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1. Motivation for using Lagrangian Relaxations in CP
2. Lagrangian-based domain filtering

– Example: Traveling Salesman Problem
3. Relaxed Decision Diagrams

– Example: Disjunctive Scheduling
4. Lagrangian Propagation

– Improve communication between constraints

Acknowledgements: Presentations from Andre Cire and Hadrien Cambazard
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Lagrangian Relaxation
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Lagrangian Relaxation

3

Move subset (or all) of constraints into the objective with 
‘penalty’ multipliers μ:

Weak duality: for any choice of μ, Lagrangean L(μ) provides 
a lower bound on the original LP
Goal: find optimal μ (providing the best bound) via
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• Can be applied to nonlinear programming problems (NLPs), LPs, 
and in the context of integer programming

• Can provide better bounds than LP relaxation:
zLP ≤ zLagr ≤ zIP

• Provides domain filtering analogous to that based on LP duality
• Can be efficiently and/or heuristically solved
• Lagrangian relaxation can dualize ‘difficult’ constraints

– Can exploit the problem structure, e.g., the Lagrangian relaxation may 
decouple, or L(μ) may be very fast to solve combinatorially

Lagrangian Relaxations are Awesome

4
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Example Application: TSP

• Visit all vertices exactly once, with minimum total distance

5

Graph G = (V,E) with vertex set V 
and edge set E

|V| = n

w(i,j): distance between i and j
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CP model for the TSP (version 1)

• Permutation model
– variable xi represents the i-th city to be visited
– introduce copy of vertex 1: vertex n+1 

min z
s.t. z = ∑i w(xi, xi+1)

alldifferent(x1, …, xn)
xn+1 = x1

6
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min z
s.t. z = ∑i=1..4 w(xi, xi+1) (1)

alldifferent(x1, …, x4) (2)
x5 = x1 (3)

CP Solving
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Variable domains:
D(z) = { 0..inf }
D(xi) = {1,2,3,4}  for i=1,…,5

Propagate (1) to update D(z) = {16,..,36}
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min z
s.t. z = ∑i=1..4 w(xi, xi+1) (1)

alldifferent(x1, …, x4) (2)
x5 = x1 (3)

CP Solving – cont’d

8

Propagate (2) :
D(x2) = {2,3,4}
D(x3) = {2,3,4}
D(x4) = {2,3,4}

Propagate (3) :
D(x5) = {1}

Propagate (1) : no updates 

x1 = 1 x1 ≠ 1
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x1 = 1 x1 ≠ 1

x2 = 2 x2 ≠ 2

x3 = 3 x3 ≠ 3

min z
s.t. z = ∑i=1..4 w(xi, xi+1) (1)

alldifferent(x1, …, x4) (2)
x5 = x1 (3)

CP Solving – cont’d

9

D(x4) = {4}
D(z) = {27}

94

6

8

7

5

1

3 4

2



Tepper School of Business • William Larimer Mellon Founder

• Objective is handled separately from constraints
• Interaction via domain propagation only
• Weak bounds

Drawback of first CP Model

10
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Other CP models for the TSP

• Successor model
– variable nexti represents the immediate successor of city i

min z = ∑i w(i, nexti)
s.t. alldifferent(next1, …, nextn)

path(next1, …, nextn)

11
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Other CP models for the TSP

• Successor model
– variable nexti represents the immediate successor of city i

min z = ∑i w(i, nexti)
s.t. alldifferent(next1, …, nextn)

path(next1, …, nextn)

• Integrated model using ‘optimization’ constraint
min z
s.t. alldifferent(next1, …, nextn) [redundant]

WeightedPath(next, w, z)

11

objective and constraints 
still decoupled

[Focacci et al., 1999, 2002]
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• WeightedPath(next, w, z)
– Ensures that variables nexti represent a Hamiltonian path

such that the total weight of the path equals variable z

• Benefits:
– Stronger bounds from constraint structure, e.g., based on LP relaxation
– ‘Cost-based’ domain filtering:

if nexti=v leads to path of weight > max(D(z)), remove v from D(nexti)

