
Incorporating Bounds from Decision Diagrams into
Integer Programming

Christian Tjandraatmadja · Willem-Jan
van Hoeve

Abstract Decision diagrams have been successfully used to help solve several
classes of discrete optimization problems. We explore an approach to incorpo-
rate them into integer programming solvers, motivated by the wide adoption
of integer programming technology in practice. The main challenge is to map
generic integer programming models to a recursive structure that is suitable
for decision diagram compilation. We propose a framework that opportunis-
tically constructs decision diagrams for suitable substructures, if present. In
particular, we explore the use of a prevalent substructure in integer program-
ming solvers known as the conflict graph, which we show to be amenable to
decision diagrams. We use Lagrangian relaxation and constraint propagation
to consider constraints that are not represented directly by the substructure.
We use the decision diagrams to generate dual and primal bounds to improve
the pruning process of the branch-and-bound tree of the solver. Computational
results on the independent set problem with side constraints indicate that our
approach can provide substantial speedups when conflict graphs are present.

Keywords Integer Programming · Decision Diagrams

Mathematics Subject Classification (2010) 90C10 · 90C35

1 Introduction

Decision diagrams were originally introduced to compactly represent Boolean
functions, and have been widely applied to verification and configuration prob-

Christian Tjandraatmadja
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
E-mail: ctjandra@alumni.cmu.edu
Currently at Google

Willem-Jan van Hoeve
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
E-mail: vanhoeve@andrew.cmu.edu



2 Christian Tjandraatmadja, Willem-Jan van Hoeve

lem [30, 4, 21, 38]. More recently, decision diagrams have been applied to model
and solve combinatorial optimization problems, in particular via a stand-alone
solver in which relaxed and restricted decision diagrams provide dual and pri-
mal bounds as well as a branch-and-bound search strategy [20, 17, 16].

A strength of decision diagrams lies in representing recursive structure em-
bedded in certain discrete optimization problems. Typically, this structure is
explicitly modeled by a user through a dynamic programming formulation [15],
which is often not readily available when facing a new problem. Instead, it is
common for discrete optimization problems to be modeled via integer program-
ming (IP) formulations, due to the effectiveness of mixed-integer programming
(MIP) solvers and the capability of IP models to express a variety of problems.

In this paper, we propose a framework to improve the solution process of
MIP solvers through the use of relaxed decision diagrams: decision diagrams
that represent relaxations of a problem. To achieve this goal, we study two
main research questions. The first question is how to construct effective relaxed
decision diagrams from generic IP formulations. Provided with a method to
do so, the second question is how to use them to aid the MIP solver.

One of the main challenges in constructing relaxed decision diagrams from
IP models is that the linear formulation may not give access to the original
problem structure. For example, successful applications of decision diagrams
in the context of scheduling and routing [22, 28, 33] require a constraint-based
representation that is not easy to recognize when presented as a linearized MIP
model. It is important to recognize that the effectiveness of decision diagrams
is tightly connected to the structure modeled by the dynamic programming
(DP) formulations used to construct them. Therefore, the complex structure of
real-world problems may present an obstacle for approaches based on decision
diagrams. A solution to this challenge is to break these problems apart into
structures that are more tractable from the perspective of decision diagrams.
For instance, several problems contain set packing constraints – constraints
of the form Ax ≤ 1, where A is a binary matrix and x is a binary vector of
variables – which, when isolated, tend to be receptive to approaches based on
decision diagrams [17].

This motivates us to develop methods for the case when a known structure
exploitable by decision diagrams is partially present in a problem. We propose
a framework that builds decision diagrams for classes of constraints present in
the problem – which can be viewed as relaxations – and incorporates the re-
maining constraints via two approaches, Lagrangian relaxation and constraint
propagation. This framework is aimed towards generating dual bounds for the
problem, which we later use to aid the MIP solver.

While this framework permits any choice of substructure, in this paper we
investigate the use of the conflict graph for binary problems [7, 1]. The conflict
graph is a common component in modern MIP solvers and represents the pairs
of binary variables that cannot take a certain pair of values. It can be viewed
as a relaxation of the problem and thus it fits our framework. Moreover, as we
later show in this paper, the feasible set of a conflict graph admits a good DP
formulation. A benefit of using the conflict graph is that the method requires



Incorporating Bounds from Decision Diagrams into Integer Programming 3

no additional input from the user other than the IP model itself. Nevertheless,
a user could provide a DP formulation of a different substructure of a problem
as well.

Although focusing on a specific substructure limits the range of appli-
cations, we do not aim to design a method to improve the solution of any
arbitrary IP model. Instead, our approach is opportunistic: we only attempt
to aid the solution process for a model when there are reasons to believe that
decision diagrams can help – for example, when a conflict graph is present and
captures a substantial part of the problem. Additional substructures may be
incorporated in future research, extending the applicability of this framework.

After constructing the relaxed decision diagrams, we consider the ques-
tion of how to leverage them to reduce solving times in MIP solvers. Decision
diagrams have been used early on to solve integer programs via an indepen-
dent branch-and-bound mechanism [29] and later to generate cutting planes
within MIP solvers [8, 36], including in stochastic [31] and nonlinear [23] set-
tings. In this work, we generate dual bounds from these decision diagrams
throughout the branch-and-bound tree in order to identify additional pruning
opportunities. In other words, this approach is oriented towards eliminating
subproblems that only contain suboptimal solutions. We computationally test
this technique on two classes of instances: one in which the entire problem
can be expressed as conflict constraints (the independent set problem), and
one in which the conflict graph only partially captures it (the independent set
problem augmented with knapsack constraints).

The dual bounds we generate in our framework come from solving the
following relaxation:

max
x
{c>x : Âx ≤ b̂, x ∈ conv(S)}, (1)

where c>x models the objective function (assuming maximization), S is a
relaxation of the feasible set represented by a relaxed decision diagram, and
Âx ≤ b̂ are constraints that cannot be efficiently represented by the decision
diagram in practice.

Along with dual bounds, we also generate primal feasible solutions. Better
primal feasible solutions not only improve the pruning process but are also
informative for the user if the solving process is terminated before reaching
optimality. Conversely, we show how to use primal bounds generated from the
MIP solver to speed up the construction of relaxed decision diagrams.

We begin by defining decision diagrams in Section 2 and providing an over-
all view of the framework in Section 3. Sections 4 and 5 detail two important
aspects of the framework: constructing decision diagrams for conflict graphs
and handling constraints that are not considered in the decision diagrams.
Section 6 discusses techniques related to primal bounds. Finally, Section 7
presents computational results and Section 8 concludes this paper.



4 Christian Tjandraatmadja, Willem-Jan van Hoeve

x1

x2

x3

x1

x2

x3

Fig. 1: On the left, a decision diagram that represents the set {x ∈ {0, 1}3 :
x1 + x2 + x3 ≤ 1}, pictured on the right. A dashed line indicates an arc with
value zero, while a full line indicates an arc with value one. Each of the four
paths from the root to the terminal nodes corresponds to a point in the set.

2 Decision Diagrams

In the context of optimization, we can view a decision diagram (DD) as a graph
that represents the feasible set of a discrete optimization problem. In general,
they can represent discrete sets of points or Boolean functions. More formally,
a decision diagram is a directed acyclic multigraph in which the nodes and
arcs form layers, as illustrated in Figure 1. The arcs of each layer k correspond
to assigning some value v to a variable xk. Parallel arcs are allowed. The first
layer has a single root node s and the last layer, a single terminal node t. We
assume that all nodes except the root and terminal have at least one incoming
arc and one outgoing arc. We denote by width the size of the largest layer of
the decision diagram.

The feasible set S of a problem is represented through a one-to-one cor-
respondence between each x ∈ S and each directed path from s to t in the
decision diagram. The solution x is represented by the assignments that corre-
spond to the arcs in the path, noting that all variables are represented in the
layers. We remark that given an ordering of variables, there exists a unique
smallest decision diagram for S, called a reduced decision diagram [21].

Given a constructed decision diagram for S, we can efficiently optimize a
linear function over S. Due to the correspondence between paths and solutions
in S, maximizing a linear function c>x entails finding a path on the decision
diagram of maximum weight, given weights ckvk on each layer-k arc with value
vk. Since a decision diagram is a directed acyclic graph, this can be done in
time linear in the number of arcs in the decision diagram.

Representing the feasible set of hard discrete optimization problems will
often result in impractically large decision diagrams. To tackle this issue, we
consider relaxed decision diagrams [5, 20, 16], which are relaxations in the form
of decision diagrams – that is, they contain the feasible set but are not required
to represent it exactly. Relaxed decision diagrams are usually made smaller



Incorporating Bounds from Decision Diagrams into Integer Programming 5

than exact ones by merging nodes in a way that avoids removing feasible
solutions, but may add infeasible ones. Typically, throughout the construction,
the nodes of a layer are merged until a given width limit is satisfied. See e.g. [16]
for more details on a construction method for relaxed decision diagrams. A
relaxed decision diagram can yield a dual bound (i.e., a lower bound if we
are minimizing or an upper bound if we are maximizing) for the problem by
optimizing the linear objective function over it, since it is a relaxation [20, 17].
We refer to [15] for an overview of the use of decision diagrams in the context
of combinatorial optimization.

3 Framework

A central challenge in designing approaches based on relaxed decision dia-
grams is to keep them small while still obtaining a good approximation of
the problem. We next discuss two main factors that influence the strength of
this approximation: the ability to identify equivalent nodes and the form of
relaxation.

