
Constraints manuscript No.
(will be inserted by the editor)

Lagrangian Bounds from Decision Diagrams

David Bergman · Andre A. Cire ·
Willem-Jan van Hoeve

Received: date / Accepted: date

Abstract Relaxed decision diagrams have recently been used in constraint
programming to improve constraint propagation and optimization reasoning.
In most applications, however, a decision diagram is compiled with respect to
a single combinatorial structure. We propose to expand this representation by
incorporating additional constraints in the decision diagram via a Lagrangian
relaxation. With this generic approach we can obtain stronger bounds from
the same decision diagram, while the associated cost-based filtering allows for
further refining the relaxation. Experimental results on the traveling salesman
problem with time windows show that the improved Lagrangian bounds can
drastically reduce solution times.

Keywords Decision Diagrams · Lagrangian Relaxation · Constraint
propagation

1 Introduction

Decision diagrams are compact graphical representations of Boolean functions,
originally introduced for applications in circuit design, and widely studied and

David Bergman
School of Business, University of Connecticut
One University Place, Stamford, CT 06901, United States of America
E-mail: david.bergman@business.uconn.edu

Andre A. Cire
Department of Management, University of Toronto Scarborough
1265 Military Trail, Toronto, ON M1C-1A4, Canada
E-mail: acire@utsc.utoronto.ca

Willem-Jan van Hoeve
Tepper School of Business, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
E-mail: vanhoeve@andrew.cmu.edu

2 David Bergman et al.

applied in computer science [22,1,12]. More recently, multivalued decision di-
agrams (MDDs) have been utilized to represent the solution set of discrete
optimization problems [3,4,17]. In order to address the (typically) exponen-
tially sized representation that the exact diagram yields, Andersen et al. [2]
introduced relaxed decision diagrams of a given maximum size. Constraint
propagation based on relaxed decision diagrams can be much stronger than
conventional domain propagation and has been shown to lead to orders of mag-
nitude search space (and time) reduction [19,13,7]. Relaxed MDDs have also
been studied for obtaining optimization bounds, both for stand-alone discrete
optimization problems [11,8,9] and in the context of constraint programming
[13].

In the context of constraint programming, one typically associates a de-
cision diagram with a specific global constraint that is defined on a subset
of variables (its scope). The decision diagram is then (usually) compiled with
respect to the combinatorial structure represented by that global constraint.
Other constraints that operate on the same variables, or a subset of them, can
then be used to subsequently refine and filter the decision diagram. Addition-
ally, if the objective function is defined on the same set of variables, we can
use the relaxed decision diagram to obtain an objective function bound, as
well as apply cost-based filtering to further refine the decision diagram.

Even when MDD-based constraint propagation reduces the search space,
the optimization bound may not be majorly impacted by the associated filter-
ing due to other constraints. This paper aims towards enhancing the inference
from other constraints directly into the objective function evaluation of the
MDD via a Lagrangian relaxation method. This allows for obtaining stronger
bounds than the original relaxation, which can in turn help to refine the MDD,
and ultimately reduce the search space.

Lagrangian relaxations have previously been incorporated in the context
of constraint propagation; Benoist et al. [5] and Khemmoudj et al. [21] provide
one of the earliest examples. In almost all cases, however, a Lagrangian relax-
ation is introduced for a specific global constraint or for a specific problem.
The aim of the present study is to provide a generic framework that utilizes
the structure of a decision diagram.

The remainder of the paper is organized as follows. First, in Section 2, a
brief background on Lagrangian relaxations is provided followed in Section 3
by necessary background on MDD relaxations. Section 4 describes how La-
grangian relaxations can be incorporated in MDD relaxations. An experimen-
tal evaluation is presented in Section 5, with a conclusion in Section 6.

2 Preliminaries

Notation. Let x = (x1, . . . , xn) be a set of n decision variables having finite
domainsD(x1), . . . , D(xn), respectively, withD = D(x1)×D(x2)×· · ·×D(xn).
Given an objective function f : D → R, a discrete optimization problem P =
(f, S, x,D) is a problem of the form {min f(x) : x ∈ S ∩ D}. The goal is to

Lagrangian Bounds from Decision Diagrams 3

find an assignment of values from D to the variables x within a feasible region
S that minimizes the objective f . We assume throughout this paper that there
is always at least one feasible solution (S ∩ D 6= ∅). The feasible region S is
traditionally described implicitly by a set of constraints, as in Problem (1):

min 5x1 + 7x2 + 10x3

s.t. alldifferent(x1, x2, x3) (1)

7x1 + 5x2 + 4x3 ≤ 51

x1 + x2 ≤ 6

x1, x2, x3 ∈ {1, 3, 6}.

The keyword alldifferent is a high-level constraint which enforces variables
x1, x2, x3 to be pairwise distinct, and appears in many constraint programming
models [25]. The problem above will be used as a running example throughout
this paper. It has an optimal solution value of 82 attained by the feasible
assignment (optimal solution) x = (3, 1, 6).

