
Constraint-based Sequential Pattern Mining with Decision Diagrams

Amin Hosseininasab
Tepper School of Business,

Carnegie Mellon University, USA
aminh@andrew.cmu.edu

Willem-Jan van Hoeve
Tepper School of Business,

Carnegie Mellon University, USA
vanhoeve@andrew.cmu.edu

Andre A. Cire
Dept. of Management,

University of Toronto Scarborough, Canada
andre.cire@rotman.utoronto.ca

Abstract

Constrained sequential pattern mining aims at identifying fre-
quent patterns on a sequential database of items while ob-
serving constraints defined over the item attributes. We intro-
duce novel techniques for constraint-based sequential pattern
mining that rely on a multi-valued decision diagram repre-
sentation of the database. Specifically, our representation can
accommodate multiple item attributes and various constraint
types, including a number of non-monotone constraints. To
evaluate the applicability of our approach, we develop an
MDD-based prefix-projection algorithm and compare its per-
formance against a typical generate-and-check variant, as
well as a state-of-the-art constraint-based sequential pattern
mining algorithm. Results show that our approach is com-
petitive with or superior to these other methods in terms of
scalability and efficiency.

Introduction
Sequential Pattern Mining (SPM) is a fundamental data min-
ing task with a large array of applications in marketing,
health care, finance, and bioinformatics, to name a few. Fre-
quent patterns are used, e.g., to extract knowledge from data
within decision support tools, to develop novel association
rules, and to design more effective recommender systems.
We refer the reader to (Fournier-Viger et al. 2017) for a re-
cent and thorough review of SPM and its applications.

In practice, mining the entire set of frequent patterns in
a database is not of interest, as the resulting number of
items is typically large and may provide no significant in-
sight to the user. It is hence desirable to restrict the mining
algorithm search to smaller subsets of patterns that satisfy
problem-specific constraints. For example, in online retail
click-stream analysis, we may seek frequent browsing pat-
terns from sessions where users spend at least a minimum
amount of time on certain items that have specific price
ranges. Such constraints limit the output of SPM and are
much more effective in knowledge discovery, as compared
to an arbitrary large set of frequent click-streams.

A naı̈ve approach to impose constraints in SPM is to first
collect all unconstrained frequent patterns, and then to apply
a post-processing step to retain patterns that satisfy the de-
sired constraints. This approach, however, may be expensive

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in terms of memory requirements and computational time,
in particular when the resulting subset of constrained pat-
terns is small in comparison to the full unconstrained set.
Constraint-based sequential pattern mining (CSPM) aims at
providing more efficient methods by embedding constraint
reasoning within existing mining algorithms (Pei, Han, and
Wang 2007; Negrevergne and Guns 2015). Nonetheless,
while certain constraint types are relatively easy to incor-
porate in a mining algorithm, others of practical use are still
challenging to handle in a general and effective way. This is
particularly the case of non-monotone constraints represent-
ing, e.g., sums and averages of attributes.

Contributions. In this paper, we propose a novel represen-
tation of sequential database using a multi-valued decision
diagram (MDD), a graphical model that compactly encodes
the sequence of items and their attributes by leveraging sym-
metry. The MDD representation can be augmented with
constraint-specific information, so that constraint satisfac-
tion is either guaranteed or enforced during the mining algo-
rithm. Finally, as a proof of concept, we implement a general
prefix-projection algorithm equipped with an MDD to en-
force several constraint types, including complex constraints
such as average (“avg”) and median (“md”). To the best of
our knowledge, this paper is the first to consider the “sum,”
“avg,” and “md” constraints with arbitrary item-attribute as-
sociation within the pattern mining algorithm. Lastly, we
provide an experimental comparison on real-world bench-
mark databases, and show that our approach is competitive
with or superior to a state-of-the-art CSPM algorithm.

Related work
Research in CSPM has primarily focused on exploiting spe-
cial properties of constraints, such as monotonicity or anti-
monotonicity, to guarantee the feasibility of pattern exten-
sions in the mining algorithm (Garofalakis, Rastogi, and
Shim 1999; Zaki 2000; Lin and Lee 2005; Bonchi and Luc-
chese 2005; Chen and Hu 2006; Pei, Han, and Wang 2007;
Nijssen and Zimmermann 2014; Mallick, Garg, and Grover
2014; Aoga, Guns, and Schaus 2017). Constraint types that
do not possess such properties remain a challenge for CSPM
algorithms, although some of these have been successfully
incorporated in more general item-set mining on databases
where events have no specific order (Soulet and Crémilleux
2005; Bistarelli and Bonchi 2007; Bonchi and Lucchese

Table 1: Example SD, with attributes of time and price.
SID Sequence: {(item, time, price)}

1 〈(B, 1, 5), (B, 3, 3)〉
2 〈(B, 3, 3), (A, 8, 1), (B, 9, 3)〉
3 〈(C, 2, 1), (C, 5, 2), (A, 8, 3)〉

2007; Le Bras, Lenca, and Lallich 2009; Leung et al. 2012),
as well as in CSPM when items and attributes are inter-
changeable (Pei, Han, and Wang 2007).

Recently, constraint programming (CP) has emerged as
a successful tool for CSPM (Negrevergne and Guns 2015;
Kemmar et al. 2016; 2017; Aoga, Guns, and Schaus 2017;
Guns et al. 2017). CP search techniques, albeit general,
can potentially be more efficient when compared to spe-
cialized CSPM algorithms. Nonetheless, they still rely on
constraint-specific properties to effectively prune unde-
sired patterns.For example, (Aoga, Guns, and Schaus 2017)
show how to effectively implement a number of prefix
anti-monotone constraints into CP, but indicate that post-
processing is still required to handle monotone constraints
such as the minimum span.

