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ABSTRACT
Many cities have to cope with annual snowfall, but are struggling to manage their
snow plowing activities efficiently. Despite the fact that winter road maintenance has
been a popular research subject for decades, very few papers propose scalable mod-
els that can incorporate side constraints encountered in real-life applications. In this
work we propose a Constraint Programming formulation for a Snow Plow Routing
Problem (SPRP). The SPRP under consideration involves finding a set of vehicle
routes to service a street network in a pre-defined service area, while accounting
for various vehicle constraints and traffic restrictions. The fundamental mathemati-
cal problem underlying SPRP is the well-known Capacitated Arc Routing Problem
(CARP). Common Mathematical Programming (MP) approaches for CARP are
typically based on (1) a graph transformation, thereby transforming CARP into an
equivalent node routing problem, or (2) a sparse network formulation. The CP for-
mulation in this paper is based on the former graph transformation. Using geospatial
data from the city of Pittsburgh, we empirically show that our CP approach outper-
forms existing MP formulations for SPRP. For some of the larger instances, our CP
model finds 26% shorter plowing schedules than alternative Integer Programming
formulations. A test pilot held with actual vehicles proves the applicability of our
approach in practice: our routes are 3%-156% shorter than the routes the city of
Pittsburgh generated with commercial routing software.
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1. Introduction

Each year, many northern cities face significant expenditures pertaining winter road
maintenance. Snow removal constitutes a large part of these costs. According to a
report by the Office of the New York City Comptroller (Stringer, 2015), the costs for
ice and snow removal in NYC alone averages $55.3 million a year, with a low of $25.4
million in FY 2008, to a high of $130.7 million in FY 2014. The direct measurable costs
related to material, equipment, maintenance, resources and personnel, are however
largely exceeded by indirect expenses accounting for the societal, environmental and
economical impact of adverse driving conditions. Snow storms have a disruptive impact

∗Corresponding author: j.kinable@tue.nl



on mobility and transportation, leading to a significant increase in traffic accidents and
congestions, and reduce access to critical infrastructure such as hospitals and airports
(Rubin et al., 2010; Usman et al., 2010). Moreover, excessive usage of snow plows
as well as salt and chemicals required for deicing, damages road surfaces, corrodes
cars and metal structures, and pollutes soil and local water systems (Environmental
Protection Agency, 1999). Clearly, the monetary costs of winter road maintenance,
as well as the number of people negatively impacted by winter driving conditions
motivate the need for a robust, data-driven and highly-optimized system to effectively
perform these maintenance operations in a resource constraint environment.

In this work we study a realistic Snow Plow Routing Problem (SPRP) where routes
must be computed for a set of heterogeneous vehicles such that they collectively cover
a geographical area. The vehicles remove snow from the roads, and simultaneously
spread a mixture of salt and chemicals. Vehicles only have a finite capacity of salt
available, and must return to a depot whenever they run out of salt. The routes
must comply with a number of side-constraints, involving service time restrictions,
one-way streets, road priorities and turn restrictions. This work is part of a larger
initiative to develop an adaptive system for snow plow optimization and management.
This route planning system stores pre-computed snow plow routes in a database,
and issues real-time turn-by-turn instructions to the snow plow drivers. The snow
plows are equipped with GPS trackers, which allow the system to monitor the plows’
progress according to a predefined schedule. Periodically, the system must be able
to re-optimize the routes, thereby re-balancing the workload of the individual snow
plows. Moreover, when deviation of the original route is necessary, for instance
due to an unforeseen road obstruction, equipment failure or emergency request,
the system must adequately adjust the routes and issue new instructions to the
drivers. In this paper, we focus on the routing and modeling aspects of the problem;
real-time adjustments and coping with unexpected events is the subject of future work.

Existing Mathematical Programming (MP) formulations for SPRP are typically
classified into sparse models, defined over a sparse routing graph, and dense models
which rely on graph transformations. The CP formulation used to solve the SPRP
in this paper belongs to the latter category. The fundamental mathematical problem
underlying our SPRP is the well-known Capacitated Arc Routing Problem (Golden
and Wong, 1981) which is shown to be NP-hard by Golden and Wong (1981). Next
to snow plowing, CARP arises in a wide variety of applications, including refuse
collection, street sweeping, winter gritting, postal delivery, inspection of roads, power
lines, bridges and pipeline systems, meter reading, and road surface marking. In the
past, a significant amount of research has been devoted to the design of efficient
methods to solve Capacitated Arc Routing Problems, for which a large amount
of synthetic benchmark data exists.1 From an operational perspective, it remains
however largely unclear how existing methods for CARP or related Snow Plow
Routing Problems can be exploited by a system that must efficiently compute routes
under realistic conditions for an actual fleet of vehicles. The latter involves answering
practical questions such as: can the proposed methodology be extended with additional
side-constraints necessary to generate viable routes? Does the methodology scale to
realistically sized instances? Prior to answering these questions, we must however

1An overview of benchmark instances can be found here: https://logistik.bwl.uni-mainz.de/forschung/
benchmarks/
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address more fundamental problems such as how to extract input data for such a
routing system, or how to quantify and compare the quality of vehicle schedules
generated by the system. As it turns out, simply solving an optimization problem
which minimizes total travel time subject to CARP constraints, as is routinely
done with synthetic benchmark data, leads to unbalanced and undriveable vehicle
itineraries in practice.
This paper sets itself apart from existing work by its strong focus on the operational
aspects of winter road maintenance. The contributions of this paper are as follows.
We present a Constraint Programming (CP) formulation which incorporates a large
number of side constraints commonly encountered in winter road maintenance. We
show that this CP model scales better than conventional Mathematical (Integer)
Programming formulations. To demonstrate the efficacy of our CP formulation, an
extensive computational evaluation is performed. Unlike many traditional works that
perform computations on synthetic benchmark data, we utilize geospatial data from
the city of Pittsburgh to compute realistic schedules. The usage of actual map data
requires us to investigate how to extract, process and store this data efficiently. The
data used in the experiments covers different geographical settings, ranging from
residential neighborhoods to industry and business districts. In the computational
evaluation we compare our CP formulation against the two-stage improvement
heuristic from Kinable et al. (2016), a commercial snow plow routing system, and
alternative MP formulations including the sparse formulation by Perrier et al. (2008),
and a dense model based on a Generalized VRP transformation proposed by Bartolini
et al. (2013). It is worth noting that, although this paper is explicitly written in
the context of winter road maintenance, the methodology can be extended to other
arc routing applications as well. Moreover, although the experimental evaluation is
conducted using data from the city of Pittsburgh, a very similar problem setting has
recently been described for Kentucky state (USA) in Blandford et al. (2018). This
again underlines the need for efficient snow plow optimization algorithms.

The remainder of this paper is structured as follows. First Section 2 provides an
overview of related literature. Next, Section 3 formally defines our SPRP and intro-
duces notation. The same Section also covers a transformation from SPRP into an
equivalent Generalized VRP used by our CP model. The CP model is presented in
Section 4, followed by two alternative Mathematical Programming formulations in
Section 5. Essential to the computation of practical routes is the calculation of turn re-
strictions (Section 6). An extensive experimental evaluation, covering data extraction
and preprocessing, computational results of our CP model, and a pilot test, is pro-
vided in Section 7. Finally, Section 8 offers the conclusion and discusses opportunities
for future research.

2. Related Literature

A rich body of literature pertaining the Capacitated Arc Routing Problem, as well as
related snow plow optimization problems exists. For an excellent literature overview
of CARP problems, applications and solution approaches, we refer to the books by
Corberán and Laporte (2014a); Dror (2000) and Wøhlk (2008). An extensive overview
of decision and optimization problems involving winter road maintenance can be found
in the survey articles by Corberán and Prins (2010); Perrier et al. (2006a,b, 2007a,b).
In this section we provide a concise overview of existing mathematical programming
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formulations as well as heuristic solution approaches for CARP and SPRP.

Mathematical programming formulations for CARP are broadly divided into
Branch-and-bound approaches based on combinatorial lower bounds, Branch-Bound-
Cut formulations, and Branch-and-Price formulations (Corberán and Laporte, 2014b).
The class of Branch-Bound-Cut formulations can be further refined into models that
are directly defined on the arc routing graph, so-called sparse models, and formulations
that transform the arc-routing problem into an equivalent node-routing-problem.
Belenguer and Benavent (1998, 2003) study the polyhedron associated with CARP and
identify a large number of valid inequalities. These inequalities are used to strengthen
an LP formulation for CARP by iteratively invoking separation procedures. The
optimal cost of the LP at any iteration is a lower bound for the cost of the optimal
CARP solution. The algorithm stops when no more violated inequalities are found, or
the lower bound is equal to a known upper bound provided by some primal heuristic.
In the latter case, the lower bound and the corresponding heuristic solution are
optimal. In the former case, the procedure only yields a valid bound but no optimal
solution; it would be necessary to employ a branching scheme to continue the process.
Perrier et al. (2008) presents a rich MIP model for a SPRP that, except for the lack
of resource constraints, is identical to the problem studied in this paper. The MIP
model from Perrier et al. (2008) is defined on a sparse routing graph and incorporates
several commonly used side-constraints. To improve the scalability of their model, the
authors present two decomposition approaches: a cluster-first-route-second approach
and parallel decomposition approach. The former cluster-first-route-second approach
first partitions the arcs into clusters, each having approximately the same work load,
and then solves a Hierarchical Rural Postman Problem. The parallel algorithm on
the other hand constructs several routes in parallel by sequentially solving a Multiple
Vehicle Rural Postman problem for each class of vehicles. A limited computational
study is performed on real-world data involving the Canadian city of Dieppe.