The power of decision diagrams comes from merging equivalent nodes.
Equivalent nodes are those that have the same completion set, defined as the
set of possible assignments leading to feasible solutions given the assignments
made from the root to that node. The problem of complete equivalence is
to decide whether two nodes are equivalent or not. Unfortunately, deciding
whether two nodes are equivalent or not in the context of linear constraints
is NP-complete. This is because a special case of node equivalence is deciding
whether a node is equivalent to an infeasible node, and deciding integer feasi-
bility for two or more linear constraints is NP-complete. While in practice it
is not vital that we merge every pair of equivalent nodes possible, merging as
many as possible allows us to focus on other important factors that affect the
size of decision diagrams.

Nevertheless, even if we can efficiently identify equivalent nodes, a decision
diagram can still grow exponentially large. To manage its size, we must approx-
imate the problem with a tractable relaxation. In this framework, we consider
two forms of relaxation: one at the level of decision diagram construction and
another at the level of problem constraints.

At the decision diagram level, we construct relaxed decision diagrams using
a top-down construction, as done in recent literature [16]. We set a maximum
width parameter and whenever a layer has higher width than this parameter,
we merge (non-equivalent) nodes until the width is within the maximum. En-
suring a relaxation in this merging process is problem-dependent: a node typ-
ically is associated to a state which implicitly encodes its completion set, and
merging non-equivalent nodes requires finding a state that encodes a comple-
tion set containing the union of the completion sets of the two original nodes.
For example, in the independent set problem, a state would be the vertices
that can still be selected and the merged state would be the union of the two
sets of available vertices from the original states. The criteria for choosing



6 Christian Tjandraatmadja, Willem-Jan van Hoeve

which nodes to merge may depend on the application, but there exist generic
rules such as merging nodes with poor objective values. We refer to Chapter 4
of [15] for more details on node merging for relaxed decision diagrams.

At the constraint level, the framework considers a substructure of the prob-
lem, such as a subset of constraints of a specific type or, in the case of this
work, conflict graphs. Not only may substructures have a more tractable size
than the overall problem, but more importantly information about problem
structure can significantly benefit the construction of decision diagrams. How-
ever, this relaxation can be very weak if it ignores constraints not captured
by the substructure. We call such constraints generic. This is compensated
through the use of Lagrangian relaxation, which can be used with decision
diagrams [14]. Moreover, we can partially incorporate them into a decision di-
agram through the use of constraint propagation. More details are presented
in Section 5.

Given that we use a substructure as the basis for our decision diagram, we
must choose a structure with good qualities. We balance the following criteria
in the choice of structure:

– Identifiability: We should be able to efficiently identify and extract the
substructure from the problem. While this is trivial if we choose an ex-
plicit subset of constraints, we may also consider relaxations that are not
explicitly given in the problem.

– Generality: The structure should be as generic as possible in order to
capture structure within as many applications as possible. In particular,
this structure must play a fundamental role in defining the problems we
aim to improve upon, as otherwise the bounds generated would be weak.

– Compactness: In order to keep the size of the decision diagram compact,
the formulation must ideally support efficient equivalence tests that are
complete or close to being complete. Moreover, structures with good vari-
able ordering and merging (relaxation) heuristics are desirable. It is well
known that variable ordering can have a considerable effect on the size
of the decision diagram [21] and likewise the quality of the bound from
relaxed decision diagrams [18].

For binary problems, conflict graphs satisfy these three criteria well. First,
the task of identifying the conflict graph structure (when present) is already
performed by modern MIP solvers, and thus we do not need to be concerned
with extracting them. Second, the conflict graph encompasses common con-
straints such as set packing constraints and simple implications of the form
xi = vi =⇒ xj = vj . These are equivalent to 2-SAT constraints (see, e.g., [6])
as well as implication graphs, as we will discuss in the next section. Observe
that if we were to extend the representation to 3-SAT, complete equivalence
becomes NP-complete, since the special case of deciding feasibility is also NP-
complete for 3-SAT. Third, we will present in Section 4 a DP formulation for
the conflict graph that has an efficient complete equivalence test in top-down
construction. In addition, we generalize a variable ordering heuristic for the
independent set problem, previously shown to perform well in practice [17].



Incorporating Bounds from Decision Diagrams into Integer Programming 7

By choosing the conflict graph as a substructure, we limit this work to bi-
nary problems. Nevertheless, the framework itself supports any type of struc-
ture, as long as we can efficiently build good decision diagrams from them.
In this context, structure means any class of constraints that forms a relax-
ation of the problem. Examples of structures that may work well with decision
diagrams, and are defined on the original problem variables, include set parti-
tioning and set packing (as special cases of the conflict graph), set covering [20,
19], and maximum cut problems [16]. When the model representation is ex-
tended beyond traditional MIP formulations, one could incorporate structures
for single-machine scheduling and routing [22, 28, 33]. More generally, a user
may provide a DP formulation of a substructure of a specific problem, or
combine multiple classes of constraints. Decomposing a problem with multi-
ple decision diagrams may also be implemented in this framework [11]. These
extensions are however beyond the scope of this work.

We apply our approach to generate dual bounds from relaxed decision
diagrams at certain nodes of the branch-and-bound tree to improve the pruning
process. Pruning is performed as usual: if the current primal bound is at least as
good as the dual bound generated at a subproblem node, then the subproblem
contains no improving solution and does not need to be explored. In this paper,
we focus on generating them in small subproblems of the tree.

A summary of the framework is as follows.

1. We select a substructure of the problem from which to construct a relaxed
decision diagram – in this paper, we use a conflict graph.

2. We construct a decision diagram, possibly relaxed, using a DP formulation
specific to the substructure (Section 4). During construction, we may prop-
agate information from generic constraints (constraints not implied by the
substructure) into the decision diagram (Section 5.2).

3. Once the decision diagram is constructed, we apply Lagrangian relaxation
in order to further incorporate generic constraints into the bound (Sec-
tion 5.1).

4. This process yields dual bounds. Primal bounds may also be obtained (Sec-
tion 6). These bounds are added to certain nodes of the branch-and-bound
tree of the MIP solver to help pruning. Nodes with smaller subproblems
are prioritized.

4 Decision Diagrams for Conflict Graphs

The conflict graph captures constraints that forbid certain pairs of binary
variables from taking specific values. More formally, a conflict graph G =
(V,E) is a graph with two vertices per binary variable of the problem. Each
vertex corresponds to an assignment of 0 or 1 to the corresponding variable.
Denote by xvj the node of the conflict graph corresponding to the assignment
of v to the variable xj . We use x1−vj to denote the node corresponding to the
negation of xvj . An edge exists between xui and xvj if the assignments xi = u



8 Christian Tjandraatmadja, Willem-Jan van Hoeve

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

x1 + x2 + x3 ≤ 1

x2 + (1− x3) ≤ 1

(1− x1) + (1− x2) ≤ 1

x1, x2, x3 ∈ {0, 1}

Fig. 2: Example of a conflict graph for three binary variables, where x0i and x1i
indicate setting xi to 0 and 1 respectively. On the right, a linear representation
of the constraints from the conflict graph.

and xj = v cannot simultaneously occur in a feasible solution of the problem.
Figure 2 illustrates an example of a conflict graph.

Conflict constraints can be inferred in MIP solvers when applying, for in-
stance, bound strengthening or probing during a presolve step. A common use
of a conflict graph is to generate cuts [7, 1].

Note that each conflict constraint on xui and xvj is equivalent to the con-
straint xi = u =⇒ xj = 1 − v, which is itself equivalent to xj = v =⇒
xi = 1− u. Therefore, we can express conflict constraints as implication con-
straints by replacing each edge {xui , xvj} with a pair of directed arcs (xui , x

1−v
j )

and (xvj , x
1−u
i ). The resulting graph is called an implication graph. Since this

conversion can occur in both directions, conflict graphs are equivalent to im-
plication graphs.

Throughout this section, it is more convenient to describe a formulation
for the implication graph instead of the conflict graph. Concepts from this
formulation can be directly translated to the context of the conflict graph
through the above equivalence.

We remark that modern MIP solvers may construct implication graphs for
general integer variables instead of binary [1]. However, in this work, we focus
on the binary setting.

4.1 Dynamic programming formulation

As described in [15], decision diagrams can be constructed from a dynamic
programming model, which provides the state definitions for its nodes, as well
as the transition function between nodes. We therefore first provide a dynamic
programming formulation for the feasible set of the implication graph – that
is, the set of all solutions that satisfy the implication constraints encoded in
the graph.

For notational convenience, we assume variables are ordered as x1, . . . , xn.
The layer j (or stage j in DP terms) contains the states in which we have
defined assignments for variables x1, . . . , xj−1 and seek to assign values to



Incorporating Bounds from Decision Diagrams into Integer Programming 9

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

(a)

x1

x2

x3

∗∗∗

∗∗ ∗1

1

(b)

x1

x2

x3

∗∗∗

∗1

1

(c)

Fig. 3: (a) A conflict graph. (b) The decision diagram that would be obtained
by using the DP formulation (IG) as is. The states are depicted as a sequence
of symbols representing the domain of each completion variable following the
order x1, x2, x3. The symbol is ∗ if the domain is {0, 1}, 1 if it is {1}, and 0 if
it is {0}. (c) The decision diagram obtained if we establish domain consistency
at the root state, which is always reduced as proved in Theorem 1.

xj , . . . , xn. The values to be assigned are restricted to the variable’s domain,
denoted by D(xj) for each variable xj , which for conflict constraints we assume
to be {0, 1}. We denote the infeasible state by 0̂.

The DP formulation for the implication graph works as follows. Each state
at layer j corresponds to domains of the variables xj , . . . , xn. When we tran-
sition by setting the variable xj to vj , we remove from the domains all as-
signments xk = vk such that x1−vkk is reachable from x

vj
j . Here, we say that

u is reachable from v if there exists a directed path in the implication graph
from u to v. In other words, we take the implied assignments and remove their
complements from the domains.