Graphical representations of a database have been shown
to be effective in item-set mining (Han et al. 2004; Pyun,
Yun, and Ryu 2014; Borah and Nath 2018) and SPM
(Masseglia, Poncelet, and Teisseire 2009). Previous works
have also applied binary decision diagrams as a database
modeling tool (Loekito and Bailey 2006; 2007; Loekito,
Bailey, and Pei 2010; Cambazard, Hadzic, and O’Sullivan
2010), which are effective when the sequences of the
database are similar, but typically do not scale otherwise.
We show that our MDD representation retains its size re-
gardless of the similarity between sequences, and provides a
more concise representation in the context of SPM.

Problem definition
We next formally describe the SPM problem and then dis-
cuss the handling of constraints.

The SPM database and mining algorithm
The SPM database consists of a set of events, which are
modeled by a set of literals I denoted by items. Items i ∈ I
are associated with a set of attributes A =

{
A1, ...,A|A|

}
;

for example, attributes can be price, quality, or time. A se-
quence database SD is defined as a collection of N item se-
quences {S1, S2, . . . , SN}, where all sequences are ordered
with respect to the same attribute A ∈ A; e.g., occurrence
in time. Table 1 illustrates an example SD with N := 3,
|I| := 3, and M := max

n∈{1,...,N}
{|Sn|} = 3, where items

i ∈ I are associated with time and price attributes.
The SPM task asks for the set of frequent patterns within

SD. A pattern P = 〈i1, i2, . . . , i|P |〉 is a subsequence of
some S ∈ SD. Let S[j] denote the jth position (i.e., item)
of sequence S. A subsequence relation P � S holds if and
only if there exists an embedding e : e1 ≤ e2 ≤ ... ≤ e|P |
such that S[ej] = ij , ij ∈ P . For example, P = 〈A,B〉

is a subsequence of S = 〈A,B,C,B〉 with two possible
embeddings (1, 2) or (1, 4). We define a super-sequence re-
lation S � P analogously, with “≤” replaced by “≥”. A
pattern is frequent if it is a subsequence of at least θ number
of sequences in SD, where θ is a given frequency threshold.

The two best-known mining algorithms for SPM are the
Apriori algorithm introduced by (Agrawal, Srikant, and oth-
ers 1994), and the prefix-projection algorithm introduced by
(Han et al. 2001). Both are iterative procedures and operate
by extending frequent patterns one item at a time. In Apriori,
candidate patterns are generated by expanding a pattern with
all available items, and thereafter checking the frequency
of generated candidates. As candidates may or may not be
frequent, the Apriori algorithm suffers from the exponen-
tial explosion of the number of generated candidates and
redundancy. The prefix-projection algorithm, in turn, oper-
ates by projecting each sequence S ∈ SD onto a small-
est subsequence S̄ = 〈i1, i2, . . . , ij〉, denoted by prefix, and
searching for frequent items in this reduced database. Any
sequence that is obtained by extending a frequent prefix is
guaranteed to be frequent in the original database. Prefix-
projection is more efficient than the Apriori algorithm as it
rules out infrequent patterns more effectively, but it requires
the full database to be in memory (Han et al. 2001).

Constraint satisfaction in CSPM

A constraint Ctype(·) is a Boolean function imposed on ei-
ther the patterns or their attributes. A pattern P satisfies a
constraint if and only if Ctype(P) = true. The objective
of CSPM is to find all frequent patterns that satisfy a set
of user-defined constraints. In particular, the challenge of
CSPM is to impose constraints during the mining algorithm,
rather than post-processing mined patterns for constraint sat-
isfaction.

The standard framework for CSPM is to classify con-
straints as being monotone or anti-monotone, as such con-
straint are easy to handle within the mining algorithm (Pei,
Han, and Wang 2007).1 A constraint is monotone if its vio-
lation by a sequence S implies that all subsequences S̄ � S
also violate the constraint.

A constraint is anti-monotone if its violation by a se-
quence S implies violation by all super-sequences Ŝ � S.
Table 2 lists common constraint types with their charac-
terization. The concepts of monotonicity, anti-monotonicity,
and violation are analogously extended to prefixes.

Constraints that are neither monotone nor anti-monotone
are called non-monotone and are the most challenging to
enforce during mining. While dedicated approaches have
been developed for certain non-monotone constraints (Pei,
Han, and Wang 2007), they are otherwise handled by post-
processing (Aoga, Guns, and Schaus 2017). Our goal is to
develop a generic platform to handle non-monotone con-
straints effectively.

1A third classification is succinctness, which allows immediate
pattern generation using a formula rather than an algorithm.

Table 2: Characterization of constraints as monotone (M),
anti-monotone (AM), or non-monotone (NM) for SPM.

Name Constraint := definition M AM NM
Maximal Cmxl(P) := @P ′ ∈ SD : P ≺ P ′ •
Sup-Patt Cspt(P) := ∃P ′ ∈ SD : P ′ ≺ P •

Length Clen(P) ≥ c := |P | ≥ c •
Clen(P) ≤ c •

Reg Expr Creg(P) := P [i] ∈ Ī ⊂ I ?

Gap Cgap(A) ≤ c := αj − αj−1 ≤ c, ?
αj ∈ A, 2 ≤ j ≤ |P |

Cgap(A) ≥ c •

Span Cspn(A) ≤ c := max {A} −min {A} ≤ c •
Cspn(A) ≥ c •

Max/Min Cmax(A) ≥ c, Cmin(A) ≤ c •
Cmax(A) ≤ c, Cmin(A) ≥ c •

Stats Csum(A), Cavg(A), Cvar(A), Cmed(A) •
?Not anti-monotone, but prefix anti-monotone.