Column generation (CG) approaches to solve CARP have been studied by Bartolini
et al. (2013); Bode and Irnich (2012); Letchford and Oukil (2009); Pecin and Uchoa
(2019). Letchford and Oukil (2009) propose a set-covering formulation for CARP
which is solved with CG. The CG approach uses a specialized pricing routine
which exploits the sparsity of arc routing graphs. Longo et al. (2006) use a graph
transformation to transform CARP into an equivalent CVRP and solve the resulting
problem with the CG algorithm of Fukasawa et al. (2006). Bartolini et al. (2013)
use a cut-and-column-generation procedure to solve CARP with a set partitioning
formulation. Their method executes a sequence of bounding procedures to obtain
progressively stronger lower bounds on the optimal solution. The final dual solution
computed by the last bounding procedure is then used to generate a reduced integer
problem which is guaranteed to contain an optimal solution, and is solved using an
integer programming solver. A detailed comparison of the various CG algorithms for
CARP can be found in Pecin and Uchoa (2019). In addition, the authors generalize
existing CG formulations and combine several of their core features into a new
Branch-and-Price formulation. To date, their method produces the strongest bounds.
Extensive research is however required to determine whether their methods can be
extended with side-constraints encountered in real-world SPRPs without breaking
the structure of their pricing problem, which, to a large extend, determines the
performance of their algorithm.
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Next to mathematical solution approaches, heuristic approaches have been proposed
for variants of CARP. Of particular interest to us are heuristics which (1) scale to
sufficiently large instances, and (2) can be adapted to solve SPRP. A Late Acceptance
(LA) heuristic as well as a basic CP model for a related SPRP have been proposed in
Kinable et al. (2016). The latter paper involves servicing roads with a homogeneous
fleet of vehicles while accounting for renewable resource constraints such as salt and
fuel. Unlike the work by Kinable et al. (2016), this paper does not take fuel constraints
into account, as in practice salt is a much more stringent resource and the majority
of salt depots also provide fuel. Likewise there are a number of significant differences
in problem definition pertaining the operational constraints. Our problem must be
solved for a heterogeneous fleet (as opposed to a homogeneous fleet) of vehicles, must
satisfy turn restrictions, as well as restrictions on the types of vehicles that can be
used to service certain roads and limits on the duration of the routes. Finally, to
ensure that arterial roads as well as roads that lead to critical infrastructure such as
hospitals are serviced prior to residential neighborhood roads, in this paper, similar to
Perrier et al. (2008), we explicitly account for road priority classes. In Kinable et al.
(2016) the authors conclude that their CP model finds good solutions for instances
up to a 1000 single-lane road segments, but does not scale well beyond that; their
LA heuristic scales considerably better. Experiments conducted in this paper (Section
7.3) reveal that our CP model can outperform the LA heuristic, from (Kinable et al.,
2016) even for some of the largest problems in our benchmark set.
Vidal (2017) proposes a Large Neighborhood Search (LNS) heuristic which is able
to incorporate many practical side-constraints including turn penalties. Irnich (2008)
uses an alternative LNS procedure to solve very large mail delivery routing problems
for the Deutsche Post. In particular, the heuristic considers turn and street crossing
restrictions, cluster constraints, and the use of alternative modes of transportation.
Quirion-Blais et al. (2017) present an ALNS for a winter road maintenance problem
where vehicles must both plow and grit roads. A challenging aspect in their problem
is that some vehicles can both plow and grit, whereas others can only perform one
of these tasks, so synchronization among vehicles is required. Wang and Liu (2019)
propose a Location-Allocation-Routing heuristic for a snow plow problem that involves
both resource allocation and vehicle routing. In order to improve the resilience of a
road network after a snow storm, their approach prioritizes servicing road segments
that bring the largest improvements in average network throughput. In Zhou and Wu
(2018), the authors propose a cluster-first-route-second heuristic for a CARP variant
which assumes that roads are impassable whenever they have not been serviced. Most
related works, on the other hand, assume that vehicles can traverse road segments
even when they are not yet cleared of snow, especially in a context where roads of
higher priority have to be serviced first, but not all high-priority roads are connected.
Next to the aforementioned heuristic approach, alternative heuristics to solve CARP
problems include an adaptive ILS (Dell’Amico et al., 2016), tabu search (Brandão
and Eglese, 2008), GRASP (Usberti et al., 2013) and Variable Neighborhood Descent
(Hertz and Mittaz, 2001).

Several extensions to CARP have appeared in the literature which include side
constraints from real-world applications. Common CARP extensions for snow plow
optimization problems are: intermediate resupplies, and vehicle synchronization.
Ghiani et al. (2001) introduce CARP with Intermediate Facilities (CARP-IF). In
CARP-IF, vehicles visit Intermediate Facilities throughout their tour to replenish
resources or to unload. Examples arise in resupplying salt or gritting material for

5



snow plows or emptying garbage trucks. Ghiani et al. (2001) propose two lower
bounding as well as two heuristic procedures for CARP-IF. The first lower bounding
procedure is based on the Rural Postman Problem whereas the second one is based
on a LP relaxation of a related CARP problem. A variable neighborhood heuristic for
CARP-IF can be found in (Polacek et al., 2008).
One practical issue encountered in solutions to CARP-IF problems involves a strong
imbalance between the workload of vehicles. This is due to the fact that CARP-IF
does not define a limit on the number of times a vehicle can resupply at IFs. As
a result, one vehicle could potentially do all the work. To circumvent this issue,
(Ghiani et al., 2004) extended the CARP-IF problem with tour length restrictions
(CLARP-IF) and solve the problem with a tabu search heuristic.
Thus far, CARP-IF problems have only been solved using synthetic benchmark data.
It remains to be investigated whether intermediate resupplying for snow plows is
beneficial in terms of the overall schedule. Moreover, IFs also pose some managerial
challenges, as supply depots are often managed by different districts which would have
to implement a resource sharing policy.
Salazar-Aguilar et al. (2012a,b) study a related snow plow optimization problem
where plowing operations are synchronized to service multiple lanes of the same
street segment simultaneously with multiple vehicles. This so-called ‘tandem plowing’
pushes snow from one lane to the next and eventually to the side of the road, thereby
avoiding snow mounts building up between lanes. Tandem plowing typically occurs
on high-ways where the driving speed is high enough for snow plows to throw the
snow from one lane to the next, or when special equipment such as snow blowers are
available. The problem in Salazar-Aguilar et al. (2012a) is defined through a MIP
model and solved with an efficient Adaptive Neighborhood Search. Although tandem
plowing has its merits, it is not frequently applied within city limits because of the
added level of planning complexity. An alternative solution to tandem plowing can be
found in Gundersen et al. (2017) where the authors propose a MIP for a SPRP with
precedence constraints between different driving lanes. These precedence constraints
ensure that streets are plowed from the inside out: snow plows service the inner most
lane first, and gradually push the snow towards outer lanes and eventually off the road.

3. Problem description

The snowplow optimization problem discussed in this paper is a generalization of the
classical Capacitated Arc Routing Problem (CARP). Let G(V,A,E) be a strongly con-
nected, mixed multigraph, where V = {v0, . . . , vn−1, vn, vn+1} is a set of vertices in-
cluding a vehicle source depot vertex v0 and a vehicle target depot vn+1. A = {(vi, vj) :
vi, vj ∈ V, i 6= j} a set of directed arcs, and E = {(vi, vj) : vi, vj ∈ V, i < j} a set of
undirected edges (vi, vj)(i < j). Vertices in the graph represent intersections in the
road network or depots; the arcs and edges represent resp. directed and undirected
road segments. A road segment consisting of 2 lanes in each direction, is represented
with 4 directed arcs in the graph. Edge set E typically consists of small roads which can
be cleared by a snow plow in one pass from either direction. Each edge e = (vi, vj) ∈ E
or arc e = (vi, vj) ∈ A has an associated non-negative integer demand qe ≥ 0 for salt, a
nonnegative cservij servicing cost, and a nonnegative cij traversal cost. In this work the
servicing and traversal costs are to be interpreted as travel times. Edges (resp. arcs)
with positive demand (qe > 0) form a subset ER ⊆ E (resp. AR ⊆ A) of required edges
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(arcs). Each required edge has to be serviced exactly once. Any edge can be traversed
multiple times. The act of traversing an edge, i.e. without servicing it, is commonly
referred to as deadheading. Graph G will be denoted as the routing graph, whereas the
graph induced by the required edges ER and arcs AR is called the plowing graph.
The set V contains a subset I of supply depots where vehicles can load salt. There is
no requirement that the target depot vn+1, to which the vehicles must return at the
end of their trip, is included in I. It is assumed that vehicles are loaded to full capacity
when they leave the depot v0. If vn+1 is not included in I, a vehicle must visit a supply
depot prior to returning to vn+1 to ensure that the vehicle’s salt is replenished before
its next trip.
Servicing is performed by a heterogeneous set of vehicles K. Each vehicle k ∈ K has a
salt capacity Qk. Moreover, weight and width restrictions on some of the streets pro-
hibit some vehicles from servicing some streets. We use superscript k to denote subsets
of edges and vertices that can be reached by vehicle k, e.g. Ak ⊆ A is the subset of
arcs traversable by vehicle k ∈ K.
Each road segment has an associated priority class. Priority classes are denoted in
the range 1, . . . , P , where roads in class 1 have the highest priority. Typically, roads
of priority p have to be serviced before roads of priority p + 1. The priority class of
a road is often decided by the volume of traffic that uses that particular road (e.g.
highways are considered more important than residential roads). Similarly, roads to
critical facilities such as hospitals may also be included in the highest priority class.
Using the priority classes, the set of edges ER and arcs AR can be partitioned into
disjoint subsets {A1, A2, . . . , AP }. We also include a fictional priority class P +1 which
includes the shortest return path from the last serviced edge in class P back to the
depot. The set of all priority classes is denoted as P = {1, . . . , P, P +1}. Certain sub-
scripts and superscripts can be combined together, e.g. AkpR ⊆ A is the set of required
arcs, belonging to priority class p ∈P which can be traversed by vehicle k ∈ K.
The goal is to compute routes for every vehicle k ∈ K such that every edge e ∈ ER and
every arc a ∈ AR is serviced exactly once. A vehicle route must start at the source depot
v0, and terminate at the target depot vn+1. The sum of salt demands of edges serviced
by a single vehicle k ∈ K between visits to a resupply depot cannot exceed the vehicle
capacity Qk. Different objective functions will be considered, including minimizing of
the total schedule duration (makespan), minimizing the total amount of deadheading,
or minimizing the weighted completion time of the road priority classes. A summary
of the sets and parameters defining SPRP is given in Table 1.