More precisely, the DP formulation of the implication graph, which we
denote by (IG) for the remainder of the paper, is defined as follows:

– State space: A state s in the state space Sj of stage j represents a list
(D(xj),D(xj+1), . . . ,D(xn)) such that each D(xj) represents the domain
of the variable xj , and thus may take the values ∅, {0}, {1}, or {0, 1} in
this binary setting.

– Transition function: Let Ds be the domain associated to state s. Given
an assignment vj to a variable xj , denote by D′s(xk) = Ds(xk) r R̄k,j,vj ,
where R̄k,j,vj is the set of values vk such that the node x1−vkk is reachable
from x

vj
j in the implication graph G. The transition function tj at layer j

is defined as:

tj(s, vj) =


(D′s(xj+1),D′s(xj+2), . . . ,D′s(xn))

if vj ∈ Ds(xj) and D′s(xk) 6= ∅ for all k = j + 1, . . . , n,

0̂ otherwise.



10 Christian Tjandraatmadja, Willem-Jan van Hoeve

Figure 3 illustrates a decision diagram constructed from this DP formula-
tion. We next show that this formulation is correct and provides a sufficient
condition for complete equivalence that can be efficiently guaranteed.

4.1.1 Correctness

The proposition below shows that (IG) models the implication graph.

Proposition 1 The DP formulation (IG) correctly models the feasible set of
the given implication graph G.

Proof Let D be the decision diagram generated by (IG), Sol(D) be the set of
solutions represented by s-t paths in D, and Sol(G) be the feasible set of the
implication graph G. We want to show that Sol(D) = Sol(G).

The implication constraints of G enforce that if xj is set to vj , then xk
must be set to vk for all nodes x1−vkk that are reachable from x

vj
j . Since the

transition function only enforces these constraints, it cannot eliminate feasible
solutions. This implies that all feasible solutions must be represented as s-t
paths in D. Therefore, Sol(G) ⊆ Sol(D).

To show that Sol(D) ⊆ Sol(G), let x̂ be a solution represented by an s-t
path in D. We want to show that x̂ is feasible with respect to G. Suppose for
contradiction that x̂ is infeasible. Then x̂ must violate the constraint of some
arc (x

vj
j , x

vk
k ) in G. That is, x̂j = vj and x̂k = 1− vk. Assume without loss of

generality that xj comes before xk in the ordering, which can be done because
each arc (x

vj
j , x

vk
k ) in G has a counterpart (x1−vkk , x

1−vj
j ). Then this assignment

cannot occur because tj(sj , vj) enforces the domain of xk to become {vk} in
all subsequent states, which is a contradiction. Therefore, x̂ is feasible, and
thus Sol(D) = Sol(G). ut

In fact, formulation (IG) is correct even in a depth-d variant in which
we redefine R̄k,j,vj in the transition function to only consider nodes within a
distance of d from x

vj
j , for any d ≥ 1. Note that the exact same proof above

holds in this case. This variant may be useful to improve the performance of
equivalence tests, at the cost of potentially allowing some equivalent nodes to
be left unmerged.

4.1.2 Completeness

Now that the correctness of (IG) is established, we turn to the question of
when this formulation yields a reduced decision diagram. It suffices to present
an efficient complete equivalence test – that is, a test that identifies exactly
when two states have the same completion set.

The example in Figure 3 shows that (IG) as currently formulated does not
always generate a reduced decision diagram. In Figure 3a, the two second-
layer nodes have the same completion set but different states. The state of the
leftmost second-layer node unnecessarily has 0 in the domain of x3, which if



Incorporating Bounds from Decision Diagrams into Integer Programming 11

removed, would enable merging. This observation motivates the lemma below,
which provides a sufficient condition for completeness.

We call a state s domain consistent if for every variable xi and value vi ∈
Ds(xi), there exists a feasible completion from state s that assigns vi to xi.
We use a natural equivalence test in formulation (IG), which simply identifies
two nodes as equivalent if they have the same state.

Lemma 1 If every state in (IG) is domain consistent, then the equivalence
test from formulation (IG) is complete.

Proof Domain consistency ensures that if two domains are different, then they
must have different completion sets. More formally, consider states s1 and s2
with different domains. Suppose without loss of generality that there exists
vi ∈ Ds1(xi) such that vi /∈ Ds2(xi). Then the above property implies there
exists a completion from s1 which assigns vi to xi that does not exist from
s2. ut

As a side note, observe that Lemma 1 holds not only for the formulation
(IG), but also for any formulation in which the state space consists of domains
for their completions.

The next step is to provide a means to obtain domain consistency at ev-
ery state, since this would yield completeness. In fact, it turns out that the
transition function tj(sj , vj) in (IG) preserves domain consistency as long as
the original state sj is also domain consistent, as we establish next with The-
orem 1. This implies that it is sufficient to make the root state domain con-
sistent, which can be done in linear time in the size of the conflict graph as
shown later in this section. For instance, in Figure 3 it would suffice to make
the initial state domain consistent in order to construct a reduced decision
diagram.

Theorem 1 If s is a domain consistent state, then tj(s, vj) is a domain con-
sistent state if feasible.

In order to prove Theorem 1, we first derive two intermediate lemmas. We
use the following theorem from Aspvall et al. [6], which characterizes feasibility
of an implication graph.

Theorem 2 (Aspvall et al. [6]) An implication graph G is feasible if and
only if there is no xj such that x0j and x1j are in the same strongly connected
component.

The two intermediate lemmas are the following.

Lemma 2 Given an implication graph G, there exists a feasible solution with
xj set to vj if and only if there exists a feasible solution for the implication
graph Ĝ := G ∪ {(x1−vjj , x

vj
j )}.

Proof The constraint from the additional arc (x
1−vj
j , x

vj
j ) is violated exclu-

sively by all solutions with xj set to 1 − vj , leaving exactly the feasible solu-
tions of G with xj set to vj . ut



12 Christian Tjandraatmadja, Willem-Jan van Hoeve

Lemma 3 Given a feasible implication graph G, there exists a feasible solution
with xj set to vj if and only if there is no path from x

vj
j to x1−vjj in G.

Proof By Lemma 2, there is a feasible solution with xj set to vj if and only if
Ĝ := G∪{(x1−vjj , x

vj
j )} is feasible. In view of Theorem 2 and the feasibility of

G, Ĝ is feasible if and only if adding (x
1−vj
j , x

vj
j ) to G keeps x1−vjj and xvjj in

different strongly connected components.1 This happens if and only if there is
no path from x

vj
j to x1−vjj in G. ut

Lemma 3 tells us how to achieve domain consistency for the implication
graph. For every variable xj , we check if x0j is reachable from x1j and vice versa.
If x1−vjj is reachable from x

vj
j , we remove vj from Ds(xj).

In addition, this can be done in linear time as follows. Tarjan’s strongly
connected components algorithm [35] provides the strongly connected compo-
nents in reverse topological order. By treating each component as a node, we
can scan the graph in topological order in a single pass to find these paths.
Throughout this pass, we store at each component the variable-value assign-
ments of its ancestors in order to pass it forward. Whenever we find the com-
plement of one of these assignments, we can remove the assignment from the
domain.

We now prove Theorem 1, which implies that it suffices to ensure domain
consistency at the root state in order to guarantee completeness.

Proof (Theorem 1) Consider the states s and s′ := tj(s, vj). In order to show
that s′ is domain consistent, we need to show that for any vk ∈ Ds′(xk), there
exists a completion from s′ that assigns vk to xk.

Let Ĝs be the implication graph G with the additional arcs (x
vj
j , x

1−vj
j )

for all vj ∈ {0, 1} r Ds(xj). Note that the feasible set of Ĝs corresponds
to the completion set of s by Lemma 2. Moreover, the feasible set of G′ :=
Ĝs∪{(x

1−vj
j , x

vj
j )} corresponds to the completion set of s′. Following Lemma 3,

it suffices to show that G′ does not contain a path from xvkk to x1−vkk .
Given that Ds is consistent, there must exist a completion x from s such

that xk = vk. Equivalently, Ĝs must not contain a path from xvkk to x1−vkk

according to Lemma 3. Therefore, any path in G′ from xvkk to x1−vkk must
go through the only new arc (x

1−vj
j , x

vj
j ). However, x1−vkk is not reachable

from x
vj
j , as otherwise vk would be removed from Ds′(xk) as a result of the

transition function. Hence, there cannot be a path in G′ from xvkk to x1−vkk . ut

The above theorem directly implies the following result.

Corollary 1 The equivalence test from the DP formulation (IG) is complete
when the initial state is domain consistent.

1 As a technicality, this requires that Theorem 2 holds when there are arcs between the
two nodes of a same variable. Despite assuming a standard implication graph, the proof
from Aspvall et al. [6] is also valid with same-variable arcs.



Incorporating Bounds from Decision Diagrams into Integer Programming 13

Therefore, once we establish domain consistency in the root state, we can
use the DP formulation in a top-down fashion to construct a reduced decision
diagram.

We remark that this serves as an alternative proof for complete equivalence
for the independent set problem in [17]. If we view the independent set problem
in terms of an implication graph, we obtain a graph where all arcs point
from a nonnegated node to a negated node. This means that every path in
the implication graph has length at most one, and thus it suffices for the
transition function to consider only the neighbors of each vertex, as done in
the formulation of [17]. Moreover, the initial domain of all possibilities (i.e. the
root state of the formulation in [17]) is always consistent since every individual
vertex of the original graph is a feasible independent set.

4.2 Variable ordering

Variable ordering for decision diagrams is often based on heuristics. Using
a fast heuristic is particularly helpful in our case, as we may be generating
several decision diagrams during the solution process of a single problem.

