elements of H(v, w) may contain arcs from S, wherein robots transitioning
using those arcs will result in an edge collision. We remove all those elements
from H(v, w) which will result in edge collisions. Corresponding to each element
remaining in H(v, w) after the previous edge collision filtration step, we add an
arc a from v to w in Ak and label (cf. f function in definition of D(S)) a by the
arcs from S present in the element of H(v, w).

There is a 1:1 correspondence between source-sink (sr−sk) paths inD(S) and
vertices of P (S), i.e. if xv is a vertex of P (S) and let Q = {a ∈ S|xv(a) = 1}, then
there is a sr−sk path in D(S) such that the labels occurring on the path coincide
exactly with Q. Conversely for any sr−sk path, if S̄ ⊂ S are labels occurring on
the path, then there is a vertex xv in P (S) such that xv(S̄) = 1, xv(S\S̄) = 0.

Computing line 3 in Alg. 1 using D(S): To perform the maximization in line 3,
we can make use of the correspondence between vertices of P (S) and sr− sk
paths in D(S). We assign a cost to each arc in A depending on the labels on
the arc. For instance, if arc a ∈ A is labelled with b1, b2, where b1, b2 ∈ S, then
we simply assign a cost of w(k)(b1) + w(k)(b2) to a, where w(k)(bi) is the value
corresponding to bi in vector w(k). If a is not labeled with any arc from S, then
we assign a cost of 0. After setting costs to all arcs in A in the manner just
described, obtaining the arg max vertex in line 3 is equivalent to obtaining any
longest sr− sk path in D(S). The computational effort needed to obtain the
longest path is O (|A|), since D(S) is a directed acyclic graph.

6 Templates for grids

As conflict locations and robots involved in conflicts vary, a different set of pa-
rameters for S may need to be chosen in order to generate a cut for each conflict.
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Consequently, a different projection polytope (P (S)) needs to be built for each
conflict, which is computationally expensive. When G is a 4 or 8-connectivity
grid, the neighborhood relative to any location on the grid is same across all
locations on the grid, a property that allows us to build Templates.

Let us denote the polytope P (S) described in Fig. 1 by P1. Now consider
the vertex conflict for robots r3 and r4 at time 14 shown in Fig. 1. For this
conflict, we can create a polytope P (S2) with parameters : R(S2) = {3, 4}, and
T (S2) = {13, 14, 15}. For all i ∈ [3, 4] and ∀t ∈ T (S2), Lti(S2) is set to nodes in
Ni(t) corresponding to all locations in the 3× 3 grid centered at (6, 5). Clearly
P (S2) can also output a cut for the conflict between r3, r4. While polytopes
P1, P (S2) lie in different dimensions, the facial structure of both polytopes are
identical. If we substitute r1 for r3, r2 for r4, advance the interval T (S2) by 10
time units, and translate all locations in L··(S2) by 3 units along the negative X-
axis and by 2 units along the negative Y-axis, we get back all the parameters for
S described in Fig. 1. Hence, we claim that both P1 and P (S2) are manifestations
of the same base template polytope.

While working with structured graphs such as grids, we can precompute a
library of different templates, and use those templates to generate all cuts. By
spatio-temporally shifting the parameters of the template about the conflict,
multiple cuts can be generated using the same base template. While generating
cuts with templates, some locations may be physically blocked on the grid, and
so certain states in the DD representation of the template cannot be attained
by the robots. In that case, we adjust the longest sr− sk path computation
procedure to avoid paths that pass through infeasible states.

7 Lagrangian Relax-and-Cut

Equipped with the cut generation oracle from the previous section, we will now
describe a Non-Delayed Lagrangian Relax-and-Cut (LRC) procedure [13] to gen-
erate lower bounds to the MAPF problem. Consider the optimization problem
shown in Eqn (17) obtained by omitting all collision constraints from the MAPF
IP formulation shown in Sec. 3.

min
x∈{0,1}|A|

{cTx|x satisfies Eqns (3)− (4)} (17)

Notice, that the optimal solution to Eqn (17) (call it x̄) consists of robot start-
end paths, which potentially may contain vertex and edge conflicts. We can
use our cut generation technique from the previous section, and generate cuts
(denote the set of inequalities generated by Cx ≤ d) that separate x̄ from P.
LRC incorporates the cuts generated by solving the Lagrangian dual problem:

max
λ≥0

min
x∈{0,1}|A|

{cTx+ λT (Cx− d)|x satisfies Eqns (3)− (4)} (18)

Eqn (18) is solved using the iterative PSGA procedure, where at each iteration
λ is updated by using the solution to the inner minimization problem, which