3.1. Notation

Throughout this paper, the following additional notation is used. Given a subset of
vertices S ⊆ V , the cutset δ(S) denotes the set of edges with exactly one endpoint in
S. The cutset δ+(S) denotes the set of directed edges (arcs) having their tail in S and
their head not in S. Similarly, the cutset δ−(S) denotes the set of edges with their head
in S and their tail outside S. For undirected edges δ(S) = δ+(S) = δ−(S). When S is
a singleton vertex, we use the shorthand δ(i) instead of δ({vi}). The set E(S) denotes
the set of edges with both endpoints in S. We denote subsets of required edges using
subscript R, e.g., δR(S) = δ(S)∩ER. To prevent ambiguity, in some rare cases we will
explicitly specify the graph G for the cutset operator. For instance, δ(S,G) denotes the
cutset δ(S) in graph G. Finally, since the routing and plowing graphs are mixed graphs
consisting of both arcs and edges, we will occasionally use composite sets consisting
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Parameter Description

V = {v0, v1, . . . , vn} Set of routing nodes, with v0 being the vehicle depot.
I ⊆ V Set of resupply depots
E Set of undirected road segments
A Set of directed road segments
P = {1, . . . , P, P + 1} Set of road priority classes. Roads in class 1 have the highest priority. P + 1 is a

fictional class containing return paths to the depot.
ER ⊆ E,AR ⊆ A Subset of edges, resp. arcs that require servicing.
VR ⊆ V Subset of vertices incident to a required edge: {vi ∈ V : δR(i) 6= ∅}. Note that

VR does not necessarily contain depot v0.
K Set of heterogeneous vehicles
qij Demand of road segment (vi, vj). qij = 0 if (vi, vj) /∈ ER∪AR, qij > 0 otherwise.
Qk Capacity of vehicle k.
cservij Time required to service road segment (vi, vj).
cij Time required to deadhead road segment (vi, vj).
ri Resupply time at depot i ∈ I

Table 1.: A summary of the sets and parameters defining the Snow Plow Routing
Problem (SPRP).

of both arcs and edges (e.g. AR ∪ ER). This deliberate but minor abuse in notation
significantly reduces the verbosity of this paper.

3.2. Node routing transformation

Many formulations for arc routing problems, including some of the models in this
paper, rely on the fact that arc routing problems can be cast into traditional node
routing problems through appropriate transformations of the routing graph. The
advantage of such a transformation is that the resulting node routing problems can
be solved using common algorithms for the Capacitated Vehicle Routing Problem.
These transformations are however not free, in the sense that they increase the size
of the problem instances significantly. The number of vertices in the node routing
problems are polynomial in the number of edges in the corresponding arc routing
problems. Moreover, while an arc routing problem is typically defined on a sparse
graph, the node routing problem is defined on a dense graph. Since our CP model
will be based on a Generalized Vehicle Routing Problem formulation, we review node
routing transformation procedures and introduce some additional notation used in the
subsequent sections.

Several alternative node routing transformations for CARPs can be found in the
literature, including Baldacci and Maniezzo (2006); Bartolini et al. (2013); Longo et al.
(2006); Pearn et al. (1987). Each of these transformations relies on the property that in
an optimal CARP solution, deadheading between two locations u, v ∈ V always occurs
along a shortest Pu,v path. In this work, we utilize the transformation introduced by
Bartolini et al. (2013) to transform SPRP into an asymmetric, Generalized Vehicle
Routing Problem (GVRP) on a directed graph G(V,A). Recall that in the GVRP,
nodes are grouped into disjoint clusters, and that an optimal solution consists of a
set of routes which include exactly one node from each cluster. Informally, to encode
the SPRP as a GVRP problem, one has to construct a new graph G consisting of a
single vertex for every depot v ∈ I ∪ {v0, vn+1}, and one resp. two vertices for every
orientation of an edge in AR resp. ER. Vertices in G representing different orientations
of the same edge are grouped together in a cluster. An example GVRP encoding for
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a SPRP problem instance is depicted in Figure 1. Here, the arcs represent shortest
deadheading paths from a vehicle’s terminal location after servicing one edge, to the
vehicle’s starting location of the next edge. In this example solution, the vehicle starts at
node v0, deadheads along a shortest path to intersection v1, then services consecutively
edges (v1, v2) and (v2, v3), then deadheads from v3 to v1 and services (v1, v4) and so on.
It follows that a solution to SPRP can be concisely represented by an ordered sequence
and orientation of the edges serviced by the vehicles.
Given an SPRP instance, the GVRP graph G(V,A) is formally defined as follows.
The node set V is composed of two vertices sij and sji, one for each orientation of
an edge (i, j) ∈ ER, one vertex sij for each arc (i, j) ∈ AR, and one vertex for each
node vi ∈ I ∪ {v0, vn+1}. The set of nodes V is partitioned into |ER| + |AR| + |I| + 1
disjoint clusters C = V0, V1, . . . ,Vm, I1, . . . , I|I|. Cluster V0 contains the depot nodes
v0 and vn+1. Clusters V1, . . . ,Vm, with m = |ER| + |AR|, correspond with the edges
ER ∪ AR = e1, . . . , em; a cluster associated with edge e = (i, j) ∈ ER contains nodes
sij and sji whereas a cluster associated with arc a = (i, j) ∈ AR contains only a single
node. Clusters I = I1, . . . , I|I| each contain a single vertex vi representing a supply
depot vi ∈ V . The function π(vi) : V → C provides a mapping from a node vi ∈ V to the
unique cluster Vc ∈ C containing vi. For a given subset of arcs and edges U ⊆ ER∪AR,
the shorthand V(U) =

⋃
(i,j)∈U{sij} will be used to denote the subset of vertices in G

induced by U .
The arc set A in G(V,A) can now be defined as follows:

(1) An arc (u, v) for every pair of nodes u, v ∈
⋃m
i=0 Vi that are taken from different

clusters.
(2) An arc (u, v) for every pair of nodes u ∈

⋃m
i=1 Vi, v ∈ I.

(3) An arc (u, v) for every pair of nodes u ∈ I, v ∈
⋃m
i=0 Vi.

Each node vi ∈ V has an associated demand q(vi) and a duration τ(vi):

• q(v) = qij for every node v that represents an edge (i, j) ∈ ER ∪ AR; q(v) = 0
otherwise.
• τ(v) = cservij for every node v that represents an edge (i, j) ∈ ER ∪AR, τ(v) = rv

if v represents a supply depot in I; τ(v) = 0 otherwise.

Due to the unique mapping between a node and the cluster it belongs to, we extend
the same notation to clusters: q(Vπ(v)) = q(v) and τ(Vπ(v)) = τ(v). Finally, each arc
a = (vu, vw) ∈ A has an associated cost w(a) : A → R+

0 representing the deadheading
cost along a shortest path Puw from vertex vu to vertex vw. More precisely, let i(v)
resp. j(v) denote the initial and terminal endpoints associated with a node v ∈ V, i.e.
i(v) = j(v) if v is a depot, and i(v) = i, j(v) = j if v corresponds with a required
edge represented by vertex sij in G. The weight function w(a) of an arc a = (u, v) ∈ A
is then defined as w(a) = c(Pj(u),i(v)), where c(Pj(u),i(v)) is the cost of the shortest
deadheading path Pj(u),i(v) from vertex j(u) to vertex i(v).

4. Constraint Programming Formulation

The previous sections discussed two main representations for solving the CARP, i.e.,
one based on the sparse arc routing graph and one based on the transformation into a
denser node routing instance, both of which have been successfully applied in previous
optimization approaches. In principle, one could design a CP model based on either
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Figure 1.: SPRP instance and potential solution represented on a GVRP graph

of these representations. In this work, we propose a CP model based on the GVRP
transformation introduced in Section 3.2. Before we present the formulation, we provide
a motivation for this choice.

Recall that constraint programming technology relies on a modular representation
of the problem, for which constraint propagation removes infeasible values from the
variable domains based on individual constraints (Bessiere, 2006). Constraint propa-
gation can be particularly effective when applied to so-called ‘global constraints’ that
represent a combinatorial structure (Régin, 2011; van Hoeve and Katriel, 2006); for ex-
ample, the alldifferent constraint over a set of integer variables is much more effective
than the decomposition into pairwise not-equal constraints. CP generally works well
when the modeler can expose the problem structure to the solver by using such global
constraints.