Based on the close connection of conflict graph constraints to independent
set constraints, we use a generalization of a variable ordering heuristic for
independent set that has shown to work well in practice, namely the minimum
number of states ordering [18, 17]. In the context of independent set, at each
layer, the ordering selects the vertex v that appears in the fewest number of
states in the state pool. Every node with a state in which v appears will branch
to both zero and one, whereas if v does not appear, the corresponding node
only branches to zero. Therefore, this minimizes the number of arcs in the
following layer.

A natural generalization for conflict graph constraints is as follows: at each
layer, we select the variable with the smallest sum of domain sizes throughout
the state pool. This minimizes the number of arcs in the next layer since each
assignment corresponds to an arc, given that the domains are consistent. We
use this ordering in our computational experiments discussed in Section 7.

5 Generic Constraints

Focusing on a substructure is typically only practical if it captures most of the
problem, and any constraints not part of the substructure are still taken into
account in some form.

Suppose that our goal is to solve maxx{c>x : Ax ≤ b, x ∈ {0, 1}n}, given
an objective function c ∈ Rn, a coefficient matrix A ∈ Rm×n, and a right-
hand side b ∈ Rm. While we focus on the binary version, in general we can
replace the binary constraints by bounded integer constraints. We partition
the constraints Ax ≤ b into two sets, given by Âx ≤ b̂ and Āx ≤ b̄, where the



14 Christian Tjandraatmadja, Willem-Jan van Hoeve

latter set of constraints will be represented with a (relaxed) decision diagram.
We denote the remaining constraints Âx ≤ b̂ by generic constraints.

As mentioned in the introduction of this paper, we aim to solve the follow-
ing relaxation of the above problem:

max
x
{c>x : Âx ≤ b̂, x ∈ conv(S)}, (1)

where S is a superset of {x ∈ {0, 1}n : Āx ≤ b̄}. Here, S is represented by a
decision diagram.

The partition of the constraints may be induced by a chosen substructure.
More precisely, we first construct a relaxed decision diagram for a substructure
of the problem, representing S, and then mark as generic the constraints that
are not made redundant by the constraint x ∈ conv(S). In this case, identifying
generic constraints can be done by checking if at least one solution represented
in the decision diagram is violated by the constraint. In other words, a con-
straint a>x ≤ b can be marked as generic if maxx∈S{a>x} > b, which can be
efficiently checked by finding a maximum weight path in the decision diagram.
All other constraints can be discarded, as they are implicitly represented in
the decision diagram.

In the context of conflict graphs, we mark a constraint as generic in our
implementation if it does not have a particular form implied by conflict con-
straints:

∑
i∈P xi +

∑
i∈N (1− xi) ≤ 1 for some disjoint set of variable indices

P and N . Although this can be checked quickly, it is possible that we label
more constraints than necessary as generic. Note that in this particular imple-
mentation, we may also remove constraints that are not completely redundant
with respect to conv(S) when S corresponds to a relaxed decision diagram.

We handle generic constraints in two ways: Lagrangian relaxation and con-
straint propagation. In Lagrangian relaxation, we essentially seek to solve (1).
In constraint propagation, we strengthen the set S by removing some of the
solutions violated by Âx ≤ b.

5.1 Lagrangian relaxation

Lagrangian relaxation is a classical technique that is primarily used to obtain
dual bounds for optimization problems. It consists of moving a set of con-
straints to the objective function by penalizing its violation. In our context,
we apply Lagrangian relaxation with respect to the generic constraints, by
solving the following optimization problem:

min
λ≥0

max
x
{c>x+ λ>(b̂− Âx) : x ∈ conv(S)}.

The variables λ are called Lagrange multipliers, which represent penalties for
the violation of the constraints Âx ≤ b̂.

This problem can be solved with subgradient methods that require opti-
mizing a linear function over conv(S) as a subproblem. In our context, this



Incorporating Bounds from Decision Diagrams into Integer Programming 15

subproblem entails finding an optimal path in the decision diagram represent-
ing S, which can be done in linear time with respect to the size of the decision
diagram, once it is constructed. This makes decision diagrams particularly
well-suited to be used in conjunction with Lagrangian relaxation, as often
several of these subproblems need to be solved. The use of Lagrangian relax-
ation with decision diagrams has been previously investigated in the context
of constraint programming as well [14, 13].

Lagrangian relaxation theory establishes that the optimal value of the
above problem is equivalent to the optimal value of (1). This provides a clean
interpretation of the bound we obtain from Lagrangian relaxation. Essentially,
we are optimizing over the convex hull of the set of points represented by the
decision diagram intersected with the generic constraints in their original lin-
ear form. In other words, we are convexifying the constraints involved in the
construction of the decision diagram, taking integrality into account.

We remark that the above problem can also be solved by modeling conv(S)
as a network flow with additional arc variables [9, 14, 12, 36] and solving
the overall linear program. However, we opt for the Lagrangian relaxation
approach as it tends to produce good bounds quickly in our computational
experience, interrupting it before reaching optimality.

A limitation of Lagrangian relaxation is that it is only equivalent to adding
the constraints back in its original linear form. In some cases, we may need to
tighten these generic constraints in order to obtain improvements. For instance,
if the decision diagram is constructed from a set of linear constraints whose
polyhedron has only integer vertices, then this approach cannot yield a better
bound than the LP bound.

5.2 Constraint propagation

Even if a generic linear constraint results in a large decision diagram by itself,
it can be partially incorporated into the decision diagram of other constraints
without significantly increasing its size. This is particularly true if we use
domain states: we use constraint propagation to filter out infeasible values
from the domain states [5, 27]. This results in the elimination of infeasible
points from the decision diagram, which may improve the associated bounds.
Moreover, it may reduce the time it takes to construct the decision diagram,
as we are potentially exploring fewer nodes.

Consider a constraint a>x ≤ b and a node u with domain state s. Given a
variable xj and a value vj in the domain Ds(xj), our goal is to determine before
branching on u if no completion assigning vj to xj satisfies the constraint. If
so, we can remove vj from the domain Ds(xj).

Before approaching this problem, let us consider an easier variant. Suppose
that we want to tackle this problem on a fully constructed decision diagram.
This is equivalent to determining if the constraint is violated by all possible
solutions with xj = vj corresponding to paths that pass through the node u.
To solve this, we can find the smallest left-hand side a>x within this solution



16 Christian Tjandraatmadja, Willem-Jan van Hoeve

set and check if it exceeds the right-hand side b. This fundamental propagation
idea is extensively used in constraint programming and MIP solvers [24, 10, 2,
3, 34]. In its simplest version, variable bounds are used to minimize a>x, but
here we express this minimization problem in terms of the partial solution set
and the completion set of the node u.

Denote by S↓(u) the partial solution set of a node u at layer k: the set of all
solutions (x1, . . . , xk−1) corresponding to a path from the root to u. Similarly,
denote by S↑(u) the completion set of u, the set of all solutions (xk, . . . , xn)
corresponding to a path from u to the terminal node.

Proposition 2 Consider a decision diagram D ordered x1, . . . , xn, a node u
of D at layer k, and a linear constraint

∑n
i=1 aixi ≤ b. Let j ≥ k. Then no

solution x with xj = vj corresponding to paths in D containing u satisfies the
linear constraint if and only if

min
(x1,...,xk−1)∈S↓(u)

{
k−1∑
i=1

aixi

}
+ min

(xk,...,xn)∈S↑(u)
xj=vj

{
n∑
i=k

aixi

}
> b

Proof The set of solutions x corresponding to paths containing u is S(u) :=
{x : (x1, . . . , xk−1) ∈ S↓(u), (xk, . . . , xn) ∈ S↑(u)}. Let S′(u) := S(u) ∩ {x :
xj = vj}, which is the set of solutions for which we want to check violation.
This set violates the constraint if and only if minx∈S′(u)

∑n
i=1 aixi > b, which

is equivalent to the above condition. ut

For convenience, we denote the first minimization term on the left-hand side
of the condition in Proposition 2 by pa(u) and the second term by ca(u, j, vj).

Let us return to the context of filtering the domain of a node u at the
construction stage. We can efficiently compute pa(u), since it consists of opti-
mizing a linear function over the decision diagram of the partial solution set
of u, which is fully available at the time of branching for a top-down construc-
tion. It is not necessary to recompute pa(u) at every node, as we can maintain
them throughout the construction. At every new node u′ coming from a node
u and arc xj = vj , we let pa(u′) := pa(u) + ajvj . In addition, whenever two
nodes u and u′ are merged into u′′, we let pa(u′′) = min{pa(u), pa(u′)}.

On the other hand, computing ca(u, j, vj) during construction is difficult
because we do not have the completion set of the node. Instead, we compute a
lower bound B for ca(u, j, vj). If we satisfy the condition pa(u) +B > b, then
by Proposition 2 we can still safely remove vj from Ds(xj). In our case where
domains are states, we calculate B by minimizing

∑n
i=k aixi over the possible

values of the domains, after restricting xj to be vj . More precisely, we let B
be

∑
i:ai≥0,i6=j min(Ds(xi)) +

∑
i:ai<0,i6=j max(Ds(xi)) + ajvj .

This completes the description of the constraint propagation method. We
remark that while this approach can only improve the bound since it removes
infeasible solutions, it can potentially increase the size of the decision diagram.
A simple example where this happens is given in Figure 4. Alternatively, if we
want to ensure that the size of the decision diagram does not increase, we may



Incorporating Bounds from Decision Diagrams into Integer Programming 17

x1
1

x0
1

x1
2

x0
2

x1
3

x0
3

x1

x2

x3

∗∗∗

∗∗ 0∗

∗

Propagate
x1 + x3 ≤ 1

∗∗∗

∗∗ 00

∗ 0

Fig. 4: An example in which propagation increases the size of the decision
diagram in the context of conflict graphs.

apply propagation only with respect to the variable of the next layer. The size
cannot increase because no states are modified with this approach, except for
identifying infeasible nodes to be pruned. This can be interpreted as a weaker
version of arc filtering [5], which we call arc pruning.