An MDD representation for SD
MDDs are widely applied as an efficient data structure in
verification problems (Wegener 2000) and were more re-
cently introduced as a tool for discrete optimization and con-
straint programming (Bergman et al. 2016). Here, we use an
MDD to fully encode the sequences from SD; we refer to
such data structure as an MDD database. We show how con-
straint satisfaction is achieved by storing constraint-specific
information at the MDD nodes, thereby removing the need
to impose constraint-specific rules in a mining algorithm.

MDD construction for the SPM problem
An MDD M = (U,A) is a layered directed acyclic graph,
where U is the set of nodes, and A is the set of arcs. Set U is
partitioned into layers (l0, l1, ..., lm+1), such that layers li :
1 ≤ i ≤ m correspond to position (item) i of a sequence S ∈
SD. Layers l0, and lm+1 consist of single nodes, namely the
root node r ∈ l0, and the terminal node t ∈ lm+1. The root
and terminal node are used to model the start and end of all
sequences, respectively. Figure 1.a shows the MDD database
model for the SD of Table 1.

Layers lj , 1 ≤ j ≤ m, contain one node per item i ∈ I :
∃S ∈ SD, S[j] = i, and model the possible items at posi-
tion j of all sequences S ∈ SD. For example, layer 1 of the
MDD database in Figure 1.a has two nodes corresponding to
itemsB,C, and no node associated to itemA. To distinguish
which nodes are associated to which sequences S ∈ SD, we
define labels du for nodes u ∈ U , and store the associated
sequence index SID in du. The first label of node B at layer
1 of Figure 1.a, indicates that sequences 1 and 2 contain item
B at their first position. In addition, we store the attribute la-
bels associated with the item, one per SID at each node. For
example, in Figure 1.a we store the time and price attributes.

An arc a = (u, v) ∈ A, is directed from a node u ∈ lj
to a node v ∈ lj′ : j′ > j, and represents the next possible
item after node u, for all sequences in SD. Similar to nodes
u ∈ U , labels da are defined for arcs a ∈ A and store their
associated sequences. A sequence S is thus represented by
a path from r to t, following the nodes and arcs associated
to SID. As we will search the MDD for patterns during the

B
1,2

<1,3>
<5,3>

C
3

<2>
<1>

A B C
3

<5>
<2>

A B

1

2

3

32

r

t

1, 2
3

ID
<time>
<price>

3
<8>
<3>

1
<3>
<3>

2
<9>
<3>

B
2

<3>
<3>

C
3

<2>
<1>

A C
3

<5>
<2>

A

2
3

2
<8>
<1> 3

r

t

2
3

3
<8>
<3>

2
3

2
<8>
<1>

a) Original MDD b) MDD with imposed constraints

Figure 1: MDD database for the example SD in Table 1. Arcs
skipping layers in Figure a) are not shown for clarity.

mining algorithm, we explicitly allow arcs to skip layers.
That is, arc (u, v) ∈ A can refer to any pair of nodes u, v on
an r-t path P representing a sequence S. In Fig. 1 we only
depict the arcs that represent the original sequences in SD,
for clarity. For example, the arc between node B at layer
1 and node B at layer 3 (following sequence SID = 2) is
formally defined but omitted from the picture. Observe that
any prefix or subsequence is represented by a partial path in
the MDD, possibly using the arcs that skip layers. Lastly, we
note that the MDD database (without imposed constraints)
is built by a single scan of the database.

Imposing constraints on the MDD database
We use the MDD structure to enforce certain constraints
on the MDD database itself. This has three main benefits,
as follows. First, constraint satisfaction is performed only
once, and not once per projected database as in the prefix-
projection algorithm. Second, several constraints can be
considered simultaneously, as opposed to iterative methods
that consider each constraint individually and incur larger
computational costs. Lastly, imposing constraints results in
a smaller MDD, and consequently reduced computational
requirements for the mining algorithm.

A constraint Ctype can be imposed directly on the MDD
if it is prefix monotone or prefix anti-monotone. That is, the
feasibility of extending a pattern P ending at item i by an
item i′, is only dependent on the relationship between con-
secutive items i, i′. Examples of such constraints are the gap
and regular expression constraints. An infeasible extension
of such constraints is prevented by not creating an arc be-
tween their respective nodes. For example, if item i cannot
be followed by item i′, then no arc of the MDD database is
constructed between their corresponding nodes.

Constraints on the MDD database are incorporated dur-
ing its construction. In particular, the MDD database is built
in increments using a backwards induction on the position
j of a sequences S ∈ SD. A backwards induction is cho-
sen, as it allows us to gather constraint-specific information,
used for constraint satisfaction later in the mining algorithm.
For sequence S, the algorithm starts from the node corre-

sponding to the item at position S[j] : j = |S|, and checks
whether this item may be used to extend a pattern ending
in any of the sequence’s previous items i ∈ lj′ < lj . When-
ever an extension is feasible, an arc (u, v) is created between
the items’ respective nodes in the MDD. The algorithm then
increments and repeats the same procedure for the item in
position j − 1.

By the construction above, a node connects to all nodes
representing a feasible extension with respect to the imposed
constraints. Thus, the mining algorithm needs only to search
the children of a node u ∈ U to extend any pattern ending
at u. Figure 1.b shows an example of imposing constraint
Cgap(time) ≥ 3 on the MDD database of Figure 1.a.