To obtain a CP formulation for SPRP, one could utilize the arc routing represen-
tation, and perhaps transform an existing MIP model for CARP into an equivalent
CP model with general integer variables and linear constraints. However, this would
yield a loosely coupled model as the problem structure gets decomposed. Moreover,
propagation algorithms for linear constraints are typically weak because they com-
monly rely on bound propagation. A significantly stronger CP model, that preserves
the underlying problem structure, can be obtained by formulating the SPRP, after it
has been transformed into a GVRP, as a scheduling problem instead. Treating VRPs as
scheduling problems is common practice in the CP literature, see e.g. Kilby and Shaw
(2006). Most CP solvers have dedicated syntax and internal data structures to repre-
sent and handle scheduling problems, for which advanced propagation methods have
been designed (Baptiste et al., 2001; Laborie et al., 2018). By basing our CP model
on the denser node routing representation, and the associated CVRP formulation, we
can leverage the constraint-based scheduling technology for solving the SPRP more
effectively.

The CP model for SPRP treats the vertices of the GVRP graph as jobs which have
to be assigned to vehicles. Moreover, starting times have to be determined for each
job. Jobs in CP are efficiently represented through interval variables (Laborie and
Rogerie, 2008; Laborie et al., 2009). We will denote an interval variable as a tuple
α = {r, d, t, [opt]}, where r denotes the earliest start time of the interval, d the latest
finish time, t the minimum duration of the interval, and the optional parameter [opt]
indicates whether scheduling of the interval is required or not. Optional intervals can
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Table 2.: Description of CP constraints. All of these constraints are available in IBM
ILOG CP Optimizer by default.

Constraint Description

presenceOf(α) Returns 1 if interval α is present, 0 otherwise.
noOverlapSeq(B, dist) Sequences the intervals in the set B. Ensures that the intervals in B do not

overlap. Furthermore, the two-dimensional distance matrix dist specifies for
each pair of intervals a sequence dependent setup time. Absent intervals are
ignored. Returns a sequence of the intervals in B.

first(α, seq) If interval α is present in sequence seq, it must be scheduled before any other
interval in the sequence.

last(α, seq) If interval α is present in sequence seq, it must scheduled after all other
intervals in the sequence.

succ(α, seq) Returns the interval immediately succeeding the interval α in the sequence
seq.

pred(α, seq) Returns the interval immediately preceding the interval α in the sequence
seq.

startOf(α) Returns an expression representing the start time of interval α.
endOf(α) Returns an expression representing the end time of interval α.
stepAtStart(α, h−, h+) Function in time t which returns a value between h− and h+, starting from

time t = startOf(α). The function returns 0 when t is absent, or before the
start of α. When h− = h+, the shorthand stepAtStart(α, h) is used instead.

alwaysEqual(f, α, v) Function f must equal the value v between the start and end of interval α, if
α is present.

alternative(α,B) If interval α is present, then exactly one of the intervals in set B is present.
The start and end of interval α coincides with the start and end of the selected
interval from set B.

synchronize(B) All present interval variables from set B start, respectively end, at the same
time.

be either present or absent in the final solution. Absent interval variables are ignored
by any constraint or expression they are part of.
To model SPRP as a CP problem, we use two sets of interval variables:

(1) Job variables jVc for each cluster Vc = V1, . . . ,Vm, I1, . . . , I|I|.
(2) Assignment variables aki for all k ∈ K, i ∈ V

The job variables jVc represent road segments, and the role of the assignment variables
aki is to associate the job variables with a vehicle; a more detailed explanation is
presented below.

A setup time tij = w(a) is defined between a pair of assignment variables aki , a
k
j ,

k ∈ K, a = (i, j) ∈ A. The complete CP model is stated in Algorithm 1. This model
is a basic model which captures all SPRP constraints; extensions to this model with
additional side constraints are discussed later in this section. A general description of
the constraints used in Algorithm 1 can be found in Table 2.

Constraint 4 in Algorithm 1 ensures that every job is assigned to exactly one vehicle.
This implies that every street segment gets serviced by one vehicle, and that an edge
(i, j) ∈ ER represented by two nodes sij and sji in G is only serviced in one direction.
Sequencing of the jobs assigned to each vehicle is performed through Constraints 6-8.
Resources are managed through cumulative resource constraints (Constraints 9-10):
vehicles start with a full load of salt, performing a plow job i consumes q(vi) salt, and
visiting a salt depot replenishes the salt resource (Constraints 9). For each truck, the
salt level needs to remain between 0 and Qk (Constraint 10).
Lines 11-12 are redundant constraints which are used to improve the performance
of the model. Constraint 11 links the start and end times of consecutive intervals.
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Algorithm 1: Constraint programming model based on GVRP
Variable definitions:

1 jVc =

{
{0,∞, τ(Vc)} if Vc = V1, . . . ,Vm
{0,∞, τ(Vc), opt} if Vc = I1, . . . , I|I|

2 akvi , ∀k ∈ K =


{0, 0, 0} if vi = 0

{0,∞, 0} if vi = n+ 1

{0,∞, τ(vi)} vi ∈ V \ {0, n+ 1}
3 obj ∈ {0,∞}

Constraints:
4 alternative(jVc ,

⋃
k∈K

⋃
vi∈Vc a

k
vi
) Vc = V1, . . . ,Vm, I1, . . . , I|I|

5 forall k ∈ K
Sequencing Constraints:

6 seqk = noOverlapSeq(
⋃

vi∈V a
k
vi
, [tij | (i, j) ∈ A])

7 first(akv0 , seq
k)

8 last(akvn+1
, seqk)

Salt Constraints:

9 saltCumulFunck =stepAtStart(akv0 , Q
k)−

∑
vi∈V stepAtStart(a

k
vi
, q(vi)) +

∑
vi∈IstepAtStart(a

k
vi
,

0, Qk)
10 0 ≤ saltCumulFunck ≤ Qk

Redundant Constraints: forall k ∈ K
11 startOf(akvi )=endOf(pred(akvi ,seq

k))+tpred[ak
vi

,seqk],ak
vi

∀vi ∈ V \ {0}

12 alwaysEqual(saltCumulFunc, akvi , Q
k) ∀vi ∈ I

Objective functions:

CPmkspn - Minimize makespan:
13 Min obj
14 forall k ∈ K
15 obj ≥ endOf(akvn+1

)

CPdeadh - Minimize deadheading:

16 Min
∑

k∈K
∑

vi∈V\{0} tpred[ak
vi

,seqk],ak
vi

CPweighted - Minimize weighted completion time per priority class:

17 Min
∑

k∈K
∑

p∈P αpMaxvi∈V(Ap
R
∪Ep

R
){endOf(akvi )}+endOf(akvn+1

)

CPlex - Lexicographic search:

18 obj = LexSearch(∀p ∈P : Minimize Maxvi∈V(Ap
R
∪Ep

R
){endOf(akvi )})

Constraint 12 ensures that vehicles are always reloaded to full capacity. In addition
to these constraints, one could add explicit constraints stating that the source depot
job jV0 , as well as any job jIi , i ∈ I must be followed by a non-supply job, and that
the second to last job must be a resupply job if the target depot does not have salt.
Experiments however revealed that adding these explicit constraints had a negative
impact on the performance of the model and have therefore been omitted.

The constraints in Algorithm 1 can be combined with different objective functions.
In Algorithm 1 we distinguish 4 different objective functions (lines 12-18): CPmkspn
minimizes the makespan of the schedule, CPdeadh minimizes the total amount of
deadheading performed by the vehicles, CPweighted minimizes the weighted completion
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times of the different priority classes using different weights αp for each priority
class. The objective function CPlex performs a lexicographic search over the different
components in the objective function: the search starts by minimizing the first
component which minimizes the completion time of the first priority class, then
proceeds by minimizing the second component (completion time of the 2nd priority
class) while keeping the objective value of the first component fixed, and so on.
Technically, by selecting appropriate values for the weight coefficients αp, CPweighted
and CPlex can produce the same optimal outcome, but both models use very different
search procedures to reach these solutions, and hence may terminate with different
outcomes when the search is terminated prematurely, e.g., by a time limit.

The CP model in Algorithm 1 is flexible enough to accommodate a variety of addi-
tional side constraints frequently encountered in the literature. To limit the maximum
duration of a route, as is the case in Ghiani et al. (2004), we would redefine vari-
ables akvn+1

= {0,∞, 0} to akvn+1
= {0, L, 0}, where L is the maximum route duration.

To enforce that a certain street segment cannot be serviced by a specific vehicle, for
instance due to weight or width restrictions, we simply omit the corresponding as-
signment variable akvi . In some cases the vehicle return depot does not have salt, i.e.
vn+1 /∈ I. Consequently, the vehicles are required to replenish salt prior to returning
to the depot. This can be accomplished by setting q(vn+1) = Qk, i.e. setting the salt
demand of depot n+ 1 equal to the vehicle capacity. Constraint 9 will then automat-
ically enforce a resupply prior to visiting the return depot. In (Salazar-Aguilar et al.,
2012b), a subset of streets with two or more lanes in the same direction have to be
plowed simultaneously by different, synchronized vehicles. Since the CP model uses
interval variables, synchronization can be implemented through the global constraint
synchronize which forces intervals to start (resp. end) at the same time. So for a given
subset of arcs A′ ⊂ AR which have to be plowed in tandem formation, we can simply
add the constraint synchronize(∪(i,j)∈A′jπ(sij)) to the CP model.