Relaxations. Generic solution methods for discrete optimization problems,
such as mathematical programming and constraint programming, typically
rely on relaxations. A relaxation for P is an alternative optimization prob-
lem PR = (fR, SR, x,DR), usually easier to solve than P, where ∀j, D(xj) ⊆
DR(xj), and any solution x that is feasible to P is also feasible to PR (i.e.
S ⊆ SR) and satisfies fR(x) ≤ f(x). Relaxations are useful for a variety of
purposes in optimization models [20], most often for providing bounds on the
optimal value. Such bounds can be used both for certifying the quality of a
feasible solution, and for reducing the search space in enumerative solution
procedures such as branch-and-bound and backtracking search. For instance,
a relaxation to Problem (1) may be the linear program

min 5x1 + 7x2 + 10x3

s.t.

3∑
i=1

yij = 1, j = 1, 2, 3

3∑
j=1

yij = 1, i = 1, 2, 3

xi = 1yi1 + 3yi2 + 6yi3, i = 1, 2, 3 (2)

7x1 + 5x2 + 4x3 ≤ 51

x1 + x2 ≤ 6

1 ≤ x1, x2, x3 ≤ 6

0 ≤ yij ≤ 1, i, j = 1, 2, 3

obtained by representing the convex hull of the alldifferent constraint in
linear form [20]. This linear program can be solved much more efficiently than

4 David Bergman et al.

the original problem and has an optimal value of 77, which in turn is a lower
bound on the optimal solution value of Problem (1).

Relaxations also have other uses in optimization besides providing opti-
mization bounds. In particular, solution methods in constraint programming
are fundamentally based on a relaxation of the original problem, the constraint
store. A constraint store accumulates inference from each individual constraint
processing, thereby encoding a global structure of the problem that can be
shared among constraints. In practice the constraint store is the domain store,
which is defined by the Cartesian product of variable domains (and hence so-
lutions in this relaxation are represented explicitely). Each constraint receives
the current set of variable domains and inference (or constraint propagation) is
carried out in the form of domain reductions. For instance, in Problem (1) the
initial domain store is D(x1)×D(x2)×D(x3) = {1, 3, 6}3. Propagation on the
constraint x1+x2 ≤ 6 results in the domain inference x1, x2 6= 6, which yields a
new set of tighter domains D′(x1)×D′(x2)×D(x3) = {1, 3}2×{1, 3, 6}. These
domains are then passed as input to other constraints, which will process them
in turn until a fixed point is reached. The lower bound on the objective func-
tion from the domain store relaxation at this point is 22, obtained by assigning
1 to all variables, although more filtering may be possible. If the alldifferent
is then processed and eliminates 1 and 2 from the domain of x3, the bound
becomes 72 achieve by assigning 1 to both x1 and x2, and assigning 6 to x3.

Lagrangian Relaxations. Another well-known relaxation for discrete optimiza-
tion problems in operations research is the Lagrangian relaxation. Lagrangian
relaxations were originally introduced for discrete optimization problems P
with S described at least partially by inequality constraints, i.e. P = {min f(x) :
gi(x) ≤ 0, i = 1, . . . ,m, x ∈ S′ ∩ D}. The Lagrangian relaxation of P results
from moving the inequality constraints to the objective, associating each with a
non-negative penalty or Lagrange multiplier λi. For any λ = (λ1, . . . , λm) ≥ 0,
the Lagrangian relaxation of P is

LP(λ) =

{
min f(x) +

m∑
i=1

λig
i(x) : x ∈ S′ ∩D

}
It follows that LP is a relaxation of P: the feasible region of LP contains

that of P (as LP has fewer constraints) and, for any feasible x ∈ S,

f(x) +
∑
i

λi · gi(x) ≤ f(x)

since gi(x) ≤ 0 and λi ≥ 0 for all i = 1, . . . ,m.
Different values of λ yield distinct relaxations. The problem L∗ of finding

the tightest Lagrangian relaxation, i.e.

L∗ = max
λ≥0
LP(λ),

is denoted by the Lagrangian dual. A number of methods exist for solving
the Lagrangian dual, all of which exploit the fact that maxλ≥0 LP(λ) is a

Lagrangian Bounds from Decision Diagrams 5

piecewise concave function on λ [15]. Examples include subgradient optimiza-
tion, cutting-plane algorithms, and bundle methods (the interested reader
is referred to a survey of techniques [23]). These methods are iterative, in
that consecutive problems LP(λ0),LP(λ1),LP(λ2), . . . are solved until the se-
quence λ0, λ1, λ2, . . . converges to a local or global optimal solution to the
Lagrangian dual. It is often the case that many iterations may be necessary
for convergence, and hence it is typically necessary that each LP(λi) can be
solved in a computationally efficient way.

Lagrangian relaxations have frequently been used to decompose models
for which some of the constraints are “easy” and others are “hard”. As an
illustration, a possible Lagrangian relaxation to Problem (1) is

min 5x1 + 7x2 + 10x3 + λ1(7x1 + 5x2 + 4x3 − 51) + λ2(x1 + x2 − 6)

s.t. alldifferent(x1, x2, x3) (3)

x1, x2, x3 ∈ {1, 3, 6}

which corresponds to the well-studied matching problem and can be solved
efficiently by a number of methods [24]. The optimal bound obtained from
Problem (3), after solving the Lagrangian dual, is 77 for λ1 = 1 and λ2 = 2.
This is the same value obtained from the linear programming relaxation (2), a
result which is theoretically expected [15]: If the relaxed inequality constraints
define a linear system Ax ≤ b, then

L∗ = {min f(x) : Ax ≤ b, x ∈ conv(S′ ∩D)} (4)

where conv(X) is the convex hull of a set X. In our example, the convex
hull of the alldifferent constraint in Problem (3) is represented exactly in
the linear program, and thus the Lagrangian bound matches that of a linear
relaxation.