Imposing constraints on the MDD database can be made
more efficient by exploiting their properties such as anti-
monotonicity. For example, given an anti-monotone con-
straint, if the extension of item i at S[j] to an item at po-
sition S[j′] is infeasible, it is guaranteed that any extension
of i to items S[k] : k ≥ j′ is also infeasible. If a constraint is
non-monotone, we are required to check its satisfaction for
all possible extensions, which is done only if all monotone
and anti-monotone constraints are satisfied.

Not all constraints can be imposed on the MDD database.
The satisfaction of such constraints is performed during the
mining algorithm, discussed in the next section.

Pattern mining with MDD databases
In this section, we discuss how to perform constraint rea-
soning by incorporating specific information into the MDD
nodes. Such information is used to establish conditions to
efficiently remove infeasible patterns from the database.

Information exploitation for effective mining
By construction, an r-u path in the MDD database repre-
sents the prefix of a pattern ending at node u. Similarly,
any extension of this prefix is modeled by a u-t path. Post-
processing patterns for constraint satisfaction corresponds to
checking the feasibility of all u-t paths. We can, however,
exploit the MDD structure to determine whether it is pos-
sible to extend an infeasible pattern to a feasible one. This
is achieved by augmenting the MDD nodes with constraint-
specific information that allow us to perform such reasoning.

For instance, consider a constraint Cmin(price) ≥ 5 and
the extension of an infeasible pattern ending at node u, as
shown in Figure 2. Observe that only one u-t path results
in a feasible pattern. Instead of explicitly searching all u-t
paths, we can store the minimum price reachable from nodes
u ∈ U , during the MDD construction, and then use it to
guarantee that a feasible extension exists.

Categories of constraint-specific information
We now describe constraint-specific information for a num-
ber of practical constraint classes. We only present the proof
for lower bound constraints; upper bound conditions can be
established analogously. We define αu ∈ A to be the at-
tribute value of item i at node u of the MDD.

B

A

C

A

u

t

<6>

<4>

<1>

<3>

Figure 2: Extending a pattern ending at node u, with con-
straint Cmin(A) ≥ 5. The label at each node represents the
attribute of the item.

Span constraint: Let βu1 and βu2 denote the minimum and
maximum values of α reachable from u, respectively. Val-
ues βu1 are initially set to αu. When adding an arc (u, v), we
update βu1 ← βv1 if βu1 > βv1 , and βu2 ← βv2 if βu2 < βv2
for node v. By this procedure, βu1 , β

u
2 give the minimum

and maximum values of α reachable from u. Proposition 1
proves that by using these variables, we can guarantee the
satisfaction of the span constraint.
Proposition 1. An infeasible pattern P can be extended to
a feasible pattern with respect to Cspn(α) ≥ c if and only if

max

{
max
α∈P
{α} , βu2

}
−min

{
min
α∈P
{α} , βu1

}
≥ c.

Proof. The necessity is straightforward. For the converse,
assume αmax − αmin < c. Then no u-t path contains values
of α such that P can become feasible.

Sum constraint: Let βu denote the maximum sum of val-
ues α reachable from u. We first initialize βu ← αu. Next,
when adding an arc (u, v), we update βu ← βv + αu if
βu < βv + αu, which results in the maximum sum possi-
ble to be stored for node u. Proposition 2 proves that this
information is sufficient.
Proposition 2. There exists a feasible extension from node
u with respect to each individual constraint if and only if∑
α∈P

α+ βu ≥ c.

Proof. The necessity is straightforward. For the converse,
assume

∑
α∈P

α+ βu < c. By the construction of βu, we can

conclude
∑
α∈P

α+
∑

α∈(u,t)
α < c, for all u- paths.

Average constraint: Let βu1 denote a sum of values α on
a u-t path, and βu2 denote the number of attributes α con-
tributing to the sum in βu1 . For constraint Cavg(α) ≥ c, and
any pattern P ending at node u, our objective is to generate
values of βu1 , β

u
2 that give the maximum possible average∑

α∈P
α+βu1

|P |+βu2
above the threshold c.

The generation of βu1 depends on the value c of constraint
Cavg(α) ≥ c. Initially we set βu1 = αu, and βu2 = 1. When
adding an arc (u, v) during the construction of the MDD,
we update βu1 ← αu + βv1 , β

u
2 ← βv2 + 1 if (αu + βv1) −

c (1 + βv2) > βu1 − cβu2 . This ensures that the best values to

maximize

∑
α∈P

α+βu1

|P |+βu2
are generated, proven in Lemma 3.

Lemma 3. For constraint Cavg(α) ≥ c, the update proce-
dure above generates values βu1 , β

u
2 that give the maximum

average

∑
α∈P

α+βu1

|P |+βu2
above threshold c, for a pattern p ending

at node u.

Proof. Proof by induction. By the initial definitions
of βu1 , β

u
2 , the statement is true for any u in the

last layer lm of the MDD. Now assume the state-
ment holds for all nodes in layer greater than lj .
For nodes u in layer lj we choose the path giv-

ing the maximum average max
u-t

{ ∑
α∈P

α+βv1+α
u

|P |+βv2+1 − c

}
=

max
u-t {β

v
1 + α− c (βv2 + 1)}.

Proposition 4 shows that β1
i , β

2
u are the only required in-

formation to check satisfaction of the maximum average
constraint. The proof for the minimum average constraint
is similar, and omitted for brevity.

Proposition 4. It suffices to record βu1 , β
u
2 as defined above,

to check satisfaction for the minimum average constraint
Cavg(α) ≥ c.