5. Alternative mathematical programming formulations

To evaluate the performance of the CP model introduced in Section 4, we adapt two
alternative mathematical programming formulations to the SPRP discussed in this
paper. Most MIP models for CARP can be classified into sparse models, defined over
the sparse routing graph G (e.g. Belenguer and Benavent (1998); Ghiani et al. (2001);
Letchford (1997); Perrier et al. (2008)), and dense models which rely on a graph trans-
formation (e.g. Baldacci and Maniezzo (2006); Bartolini et al. (2013); Longo et al.
(2006); Pearn et al. (1987)). For our empirical evaluation, we selected two representa-
tive MIP models, one from each class. In Section 5.1, the sparse model by Perrier et al.
(2008) is adapted to our problem setting. Section 5.2 provides a dense formulation
defined over the transformed graph G from Section 3.2.

5.1. Sparse MIP formulation

Perrier et al. (2008) propose an elegant MIP formulation for a related snow plow
optimization problem. In contrast to our CP formulation, the MIP model from Perrier
et al. (2008) does not rely on an explicit graph transformation; instead, the model is
directly defined on the sparse arc routing graph G(V,E ∪A). The model uses xkpij and
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ykpij variables to count how often vehicle k ∈ K services, respectively traverses, an edge
(i, j) ∈ ER ∪ AR in priority class p ∈ P. In addition, the model uses auxiliary flow
variables wphij to implement subtour elimination constraints, as well as nkpuvw variables
to explicitly count how often vehicle k performs a turn (u, v, w) : (u, v), (v, w) ∈ E∪A.
The priority index p in the variable definitions is used to explicitly distinguish between
solutions where road priorities are strictly enforced, i.e. roads of higher priority need to
be cleared prior to servicing roads of lower priority, and solutions where milder priority
restrictions apply. In the latter case, some roads of lower priority are serviced with a
higher priority, so-called class upgrading. This typically leads to schedules having a
shorter makespan, at the expense of longer completion times for some of the higher
priority classes.
Solving the MIP model results in an assignment of edges to vehicles: for each vehicle
k ∈ K and for each priority class p ∈ P it is known how often each vehicle services,
resp. deadheads, a specific road segment. Unlike the solutions to the CP model (Section
4), the resulting MIP solution does not directly produce a set of vehicle routes because
the variables do not encode an explicit ordering of the edges. How to extract actual
routes from the assignment variables is not discussed in Perrier et al. (2008). For small
instances, one could define a simple CP model to perform the sequencing, but for
larger instances, one would have to implement a variant for Hierholzer’s Eulerian cycle
Algorithm (Hierholzer and Wiener, 1873) which explicitly takes the number of turns
identified by the nkpuvw variables into account.
To use the sparse model by Perrier et al. (2008) to solve the SPRP discussed in this
paper, the following capacity constraints have to be added to their model:∑

p∈P

∑
(vi,vj)∈AR

xpkij ≤ Q
k ∀k ∈ K (1)

Moreover, the sparse MIP model assumes that all edges in the routing graph are di-
rected. Therefore, every edge (vi, vj) ∈ E must be represented as two directed arcs:
(vi, vj) and (vj , vi). For every edge (vi, vj) ∈ ER, a constraint is added to ensure that
the edge is only plowed once in one direction:

∑
k∈K

∑
p∈P x

kp
ij + xkpji = 1.

Similar to the CP model, the sparse MIP model can be combined with objective func-
tions to minimize makespan, minimize the total amount of deadheading, or minimize
the weighted completion times of the priority classes:

MIPmkspn : minimize T (2)

s.t. T ≥
∑
p∈P

∑
(vi,vj)∈A′

cijy
pk
ij + (cservij − cij)xpkij ∀k ∈ K (3)

MIPdeadh : minimize
∑

(vi,vj)∈A

∑
p∈P

cij(y
pk
ij − x

pk
ij ) (4)

MIPweighted : minimize
∑
p∈P

αpT
prior
p (5)

s.t. T priorp ≥ tpk ∀k ∈ K, p ∈P (6)

tpk = tp−1k +
∑

(vi,vj)∈A′

cijy
pk
ij + (cservij − cij)xpkij p = 1, . . . , P + 1 (7)
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t0k = 0 ∀k ∈ K (8)

To strengthen the sparse model, we added the following valid inequalities:

∑
k∈K

∑
p∈P

∑
(vi,vj)∈δ(S)

ypkij ≥ 2
⌈D(S)

Q

⌉
S ⊆ V \ I (9)

∑
k∈K

∑
p∈P

∑
(vi,vj)∈δ(S)

ypkij ≥ 1 +
∑

e∈δR(S,G)

`ij S ⊂ V, S is R− odd (10)

In Constraints (9), Q = maxk∈K q
k is the maximum vehicle capacity, and the resource

demand D(S) of a partition S ⊆ V \ I is defined as D(S) =
∑

e∈ER(S,G)∪δR(S,G) `ijqij .
Constraints (9) are known as Capacity inequalities and Constraints (10) as R-odd cuts.
Separation algorithms for both inequalities are described in Belenguer and Benavent
(2003); Ghiani et al. (2001).

5.2. GVRP MIP model

Analogous to the CP model (Section 4), SPRP can be solved as a GVRP through
MIP, using the Single Commodity formulation for asymmetric GVRPs by Bektaş et al.
(2011). This model, originally designed for homogeneous vehicles, can be straightfor-
wardly modified to accommodate a heterogeneous fleet of vehicles. The resulting model
employs binary zkuv variables to record whether vertex u is visited immediately prior
to vertex v by vehicle k ∈ K, and continuous fkuv variables (0 ≤ fkuv ≤ Qk) to track the
remaining capacity of the vehicle traversing arc (u, v). The GVRP model can be linked
to the sparse arc routing models from Belenguer and Benavent (1998, 2003); Ghiani
et al. (2001) by adding appropriate channeling constraints between the variables in
both models. As such, valid inequalities identified for the sparse models can also be
used to strengthen the GVRP formulation.

Scalability of GVRP based MIP models is typically limited due to their vast number
of variables: GVRP based models have O(|K||A∪E|2) variables, whereas sparse models
only have O(|K||A ∪ E|) variables. Reduced cost based fixing and filtering can be
employed to reduce the number of variables in the GVRP model. Here we rely on
the observation that, in an optimal solution, many zkuv variables attain the value zero,
especially when j(u) to i(v) are far apart. Moreover, whenever every feasible solution in
which some vehicle deadheads along path Pij , is more expensive than some incumbent
solution, we can filter out these solutions by fixing all zkuv variables having j(u) =
i, i(v) = j to zero. In our implementation, we use the LP relaxation of the sparse model
by Ghiani et al. (2001), strengthened with Capacity inequalities and R-odd cuts, to
perform the variable filtering. Through the LP we compute a valid lower bound on the
cost of a solution in which some vehicle is forced to deadhead path Pij . If this bound is
larger than the cost of the incumbent, we can assume that no vehicle deadheads path
Pij . The filtering power of this procedure increases when (1) c(Pij) is large, (2) the LP
relaxation yields a strong lower bound, and (3) the incumbent solution is near optimal.

6. Turn restrictions

All routes must account for forbidden or, in case of large snowplows, physically impos-
sible turns. To this extent, the routing graph must explicitly model turns and driving
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directions. An advantage of modeling turns explicitly is that we can both forbid turns
(hard constraint), and penalize turns (soft constraint). Routes with frequent U-turns
are undesirable from a plowing perspective, due to the limited maneuverability of
large snowplows. By adding turn-cost penalties for U-turns in the objective function,
the quality of the routes increases considerably. Strictly prohibiting U-turns is not an
option, due to the presence of dead-end streets.
Related works often compute deadheading paths through shortest path computations
between a pair of vertices u,v in the routing graph G(V,E,A). This however leads to a
large number of U-turns. An example is given in Figure 2. A snowplow which is plow-
ing consecutively segments (e, b) and (f, a) would be forced to make a U-turn if the
deadheading path corresponds to the shortest path from b to f , because the shortest
path algorithm is oblivious to the vehicle’s driving direction when entering vertex b,
or leaving vertex f . In this section, we discuss how we compute shortest paths while
taking vehicle driving directions into account. E.g. for the example in Figure 2, we
would like the algorithm to return the blue route, unless the length of this route is
significantly larger than the sum of turn penalties incurred by the orange route. The
costs of the shortest path between directed segments (u, v) and (w, x), can be directly
used in the weight function w(a) described in Section 3.2.
Any turn (u, v, w) is composed of two directed edges (u, v) and (v, w); a U-turn is
a special case with u = w. To explicitly model turns, a line graph transformation
is performed on the routing graph (see e.g. Winter (2002)). More precisely, first the
mixed routing graph G(V,E,A) is transformed into a directed graph G(V,A′) by re-
placing every undirected edge e ∈ E by two directed arcs in opposing directions, i.e.
A′ = A ∪ {(i, j), (j, i)|(i, j) ∈ E}. Next a line graph transformation is performed to
obtain a directed line graph LG. Each vertex in LG corresponds with an arc in A′.
Two vertices in LG are connected by an arc if and only if for their corresponding arcs
(u, v) and (i, j) in A′ it holds that v = i. Finally, an augmented graph L′G is created
by adding to LG a vertex for every depot in I. A vertex in L′G corresponding with a
depot u ∈ I is connected with an arc to a vertex in L′G corresponding with an edge
(i, j) in G if u = i. Similarly, an arc exists from a vertex in L′G corresponding with
an edge (i, j) to a vertex corresponding with a depot u ∈ I if j = u. An example of
a line graph transformation for a T-intersection is provided in Figure 3. In summary,
L′G(VL, AL) has vertex set VL = I ∪ A′ and arc set AL = {((i, j), (u, v)) ∈ A′ × A′ :
j = u} ∪ {(i, (u, v)) ∈ I ×A′ : i = u} ∪ {((i, j), u) ∈ A′ × I : j = u}.
For each arc a ∈ AL, a weight w(a) : A→ R+