Template Matching and Decision Diagrams for Multi-Agent Path Finding 11

Algorithm 2 Lagrangian relax and cut algorithm

1: Given: MAX CUT ITER, c
2: Output: Inequalities Cx ≤ d, optimal Lagrangian multipliers λ∗, and upper

bound(UB).
3: Initialize: k = 0, C = ∅, d = ∅, λ = ∅, UB = ∞
4: repeat
5: x̄k = arg min

x∈{0,1}|A|
{cTx+ λT (Cx− d) |x satisfies Eqns (3)− (4)}

6: λ := (λ+ ρk (Cx̄k − d))+
7: if x̄k contains conflicts then
8: if k < MAX CUT ITER then
9: Generate cuts Ekx ≤ fk separating x̄k from P

10: Append Ekx ≤ fk to Cx ≤ d. Introduce Lagrangian multipliers for Ekx ≤
fk initialized all to 1, and append it to the vector λ.

11: Repair x̄k to generate non-conflicting paths. If repair is successful and cost of
repaired solution is less than UB, update UB.

12: else
13: if Cost(x̄k) < UB then
14: UB := Cost(x̄k)
15: k := k + 1
16: until Termination criterion is met

is a min-cost flow problem. Denote the optimal solution to the min-cost flow
problem at iteration k of PSGA by x̄k. Note that x̄k represent start-end paths
for robots, and potentially contains conflicts. The key innovation of LRC is that,
if x̄k contains conflicts, cuts are generated to separate x̄k and P. Denote the cuts
generated by Ekx ≤ fk. Ekx ≤ fk is incorporated into the optimization problem
by dualizing them with appropriate Lagrangian multipliers. In other words, we
can think of this operation as expanding Cx ≤ d at each iteration by including
Ekx ≤ fk. The motivation to include cuts at each iteration is to strengthen
the dual bound by including inequalities (valid for P) that are violated by the
current dual solution. Deeper the included cut, greater will be the magnitude of
the dual gradient term in line 6, and the hope is that ascent along the gradient
will lead to a solution with a higher objective. After a few iterations, no more
cuts are added, at which point LRC becomes a standard dual ascent scheme.

A schematic overview of the LRC scheme described above is shown in Alg. 2.
Alg. 2 takes as input a positive integer MAX CUT ITER, to decide when to stop
adding cuts. In line 6, the λ vector is updated with step size ρ. In our imple-
mentation, ρk was set to O( 1

k ) up-to MAX CUT ITER iterations, after which
the step size was set according to the scheme in [1], to accelerate convergence.
At iteration k, if x̄k contains conflicts, we apply a primal repair procedure to try
and convert x̄k into a conflict free solution, for generating an upper bound.

Our primal repair procedure identifies a maximal independent set (MIS) of
non conflicting robots from the paths provided in x̄k, and fixes the path of the
robots in the MIS to as they are in x̄k. The paths for the remaining robots are
computed sequentially, where the path assigned to a robot is the shortest start-
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end path that does not collide with any path fixed previously to other robots. The
order in which the robots are chosen for their path to be computed is determined
dynamically using the rule in [17]. If the procedure fails to compute a path for
robot r, then the primal repair procedure is unsuccessful for the current iteration.

8 An LRC-based Search Node Evaluation Function

In this section we will describe a new evaluation function for Conflict Based
Search (CBS) that uses the output of the LRC procedure. We briefly describe
only the relevant portions of CBS to our work. CBS performs a best first search
on a search tree, where the most promising node among the previously unex-
plored nodes of the search tree is selected for exploration by applying an evalua-
tion function. Each node in the search tree is characterized by a set of arcs that
the robots are prohibited from using. An evaluation function takes as input any
search tree node, and outputs a cost that does not overestimate the cost of the
optimal solution to the MAPF problem with the added constraint that robots do
not use any arcs prohibited in the search node. The node with the least evalua-
tion cost is then selected. If the cost outputted by the evaluation function closely
matches the true lower bound at every search tree node, then we should expect
good search performance. Our goal is to improve existing evaluation functions.

Given a search node sn, let us denote the set of arcs that are prohibited in
the node by Āsn ⊂ ∪i∈[N]Ai. We provide an evaluation function f̂1(·) based on

Lagrangians. Before the search tree is created we apply Alg. 2, and let Ĉx ≤ d̂,
λ̂, and UB denote the outputs. f̂1(sn) is computed as:

f̂1(sn) = min
x∈{0,1}|A|

x(a)=0,∀a∈Āsn

{cTx+ λ̂T (Ĉx− d̂)|x satisfies Eqns (3)− (4)} (19)

The validity of f̂1(sn) as an evaluation function follows from the fact that f̂1(sn)

is a Lagrangian dual function where, λ̂ ≥ 0 and the set of inequalities Ĉx ≤ d̂
is valid for the feasible region of sn. Note that f̂1(sn) can be computed using
any shortest path algorithm on the time expanded graphs, but with arc costs
reflecting the objective shown in Eqn (19). Our evaluation function is similar to
obtaining Lagrangian lower bounds in Constraint Programming [3, 4, 10].