Proof. The maximum average reachable from node u is βu1
βu2

by definition. Therefore, if

∑
α∈P

α+βu1

|P |+βu2
< c, then no (u, t)

paths exists that satisfies Cavg(α) ≥ c for a pattern ending
at node u.

Median constraint: Let the maximum difference of the
number of values α ≥ c and the number of values
α < c, between all possible paths u-t, i.e. βu1 =
max
u-t

{∣∣ {α ∈ u-t : α ≥ c}
∣∣ − ∣∣ {α ∈ u-t : α < c}

∣∣}. Fur-
ther, let βu2 denote the maximum of values α < c contribut-
ing to the count in βu1 , and βu3 denote the minimum of values
α ≥ c contributing to the count in βu1 . Observe that the sat-
isfaction of Cmed(α) ≥ c can be determined using values
βu1 − βu3 . Namely, if βu1 > 0 then there exists more values α
above c than below it, guaranteeing satisfaction. Similarly if
βu1 < 0 the median constraint is violated. If βu1 = 0 then we
calculate the average βu2 +βu3

2 which gives the median.
The generation of βu1 to βu3 depends on the constant c. Ini-

tially, we set βu1 = 0, βu2 = min
α∈S
{α} − 1, βu3 = αu for all

nodes u : αu ≥ c, and βu1 = 0, βu2 = αu, βu3 = max
α∈S
{α}+1

for all remaining nodes. Next, during the construction of the
MDD, for a node u, we find the path u-t that has the high-
est potential to extend an infeasible pattern P ending at u
to a feasible one. The best path u-v-t, denote v-t, is a path
that contains a feasible extension for P given any other fea-
sible extensions available by the remaining u-v′-t paths, de-
note v′-t. We prove four dominance rules that when satisfied,
guarantee this for v-t.

The first rule is if βv1 > βv
′

1 , proven valid in Lemma 5.

Lemma 5. If βv1 > βv
′

1 holds, and extension of a pattern P
by path v′-t is feasible, so is the extension of P by path v-t.

Proof. Let βp1 denote the difference of the number of values
α ∈ P : α ≥ c to the number of values α ∈ P : α < c.
Then, βp1+βv1 > βp1+βv

′

1 , meaning there is a greater number
of values α ≥ c on path v-t, compared to path v′-t.

All other conditions require βv1 = βv
′

1 . For these con-

ditions, we first calculate medv′ =
βv

′
2 +βv

′
3

2 ,medv =
βv2+min{βv3 ,α

v}
2 . Conditions two to four are proved in 6.

Lemma 6. Given βv1 = βv
′

1 , any feasible extension of
an infeasible pattern P by path v′-t is also feasible for
path v-t, if one of the following three conditions hold: 1.
medv ≥ c,medv′ < c, 2. medv ≥ c,medv′ ≥ c, βv2 > βv

′

2 ,
3. medv < c,medv′ < c, βv3 > βv

′

3 .

Proof. Let βp1 to βp3 be defined as before. For condition 1,
as medv′ < c and P is infeasible, any extension of P by u-t
must have βp1 + βv

′

1 > 0, which is also satisfied by path v-t.
For condition 2, if an infeasible pattern P can be extended
to a feasible pattern by v′-t, then either βp1 + βv

′

1 > 0 which
implies feasibility of v-t, or βp1 + βv

′

1 = 0. In this case, the

only value of
max

{
βp2 ,β

v′
2

}
+min

{
βp3 ,β

v′
3

}
2 (i.e., the median of

pattern P extended by v′-t), which is not guaranteed to be

feasible or infeaisble is β
v′
2 +βp3

2 . However, if β
v′
2 +βp3

2 ≥ c, we

also have βv2+β
p
3

2 ≥ c. The proof of the third rule is similar
to the second rule, and ommited due to space limits.

If any of the above rules are satisfied, we update βu1 ←
βv1 + 1, βu2 ← max {βv2 , α} , βu3 ← βv3 if αu ≥ c, or
βu1 ← βv1 − 1, βu2 ← βv2 , β

u
3 ← max {βu3 , βv3} otherwise.

Proposition 7 shows that these values are sufficient to deter-
mine whether an infeasible pattern P can be extended to a
feasible one.

Proposition 7. Let βp1 − βp3 be defined as before. There
exists a feasible extension from node u with respect to
Cmed(α) ≥ c if and only if βu1 + βp1 > 0, or βu1 + βp1 =

0,
min{βp3 ,βp3}+max{βp2 ,βu2 }

2 ≥ c.

Proof. The necessity is straightforward. For the converse,
first assume βp1 + βv1 < 0, then by Lemma 6, no
u-t path contains enough values α ≥ c to satisfy
Cmed(α) ≥ c. For the second condition, if βu1 + βp1 =

0,
min{βp3 ,βu3 }+max{βp2 ,βu2 }

2 < c, then by Lemma 6, the
maximum median between all u-t paths is below threshold
c.

Mining the MDD database with
prefix-projection

We now present our MDD prefix-projection (MPP) al-
gorithm, which performs prefix-projection on the MDD
database. The first step of the algorithm is to find all fre-
quent items i, i.e. patterns of size one, using a depth-first-
search. This is automatically done during the construction
of the MDD database, and modeled by the children of root
node r. In the next steps, the algorithm attempts to expand a

frequent pattern generated in previous iterations. Using the
stored information in the MDD, we prune extensions that
cannot lead to a feasible pattern. In particular, for an infeasi-
ble pattern P ending at node u ∈ U , the algorithm uses the
information stored at u to determine whether P may be ex-
tended to a feasible pattern. If a feasible extension does not
exist, the search is pruned. Otherwise, pattern P is extended
and investigated in future iterations.