Recently, Lagrangian methods have been generalized to optimization mod-
els described by highly structured languages [16], such as in constraint pro-
gramming and local search formulations. In that case, the semantics of each
constraint is exploited in order to reveal the degree to which a solution satisfied
or violates a constraint. For simplicity, in this paper we focus on problems that
can described, at least partially, by inequality constraints noting that many
concepts presented here have a natural extension to the more general setting
[16].

3 Relaxed Multivalued Decision Diagrams.

A multivalued decision diagram (MDD)M for a discrete optimization problem
P is a directed acyclic multigraph whose paths encode a set of solutions to
P. Given the n variables of the problem with domains D(x1), . . . , D(xn), the
nodes ofM are partitioned into n+1 layers L1, . . . , Ln+1, where L1 and Ln+1

are defined by single nodes: the root node r and the terminal t, respectively.
Each arc a inM is directed from a node in a layer Lj to the consecutive layer

6 David Bergman et al.

Lj+1 for some j which is specified by layer(a), and has a label val(a) ∈ D(xj)
that represents a value to be assigned to variable xj . An arc-specified path p =
(a1, a2, . . . , an) from r to t thereby encodes the solution xp = (x1, . . . , xn) =
(val(a1), val(a2), . . . , val(an)).

The set of solutions encoded by the paths of an MDD M is denoted by
Sol(M). In the context of optimization, each arc a ofM can be associated with
a cost c(a). The cost of a path p = (a1, . . . , an) is given by c(p) =

∑n
i=1 c(ai).

We denote the function c(.) by the MDD cost structure.

The diagrams in Figure 1 are examples of MDDs that encode solutions for
Problem (1). Each arc a has two values associated with it - the first is val(a)
and the second, in parentheses, is c(a).

An MDD M represents a relaxation for P = (f, S, x) if M underapproxi-
mates P; that is, S ∩D ⊆ Sol(M) and c(p) ≤ f(xp) for any path p in M for
which xp is feasible to P, i.e. xp ∈ S ∩ D. MDDs satisfying these conditions
are called relaxed MDDs. From this definition, a lower bound on the optimal
value of P is minp∈M c(p), which can be obtained in a straightforward way by
computing a shortest path from r to t with respect to the costs c(a) on arcs.
Figure 1a depicts a relaxed MDD for Problem (1), where its shortest path
value yields a lower bound of 77 (solution (1, 6, 3)). Notice that this bound is
also the same as the one obtained from Problems (2) and (3), although this
need not be the case in general.

A relaxed MDD for a problem P can be compiled either by a top-down algo-
rithm [9] or by an incremental refinement method [18]. The MDD in Figure 1a
was constructed via an incremental refinement algorithm [13]. Compilation
techniques rely on a recursive formulation of the problem (such as a dynamic
programming model) which do not require a linear inequality-based descrip-
tion of the constraints. MDD relaxations are obtained by limiting the width
of the diagram, i.e. the maximum number of nodes in any layer, according to
some input parameter W . For example, in Figure 1a we have W = 2. Larger
values for W allow for a more accurate representation of the problem and, in
general, tighter optimization bounds, though at a higher computational con-
struction cost, in terms of both time and memory. Optimization bounds from
relaxed MDDs were studied in problems such as set covering [11], maximum
independent set [9], and maximum cut [6].

Notice that MDDs, similar to domain store relaxations, are an extensional
solution encoding of an optimization problem, in that solution values are rep-
resented explicitly as opposed to an implicit representation given by other
models, for example IP models. Recent work in constraint programming has
exploited this property by using relaxed MDDs either as a constraint store
or to encode solutions for groups of highly-structured constraints, which may
improve the global knowledge about the problem and lead to significant speed
ups in search. Applications included systems of alldifferent constraints [2],
scheduling, [13], and timetabling constraints [14].

Lagrangian Bounds from Decision Diagrams 7

r

u1 u2

u3 u4

t

1 (5) 3 (15)

6 (42) 3 (21) 1 (7)

3 (30) 6 (60)

x1

x2

x3

(a) Original MDD.

r

u1 u2

u3 u4

t

1 (−2.5) 3 (10.5)

6 (51) 3 (25.5) 1 (10)

3 (30) 6 (60)

(b) Lagrangian MDD.

Fig. 1: Relaxed MDD for Problem (1). For each arc a, the number immediately
next to a represent the label val(a) and the number in parenthesis, the cost
c(a).

4 Lagrangian Bounds from MDDs

The underlying concept of the technique presented in this paper is to apply
Lagrangian methods to strengthen relaxed MDDs. This strengthening will be
reflected both in terms of the optimization bounds provided by the MDD and
in the set of solutions encoded by the diagram. Penalties are associated with
the constraints that are violated by the solutions of an MDD, which are in
turn incorporated into the MDD’s cost structure. The general properties of
a relaxed MDD are maintained, readily allowing for the application of the
techniques described in this paper with previous work that makes use of this
data structure (e.g., [6,9,13]).