0 is specified as follows:

w(a) =


0, if a = (u, (i, j)) ∈ I ×A′

cij + σijv, if a = ((i, j), (u, v)) ∈ A′ ×A′

cij , if a = ((i, j), u) ∈ A′ × I
(11)

where σijv ≥ 0 is the penalty incurred when making the corresponding turn (i, j, v).
In this work, only the arcs in {((i, j), (u, v)) ∈ A′ × A′ : j = u ∧ i = v} incur a non-
negative U-turn penalty. To prohibit a turn (u, v, w), the arc ((u, v), (v, w)) is removed
from AL.
Since L′G is a simple, directed, weighted graph, shortest path computations can be
performed using traditional shortest path algorithms (e.g. Dijkstra shortest path).
Moreover, by construction, shortest paths in L′G can be mapped one-to-one to paths in
the original routing graph G(V,A,E). Using graph L′G, it is straightforward to compute
feasible deadheading paths from a depot i ∈ I to the start of an edge (u, v) ∈ ER∪AR,
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A B C

DEF

Figure 2.: Example where a vehicle must plow edges (e, b) and (f, a) consecutively.
All edges have unit-length distance. A traditional shortest path computation from b
to f would yield the orange route, which inevitably introduces a u-turn. A shortest
path algorithm which is aware of the vehicle’s driving direction could produce the blue
route.

A B C

D

(a) T-intersection (grey) without
turn-restrictions.

A B C

D

(b) T-intersection (grey) with turn-
restrictions. The turn (a, b, d) and U-
turns are prohibited.

Figure 3.: Conversion of an undirected routing graph into its corresponding directed
line graph LG (Winter, 2002). Each edge is decoupled into two directed arcs. In the
line graph tranformation, each arc in the routing graph is represented by a vertex; the
arcs in LG represent potential turns.

from an edge (u, v) ∈ ER ∪ AR to a depot i ∈ I, or between two segments which are
plowed consecutively.
Finally, notice that the size of L′G grows polynomial in the size of G(V,A′). L′G has
|A′|+ |I| vertices. The number of edges |AL| in L′G is bounded by:

|AL| =
∑
i∈I
|δ(i)|+

∑
i∈V \I

|δ−(i)| × |δ+(i)| < |I||V |+ |V |3 (12)

Since routing graphs are typically sparse graphs, the size of L′G does not become
prohibitively large, even for relatively large routing graphs.

7. Computational evaluation

An extensive computational evaluation is performed to assess the quality of our models.
First Section 7.1 describes the different data sources used in the experiments. Next,
Section 7.2 explains how we extracted and preprocessed the data to produce resp. the
routing and plowing graphs. A comparison of our CP approach (Section 4), against

17



the two MIP models (Section 5) as well as a commercial route planner for snow plows
is provided in Section 7.3. To gain a better insight into the quality of the solutions
obtained through the CP model, we compute lower bounds on the optimal solutions
of our benchmark instances in Section 7.4. Finally the results from a test pilot held in
Greenfield, a neighborhood in Pittsburgh, are discussed in Section 7.7.

7.1. Data

The city of Pittsburgh is partitioned into non-overlapping neighborhoods.2 Histori-
cally, the same neighborhoods are used to delineate snow plow areas. Each neighbor-
hood manages its own resources, and has its own set of snow plow routes; the number
of routes required to service a neighborhood typically depends on its size. The city of
Pittsburgh uses commercial software from RouteSmart (Routesmart, 2018) to compute
routes for their snow plows. To facilitate a comparison between the city’s snow plow
schedules and the schedules produced by our approaches, the 3rd Division of Pitts-
burgh’s Department of Public Works provided us with 39 routes which cover a total 19
neighborhoods. The city generates routes for each neighborhood independently. Vehi-
cles are permitted to cross neighborhood boundaries for deadheading, but servicing is
only permitted in the neighborhood for which the route was generated. All routes start
and end at a vehicle depot, possibly located outside the route’s service area. The routes
provided by the city are designed for vehicles having a salt capacity of approximately
10 tons (Q = 9000) per vehicle and cover all primary and secondary roads maintained
by the 3rd Division. Intermediate resupplying of the vehicles is currently not allowed.
For the experimental evaluation we created 26 benchmark instances: one instance for
each of the 19 neighborhoods provided by the city, plus 7 larger instances obtained
by combining neighboring neighborhoods. The larger instances allow us to investigate
whether potential savings can be incurred when ‘artificial’ neighborhood boundaries
for snowplow areas are lifted. An overview of the instances is provided in Table 3. For
each instance, Table 3 states which neighborhoods are covered, the number of arcs and
edges, and the number of vehicles employed by the city to service the corresponding
neighborhoods. Observe that for these instances, the number of undirected edges, com-
pared to the number of directed arcs, is quite low. We note that capabilities to handle
undirected edges have been explicitly added at the request of the Department of Public
Works of Pittsburgh. Such edges play a more prominent role in servicing low priority
’service roads’, but these roads were not included in the annotated data provided by
the city. The last 3 columns of Table 3 provide some coarse information pertaining the
total time and distance it takes to service all road segments, as well as the diameter of
the plowing graph.
The routing graph G(V,E,A) is derived from HERE maps data (HERE, 2018) and
extends well beyond the neighborhood boundaries. The same data source is used by
RouteSmart to compute the city’s routes. For each road segment, HERE maps defines
attributes such as: name, length (ft), travel speed (ft/s), number of lanes in each di-
rection, and directionality. In addition, the city has annotated each road segment with
information for plowing purposes, including whether a segment needs servicing or not,
the priority class of each segment (primary, secondary, tertiary or unclassified), driving
speed of the snowplows while servicing, salt demand3, and maximum vehicle weight
and width restrictions.

2http://gis.pittsburghpa.gov/pghneighborhoods/
3the salt demand of a segment is a linear function of the length of the segment
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ID neighborhoods |ER ∪AR| |ER| |K| serv. time serv. (km) �(km)

0 WOK 74 0 1 0:40:31 4.8 2.2
1 TER 97 0 1 0:36:33 7.8 1.6
2 SWP 114 0 1 0:59:50 7.7 0.9
3 RSQ 116 0 1 0:22:53 5.5 1.2
4 NEW 117 0 1 1:02:28 10.1 4.4
5 HAY 151 0 2 0:55:50 13.7 2.1
6 UPH 170 0 1 1:07:48 12.6 1.3
7 BLF 173 0 1 1:03:25 12.8 2.7
8 COK 216 0 1 0:47:37 11.5 1.2
9 SOK 243 0 2 1:06:23 16.2 1.9
10 LIN 310 5 2 1:37:33 19.2 1.9
11 CRB 320 0 2 1:17:51 18.9 3.4
12 MHL 354 0 2 1:18:30 17.5 1.4
13 NOK 371 0 2 1:38:10 21.2 2.1
14 PBZ 426 0 2 1:40:13 24.4 2.2
15 CRB,BLF 493 0 3 2:21:16 31.7 4.3
16 HAZ 523 0 3 3:26:48 35.5 2.8
17 SQN 524 0 4 2:55:29 40.4 2.5
18 GNF 629 0 3 2:45:03 36.8 3.4
19 SQS 752 1 7 4:39:34 65.9 4.8
20 WOK,TER,NOK,COK 758 0 5 3:42:51 45.4 3.1
21 CRB,MHL,TER 771 0 5 3:12:54 44.2 3.4
22 SOK,COK,NOK 830 0 5 3:32:10 49 3.4
23 CRB,MHL,UPH 844 0 5 3:44:09 49 3.4
24 SQN,PBZ 950 0 6 4:35:42 64.8 4
25 GNF,HAZ 1152 0 6 6:11:51 72.4 3.7

Total: 11478 6 74 9:23:22 739 69.3

Table 3.: Pittsburgh 3rd district instances

The experiments are, unless stated otherwise, performed with a homogeneous set of
vehicles, each having a capacity of Q = 9000. Although the city of Pittsburgh employs
a mixed fleet of vehicles, their current routes are all optimized for vehicles with fixed
Q = 9000 capacity. To service a particular neighborhood, we employ the same number
of vehicles as the city (see column |K| in Table 3). In Section 7.3 we conduct an ex-
periment where we vary the vehicle capacity and show that the vehicle size has limited
influence on the performance of the models under consideration.
Intermediate resupplying of the vehicles, as proposed in Ghiani et al. (2001), is not
allowed; the vehicles allocated to an area collectively have sufficient capacity to service
the entire area. Resupplying comes with operational constraints. Each district typically
has its own set of snow plows, and manages its own resources including a single salt
depot. Vehicle routes are designed to start and end at the district’s associated salt
depot. For bookkeeping reasons, snow plows in Pittsburgh typically do not resupply
at depots belonging to neighboring districts. Moreover, in our instances, resupplying a
vehicle takes a considerable amount of time, as the vehicle needs to drive to the near-
est depot, reload and return to the service area. Consequently, from an optimization
perspective, there is little benefit in resupplying unless the trucks collectively do not
have enough salt to service an area.
As a final remark, it is important to note that we use the exact same data for plowing
and routing as RouteSmart: we use the same data for routing, and we plow exactly
the same street segments with the same frequency. Consequently, we can establish a
one-to-one comparison with the city’s routes.
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7.2. Data preprocessing

Prior to running any computations, preprocessing of the raw routing data is performed.
The purpose of this preprocessing step is twofold: to eliminate inconsistencies in the
data, and to remove redundant data. Using data provided by the city, we first extract
the plowing graph from the the HERE maps routing data which is stored in a GIS file
format. To compute the routing graph (Figure 4), we calculate the smallest bounding
box (geographical area) containing the plowing graph and the vehicle depot. Next we
enlarge the box by 15% and compute the set of intersections V that lie within the
enlarged box. The routing graph G(V,E ∪A) is the graph induced by V . An example
of a plowing graph and corresponding routing graph are given in Figure 6a, 6c. Each
vertex v ∈ VR in graph GR has degree at least one. In addition, the following relations
hold: VR ⊂ V,AR ⊂ A,ER ⊂ E. The close-up in Figure 5b shows the relevance of this
relation: the plowing graph ends at a neighborhood border, but the routing graph
extends beyond this border. By expanding upon the plowing graph, the number of
U-turns required in the solution can be drastically reduced.