In contrast to searching the database rows in prefix-
projection, the MPP algorithm follows feasible paths in the
MDD database. This leads to a more efficient search, as
some infeasible extensions have been removed when con-
structing the MDD database. The trade-off is that finding
paths corresponding to a sequence S requires a search on la-
bels du, au, thereby incurring additional computational cost.
For efficient memory utilization, the MDD is not physically
projected, but rather pseudo projected (Han et al. 2001). In
pseudo projection, only the initial SD is stored in memory,
and search is initiated from “projection pointers” pointing to
the MDD nodes.

In prefix-projection, all N sequences are searched in each
iteration, and an item i ∈ I is frequent if its final count
is at least θ. As opposed to searching all N sequences, we
propose to stop when it is guaranteed that an item i is not
frequent. Let n denote the number of sequences searched so
far when searching for i, and let Sup(P) denote the number
of sequences that contain pattern P . We use the following
proposition to detect that item i cannot be frequent, given a
frequent pattern P :

Proposition 8. If n− Sup(i) > Sup(P)− θ, item i cannot
be frequent in the projected database.

Proof. The left-hand-side is the number of searched se-
quences that do not contain i, and the right-hand-side is the
maximum number of sequences that do not contain i while
it remains frequent.

Projecting the minimal prefix containing a pattern P (as
done in SPM) is not sufficient for CSPM (Aoga, Guns, and
Schaus 2017). Extensions from the minimal prefix may vio-
late a constraint, while it may be the case that another larger
prefix of the sequence satisfies such extensions. For exam-
ple, the minimal prefix containing item C in sequence 3 of
Table 1 cannot be extended by item A under a constraint
Cgap(time) ≤ 3. However, extending the larger prefix con-
taining C is feasible. We are thus required to store all pre-
fixes and their extension at each iteration of MPP.

A time-consuming task of the general prefix-projection
algorithm is to determine whether a specific item i exists
in sequences of the projected database. To avoid searching
the entire sequence for every item, (Aoga, Guns, and Schaus
2017) store the last position of items i ∈ I for sequences
S ∈ SD. An MDD database enables search for the extension
of all items i ∈ I simultaneously, resulting in more efficient
search. That is, as opposed to searching for a specific item
i, all children of node u are searched, and record the items
which enable a feasible extension.

Table 3: Five real-life datasets and their features.
SD N |I| M avg(|S|)*

Kosarak 837,206 41,001 2,498 9.3
MSNBC 989,818 19 29,591 10.5
Kosarak (small) 59,261 20,894 796 9.2
BMSWebView1 26,667 497 267 4.4
BMSWebView2 52,619 3,335 161 6.3
*Average length of sequences

Numerical results
For our numerical tests, we use real-life click-stream bench-
mark databases2, listed in Table 3. We note that two of these
databases, Kosarak and MSNBC, are considerably larger
than those typically reported in the CSPM literature, with
about 900,000 sequences of length up to 29,500, and con-
taining up to 40,000 items. None of these standard bench-
mark datasets are annotated with attributes. To be able to
evaluate our approach, we therefore generate three attributes
of time, price, and quality, as follows. For the time attribute,
we randomly generate a number between 0 and 600 seconds,
to represent the time spent by users at each click. With a
probability of 5%, we model the user leaving the session
by setting the time between clicks to a value between 1 to
10 hours. For the price and quality attributes, we generate a
number between 1 and 100 for each item i ∈ S, ∀S ∈ SD.

All algorithms are coded in C++, with the exception of
PPICt which is coded in Scala.3 All experiments are exe-
cuted on the same PC with an Intel Xeon 2.33 GHz proces-
sor, 24GB of memory, using Ubuntu 12.04.5 as operating
system. We limit all tests to use one core of the CPU. The
MPP code is available and open source.4

Comparison with prefix-projection and constraint
checks
Our first goal is to evaluate the impact of the MDD database
and the associated constraint reasoning, especially in pres-
ence of more complex constraints. However, no other CSPM
system accommodates constraints such as average and me-
dian and multiple item attributes. Because simple generate-
and-test (via post-processing) does not scale due to the size
of the databases, we developed a prefix-projection algo-
rithm for the original database, that can handle multiple
item attributes and effectively prune the search space for
anti-monotone constraints such as gap and maximum span.
We name this algorithm Prefix-Projection with Constraint
Checks (PPCC). PPCC operates by prefix-projection and ex-
tends a pattern P if it satisfies all anti-monotone constraints,
and prunes the extension otherwise. For non-monotone con-
straints, PPCC extends infeasible patterns with the hope that
a feasible super-pattern exists, and performs a constraint
check at the end.

2http://www.philippe-fournier-
viger.com/spmf/index.php?link=datasets.php

3We thank the developers of PPICt for sharing their code.
4https://github.com/aminhn/MPP

0.1 0.07 0.05 0.03 0.01
Min supp (%)

1

2

3

Ti
m

e
(s

ec
)

Kosarak103

PPCC3
MPP3
PPCC2
MPP2
PPCC1
MPP1

7 6 5 4 3
Min supp (%)

2

4

6
MSNBC103

0.1 0.07 0.05 0.03 0.01
Min supp (%)

0

20

40

60
BMSWebView2

Figure 3: Mining with constraints 30 ≤ Cgap(time) ≤
900, 900 ≤ Cspn(time) ≤ 3600, 30 ≤ Cavg(price) ≤
70, 40 ≤ Cmed(price) ≤ 60, 40 ≤ Cavg(quality) ≤
60, 30 ≤ Cmed(quality) ≤ 70. Attributes and their corre-
sponding constraints are added incrementally from 1 to 3.