Let P = (f, S, x,D) be a discrete optimization problem and M a relaxed
MDD for P. Let gi(x) =

∑n
j=1 g

i
j(xj), i = 1, . . . ,m be a set of m additively

separable functions, a class that includes, for example, linear functions. Assume
that gi(x) ≤ 0, i = 1, . . . ,m, for any feasible x ∈ S∩D, but some (or all) of the
constraints above may be violated by solutions in Sol(M) that are encoded in
M. Our results are based on the following Theorem.

Theorem 1 For any arc a with label val(a) originating from layer `(a) and
any λ = (λ1, λ2, . . . , λm) ≥ 0, let

cλ(a) = c(a) +

m∑
i=1

λig
i
`(a)(val(a)). (5)

Then M with redefined costs cλ is also a relaxed MDD:

∀λ ≥ 0,∀p ∈M : cλ(p) ≤ f(xp). (6)

8 David Bergman et al.

Additionally, the optimal Lagrangian dual on M never yields a bound worse
than the one obtained from the original cost structure:

min
p∈M

c(p) ≤ max
λ≥0

min
p∈M

cλ(p) ≤ min
x∈S∩D

f(x). (7)

Proof To show (6), let x ∈ S ∩ D be a feasible solution to P and take any
λ ≥ 0. Since the graphical structure of the MDD M was not modified, there
exists an arc-specified path p = (a1, . . . , an) from the root r to the terminal t
such that xp = (val(a1), . . . , val(an)) = x. Then

cλ(p) =

n∑
j=1

cλ(ai) =

n∑
j=1

(
c(ai) +

m∑
i=1

λig
i
j(val(aj))

)
(8)

=

n∑
i=1

c(ai) +

m∑
i=1

λi

 n∑
j=1

gij(val(ai))


= c(p) +

m∑
i=1

λig
i(x)

≤ f(xp)

since c(p) ≤ f(xp) by the definition of M and
∑m
i=1 λig

i(x) ≤ 0.
To show (7), let λ0 = (0, . . . , 0) and notice that

min
p∈M

c(p) = min
p∈M

cλ0
(p) ≤ max

λ≥0
min
p∈M

cλ(p).

Finally, let p∗ be the path inM that encodes an optimal solution of P and
λ∗ the optimal Lagrange multipliers. By inequality (6),

max
λ≥0

min
p∈M

cλ(p) = min
p∈M

cλ∗(p) ≤ cλ∗(p∗) ≤ f(xp∗) = min
x∈S∩D

f(x),

as desired, completing the proof of the inequalities in (7). ut

According to Theorem 1, we can incorporate any λ ≥ 0 into the cost
structure of M following rule (5) and the resulting MDD will also be relaxed
and may provide a stronger bound than the one obtained with the original
costs. Any set of inequalities which are valid for P can be incorporated into a
relaxed MDD M this way.

Example. Take Problem (1) again and the relaxed MDD M from Figure 1a.
Consider the following inequality constraints and their associated Lagrange
multipliers λ1 and λ2:

7x1 + 5x2 + 4x3 ≤ 51 (λ1) and x1 + x2 ≤ 6 (λ2)

Using relation (5) from Theorem 1, the arc costs in layer L1 should take into
account the penalties λ1 and λ2 over the constraint coefficients that have x1
in their scope. In particular, for the first layer we will take into account the

Lagrangian Bounds from Decision Diagrams 9

constants related to the right-hand sides of the inequalities. Thus, for each arc a
emanating from L1, the arc costs should be replaced by val(a)× (5+7λ1+λ2)−
51λ1 − 6λ2. Analogously, arc costs in layers L2 and L3 should be replaced by
val(a)× (7+5λ1+λ2) and val(a)× (10+4λ1), respectively. For instance, λ1 = 0
and λ2 = 1.5 give rise to the relaxed MDD depicted in Figure 1b. The shortest
path value is now 78.5 (solution (1, 6, 3)), tighter than the bounds provided by
(2) and (3). The optimal λ, obtained using a subgradient algorithm, is λ∗ =
(0, 1.6667) which yields a lower bound of 78.6667. Notice it is stronger than
the bound provided by the linear program (2), which was 77. Some insights
about the quality of the bound are provided in Section 4.2.

4.1 Cost-based filtering with Lagrangian Bounds

Given P = (f, S, x,D), let U∗ be an upper bound on the optimal objective
value which is identified through a primal heuristic or any other mechanism.
MDD cost-based filtering consists of removing arcs encoding only suboptimal
solutions, i.e. all arcs a for which c(p) > U∗ for any path p from r to t that tra-
verses a, since then f(xp) ≥ c(p) > U∗ for such paths. All arcs satisfying this
property can be identified in linear time in the size of the MDD by computing
the shortest path from r to any node and from t to any node, which can be
done within a single top-down and bottom-up pass, respectively. MDD cost-
based filtering reduces the size of the MDD, which in turn could be further
refined to strengthen the relaxation through incremental refinement algorithms
[18]. Having a more accurate relaxed MDD is paramount in branch-and-bound
procedures [6] and when enhancing inference in MDD-based constraint pro-
gramming methods [7,13].