We can combine our proposed evaluation function with any other evaluation
function f previously proposed for the MAPF problem (see [9, 12]), by taking the

maximum i.e. max(f(sn), f̂1(sn)) to yield a stronger evaluation function than

either just f or f̂1. If max(f(sn), f̂1(sn)) ≥ UB, we can omit descendants of sn
in the remainder of the search procedure i.e. we can prune the node sn.

We designed another evaluation function f̂2(·) inspired directly from the mini-
mum vertex cover (MVC) heuristic of [9] and WDG heuristic of [12]. Observe that
the minimization in Eqn (19) can be performed independently for the robots.

Let us re-write Eqn (19) as f̂1(sn) = −d̂T λ̂+
∑
i∈[N] f̂1(sn, i). Similar to the ap-

proach in WDG heuristic, for each pair of robots we can solve a 2-Agent MAPF
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problem to obtain lower bounds on the sum of pairwise costs. In this work, we
use Lagrangian arc costs to obtain the pairwise bounds. The arc costs are mod-
ified to the Lagrangian objective shown in Eqn (19). Say for robots ri, rj , the
optimal cost to the 2 agent MAPF problem with Lagrangian arc costs (i.e., the

cost of each arc is set to the arc’s co-efficient in cTx + λ̂T Ĉx) is denoted by

lij(λ̂, sn), we propose a node evaluation function f̂2(sn) as:

f̂2(sn) = min
y∈RN

− d̂T λ̂+
∑
i∈[N]

yi

s.t. yi + yj ≥ lij(λ̂, sn),∀i, j ∈ [N]× [N] and i < j

yi ≥ f̂1(sn, i),∀i ∈ [N] (20)

9 Experimental Evaluation

The primary goals of our experiments are to understand the additional value that
our approach can bring to existing search methods, and how its performance is
influenced by the characteristics of the problem.
Experimental Setup As baseline search method, we implemented a state-of-
the-art variant of conflict-based search, called DG [12], however our implemen-
tation does not include the run time reduction techniques and MDD merging
technique proposed in [12]. When determining whether a pair of robots should
share an edge in the conflict graph constructed in DG, we applied a two-agent
MAPF solver to check this condition. As branching rule, we implement the rule
proposed for ICBS [6], i.e., prioritizing cardinal over semi-cardinal over non-
cardinal conflicts. We will refer to our implementation of DG as DG*. Our LRC
approach implements DG with f̂2(·) as node evaluation function. We selected

f̂2(·) over f̂1(·), because Eqn (20) implies f̂2(sn) ≥ f̂1(sn). We denote the com-

bination of DG* with f̂2(·) by LR-DG*.
All experiments in this paper were carried out on an Intel 4 core i7-4790

processor running at 3.6 GHz with 16GB RAM, and the program was written
in C++. All our experiments were conducted on 30 × 30 4-connectivity grids,
where some % of the locations on the grid are randomly chosen and blocked. The
start and end locations for the robots on the grid are also randomly assigned.
The makespan constraint T was set to 3 more than the shortest time it took for
all robots to reach their goal from start when collision constraints are omitted.

In all our experiments for comparing DG* with LR-DG*, we allocated a time
limit of 30 minutes for both algorithms. The 30 minutes allocated to LR-DG* is
further split as follows. A time limit of 10 minutes was allocated beyond which
cuts are not added in Alg. 2 and MAX CUT ITER was set to 1000. Optimizing
the Lagrangian multipliers using the accelerated step size update rule, in practice
takes ≈ 2-4 minutes for the 100 robot instances. The remaining time was spent
in performing conflict based search with f̂2 as evaluation function.

As all experiments were conducted on a 4-connectivity grid, we could pre-
compute a template library. Our template library consisted of 64 templates with
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Block
Robots

30 50 70 100 125

10% 0.1 -0.1 -0.3 -0.6 1.5

20% 0 -0.4 1 7.9 14.7

30% -0.3 1.7 5.8 14.8 17.8

Fig. 4: On Y-axis, we plot the difference in lower bounds outputted by LR-DG* and
DG* with time for 5 instances. For each problem scenario, the table reports the differ-
ence in bounds averaged over 10 instances after 30 mins of simulation per instance.

each template parameterized by 3 robots, time horizon (cf. T (S)) of 5 time units,
and |Lti(S)| varied between 6 - 9 nodes. This translates roughly to 0.2 million
arcs in the size of the DD per template.