Each of the models discussed in Sections 4,5 requires a distance matrix. Computing
distance matrices on large road networks is non-trivial. Therefore, it is beneficial to
the keep the routing graph as small as possible. To reduce the size of the routing
graph, we first remove all but the largest strongly connected component containing
the entire plowing graph. Enumerating all strongly connected components in G is
efficiently performed using Gabow’s algorithm (Gabow, 2000). Next we proceed by
removing all non-essential road segments from the routing graph. A road segment
(u, v) ∈ A ∪ E is considered non-essential if (1) it is not contained in GR and (2)
no shortest path Pij connecting vertices i, j ∈ VR ∪ I traverses road segment (u, v).
In other words, a non-essential road segment (u, v) does not need servicing, and it
will never be used in any deadheading path connecting two plow segments or a plow
segment and a depot. Once all non-essential edges have been filtered from the routing
graph, any isolated vertices are also removed. The resulting graph is typically sparse
and non-planar. Figures 6b (before) and 6c (after) clearly show the impact of this
reduction. To complete the preprocessing phase, we perform the transformations
described in Section 6 to incorporate turn restrictions and turn penalties directly
into the routing graph. The turn cost for U-turns is set to 3 minutes. To efficiently
compute an all-pair shortest path matrix for a subset of vertices S = A′ ∪ I in the
augmented line graph L′G, we implemented a modified version of Johnsons shortest
path algorithm. This version terminates as soon as all paths covering the vertices in
S have been discovered, and skips phase 1 of Johnsons algorithm since the graph does
not contain edges with negative weights.

The routing and plowing graphs are implemented using the graph library JGraphT
1.3.0 (Michail et al., 2020). To reduce memory utilization, lanes in the same direction
belonging to the same road segment are represented as a single arc in the graph (as
opposed to individual arcs for every lane). The number of lanes in each direction is
stored as an attribute on each arc. Shortest path computations are performed using
an efficient implementation of Dijkstra’s shortest path algorithm; additional perfor-
mance improvements could be obtained by implementing Highway and Contraction
Hierarchies.
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Figure 4.: Visualization of a routing graph on a map. The red triangles mark one-way
roads. To simplify the visual, we only depict one lane per road.

7.3. Computational Results

In this section we compare the performance of our CP model (Section 4) with 4
alternative solution approaches: the two MIP models (Section 5), the Late Acceptance
heuristic from Kinable et al. (2016) and the routes produced by the commercial
software RouteSmart used by the city. All computations are performed on a system
with an Intel Core i7-4790 CPU, 3.60GHz with 15Gb internal memory. MIP models
are solved with ILOG CPLEX v12.8.0 with default parameters; the CP models
with IBM CP Optimizer v12.8.0. The inference level of sequence constraints in
CP Optimizer has been set to ’extended’, and depth-first search with restarts is
used as the search algorithm. We note that during the search process, CP Opti-
mizer maintains a lower bound on the objective value which relies in part on an
automatic linear programming relaxation of the scheduling constraints (Laborie
and Rogerie, 2016). Computation times are limited to 1h per instance, using 4
threads. All models are warm-started with an initial solution produced with the
constructive (deterministic) heuristic from (Kinable et al., 2016). When optimizing the
weighted completion times of the different priority classes, we set the weight of class
p ∈ P equal to 10|P|−p, i.e. the highest priority class p = 1 would get the highest weight.

Figure 7 compares CPmkspn against the sparse model from Perrier et al. (2008)
(MIPmkspn, Section 5.1) and the Late Acceptance heuristic (LA Heuristic) from
Kinable et al. (2016). The color of each data point corresponds to the instance
size measured in the total number of plow jobs. The LA Heuristic is executed with
a list length of 1280, and terminates after 1h or when no more improving moves
have been observed for 1M iterations. The LA heuristic results are averaged over
5 independent invocations per instance. As can be observed from Figure 7, for the
smaller instances (<400 jobs), the sparse MIP model and the CP model have very
comparable performance profiles. MIP takes a small lead over CP for some of the
smallest instances. However, for the larger instances (>500 jobs) CP drastically
outperforms the sparse MIP model. It seems that the vast number of turn variables
nkpuvw deteriorates the performance of this model. The LA heuristic which was initially
designed for a related problem which included fuel as a resource but excluded turn
restrictions, is outperformed by the CP formulation as well: except for one instance,
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(a) The plowing graph, marked by the blue
rectangle, is a subgraph of the routing graph,
delineated by the larger red rectangle.

(b) The plowing graph is limited by an ar-
tificial district border on the right (dashed).
The routing graph (not shown here) however
expands beyond the border, thereby drasti-
cally reducing the number of U-turns needed
if the streets would end at the district bor-
der.

Figure 5.: Relation between the routing graph and plowing graph.

CP yields better solutions.
Next to experiments with the sparse MIP model, we also conducted a number of
tests with the dense model (Section 5.2) based on the graph transformation. For all
but the smallest instance, our test system ran out of memory while constructing the
MIP model. Consequently we must conclude that this type of model is not suitable
for practical instances. As elaborated in Section 5.2 we also attempted to reduce
the number of variables in these models through variable fixing. This approach was
however not successful. We conducted a simple experiment in which we attempted to
assess the filtering power of this approach. Even when strong upper and lower bounds
were used, very few variables could be filtered. Typically, routes in Capacitated Arc
Routing Problems are quite long, covering many segments while deadheading or
servicing. The marginal cost increase incurred when fixing a deadheading path Pij was
often not enough to determine whether the corresponding variables could be removed
from the model. For larger instances, the filtering power reduced even further due to
a larger gap between the lower and upper bounds available for such instances.
In Figure 10a, we compare CPmkspn against the city’s plowing schedules, which are
produced with the popular, commercial routing software RouteSmart. It is unknown
which objective function RouteSmart uses to optimize its routes. Consequently
Figure 10a compares for each schedule the makespan (blue squares), the completion
time of the first priority class (P1, red triangles) and the completion time of the
second priority class (P2, green circles). As can be observed, CPmkspn significantly
outperforms RouteSmart on all aspects: all schedules have a shorter makespan,
and complete the secondary priority class faster. For all but one schedule, CPmkspn
completes servicing the primary roads faster. When simply comparing the makespan
of the schedules, the routes produced by our CP approach are 3%-156% (average 33%)
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(a) Plowing graph. The
red triangles mark one-way
roads.

(b) Routing graph before
preprocessing.

(c) Routing graph after pre-
processing. Only a subset of
the routing edges must be
serviced.

Figure 6.: Plowing and routing graph of the 3rd plowing district in Pittsburgh.

shorter than the routes produced by the city.

Figure 8 explorers the relation between different problem features, e.g. the number
of vehicles and their capacities, and the performance of the CP and sparse MIP models.
Figure 8a shows the solutions of the instances from Table 3 with varying number of
vehicles |K| with fixed capacity Q = 9000 whereas in Figure 8b Q is changed while
keeping |K| fixed to the values in Table 3. Computation times are limited to 30 minutes
per instance for a given value of Q and |K|. The x-axis shows the number of jobs
in an instance. The y-axis depicts the ratio between the CP objective and the MIP
objective: values below 1 indicate that CP outperformed MIP, and vice versa. Figure 8a
clear shows that the CP model scales significantly better than the sparse MIP model
in the number of vehicles |K|. In contrast, the vehicle capacity Q (Figure 8b) has no
observable impact on the models’ performance: increasing or decreasing the vehicle
capacity does not yield favorable circumstances for either the MIP or CP model.