The Lagrangian cost structure cλ could be directly used for cost-based
MDD filtering as well: If cλ(p) > U∗ for all paths p crossing an arc a in M,
then the arc a can be removed since, by Theorem 1, f(xp) ≥ cλ(p) > U∗.
The advantage in this case is that cλ(p) > c(p) may hold for some of the
paths p, thereby increasing the number of arcs filtered. For instance, notice
in Figure 1a that the single path going through arc (u3, t) has a value of 77,
while in Figure 1b that path has a value of 78.5.

We note that the penalties maximizing the Lagrangian dual over a relaxed
MDD will still be optimal after cost-based filtering, since the shortest path
will not be excluded. Nonetheless, it might be necessary to recompute the
optimal Lagrangian dual if the shortest path is perturbed due to incremental
refinement or branching, for example.

4.2 Strength of Bounds for the Linear Case

If the objective function and the dualized constraints are all linear, we can
obtain insights on the relative strength of the MDD Lagrangian bound in
comparison to other linear and/or Lagrangian relaxations of the problem. In

10 David Bergman et al.

this case, the cost structure of a relaxed MDD often directly represents the
contribution of each variable assignment to the objective function (see for
example [9,10]). Namely, if the objective f is given by f(x) = d1x1+· · ·+dnxn,
where d1, . . . , dn are scalars, then the cost structure c(a) = d`(a)×val(a) for all
arcs a inM always yields a valid MDD relaxation, as long as Sol(M) contains
all feasible solutions to the problem. Note also that c(p) = f(xp) for any path
p from r to t in the MDD.

To state our result, consider an MDD M and let shortpath poly(M)
be the shortest path polytope of M [4]. The shortest path polytope of M is
a linear program that models a shortest path problem from r to t defined
over the graphical structure of M, considering the MDD arc costs directly as
transition costs. It has been introduced for cut generation and for enhancing
branching in the context of mathematical programming [4].

GivenM, the shortpath poly(M) is formally described in (9). Let A and
U be the set of arcs and nodes, respectively, in M, with Aj denoting the set
of arcs emanating from nodes in layer j. Additionally, let δ+(u) = {a : a =
(u, v) for some v ∈ Llayer(u)+1} and δ−(u) = {a : a = (v, u) for some v ∈
Llayer(u)−1}. The shortpath poly(M) can be perceived as a network model
that assigns a variable fa to each a ∈ A, ensures that the number of units
entering the root and exiting the terminal both equals 1, requires that the
number of units directed into any other node equals the number of units di-
rected out of a node, and associates the value xj as a linear combination of
the units on the arcs in layer Lj , scaled by the associated val(.) labels.

∑
a∈δ+(r)

fa = 1

∑
a∈δ−(t)

fa = 1

∑
a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = 0, u ∈
n⋃
j=2

Lj (9)

xj =
∑
u∈Lj

∑
a∈δ+(u)

val(a)fa, j = 1, . . . , n

0 ≤ fa ≤ 1, a ∈ A

Theorem 2 Let P = (f, S, x,D) be a discrete optimization problem with a
linear objective function f and let M be a relaxed MDD with cost structure
c(.) directly encoding f . Assume the linear system Ax ≤ b must hold for all
x ∈ S ∩D. If we associate penalties λ with the inequalities Ax ≤ b and obtain
cλ according to (5), then

max
λ≥0

min
p∈M

cλ(p) =

min f(x)
s.t. Ax ≤ b

x ∈ shortpath poly(M)

 .

Lagrangian Bounds from Decision Diagrams 11

and the optimal duals associated with the constraints Ax ≤ b of the right-hand
side linear program correspond to λ values that maximize the MDD Lagrangian
dual.

Proof We have:

max
λ≥0

min
p∈M

cλ(p) = max
λ≥0

{
min c(p) + λt(Axp − b)

p ∈M

}
[by (8)]

= max
λ≥0

{
min f(x) + λt(Ax− b)

x ∈ Sol(M)

}
[since c(p) = f(xp)]

= max
λ≥0

{
min f(x) + λt(Ax− b)

x ∈ shortpath poly(M)

}
[By Behle[4]]

=

min f(x)
s.t. Ax ≤ b

x ∈ shortpath poly(M)

 ,

where the last equality follows from strong Lagrangian duality for linear pro-
grams (see, e.g., Hooker [20]).

Also from strong Lagrangian duality, the duals associated with the con-
straints Ax ≤ b of the last linear program define an optimal solution to the
previous program, maxλ≥0{f(x) +λt(Ax− b) : x ∈ shortpath poly(M)}. By
Behle [4], the extreme points of the projection of shortpath poly(M) over the
variables x (which are encoded by M) correspond exactly to Sol(M). Thus,
for any λ ≥ 0,{

min f(x) + λt(Ax− b)
x ∈ shortpath poly(M)

}
=

{
min f(x) + λt(Ax− b)

x ∈ Sol(M)

}
Hence, since there is an one-to-one correspondence between the paths p ∈

M and the set Sol(M), the optimal duals for Ax ≤ b in the last linear program
also define an optimal set of λ for the MDD Lagrangian dual problem. ut

Thus, the optimal Lagrangian bound can be equivalently obtained by “lin-
earizing” the MDD through a minimum-cost network flow formulation, adding
the dualized constraints back, and solving the linear program with the origi-
nal objective function. The quality of the bound in comparison to other linear
programming relaxations therefore depends on whether shortpath poly(M)
is tighter than the alternative linear formulation of the other constraints of the
problem (when projecting onto the same variable space). Indeed, this was the
case for relaxation (2) and the MDD bound in Section 4: The relaxed MDD
from Figure 1a was built considering the combinatorial structure of all con-
straints of P. In particular, alldifferent(x1, x2, x3) and 7x1+5x2+4x3 ≤ 51
are already satisfied by all paths in M, which explains why the MDD La-
grangian bound was strictly better than the one from relaxation (2).