In Figure 3 we compare the performance of MPP and
PPCC in terms of total CPU time (MDD construction plus
mining algorithm), given minimum support (Min supp) as
a percentage of the total number of sequences. The experi-
ment uses three scenarios with constraints on one, two, and
three attributes, respectively:

time: 30 ≤ Cgap(time) ≤ 900, 900 ≤ Cspn(time) ≤ 3600,
price: 30 ≤ Cavg(price) ≤ 70, 40 ≤ Cmed(price) ≤ 60,
quality: 40 ≤ Cavg(quality) ≤ 60, 30 ≤ Cmed(quality) ≤ 70.

Scenario one (PPCC1 and MPP1) only considers the time
constraints. Scenario two (PPCC2 and MPP2) considers
the time and price constraints. Scenario three (PPCC3 and
MPP3) considers all time, price, and quality constraints. The
results in Figure 3 show that mining more constrained pat-
terns takes more time for both methods. However, MPP is
always more efficient than PPCC, and often considerably.
For example, finding all frequent patterns with minimum
support of 4% with all constraints (scenario three) in the
MSNBC database takes PPCC about 4,000s while MPP only
needs about 2,000s. Moreover, Table 4 shows that the time
required to construct the MDD database and generate con-
straint specific information is quite small. This indicates that
our MDD database can be used to effectively and efficiently
handle constraints such as average and median.

Comparison with PPICt
We next compare our approach to the state-of-the-art CSPM
algorithm PPICt, which is implemented in the CP frame-
work OscaR5 (Aoga, Guns, and Schaus 2017). PPICt accom-
modates a wide range of constraints, including gap and max-
imum span constraints, but is restricted to a single attribute.
We therefore evaluate MPP and PPICt for mining patterns
with the following gap and maximum span constraints over
the time attribute:

30 ≤ Cgap(time) ≤ 90, 900 ≤ Cspn(time) ≤ 3600.

Initial tests indicated that the PPICt code is unstable when
executed on the full databases Kosarak and MSNBC. We
therefore executed the codes on the smaller benchmark vari-
ant of Kosarak (which is also used in (Aoga, Guns, and
Schaus 2017)), BMSWebView1, and BMSWebView2. The
results are presented in Figure 4, which follows the same
format as Figure 3.

5https://bitbucket.org/oscarlib/oscar/wiki/Home

0.1 0.07 0.05 0.03 0.01
Min supp (%)

0

200

400

600

800

Ti
m

e
(s

ec
)

Kosarak (small)

PPICt
PPCC
MPP

0.1 0.07 0.05 0.03 0.01
Min supp (%)

0

20

40

60
BMSWebView1

0.1 0.07 0.05 0.03 0.01
Min supp (%)

0

20

40

60

80
BMSWebView2

Figure 4: Mining with one item attribute (time) and con-
straints 30 ≤ Cgap(time) ≤ 900, Cspn(time) ≤ 3600.

Table 4: Time (in seconds) required for MDD construction
and information generation.

Algorithm Kosarak MSNBC BMS2 BMS1 Kosarak(small)

MPP1 47 45 2 - -
MPP2 106 103 4 - -
MPP3 151 158 5 - -
MPP - - 2 0.5 4

A first observation is that MPP and PPCC produce almost
identical results, as they both benefit from the same prun-
ing rules for anti-monotone constraints. The time required
to build the MDD database, shown in Table 4, is made up
by a faster prefix-projection algorithm due to implementing
the gap constraints on the MDD itself. Both MPP and PPCC
also outperform PPICt on Kosarak (small) and BMSWeb-
view2, but all three methods perform similarly on BMSWe-
bView1. However, PPICt uses significantly more memory,
up to 14Gb, while MPP uses up to 1Gb, and PPCC con-
sumes the lowest with at most 0.5Gb. We conclude that on
this benchmark our approach is competitive with or more
efficient than PPICt.

Conclusion

In this paper, we developed a novel MDD representation for
CSPM. We prove how constraint satisfaction is achieved for
a number of constraints, including sum, average, and me-
dian, by storing constraint-specific information at the MDD
nodes. Moreover, our approach is able to accommodate sev-
eral item attributes with constraints, which occur frequently
in real-world problems.

We embedded our MDD representation within a prefix-
projection algorithm, called MPP, and performed an experi-
mental evaluation on real-life benchmark databases with up
to 980,000 sequences and 40,000 items. The results showed
that the MPP mining algorithm is always more efficient than
a prefix-projection algorithm with constraint checks. The
benefits of MPP become larger as we increase the size of
the database, the number of constraints, or the number of
attributes. Although MPP is primarily designed for efficient
constraint satisfaction of rich constraints and multiple item
attributes, it remains competitive with a CP-based state-of-
the-art CSPM algorithm, for databases with only one item
attribute and anti-monotone constraints.