Finally, we remark that one could detect special classes of constraints and
implement specialized propagators. Our implementation is however limited to
this more general propagator.

6 Primal bounds

In our framework, primal bounds can not only be generated from decision
diagrams for the MIP solver, but conversely primal bounds from the MIP
solver can also benefit decision diagram construction.

We next present heuristic approaches to identify feasible solutions from the
relaxed decision diagrams we use. We consider two cases: one when generic
constraints are not present and one when they are. In the latter case, we
assume that we use Lagrangian relaxation as described in Section 5.1.

1. Without generic constraints. During the construction of a relaxed de-
cision diagram, we keep track of nodes that have been merged due to re-
laxation. We then find the optimal path that does not contain any of such
nodes. This path corresponds to a feasible solution to the overall problem
because it only contains exact nodes.

2. With generic constraints. The process of solving the Lagrangian re-
laxation problem typically involves optimizing over the decision diagram a
number of times. The solutions obtained in this process are called primal
iterates. For every such solution generated, we check its feasibility with
respect to the overall problem. If we find that it is feasible, we store it as a
primal feasible solution. This simple approach has been suggested in early
works on Lagrangian relaxation [26].

An alternative is to generate primal feasible solutions (and thus primal
bounds) from restricted decision diagrams [19], which encode a subset of fea-



18 Christian Tjandraatmadja, Willem-Jan van Hoeve

sible solutions. However, we opt not to investigate this approach, as not only
constructing further decision diagrams for primal bounds can be inefficient,
but also they require all constraints to be considered in the construction.

Conversely, primal bounds from the MIP solver can help eliminate solutions
from the decision diagrams, potentially making them smaller. If we have a
primal bound Bp and we are maximizing an objective c, then we can effectively
add the constraint c>x ≥ Bp to the decision diagrams. In order to keep the
size of the decision diagram in check, we do so by applying arc pruning with
respect to this constraint, as described in the end of Section 5.2.

7 Computational experiments

Given that we focus on the conflict graph substructure, we first need to un-
derstand the impact of the DD bounds in a form where the problem is entirely
composed of that structure. In particular, we first run experiments on a pure in-
dependent set problem, which can be represented by a conflict graph. We then
investigate the impact of the DD bounds in the presence of side constraints by
adding knapsack constraints to an independent set problem. As a MIP solver,
we use SCIP 5.0.1 equipped with CPLEX 12.6 as an LP solver. SCIP was
chosen in part because it enables us to directly access the conflict graph. The
experiments were performed on a 2.33Ghz Linux machine with 32GB of RAM.
The code can be found at https://github.com/ctjandra/ddopt-bounds.

As discussed in Section 3, we generate bounds at certain nodes of the
branch-and-bound tree, passed to SCIP via its relaxation handler. The bound
is computed after solving each LP and may be done more than once per node
if it involves multiple LPs. The main input to the SCIP relaxator is the conflict
graph (in the form of a clique table), which is built by SCIP after the presolve
step. Any additional constraints for propagation and Lagrangian relaxation are
copied over from the first LP at the root, after presolve. As a result, cutting
planes are not considered for bound generation. In addition, due to a technical
incompatibility, we disable restarts and variable aggregation for all runs.

To keep the experiments clean, we opt for the following simple approaches
in our implementation. Improving upon these is left for future work.

1. To select the nodes at which a bound will be generated, we use a simple
node selection rule: we generate bounds only when the number of variables
of the subproblem is below a given threshold. This is motivated by the
computational observation that the bounds are more likely to help for
smaller subproblems in this particular experimental setup.

2. We build a new decision diagram from scratch at every node we gener-
ate a bound. Besides simplifying the implementation, this avoids potential
memory concerns from handling more than one decision diagram at a time.



Incorporating Bounds from Decision Diagrams into Integer Programming 19

7.1 Independent set constraints

We consider random graphs parameterized by size n and density d following
the Erdős–Rényi modelG(n, d): each edge of a graph with n vertices is included
with probability d. We also consider instances from the DIMACS maximum
clique benchmark set [25], discussed later.

For the random graphs, we select two instance sizes n, 150 and 300, and
vary the density d parameter from 10% to 90% in increments of 10%. For each
of these parameters, we generate 16 instances. All solving times and number
of nodes reported are shifted geometric means among these 16 instances with
a shift factor of 10 for solving time and 100 for nodes. We set a time limit of
one hour.

Except when stated otherwise, we generate bounds for every subproblem
with at most 2/3 of the variables – that is, 100 and 200 for the instances of
sizes 150 and 300 respectively. This subproblem size is manually tuned: we
performed some computational experiments with different sizes and selected
one that performed well for these runs.

The IP model given to the solver is a clique cover formulation. The con-
straints are

∑
j∈C xj ≤ 1 for every clique C in a clique cover C, which is a set

of cliques that covers all edges of G. Each clique is generated by starting with
a vertex with maximum degree and greedily adding vertices with maximum
degree that form a clique with the current set.

In practice, we would typically not use a MIP solver to solve the maximum
independent set problem, as this is a well-studied problem with several spe-
cialized algorithms significantly faster than a MIP solver. However, they often
no longer function as is when the problem is further constrained, as is often
the case with real-world problems. Observing the behavior of a MIP solver in
this simpler case is useful as a stepping stone to problems with independent set
constraints as a substructure, which is examined in the next set of experiments
in Section 7.2.

In terms of implementation, we construct decision diagrams based on the
conflict graph of the problem, following Section 4, even though we know these
are independent set instances. Since the DP formulation of the conflict graph
generalizes the formulation for the independent set problem, the resulting deci-
sion diagrams are the same, presolve aside. The difference between this version
and one specific to the independent set problem is overhead in time from ex-
tracting and processing conflict constraints. Note also that presolve may affect
these graphs including their densities. Any figure in this section refers to the
original densities.

We use arc pruning with primal bounds and the primal heuristic without
generic constraints as described in Section 6. We use the variable ordering
described in Section 4.2, and a merging rule that merges together nodes with
the smallest objective values until the width limit is satisfied.

– Overall performance: The first plots in Figures 5 and 6 show the overall
performance of the method. For random graphs, solving maximum inde-



20 Christian Tjandraatmadja, Willem-Jan van Hoeve

10 20 30 40 50 60 70 80 90
Density

0

50

100

150

200

250

300

350

400

T
o
ta

l 
so

lv
in

g
 t

im
e
 (

s)

MIP + DD bounds

MIP

10 20 30 40 50 60 70 80 90
Density

101

102

103

104

105

N
u
m

b
e
r 

o
f 

n
o
d
e
s

MIP + DD bounds

MIP

Fig. 5: Comparison in solving time and branch-and-bound tree size between
applying and not applying DD bounds in independent set instances with 150
vertices. Results are averaged over solving 16 instances to optimality for each
density parameter.

10 20 30 40 50 60 70 80 90
Density

0

500

1000

1500

2000

2500

3000

3500

4000

T
o
ta

l 
so

lv
in

g
 t

im
e
 (

s)

MIP + DD bounds

MIP

10 20 30 40 50 60 70 80 90
Density

102

103

104

105

N
u
m

b
e
r 

o
f 

n
o
d
e
s

MIP + DD bounds

MIP

Fig. 6: Comparison in solving time and branch-and-bound tree size between
applying and not applying DD bounds in independent set instances with 300
vertices. The gray dotted line on the left plot indicates the time limit of one
hour. Unreported data on number of nodes corresponds to cases in which the
time limit of one hour was hit on the majority of runs.

10 20 30 40 50 60 70 80 90
Density

0

100

200

300

400

500

600

T
o
ta

l 
so

lv
in

g
 t

im
e
 (

s)

Subproblem size threshold of 50

Subproblem size threshold of 100

Subproblem size threshold of 150

MIP

10 20 30 40 50 60 70 80 90
Density

100

101

102

103

104

105

N
u
m

b
e
r 

o
f 

n
o
d
e
s

Subproblem size threshold of 50

Subproblem size threshold of 100

Subproblem size threshold of 150

MIP

Fig. 7: Comparison of different subproblem size thresholds with 150 vertices.



Incorporating Bounds from Decision Diagrams into Integer Programming 21

10 20 30 40 50 60 70 80 90
Density

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
o
lv

in
g
 t

im
e
 r

a
ti

o

Primal pruning disabled

Primal heuristic disabled

Primal pruning and heuristic disabled

10 20 30 40 50 60 70 80 90
Density

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
o
lv

in
g
 t

im
e
 r

a
ti

o

Primal pruning disabled

Primal heuristic disabled

Primal pruning 
and heuristic disabled

Fig. 8: Effect on solving time when disabling primal pruning and/or primal
heuristic on instances of size 150 (left) and 300 (right). The vertical axis is
the ratio td/T , where td is the time without a given feature and T is the time
with all capabilities, and the horizontal axis is the density parameter of the
set of instances. On the right, data points for densities below or equal 30 are
omitted because the time limit is always hit.

pendent set problems tends to be easier for either dense graphs or very
sparse graphs, and this is evident from the plot. The graph suggests that
our approach is more beneficial around middle ranges of density. For in-
stance, in the case of density 60% and 300 vertices (in which time limit is
not hit), applying the DD bounds reduces the tree size by 99.6%, allowing
the problem to be solved 6.4 times faster. The bounds do not perform well
for low densities, consistent with observations from previous works [17, 36].

– Subproblem size: Figure 7 shows what happens if we choose a different
subproblem size threshold. Selecting a larger threshold – that is, applying
decision diagram bounds more often – can be helpful when we know relaxed
decision diagrams are strong, such as with high-density cases. However,
that can waste time when the relaxations do not scale well, as illustrated
by the low-density cases, in which case focusing on smaller subproblems
performs better.
We omit the plot for instances of size 300 as it depicts a similar behavior as
above (although it cannot be observed for lower densities due to the time
limit).