This property could be particularly exploited in the context of constraint
programming. Research in relaxed MDDs has focused on encoding groups of
highly structured constraints, such as a system of alldifferent constraints

12 David Bergman et al.

[2], clique constraints [9], and the sequence constraint [7]. The correspond-
ing relaxed MDDs often provided a stronger bound than strengthened linear
programming relaxations of these problems, due in part to the fact that the
linear programming relaxations do not capture the combinatorial nature of
the constraints as well as the relaxed MDDs do.

Some final observations are in order. We note that an equivalent lower
bound of 78.6667 or better for Problem (1) could be obtained by incorporat-
ing the constraint 7x1 +5x2 +4x3 ≤ 51 into the Lagrangian subproblem of the
relaxation (3), though the resulting subproblem is not necessarily polynomi-
ally solvable (while the complexity of the MDD approach depends on the in-
put maximum width). In addition, we observed in computational experiments
that solving the Lagrangian dual to optimality was often much faster than
solving the linear program with shortpath poly(M) and the added dualized
constraints. This is due to the fact that optimizing a linear function over an
MDD is equivalent to a shortest path computation in a directed acyclic graph,
which takes time linear in the size of the MDD.

5 Computational Experiments

We embedded the Lagrangian techniques Section 4 in the MDD-based se-
quencing constraint present in Cire and van Hoeve [13]. That work introduced
a propagation mechanism for disjunctive scheduling based on MDDs, which
was incorporated into the state-of-the-art constraint-based scheduler ILOG
CP Optimizer as a new disjunctive global constraint. The MDD is used both
as a means for providing optimization bounds and for inference, in particular
by deducing precedence relations between tasks. It was shown that MDD-
based propagation for disjunctive scheduling can greatly improve the time to
solve single-machine problems to optimality (by several orders of magnitude
in many cases) [13].

The goal of this section is to provide a study case analyzing the performance
of these techniques when the MDDs are augmented with the Lagrangian meth-
ods presented in Section 4. All tests were performed with ILOG CP Optimizer
12.6 on an Intel Xeon E5346 with 32GB of RAM. The CP Optimizer param-
eters were modified to consider a time-limit of 1 hour, one thread, depth-first
search with default variable/value ordering, and extended filtering. The source
code has been made available for download 1.

As a test problem we selected the traveling salesman problem with time
windows (TSPTW): Given n cities with travel times tij given between each
pair of cities i, j, the problem asks for the tour through all cities in which each
city i is visited within a time window [ri, di] and the total time is minimized.
The TSPTW was formulated as the following constraint programming model
in ILOG CP Optimizer (some specific solver constructs were simplified for

1 http://www.andrew.cmu.edu/user/vanhoeve/mdd/

Lagrangian Bounds from Decision Diagrams 13

clarity):

min z

s.t. noOverlap({s1, . . . , sn} | {tij : ∀i, j}) (10)

z =

n∑
i=1

ti,next(si) (11)

si : intervalVar(ri, di), i = 1, . . . , n (12)

disjunctiveMDD({s1, . . . , sn}, {x1, . . . , xn}, z | {tij : ∀i, j},W) (13)

alldifferent(x1, . . . , xn) (14)

x1, . . . , xn ∈ {1, . . . , n} (15)

In the model above, constraints (10) to (12) represent the typical CP Op-
timizer TSPTW formulation, while constraints (13) to (15) add the special
MDD constraints. The model relies on interval variables si, each representing
the time a city i is visited. The global constraint (10) enforces that cities are
visited in sequence, and constraint (11) models the objective function using
the sum of element constraints ti,next(si). In particular, next(si) is a CP Opti-
mizer construct that evaluates to the index of the city immediately succeeding
city si in the sequence defined by noOverlap. The constraint (12) defines the
interval variables and enforces cities to be visited within their specified time
window. The disjunctive MDD global constraint (13) is semantically equiva-
lent to a noOverlap, but also receives as input the objective variable z, the
maximum allowed width W , and variables x, where each xi represents the i-th
city to be visited in the sequence. Constraint (14) is redundant and added to
enhance propagation and constraints (15) define the domain of variables x.

The disjunctiveMDD maintains a relaxed MDD of maximum width W de-
fined over variables x. Each layer Li is associated with variable xi, i = 1, . . . , n,
and hence an arc at layer Li assigns the i-th city to be visited. An example of
a relaxed MDD for a 3-city TSPTW instance is presented in Figure 2, with an
optimal tour of value 10 given by the sequence (2, 3, 1). The MDD is compiled
and filtered according to the same procedure in the previous study [13]. In
particular, let δ−(u) be the set of incoming arcs at a node u and let src(a) be
the source node of an arc a. The lower bound on the total travel time in the
relaxed MDD is given by mina∈δ−(t) V (a), where

V (a) =

{
0, if src(a) = r,
mina′∈δ−(src(a)),a′ 6=a(V (a′) + tval(a′),val(a)), otherwise.