7.4. Bounds

Thus far, the experiments were focused on the comparison of primal methods. To
obtain insight in the quality of the solutions, we computed bounds for each of the
instances using 4 lower bounding procedures. CP Bound, resp. MIP Bound are the
lower bounds obtained when solving resp. the CP model (Section 4) and MIP model
(Section 5.1) and can be queried directly through the corresponding solvers. A third
bounding procedure is the bound obtained while solving the MIP model from Section
5.1 but without the turn variables. Finally, the fourth procedure solves a simple bin
packing problem to optimality: the plow jobs are assigned to the vehicles while taking
vehicle capacity into account and minimizing the maximum duration of jobs assigned
to a single vehicle. This last procedure is the weakest procedure because it completely
ignores deadheading, but is also the cheapest to compute.
Figure 9 compares these different bounds, as well as the available upper bounds. The
26 benchmark instances, sorted based on size (number of jobs) in ascending order, are
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Figure 7.: CPmkspn vs MIP-two index and the LAHeuristic. The colors correspond to
the instance size (number of plow jobs). For small instances, MIP slightly outperforms
CP, but for the larger instances CP significantly outperforms MIP.
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Figure 8.: Impact of instance features on CP/MIP performance.

plotted on the x-axis. The IDs of the instances on the x-axis correspond with the IDs
in Table 3. The base-line (0% gap) is the best bound (BB) taken over the above 4 lower
bounds. All other lines are relative to the BB line. Below the x-axis are the two lower
bounds derived from the CP model and the sparse MIP model with turn-cost penal-
ties. Their gap to BB is calculated as −100BB−LBBB . Above the x-axis are the upper
bounding methods, calculated as 100UB−BBUB . When comparing the Lower Bounding
methods it can be observed that in most cases, the MIP model provides the strongest
bounds. For the largest instances (19-21, 23-25), the MIP bound is surpassed by the
three other bounding procedures.
Similar observations can be made for the upper bounding methods. For the smaller
instances (0-9) CP and MIP obtain provably strong solutions, in some cases even opti-
mal. For instances 10-14, the gap increases for both MIP and CP, but their performance
remains very comparable. Starting from instance 15, CP starts to outperform MIP, as
MIP is no longer able to improve over its warmstart solution. For the larger instances,
the optimality gap becomes substantial (around 50%).
From Figure 9 it can be observed that for 5 instances, CP and MIP collectively find
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the optimal solutions (i.e some lower bound is equal to either the CP or MIP objec-
tive).When for these instances we compare the ratio between time servicing, and time
deadheading, we find a 3:2 ratio, which perhaps is surprisingly inefficient. Apart from
moving the depots closer to the plowing areas, it is not obvious how to further improve
the vehicle efficiency.

7.5. Objective function comparison

In Figures 10b-10d we depict the results when the CP model is ran with different
objective functions. Notice that the objective which minimizes total deadheading
has been omitted from these figures. Although this is a common CARP objective
(e.g. when comparing on synthetic benchmark data), our experiments revealed that
this objective is not suitable to produce practical routes for our SPRP. For many
instances, the resulting schedules were highly unbalanced: one vehicle would drive
a very long, near perfect Eulerian cycle servicing as many streets as possible with
minimal deadheading, whereas the other vehicles had very short routes servicing the
remaining sections not covered by the first vehicle. Moreover, when minimizing the
total amount of deadheading, the cost

∑
(i,j)∈ER∪AR

cservij becomes a constant and is
therefore ignored.
In Figure 10b, 10c, we minimize the completion time of the priority classes. Compared
to the makespan schedules, we can observe a clear shift in objective values: the
completion time of the most important class (primary roads) dramatically improves,
but the completion of the second priority class (P2) is delayed and overall schedules
become slightly longer. Finally Figure 10d compares CPlex with CPweighted. Albeit
both objectives produce very similar results, the length of the schedules produced by
CPweighted appears to be slightly shorter.

7.6. District borders

Next we investigate the influence of the district borders on the plowing schedules.
Recall from Section 7.1 that the plowing area of an instance is artificially confined by
some district border. Would it be possible to improve the schedules when these borders
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Figure 10.: Computational evaluation.

are selected differently? To answer this question, we compared the schedules produced
by the instances consisting of multiple neighborhoods (Table 3), to the schedules for
each of the neighborhoods individually. Notice that the number of vehicles used for
the merged instances, equals the sum of vehicles used for the individual neighbor-
hoods. Consequently, to obtain a feasible schedule for a merged instance, we can sim-
ply combine the schedules of its individual neighborhoods. The results are reported
in Table 4. For each instance, Table 4 reports the objective value (column CPmkspn),
the longest vehicle schedule when considering the neighborhoods individually (col-
umn max(mkspn)) and the percentage difference (column reduction). For example, the
schedule of ’SOK,COK,NOK’, has a makespan of 4208s versus a makespan of 2973s,
4013s, 4583s for SOK, COK and NOK respectively. The percentage difference (8.2%)
between 4208s and max(2973s, 4013s, 4583s) = 4583s is the amount of savings that
can be realized when the routes are calculated for the 3 neighborhoods collectively.
From Table 4, we can observe that savings in the range of 0-18% can be achieved,
indicating that it would be beneficial for the city to re-evaluate its district boundaries
for plowing purposes. Two instances in Table 4 which are the two largest instances in
our dataset, have a negative reduction. This means that the solution produced by CP
optimizer for the merged area is worse than the combined solution of the individual
areas, indicating that CP is struggling to find high quality solution when the instances
become too large.
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instance CPmkspn max(mkspn) reduction (%)

SOK,COK,NOK 4208 4583 8.2
CRB,MHL,TER 4106 4026 -2.0
CRB,MHL,UPH 4701 5714 17.7
WOK,TER,NOK,COK 4414 4583 3.7
GNF,HAZ 7283 6394 -13.9
CRB,BLF 4765 5318 10.4
SQN,PBZ 4770 5109 6.6

Average: 9.3

Table 4.: Impact of districting on plow schedules

(a) Plowing graph (b) Routing graph

Figure 11.: Greenfield

7.7. Greenfield Pilot Test

To verify the feasibility of the generated routes, a pilot test was held in a residential
neighborhood called Greenfield (Figure 11, and GNF in Table 3). For this neighbor-
hood, we generated 3 routes which were driven by car. Driving instructions for each
of the routes were provided to the driver through a custom-made application which
issues turn-by-turn instructions using a built-in GPS. The goal of this pilot test was
to (1) validate the routes and (2) to test the application which issues the turn-by-turn
instructions. Initial tests revealed that some of the routes contained roads that were
not traversable by large snow-plows. Fixing a number of data annotation errors which
incorrectly marked some roads as passable by all vehicles resolved this issue and made
the routes feasible to drive. Our tests also confirmed the necessity of u-turn penalties,
as discussed in Section 6, as disabling these penalties produced routes with too many
u-turns, which made the routes virtually impossible to drive with a large vehicle.
In Figure 12, three sets of routes for Greenfield are compared; a summary of the results
is provided in Table 5. The first set, RouteSmart are the routes provided by the city.
The 2 remaining sets are the routes we generated using CPmkspn and CPweighted. The
graph depicts the plowing progress over the course of time: at time t = 0, nothing has
been plowed, whereas at the end of the schedule 100% of the area has been serviced.
The purple and the green lines show for each point in time the percentage of serviced
roads belonging to the first resp. second priority class. When comparing the results it is
obvious that the best schedules are produced using the CP approaches. Naturally, the
shortest schedule is obtained when optimizing towards the makespan objective. How-
ever, at the expense of a slightly longer schedule (∼10 minutes), the weighted search
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Figure 12.: Greenfield test pilot, comparison of different solution approaches

Makespan Completion P1 Completion P2 U-Turns

RouteSmart 01:40:42h 6002s 5836s 18
CPmkspn 01:29:26h 5326s 5274s 17
CPweighted 01:39:40h 2054s 5824s 17

Table 5.: Greenfield solution comparison

finds a schedule which clears the primary roads 2.6 times faster than the makespan
schedule and 2.9 times faster than the city’s schedule.

8. Conclusion

To solve a realistic Snow Plow Routing Problem, an efficient Constraint Programming
formulation has been proposed which incorporates many common side-constraints fre-
quently encountered in problems dealing with Winter Road Maintenance. To assess
the performance of the CP formulation, two existing, alternative formulations based
on conventional MP models for the SPRP have been used for comparison: one formu-
lation depends on a sparse arc routing model, whereas the other formulation relies on
a graph transformation to solve the problem as a Generalized VRP. Computational
results on data provided by the city of Pittsburgh revealed that the CP model scales
better than the alternative MIP formulations. Moreover, when comparing against the
city’s plowing routes produced by commercial software, we showed that our plowing
schedules are 3%-156% shorter while satisfying all necessary routing constraints. In
summary we can conclude that our CP model offers a viable alternative to existing
approaches.
The routing methodology presented in this work is part of a larger initiative to de-
velop an adaptive system for snow plow optimization and management. Future work
will add a real-time component to the system to determine how vehicle schedules have
to be modified when deviation of their original routes is necessary, for instance when
encountering road obstructions or equipment failures.
Finally, a number of future research directions can be identified. Presently, the city com-
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putes routes for each of its neighborhoods seperately. Our experiments revealed that
significant savings can be realized when routes are calculated for multiple neighbor-
hoods simultaneously. However, from a computational perspective the plowing graphs
cannot be too large either, so some districting is required. Therefore, it would be bene-
ficial to redefine the plowing areas while taking into account the locations of the supply
depots. Some work in this area has already been conducted in Butsch et al. (2014).
Another potential research avenue involves further preprocessing of the routing and
plowing graphs. Currently the plowing graph contains many short road segments, e.g.
turn lanes, which are currently treated as separate entities. Merging these sections to
form larger road segments could potentially reduce the size of the problem instances
considerably. A last potential research direction addresses fleet management problems.
The current work assumes that the vehicle fleet is fixed a-priori. In practice the city
relies on several freelance drivers, and often has one or more vehicles under repair.
It follows that the exact number of vehicles and drivers available at a given point in
time is not perfectly predictable. Therefore it is valuable to determine the ideal fleet
composition for a given area, but also to compute a number of backup scenarios in
case the ideal composition is not available.
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