References
Agrawal, R.; Srikant, R.; et al. 1994. Fast algorithms for
mining association rules. In Proc. 20th int. conf. very large
data bases, VLDB, volume 1215, 487–499.
Aoga, J. O. R.; Guns, T.; and Schaus, P. 2017. Min-
ing time-constrained sequential patterns with constraint pro-
gramming. Constraints 1–23.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2016. Decision Diagrams for Optimization. Springer.
Bistarelli, S., and Bonchi, F. 2007. Soft constraint based
pattern mining. Data & Knowledge Engineering 62(1):118–
137.
Bonchi, F., and Lucchese, C. 2005. Pushing tougher con-
straints in frequent pattern mining. In PAKDD, volume 5,
114–124. Springer.
Bonchi, F., and Lucchese, C. 2007. Extending the state-of-
the-art of constraint-based pattern discovery. Data & Knowl-
edge Engineering 60(2):377–399.
Borah, A., and Nath, B. 2018. Fp-tree and its variants: To-
wards solving the pattern mining challenges. In Proceedings
of First International Conference on Smart System, Innova-
tions and Computing, 535–543. Springer.
Cambazard, H.; Hadzic, T.; and O’Sullivan, B. 2010.
Knowledge compilation for itemset mining. In ECAI, vol-
ume 10, 1109–1110.
Chen, Y.-L., and Hu, Y.-H. 2006. Constraint-based sequen-
tial pattern mining: The consideration of recency and com-
pactness. Decision Support Systems 42(2):1203–1215.
Fournier-Viger, P.; Lin, J. C.-W.; Kiran, R. U.; Koh, Y. S.;
and Thomas, R. 2017. A survey of sequential pattern min-
ing. Data Science and Pattern Recognition 1(1):54–77.
Garofalakis, M. N.; Rastogi, R.; and Shim, K. 1999.
Spirit: Sequential pattern mining with regular expression
constraints. In VLDB, volume 99, 7–10.
Guns, T.; Dries, A.; Nijssen, S.; Tack, G.; and De Raedt, L.
2017. Miningzinc: A declarative framework for constraint-
based mining. Artificial Intelligence 244:6–29.
Han, J.; Pei, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.;
Dayal, U.; and Hsu, M. 2001. Prefixspan: Mining sequen-
tial patterns efficiently by prefix-projected pattern growth.
In proceedings of the 17th international conference on data
engineering, 215–224.
Han, J.; Pei, J.; Yin, Y.; and Mao, R. 2004. Mining fre-
quent patterns without candidate generation: A frequent-
pattern tree approach. Data mining and knowledge discovery
8(1):53–87.
Kemmar, A.; Loudni, S.; Lebbah, Y.; Boizumault, P.; and
Charnois, T. 2016. A global constraint for mining sequential
patterns with gap constraint. In International Conference
on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, 198–215. Springer.
Kemmar, A.; Lebbah, Y.; Loudni, S.; Boizumault, P.; and
Charnois, T. 2017. Prefix-projection global constraint and
top-k approach for sequential pattern mining. Constraints
22(2):265–306.

Le Bras, Y.; Lenca, P.; and Lallich, S. 2009. On optimal rule
mining: A framework and a necessary and sufficient con-
dition of antimonotonicity. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 705–712. Springer.
Leung, C. K.-S.; Jiang, F.; Sun, L.; and Wang, Y. 2012. A
constrained frequent pattern mining system for handling ag-
gregate constraints. In Proceedings of the 16th International
Database Engineering & Applications Sysmposium, 14–23.
ACM.
Lin, M.-Y., and Lee, S.-Y. 2005. Efficient mining of se-
quential patterns with time constraints by delimited pattern
growth. Knowledge and Information Systems 7(4):499–514.
Loekito, E., and Bailey, J. 2006. Fast mining of high dimen-
sional expressive contrast patterns using zero-suppressed bi-
nary decision diagrams. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 307–316. ACM.
Loekito, E., and Bailey, J. 2007. Are zero-suppressed bi-
nary decision diagrams good for mining frequent patterns in
high dimensional datasets? In Proceedings of the sixth Aus-
tralasian conference on Data mining and analytics-Volume
70, 139–150. Australian Computer Society, Inc.
Loekito, E.; Bailey, J.; and Pei, J. 2010. A binary decision
diagram based approach for mining frequent subsequences.
Knowledge and Information Systems 24(2):235–268.
Mallick, B.; Garg, D.; and Grover, P. S. 2014. Constraint-
based sequential pattern mining: a pattern growth algorithm
incorporating compactness, length and monetary. Int. Arab
J. Inf. Technol. 11(1):33–42.
Masseglia, F.; Poncelet, P.; and Teisseire, M. 2009. Ef-
ficient mining of sequential patterns with time constraints:
Reducing the combinations. Expert Systems with Applica-
tions 36(2):2677–2690.
Negrevergne, B., and Guns, T. 2015. Constraint-based se-
quence mining using constraint programming. In Proceed-
ings of CPAIOR, volume 9075 of LNCS, 288–305. Springer.
Nijssen, S., and Zimmermann, A. 2014. Constraint-based
pattern mining. In Frequent pattern mining. Springer. 147–
163.
Pei, J.; Han, J.; and Wang, W. 2007. Constraint-based se-
quential pattern mining: the pattern-growth methods. Jour-
nal of Intelligent Information Systems 28(2):133–160.
Pyun, G.; Yun, U.; and Ryu, K. H. 2014. Efficient frequent
pattern mining based on linear prefix tree. Knowledge-Based
Systems 55:125–139.
Soulet, A., and Crémilleux, B. 2005. Exploiting virtual
patterns for automatically pruning the search space. In In-
ternational Workshop on Knowledge Discovery in Inductive
Databases, 202–221. Springer.
Wegener, I. 2000. Branching programs and binary decision
diagrams: theory and applications, volume 4. SIAM.
Zaki, M. J. 2000. Sequence mining in categorical domains:
incorporating constraints. In Proceedings of the ninth inter-
national conference on Information and knowledge manage-
ment, 422–429. ACM.