In Figure 2, the lower bound on the total travel time is 8, given by the se-
quence (2, 3, 2). Bounds on the objective function and the projection of the
arcs onto the domains of variables x are passed to CP Optimizer. In addition,
the relaxed MDD is also used to deduce precedence relations that are commu-
nicated directly to the solver precedence graph. For instance, one can deduce
from the relaxed MDD in Figure 2 that city 1 can never be the first in the
sequence.

14 David Bergman et al.

Cities

City Time window ([ri, di])

1 [2,17]
2 [0,11]
3 [1,10]

Travel Times (tij)

1 2 3

1 - 6 5
2 7 - 4
3 6 4 -

r

u1 u2

u3 u4

t

2 3

1 3 2 1

3 2

1

x1

x2

x3

Fig. 2: Example of a relaxed MDD for a TSPTW instance.

Similar to the example above, often the shortest path in a relaxed MDD
violates the constraint that each city must be visited exactly once. This hap-
pens since the width required to represent an alldifferent constraint over
the x space is O(2n) [13]. In our MDD Lagrangian scheme we will penalize the
violation of this constraint by associating a Lagrange multiplier λi to the con-
dition

∑n
j=1(xj = i) = 1 for each i = 1, . . . , n. Notice that λ is not restricted

in sign in this case. In view of rule (5) from Theorem 1, the new lower bound
can be computed as mina∈δ−(t) Vλ(a), where

Vλ(a) =

{
λval(a) −

∑n
i=1 λi, if src(a) = r,

λval(a) + mina′∈δ−(src(a)),a′ 6=a(V (a′) + tval(a′),val(a)), otherwise.

The case src(a) = r accounts for the constant 1 in the right-hand side of
each equality. Also, since the dualized constraints are equalities, paths that do
not violate the tour constraint will have the same cost as the original objective
function. For example, in Figure 2 the shortest path for λ1 = −3, λ2 = 2, and
λ3 = 0 is (2, 3, 1) with a value of 10, which proves its optimality.

The computational experiments reported here consider the same 230 TSPTW
instances that were tested in Cire and van Hoeve [13] (the sets Dumas and
GendreauDumasExtended). We evaluate two versions: the original code [13]
and one where the cost structure of the relaxed MDD M was modified only
once at the root node of the backtrack search tree, and re-used throughout
the search. The optimal Lagrange multipliers were computed using the Kelly-
Cheney-Goldstein method [23]. This is an iterative cutting-plane approach
where existing multipliers are accumulated in a “bundle” and the next iterate
is obtained from a linear program formed from the elements of this bundle (in
this case solved using ILOG CPLEX 12.6). Although this technique typically
has a slow convergence rate, the technique does not require any parameter

Lagrangian Bounds from Decision Diagrams 15

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

W
ith

 L
ag

ra
ng

e
m

ul
tip

lie
rs

Without Lagrange multipliers

Scatter plot of optimality gap at the root node

Fig. 3: Scatter plot comparing the optimality gaps with and without the La-
grangian.

settings which is ideal for computational evaluation. Finally, the width of the
relaxed MDD was fixed to 128.

Figure 3 compares the optimality gap of the MDD relaxation with and
without the Lagrangian at the root node of the backtracking tree for all tested
instances. The optimality gap here is computed as 100 ∗ (b− r)/b, where r is
the bound at the root node and b is the best solution found for that instance
by either of the methods within the time limit. This figure shows who the
optimality gaps can improve substantially when Lagrangian multipliers are
incorporated for this problem class, which are up to 7 times better than the
bounds obtained originally.

The difference in the obtained bounds has a significant impact on total so-
lution times as well. Figure 4 depicts performance plots, comparing the num-
ber of solved instances versus time (in seconds in log-scale). Figure 5 shows
a scatter plot, where for each instance the time to solve with and without
the Lagrangian method is reported (again in seconds in log-scale); instances
below the diagonal are solved faster using the Lagrangian method. For the
easier instances almost no performance gains are realized, but as the solution
time for the instance grows the enhanced model utilizing Lagrange multipliers
prevails. In particular, adding the Lagrangian relaxation allows for 203 of the
instances to be solved as opposed to the previous number of 170, within the 1
hour time limit.

Figure 6 depicts, for each instance, how much time the Lagrangian scheme
spent on solving the Lagrangian dual using the Kelly-Cheney-Goldstein method
(black area) and the total solution time (gray area). Instances are sorted in
descending order of total solution times, and points for which the total time
was less than one second were discarded. In general, the impact on the La-

16 David Bergman et al.

 0

 50

 100

 150

 200

 0.01 0.1 1 10 100 1000 10000

N
um

be
r

of
 in

st
an

ce
s

so
lv

ed

Time (seconds)

Number of instances solved versus time

without Lagrangian
with Lagrangian

number of instances

Fig. 4: Performance plot comparing the MDD relaxation with and without the
Lagrangian. Times are on a log-log scale.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

W
ith

 L
ag

ra
ng

e
m

ul
tip

lie
rs

Without Lagrange multipliers

Scatter plot of times to solve instances (all instances)

Fig. 5: Scatter plot comparing the MDD relaxation with and without the
Lagrangian. Times are on a log-log scale.

grangian dual on the total time varies, though in many instances with large
times it dominated total solution time, as can be verified in Figure 6. We note
that in many cases for which the Lagrangian relaxation increased the solving
time, the relatively long solving time of Kelly-Cheney-Goldstein method was
the cause. We expect that a different (subgradient) optimization method may
yield better results in those cases. However, even using the slow to converge
Kelly-Cheney-Goldstein method can have a substantially positive effect on the
overall solution time.