– Primal bounds: Figure 8 illustrates the impact of primal bounds. It pro-
vides the ratio between the solving time without a given feature (primal
pruning and/or primal heuristic) and the solving time with all features.
The effect of the primal techniques becomes more significant with larger
branch-and-bound trees. Primal pruning is particularly helpful to avoid
wasting time on small nodes that are easily identifiable as infeasible.

In Section A of the appendix, we provide further information on the time
spent generating bounds and on the number of times an improving bound was
found.



22 Christian Tjandraatmadja, Willem-Jan van Hoeve

Table 1 exhibits solving times for instances from the DIMACS maximum
clique benchmark set [25], converted to maximum independent set by consider-
ing their complement graphs. Most of these instances have different structures
than random Erdős–Rényi graphs. We present only the set of instances that
were solved to optimality within one hour with SCIP 5.0.1 at its default set-
tings, either with or without bounds from decision diagrams, and for at least
one random seed. The bounds from decision diagrams are applied at every
branch-and-bound node with at most 3/4 of the total number of vertices with
a width of 100.

On average across all DIMACS instances tested, we observe that using the
bounds makes the solving process 1.87x faster with a node reduction of 86.7%.
In practice, we would not apply this method to low-density instances however.
If we consider only instances with density at least 30%, the improvement is
more pronounced: the solving times are on average 3.29x faster and the node
reduction is on average 94.8%.

7.2 Independent set and knapsack constraints

We next wish to understand the impact of the DD bounds in presence of
side constraints. The instances we consider in this section are a combination
of independent set (set packing) constraints with knapsack constraints. The
integer programming model is given by:

max c>x∑
j∈C

xj ≤ 1 for all C ∈ C (set packing)

n∑
j=1

aijxj ≤ bi for all i = 1, . . . ,mknap (knapsack)

x ∈ {0, 1}n

The independent set constraints for the input graph G are modeled with a
clique cover formulation, as described in the previous section.

To eliminate the bias from the properties of the conflict graph that we
studied in the previous section, we define an underlying random graph struc-
ture for which the performance of the decision diagram is rather stable: the
Watts–Strogatz model [37], which has small-world properties and allows us to
scale up to relatively large size without compromising the quality of the DD
performance too much. This model generates graphs through the following
process. Given the desired number of vertices n, the desired mean degree k
(assumed even), and a probability p, construct a preliminary graph with n
vertices arranged in a cycle. Let two vertices be adjacent if and only if they
are within distance k/2 in the cycle. Then for each vertex i and outgoing edge
(i, j), reassign j with probability p to another vertex (besides i or a neighbor



Incorporating Bounds from Decision Diagrams into Integer Programming 23

Solving time (s) Number of nodes
Instance Density MIP MIP + DD MIP MIP + DD

brock200_1 25.5% >3600.00 1096.36 >239552.41 14637.51
brock200_2 50.4% 245.74 39.59 19631.05 173.37
brock200_3 39.5% 844.77 82.23 57032.38 625.98
brock200_4 34.2% 1321.67 166.97 93581.85 1583.24
C125.9 10.2% 21.47 45.49 1370.75 1119.28
gen200_p0.9_44 10.0% 32.88 105.87 737.29 1149.75
gen400_p0.9_65 10.0% >2366.88 >3600.00 >58268.84 >11993.40
gen400_p0.9_75 10.0% 995.33 1742.15 6968.81 4035.27
hamming8-4 36.1% 142.47 78.00 1672.93 179.32
keller4 35.1% 288.55 32.99 30392.73 357.44
MANN_a27 1.0% 42.79 34.72 5006.48 4146.73
MANN_a45 0.4% 797.68 820.63 88823.52 79162.73
p_hat300-1 75.6% 195.28 96.01 7684.60 151.50
p_hat300-2 51.1% 1184.74 459.30 26900.27 2355.57
p_hat500-1 74.7% 2688.06 700.69 79198.67 609.70
san200_0.7_2 30.0% 22.39 16.74 60.25 31.80
san200_0.9_3 10.0% 13.68 56.64 239.43 553.39
san400_0.5_1 50.0% 495.26 87.67 320.56 32.58
san400_0.7_1 30.0% 490.55 392.30 1152.63 379.04
san400_0.7_2 30.0% 885.74 380.64 6448.98 651.72
san400_0.7_3 30.0% >3439.64 >1431.74 >51602.73 >4618.31
san400_0.9_1 10.0% 254.77 419.46 470.31 709.16
sanr200_0.7 30.3% 2973.10 407.97 270050.01 4891.10
sanr400_0.5 49.9% >3600.0 2544.89 >133516.18 8338.75

Average all 448.47 239.15 9920.72 1322.03
≥ 30% 733.01 223.05 16145.26 835.61

Table 1: Effect of applying bounds on selected DIMACS benchmark instances.
Averages are in shifted geometric mean. Entries marked with a ’>’ have reached
the time limit for at least one random seed.

of i) uniformly chosen at random. In our instances, the mean degree k is 100
and the probability p is 0.1.

We perform two sets of experiments: we first assess the quality of the DD
bounds on a varying number of knapsack constraints, and then their impact on
the overall solving process for a fixed fraction of knapsack constraints. We use
the following parameters for both cases. For each knapsack constraint indexed
by i, we select a support of 100 variables at random and choose coefficients
aij uniformly at random from 1 to 100, and the remaining variables have
zero coefficients. We maximize an objective with coefficients cj also randomly
chosen from 1 to 100. We fix bi to 150 in all instances in this section. Solving
times and nodes are aggregated over 10 instances with 5 solver random seeds
each using shifted geometric mean with a shift of 10 for time and 100 for nodes.



24 Christian Tjandraatmadja, Willem-Jan van Hoeve

0 20 40 60 80 100
0

20

40

60

80

100

120

140
G

a
p
 w

.r
.t

. 
p
ri

m
a
l 
b
o
u
n
d
 (

%
)

Conflict graph (DD only)

Conflict graph with Lagrangian

Conflict graph with Lagrangian and propagation

LP bound

LP bound at the end of root

0 20 40 60 80 100
Number of knapsack constraints

0

8

16

24

32

T
im

e
 (

s)

0 100 200 300 400
0

50

100

150

200

250

G
a
p
 w

.r
.t

. 
p
ri

m
a
l 
b
o
u
n
d
 (

%
)

Conflict graph (DD only)

Conflict graph with Lagrangian

Conflict graph with Lagrangian and propagation

LP bound

LP bound at the end of root

0 100 200 300 400
Number of knapsack constraints

0

100

200

300

400

T
im

e
 (

s)

Fig. 9: The plot on the top illustrates a comparison of bound quality for inde-
pendent set + knapsack constraints with 200 (left) and 1000 (right) variables,
varying the number of knapsack constraints. The plot on the bottom represents
the solve times to reach each bound. The quality of a bound D is represented
by its gap (D−P )/P , where for n = 200 (left), P is the optimal value, and for
n = 1000 (right), P is the best primal value given by the solver at its default
settings after 10 minutes of solve time.

The variable ordering and merging rules for the relaxed decision diagrams
are the same as in the previous section. We use different width limits for the
two sets of experiments: 1000 for the first set and 100 for the second one. We
observed that increasing the latter to 1000 results in similar behavior, with
little improvement to pruning, likely because we only focus on small subprob-
lems that do not require large widths to be effectively tackled. The Lagrangian
relaxation is solved using the ConicBundle library, which implements a bun-
dle method to solve it. We extract the best bound it finds by the end of 50
iterations. We do not use warm starts for the Lagrangian relaxation.

In the first set of experiments, we are interested only in examining the
bounds at the root node. Figure 9 shows the quality of the bounds (represented
by gap, as defined in the caption of the figure) as we increase the number of
knapsack constraints in the cases of n = 200 and n = 1000. As a baseline, we
include in the plots the initial LP bound and the LP bound at the end of the
root node, which may include cutting planes, at default settings. In addition,
the figure provides the time it takes to reach each bound.

We observe that for small instances, the bounds are strong even if sev-
eral knapsack constraints are present. For the larger instances, more knap-
sack constraints result in lower DD bound quality. This is expected since we
mostly explore the conflict graph substructure. We also show the DD bounds
with constraint propagation disabled, and both constraint propagation and
Lagrangian relaxation disabled. Enabling both of them is particularly helpful



Incorporating Bounds from Decision Diagrams into Integer Programming 25

for the smaller instances, but for larger instances, we observe that Lagrangian
relaxation suffices to improve the bound most of the way at a relatively small
cost. Moreover, Lagrangian relaxation and constraint propagation are more
helpful when more knapsack constraints are present, which is expected given
that their role is to take them into account.

Our final set of experiments assesses the impact of the DD bound on the
overall search tree. Again, we follow the Watts–Strogatz graph model to gen-
erate instances with n variables, and we vary the number of variables n from
300 to 450 in increments of 50. We keep the number of knapsack constraints at
a fixed proportion to n. Experiments are performed for 16 random instances,
each with 5 different MIP solver random seeds. For this set of experiments, we
do not apply a time limit. Based on the results presented in Figure 9, we de-
termine that adding 0.1n knapsack contraints strikes a good balance between
the relative performance of the LP bound and the DD bound for an insightful
comparison. The subproblem size threshold is 100, determined by manual tun-
ing. We use Lagrangian relaxation and constraint propagation as described in
Section 5. Moreover, we include the primal heuristic (with generic constraints)
and the arc pruning based on primal bounds described in Section 6.