Experimental Results To study the impact of problem characteristics on our
algorithm performance, we considered problem scenarios with different blocked
locations (%) and number of robots. For each such scenario, we record the
progress of our solution method’s lower bound with time. In Fig. 4, we graphi-
cally show the difference between LR-DG* and DG* lower bounds with time for
different scenarios, and the results after 30 minutes are summarized in the table.

We first explain why the difference in bounds between the 2 methods looks
like a step size function. Initially, the LR-DG* bound lags behind the DG*
bound as it performs the cut addition phase of Alg. 2. In the cut addition phase,
the LR-DG* lower bound is not improving much. On the other hand the MVC
heuristic in DG* is able to quickly identify pairs of robots that are in some
sense constraining one another, and by branching on their conflicts it is able to
make rapid progress initially. Once LR-DG* enters into the Lagrangian multipli-
ers optimization phase with accelerated step size update rule, we see a marked
improvement in the LR-DG* bound.

From the table shown in Figure 4, one can observe the following trends in
the gap between the lower bounds of the two methods. For a fixed number
of robots, we see that as the block % increases, LR-DG* dominates over the
DG* bound. Also, for a fixed block %, we observe that the gap between the 2
methods increases as the number of robots increases. The lower bound to the
MAPF problem computed just after Lagrangian Relax and Cut phase i.e after
Alg. 2 in many cases dominates the bound obtained from DG* after 30 minutes.
For 100 robot problems and 20% blocked cells, on average (over 10 instances) we
observed this gap to be 4.89, and for 30% blocked cells the gap was 11.7. These
results clearly indicate that the cuts generated in the LRC phase are strong, and
capable of generating strong lower bounds for the given objective.
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We explain the results observed. It is clear that when not many collisions
are expected between robots, then it is unlikely that the robots have to wait
for another robot or take a longer route. Trying to raise the lower bound with
cuts is unlikely to result in an improvement of the lower bound, which is why
we see that when the the number of robots is few and/or blocked cells are also
few, LR-DG* is unable to do any better than DG*. However, when the expected
number of collisions is large, we see that LR-DG* generates strong bounds which
reflects the strength of the cuts generated during the LRC phase. We explain this
performance using an analogy. In environments which contain a lot of spatio-
temporal bottleneck regions, i.e., local regions in time where many robots need
to pass through to reach their goal, then by simply analyzing paths of robots
within the bottleneck region, we may be able to infer facts such as, at least one
robot must wait or take a longer route in order to pass through the bottleneck
region without colliding. The strength of the inference improves as more robots
are included in the analysis. Through the use of templates, our approach essen-
tially focuses on a localized spatio-temporal neighbourhood. Our cut generating
templates are able analyze all feasible paths through the neighbourhood at once
for the robots parameterizing the template, thus going beyond pairwise analysis
of robot paths, thereby able to output strong cuts.

Despite LR-DG* producing stronger lower bounds than DG*, in general we
observed that LR-DG* was unable to prove optimality for any problem that
DG* also could not. The results indicates a need for stronger lower bounds and a
better primal heuristic than the one used in this work for proving optimality. For
problems that were solved to optimality by both DG* and LR-DG*, we compared
the number of search tree nodes expanded. For 30 robot problems, LR-DG* on
average expanded 37% fewer nodes, however the % reduction in nodes across
instances displayed high variance. On many problems, the fact that LR-DG*
proved optimality during LRC phase itself has skewed the results. In general
however, observe that since the cuts in the procedure have been generated at
the root node, their utility diminishes as the depth of the search node increases.
In future work, we will generate new cuts at each search node.

10 Conclusions

We proposed a new polyhedral approach for MAPF based on lower-dimensional
polytopes called ‘templates’, which allows us to simultaneously analyze the paths
of a number of robots within a spatio-temporal neighbourhood. We used decision
diagrams to represent these templates and developed a cut generation scheme.
The templates are translated spatio-temporally over the input graph to generate
cuts for paths with conflicts. To obtain a lower bound, we embedded the cut
generation into a Lagrangian Relax-and-Cut procedure. We incorporated the
lower bound as a node evaluation function in a conflict-based search procedure.
Our experimental results demonstrated that our lower bounds are particularly
effective when the MAPF problem is very constrained due to large number of
agents and\or fewer traversable paths on the input graph.
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