Lagrangian Bounds from Decision Diagrams 17

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100

T
im

e
 (

s
e
c
o
n

d
s
)

Instance

Composition of Time

Total Time
Time in Lagrangian Dual

Fig. 6: Time composition of the Lagrangian method.

6 Conclusion

In this paper we introduced a generic approach for improving bounds from
relaxed decision diagrams by representing the impact of side constraints via a
Lagrangian relaxation. This allows for improving optimization reasoning in the
context of constraint programming with decision diagrams. The experimental
evaluation on a standard benchmark set of the TSP with time windows has
demonstrated that incorporating Lagrangian methods to decision diagram-
based optimization can lead to substantial savings in computation time.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27, 509–516
(1978)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on
multivalued decision diagrams. In: Proceedings of the 13th international conference on
Principles and practice of constraint programming. pp. 118–132. CP’07, Springer-Verlag,
Berlin, Heidelberg (2007)

3. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut frame-
work. In: Nikoletseas, S. (ed.) Experimental and Efficient Algorithms, Proceedings of
the 4th International Workshop on Efficient and Experimental Algorithms (WEA 05).
Lecture Notes in Computer Science, vol. 3503, pp. 452–463. Springer (2005)

4. Behle, M.: Binary Decision Diagrams and Integer Programming. Ph.D. thesis, Max
Planck Institute for Computer Science (2007)

5. Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange Relaxation and Constraint Pro-
gramming Collaborative Schemes for Travelling Tournament Problems. In: Proceedings
of the Third International Workshop on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR) (2001)

6. Bergman, D.: New Techniques for Discrete Optimization. Ph.D. thesis, Tepper School
of Business, Carnegie Mellon University (2013)

18 David Bergman et al.

7. Bergman, D., Cire, A.A., van Hoeve, W.J.: Mdd propagation for sequence constraints.
J. Artif. Intell. Res. (JAIR) 50, 697–722 (2014)

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the ap-
plication of bdds to the maximum independent set problem. In: Proceedings of the 9th
international conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems. pp. 34–49. CPAIOR’12, Springer-
Verlag, Berlin, Heidelberg (2012)

9. Bergman, D., Cire, A.A., Hoeve, W.J.v., Hooker, J.N.: Optimization bounds from binary
decision diagrams. INFORMS Journal on Computing 26(2), 253–268 (2014)

10. Bergman, D., Cire, A., van Hoeve, W.J., Yunes, T.: Bdd-based heuristics for binary
optimization. Journal of Heuristics 20(2), 211–234 (2014)

11. Bergman, D., van Hoeve, W.J., Hooker, J.: Manipulating MDD relaxations for com-
binatorial optimization. In: Achterberg, T., Beck, J. (eds.) Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Lec-
ture Notes in Computer Science, vol. 6697, pp. 20–35. Springer Berlin / Heidelberg
(2011)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers C-35, 677–691 (1986)

13. Cire, A.A., van Hoeve, W.J.: Multivalued Decision Diagrams for Sequencing Problems.
Operations Research 61(6), 1411–1428 (2013)

14. D. Bergman, A.A.C., van Hoeve, W.: Mdd propagation for sequence constraints. Journal
of Artificial Intelligence Research 50, 697–722 (2014)

15. Fisher, M.L.: The lagrangian relaxation method for solving integer programming prob-
lems. Manage. Sci. 50(12 Supplement), 1861–1871 (Dec 2004)

16. Fontaine, D., Michel, L., Van Hentenryck, P.: Constraint-based lagrangian relaxation.
In: O’Sullivan, B. (ed.) Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, vol. 8656, pp. 324–339. Springer International Publishing
(2014)

17. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using binary
decision diagrams. Tech. rep., Carnegie Mellon University (2006)

18. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of
constraints into multivalued decision diagrams. In: Proceedings of the 14th international
conference on Principles and Practice of Constraint Programming. pp. 448–462. CP ’08,
Springer-Verlag, Berlin (2008)

19. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A Systematic Approach to MDD-Based Con-
straint Programming. In: Proceedings of CP. LNCS, vol. 6308, pp. 266–280. Springer
(2010)

20. Hooker, J.N.: Integrated Methods for Optimization (International Series in Operations
Research & Management Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2nd edn. (2012)

21. Khemmoudj, M., Bennaceur, H., Nagih, A.: Combining arc-consistency and dual la-
grangean relaxation for filtering csps. In: Barták, R., Milano, M. (eds.) Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Lecture Notes in Computer Science, vol. 3524, pp. 258–272. Springer Berlin
Heidelberg (2005)

22. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Sys-
tems Technical Journal 38, 985–999 (1959)

23. Lemaréchal, C.: Lagrangian relaxation. In: Jnger, M., Naddef, D. (eds.) Computational
Combinatorial Optimization, Lecture Notes in Computer Science, vol. 2241, pp. 112–
156. Springer Berlin Heidelberg (2001)

24. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1982)

25. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier
(2006)