– Overall performance: The overall performance of the decision diagram
bounds is presented in Figure 10, along with a summary in relative terms in
Table 2. On average for these instances, this technique results in an overall
speed-up of 66.94% (or equivalently, a slowdown of 40.09% if we disable the
bounds). The number of nodes is reduced by 66.10% – to almost one-third
of its original size. From Table 2, we observe that the speed-up scales well
up to the sizes we tested. Figure 11 illustrates all individual instances and
random seeds and it suggests that the approach is fairly robust for these
instances.

– Lagrangian relaxation, constraint propagation, primal bounds:
Table 3 shows the effect of disabling each of the techniques we use on top of
the dual bound generation. While the dual bounds by themselves are strong
– in part because the independent set constraints play a substantial role
in defining the problem – removing from consideration either the generic
constraints or the primal techniques results in a significant deterioration
of the speed-up. In particular, although removing one of the two generic
constraint techniques does not affect the solving time too much, disabling
both of them has a large impact, indicating that it is important to consider
the generic constraints in some way.

Section A of the appendix contains information on the fraction of time
spent generating bounds and on the number of times the LP bound was im-
proved.

7.3 Computational limitations

The previous subsections provide computational evidence that our approach
works well in scenarios where the conflict graph either forms the entire prob-



26 Christian Tjandraatmadja, Willem-Jan van Hoeve

300 320 340 360 380 400 420 440
Instance size

0

500

1000

1500

2000

2500

3000

3500

T
o
ta

l 
so

lv
in

g
 t

im
e
 (

s)

MIP + DD bounds

MIP

300 320 340 360 380 400 420 440
Instance size

102

103

104

105

N
u
m

b
e
r 

o
f 

n
o
d
e
s

MIP + DD bounds

MIP

Fig. 10: Comparison in solving time and branch-and-bound tree size of the use
of decision diagram bounds for independent set + knapsack instances.

Instance size
300 350 400 450

Speed-up (%) 62.13 76.78 68.57 64.90
Node reduction (%) 74.46 68.34 63.84 58.40

Table 2: Speed-up and node reduction from using decision diagram bounds.
Speed-up is the ratio of original solving time to the solving time with the
bounds, minus one (e.g. a speed-up of 100% means twice as fast). Solving
times and numbers of nodes are averaged using the shifted geometric mean
(with shifts of 10 and 100 respectively).

102 103

Solving time for MIP (s)

102

103

S
o
lv

in
g
 t

im
e
 f

o
r 

M
IP

 +
 D

D
 b

o
u
n
d
s 

(s
)

103 104 105

Number of nodes for MIP

103

104

105

N
u
m

b
e
r 

o
f 

n
o
d
e
s 

fo
r 

M
IP

 +
 D

D
 b

o
u
n
d
s

Fig. 11: Effect of using decision diagram bounds illustrated by individual in-
dependent set + knapsack instance. Each point is an instance + random seed
and points below the diagonal line correspond to better performance than not
using bounds.

lem, or plays an important role in the problem. A natural next question is
whether this method works well for arbitrary MIP instances. We therefore
evaluate our approach on the MIPLIB 2017 benchmark set [32]. The details of
this experiment are described in Section B of the appendix. We only observe



Incorporating Bounds from Decision Diagrams into Integer Programming 27

Speed-up (%) Node reduction (%)

All techniques 66.94 66.10

No Lagrangian relaxation 65.95 65.86
No propagation 60.58 63.50
No Lagrangian relaxation or propagation 46.59 55.69

No primal pruning 60.32 66.03
No primal heuristic 54.33 63.88
No primal pruning or heuristic 54.33 64.01

Without the above techniques 42.39 55.03

Table 3: Effect of removing from consideration generic constraints or primal
bounds for the independent set + knapsack instances, averaged across all in-
stances using shifted geometric mean (with shifts of 10 and 100 respectively).

a significant reduction in search tree size for 2 out of the 109 MIPLIB 2017
instances we examined, mine-166-5 and mine-90-10, but even in those cases
the overall solving time increased.

There are several reasons that may explain the lack of performance on this
benchmark set, and on arbitrary MIP instances in general. The first reason
is related to the decision diagram structure—the conflict graph in our case.
When the problem instance does not contain a conflict graph, no bound will
be generated. Otherwise, when a conflict graph is present, it may generate a
weak bound, which may happen in the following cases:

1. The conflict graph captures only a small number of constraints.
2. The convex hull of solutions feasible to the conflict graph is already close

to being an integral polyhedron. For instance, a conflict graph may be
composed of independent cliques, while other constraints tie them together.

3. The decision diagram relaxation is too weak (e.g., because the conflict
graph is sparse).

The second reason is related to the MIP search tree. For example, the MIP
solver may not generate sufficiently many search tree nodes of small enough
size for the bound generator to be called. Alternatively, the search tree nodes
that are pruned by the decision diagram bounds may simply be too small (i.e.,
represent a small subtree) in order to be effective.

The issues above may potentially be mitigated by considering other sub-
structures within the decision diagram, or by performing a better selection of
nodes at which to generate bounds. Despite these negative results on MIPLIB
2017, we emphasize that this method is valuable for instances in which the
conflict graph or substructure being leveraged plays an important role in the
problem (which may be detected a priori).



28 Christian Tjandraatmadja, Willem-Jan van Hoeve

8 Conclusion

Relaxed decision diagrams provide good approximations to certain classes of
discrete optimization problems, and in this paper we investigate an approach
to replicate this power for more general integer programming solvers. We ex-
plore approaches to answering two underlying questions in this work: how to
construct effective relaxed decision diagrams from integer programming mod-
els, and how to use them in order to improve the solving process of a MIP
solver.

In this paper, we construct relaxed decision diagrams for a specific sub-
structure of the problem, allowing for DP formulations, merging rules, and
variable ordering heuristics that take advantage of that structure. We apply
Lagrangian relaxation and constraint propagation to take into account any
other constraints. As one possible substructure, we propose the use of the
conflict graph, for which we introduce efficient and complete equivalence tests
within the construction of a decision diagram.

Once we have a procedure to construct a relaxed decision diagram that
heuristically approximates well the feasible set of an integer programming
model, the next step is to use it to aid the solving process. We investigate
the simple yet effective approach of using dual and primal bounds from these
decision diagrams to improve the pruning of the branch-and-bound tree. We
find that the bounds are effective both in a case where the entire problem
can be modeled as a decision diagram and in a case where it represents a
substructure. The decision diagram bounds are able to substantially reduce the
tree size in the independent set and independent-set-like instances we tested,
leading to a significant improvement in total solving time (roughly 1.6x faster
on average in the latter set of instances).

Although we limit our computational experiments to instances in which
the conflict graph plays an important role, we provide computational evidence
that modeling substructures of a more general problem with decision diagrams
can be effective. Handling substructures is particularly important in the case
of decision diagrams because, at their current methodological state, they tend
to capture well specific structures, but complex combinations of structures are
less explored. As decision diagram methodology for optimization evolves, we
will be able to better handle different classes of constraints, and our framework
allows us to expand the range of problems that decision diagrams can aid in
solving.

References

[1] T. Achterberg. “Conflict analysis in mixed integer programming”. In:
Discrete Optimization 4.1 (2007), pp. 4–20.

[2] T. Achterberg. “Constraint integer programming”. PhD thesis. Technis-
che Universität Berlin, 2009.



Incorporating Bounds from Decision Diagrams into Integer Programming 29

[3] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Pre-
solve reductions in mixed integer programming”. In: ZIB Report (2016),
pp. 16–44.

[4] S. B. Akers. “Binary decision diagrams”. In: IEEE Transactions on Com-
puters 100.6 (1978), pp. 509–516.

[5] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. “A con-
straint store based on multivalued decision diagrams”. In: Principles and
Practice of Constraint Programming–CP 2007. Springer, 2007, pp. 118–
132.

[6] B. Aspvall, M. F. Plass, and R. E. Tarjan. “A linear-time algorithm for
testing the truth of certain quantified boolean formulas”. In: Information
Processing Letters 8.3 (1979), pp. 121–123.

[7] A. Atamtürk, G. L. Nemhauser, and M.W. Savelsbergh. “Conflict graphs
in solving integer programming problems”. In: European Journal of Op-
erational Research 121.1 (2000), pp. 40–55.

[8] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. “BDDs in a branch
and cut framework”. In: Experimental and Efficient Algorithms. Springer,
2005, pp. 452–463.

[9] M. Behle. “Binary decision diagrams and integer programming”. PhD
thesis. Saarbrücken, Germany: Max Planck Institute for Computer Sci-
ence, 2007.

[10] F. Benhamou, D. A. McAllester, and P. Van Hentenryck. “CLP(Intervals)
Revisited”. In: Proceedings of ILPS. 1994, pp. 124–138.

[11] D. Bergman and A. A. Cire. “Decomposition based on decision dia-
grams”. In: International Conference on AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems. Springer.
2016, pp. 45–54.

[12] D. Bergman and A. A. Cire. “Discrete nonlinear optimization by state-
space decompositions”. In: Management Science 64.10 (2017), pp. 4700–
4720.

[13] D. Bergman, A. A. Cire, and W.-J. van Hoeve. “Improved constraint
propagation via lagrangian decomposition”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2015,
pp. 30–38.

[14] D. Bergman, A. A. Cire, and W.-J. van Hoeve. “Lagrangian bounds from
decision diagrams”. In: Constraints 20.3 (2015), pp. 346–361.

[15] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker. Decision
diagrams for optimization. Springer, 2016.

[16] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. “Discrete
optimization with decision diagrams”. In: INFORMS Journal on Com-
puting 28.1 (2016), pp. 47–66.

[17] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. “Optimiza-
tion bounds from binary decision diagrams”. In: INFORMS Journal on
Computing 26.2 (2013), pp. 253–268.

[18] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. “Variable
ordering for the application of BDDs to the maximum independent set



30 Christian Tjandraatmadja, Willem-Jan van Hoeve

problem”. In: International Conference on Integration of Artificial In-
telligence (AI) and Operations Research (OR) Techniques in Constraint
Programming. Springer. 2012, pp. 34–49.

[19] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. “BDD-based
heuristics for binary optimization”. In: Journal of Heuristics 20.2 (2014),
pp. 211–234.

[20] D. Bergman, W.-J. van Hoeve, and J. N. Hooker. “Manipulating MDD
relaxations for combinatorial optimization”. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems. Springer, 2011, pp. 20–35.

[21] R. E. Bryant. “Graph-based algorithms for boolean function manipula-
tion”. In: IEEE Transactions on Computers 100.8 (1986), pp. 677–691.

[22] A. A. Cire and W.-J. van Hoeve. “Multivalued decision diagrams for
sequencing problems”. In: Operations Research 61.6 (2013), pp. 1411–
1428.

[23] D. Davarnia and W.-J. van Hoeve. “Outer approximation for integer
nonlinear programs via decision diagrams”. Submitted.

[24] E. Davis. “Constraint propagation with interval labels”. In: Artificial
Intelligence 32.3 (1987), pp. 281–331.

[25] DIMACS maximum clique benchmark set. url: http://iridia.ulb.
ac.be/~fmascia/maximum_clique/DIMACS-benchmark.

[26] M. L. Fisher. “An applications oriented guide to Lagrangian relaxation”.
In: Interfaces 15.2 (1985), pp. 10–21.

[27] S. Hoda, W.-J. Van Hoeve, and J. N. Hooker. “A systematic approach
to MDD-based constraint programming”. In: International Conference
on Principles and Practice of Constraint Programming. Springer. 2010,
pp. 266–280.

[28] J. Kinable, A. A. Cire, and W.-J. van Hoeve. “Hybrid optimization meth-
ods for time-dependent sequencing problems”. In: European Journal of
Operational Research 259.3 (2017), pp. 887–897.

[29] Y.-T. Lai, M. Pedram, and S. B. Vrudhula. “EVBDD-based algorithms
for integer linear programming, spectral transformation, and function
decomposition”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 13.8 (1994), pp. 959–975.

[30] C.-Y. Lee. “Representation of switching circuits by binary-decision pro-
grams”. In: Bell System Technical Journal 38.4 (1959), pp. 985–999.

[31] L. Lozano and J. C. Smith. “A binary decision diagram based algorithm
for solving a class of binary two-stage stochastic programs”. In: Mathe-
matical Programming (2018), pp. 1–24.

[32] MIPLIB 2017. http://miplib.zib.de. 2018.
[33] R. J. O’Neil and K. Hoffman. “Decision diagrams for solving traveling

salesman problems with pickup and delivery in real time”. In: Operations
Research Letters 47.3 (2019), pp. 197–201.

[34] M. W. Savelsbergh. “Preprocessing and probing techniques for mixed
integer programming problems”. In: ORSA Journal on Computing 6.4
(1994), pp. 445–454.



Incorporating Bounds from Decision Diagrams into Integer Programming 31

[35] R. Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM
Journal on Computing 1.2 (1972), pp. 146–160.

[36] C. Tjandraatmadja and W.-J. van Hoeve. “Target cuts from relaxed
decision diagrams”. In: INFORMS Journal on Computing (2018). To
appear.

[37] D. J. Watts and S. H. Strogatz. “Collective dynamics of ‘small-world’
networks”. In: Nature 393.6684 (1998), p. 440.

[38] I. Wegener. Branching programs and binary decision diagrams: theory
and applications. Vol. 4. SIAM, 2000.



32 Christian Tjandraatmadja, Willem-Jan van Hoeve

A Additional computational observations

In this section, we report three additional experimental observations on the runs performed
in Section 7:

1. Percentage of time spent generating bounds and compiling decision diagrams (the former
is the latter plus any Lagrangian relaxation or primal bound computation);

2. Number of improving feasible solutions found by the primal heuristic.
3. Number of times that the bound generator was called (i.e. it met the criterion on sub-

problem size), that a bound resulted in an improvement over the LP bound at a node,
and that the improvement resulted in the node being pruned by bound;

Tables 4 through 9 in this section report the values described above. All averages of
the values above are done with arithmetic mean across the instances and random seeds
examined in Section 7. Note that the percentage of time spent on each portion of the method
are calculated via ratios of times summed up across all seeds and instances (or equivalently,
via ratios of arithmetic means).

B Experiments on MIPLIB 2017

We performed the following simple experiment on MIPLIB 2017 instances [32]. We took
the 109 instances with the tags ‘binary‘ and ‘benchmark_suitable‘ from MIPLIB 2017. For
these instances, we ran SCIP with bounds from relaxed decision diagrams, using a width
of 100 and generating them at subproblems where number of variables is at most 1000. We
chose a threshold that is not problem-dependent to avoid building large decision diagrams
in large problems.

We ran a first pass with the intention to filter out instances where our approach is
very unlikely to help. For this pass, we used a time limit of 30 minutes and one random
seed. Out of the 109 instances, there were only 38 of them where the bound generator was
called, or in other words, the solver did not observe a subproblem of size at most 1000
within the time limit of 30 minutes. Out of these 38 instances, in only 9 instances the
bound generator found a bound better than the LP bound at least 20 times. These were
the following 9 instances: bnatt400, eil33-2, eilC76-2, mine-166-5, mine-90-10, neos18,
ponderthis0517-inf, reblock115, reblock166.

In the second pass, we reran the same experiment for these 9 instances, but with five
random seeds and a higher time limit of 3 hours. We analyze the 4 instances of this subset
that did not hit the time limit for the runs with bounds from decision diagrams. We report
the solving times and number of nodes in Table 10, and number of bound improvements
(over LP) and pruning in Table 11.

In all cases, the overhead of generating bounds increases the solving time, sometimes
substantially. However, for the instances mine-166-5 and mine-90-10, we do obtain relevant
reductions in the number of nodes by 25.97% and 23.77% respectively. Moreover, we ob-
serve that in all four instances, a significant portion of bounds generated improve over the
corresponding LP bounds.



Incorporating Bounds from Decision Diagrams into Integer Programming 33

Density (%)
Percentage of
time on bound
generation (%)

Percentage of
time on DD

compilation (%)

Number of
primal

improvements

10 68.61 65.07 2.26
20 60.90 58.72 3.15
30 39.96 38.33 2.31
40 15.61 14.99 1.75
50 2.72 2.69 1.31
60 0.88 0.87 1.41
70 0.47 0.46 1.47
80 0.20 0.20 0.30
90 0.09 0.09 0.31

Table 4: Percentage of time used for bound generation and number of times
an improving primal feasible solution was found for independent set instances
of size 150 from Section 7.1.

Density (%)
Number of
calls to

bound generator

Number of
improvements

Number of
prunings

10 5300.21 5041.30 5041.30
20 5912.15 3051.69 3051.69
30 915.35 423.02 423.02
40 199.87 75.02 75.02
50 54.77 2.95 2.95
60 50.65 1.32 1.32
70 46.36 1.52 1.52
80 18.42 0.29 0.29
90 1.44 0.31 0.31

Table 5: Number of times an improving bound was found or resulted in pruning
for independent set instances of size 150 from Section 7.1.



34 Christian Tjandraatmadja, Willem-Jan van Hoeve

Density (%)
Percentage of
time on bound
generation (%)

Percentage of
time on DD

compilation (%)

Number of
primal

improvements

40 35.67 33.98 3.04
50 20.26 19.11 2.50
60 5.20 4.94 1.55
70 0.72 0.71 1.74
80 0.35 0.35 0.37
90 0.07 0.07 0.62

Table 6: Percentage of time used for bound generation and number of times
an improving primal feasible solution was found for independent set instances
of size 300 from Section 7.1.

Density (%)
Number of
calls to

bound generator

Number of
improvements

Number of
prunings

40 11296.06 6692.04 5686.14
50 1808.46 1072.50 953.09
60 245.09 184.12 172.39
70 107.77 104.52 102.65
80 98.34 98.34 97.96
90 7.35 7.34 6.72

Table 7: Number of times an improving bound was found or resulted in pruning
for independent set instances of size 300 from Section 7.1.

Graph size
Percentage of
time on bound
generation (%)

Percentage of
time on DD

compilation (%)

Number of
primal

improvements

300 2.87 2.86 0.97
350 5.23 5.19 1.09
400 8.20 8.20 1.46
450 10.17 10.16 2.19

Table 8: Percentage of time used for bound generation and number of times an
improving primal feasible solution was found for independent set + knapsack
instances from Section 7.2.



Incorporating Bounds from Decision Diagrams into Integer Programming 35

Graph size
Number of
calls to

bound generator

Number of
improvements

Number of
prunings

300 192.86 190.51 188.87
350 567.40 564.95 563.30
400 1940.51 1939.24 1937.21
450 5639.30 5636.89 5633.71

Table 9: Number of times an improving bound was found or resulted in pruning
for independent set + knapsack instances from Section 7.2.

Solving time (s) Number of nodes
Instance MIP MIP + DD MIP MIP + DD

eil33-2 213.89 235.33 328.55 334.14
mine-166-5 161.46 664.70 2630.97 1947.59
mine-90-10 1119.07 7197.87 30864.59 23528.99
neos18 122.96 5084.48 2100.63 1972.28

Table 10: Solving time in seconds and number of nodes for a subset of MIPLIB
2017 instances.

Density (%)
Number of
calls to

bound generator

Number of
improvements

Number of
prunings

eil33-2 213.8 163.6 156.8
mine-166-5 1763.4 337.2 188.0
mine-90-10 20593.2 3244.0 2162.0
neos18 1655.8 152.4 112.4

Table 11: Number of times an improving bound was found or resulted in
pruning for a subset of MIPLIB 2017 instances.