Optimization Constraint

12
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• Observe that the TSP is a combination of two constraints
– The degree of each node is 2
– The solution is connected (no subtours)

• Relaxations:
– relax connectedness: Assignment Problem
– relax degree constraints: 1-Tree Relaxation

Relaxations for TSP

13
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• Relax the degree constraints [Held & Karp, 1970, 1971]

– E.g., minimum spanning tree (has n-1 edges)

1-Tree Relaxation

14

P.S. An MST can be found in O(m α(m,n)) time
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• Relax the degree constraints [Held & Karp, 1970, 1971]

– E.g., minimum spanning tree (has n-1 edges)
– 1-Tree extends this with one more edge

• Choose any node v (which is called the 1-node)
• Build a minimum spanning tree T on G = (V\{v}, E)
• Add the smallest two edges linking v to T

1-Tree Relaxation
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• Relax the degree constraints [Held & Karp, 1970, 1971]
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Improved 1-Tree: Lagrangian relaxation

15

Let binary variable xe represent whether edge e is used
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Improved 1-Tree: Lagrangian relaxation

15

Let binary variable xe represent whether edge e is used

Lagrangian multipliers πi
(penalties for node degree 
violation)
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Held-Karp Bound
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Held-Karp Bound

16

How to find the best penalties π ?
• In this case, we can exploit a 

combinatorial interpretation
• No need to solve an LP
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• Find minimum 1-tree T w.r.t. w’(i,j) = w(i,j) – πi – πj

• Lower bound: cost(T) + 2 ∑i πi

• If T is not a tour, update multipliers as
πi += (2-degree(i) )*β

and repeat

(step size β different per iteration)

Held-Karp Iteration

17

π1
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π2
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Example

18

bound: 22

β = 2
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Example
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Example

18
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Cost-based propagation?
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• We need to reason on the graph structure
– manipulate the graph, remove costly edges, etc.

• Not easily done with ‘next’ and ‘position’ variables
– e.g., how can we enforce that a given edge e=(i,j) is 

mandatory?
• Ideally, we want to have access to the graph rather than 

local successor/predecessor information
– modify definition of our global constraint

Embed 1-Tree in CP

19
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Integrated model based on graph representation
min z
s.t. weighted-circuit(X, G, z)

• G=(V,E,w) is the graph with vertex set V, edge set E, weights w
• Set of binary variables X = { xe | e ∊ E } representing the tour

– In CP, X can be modeled using a ‘set variable’
• Variable z represents the total weight

One more CP model for the TSP

20

[Benchimol et al. 2012]
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• Given constraint

weighted-circuit( X, G, z)

• Apply the Held-Karp relaxation to
– remove sub-optimal edges (xe = 0), 

i.e., total weight > max(D(z))
– force mandatory edges (xe = 1)
– update bounds of z

Propagation

21
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• Given constraint

weighted-circuit( X, G, z)

• Apply the Held-Karp relaxation to
– remove sub-optimal edges (xe = 0),     

i.e., total weight > max(D(z))
– force mandatory edges (xe = 1)
– update bounds of z

• Effectiveness depends on multipliers!
[Sellmann, 2004]

Propagation

22

Suppose D(z) = {25}



Tepper School of Business • William Larimer Mellon Founder

• Given constraint

weighted-circuit( X, G, z)

• Apply the Held-Karp relaxation to
– remove sub-optimal edges (xe = 0),     

i.e., total weight > max(D(z))
– force mandatory edges (xe = 1)
– update bounds of z

• Effectiveness depends on multipliers!
[Sellmann, 2004]

Propagation

22

bound: 25

0

-1.5

0

1.5

7.55.5

6

6.5

7

6.5

Suppose D(z) = {25}



Tepper School of Business • William Larimer Mellon Founder

• Given constraint

weighted-circuit( X, G, z)

• Apply the Held-Karp relaxation to
– remove sub-optimal edges (xe = 0),     

i.e., total weight > max(D(z))
– force mandatory edges (xe = 1)
– update bounds of z

• Effectiveness depends on multipliers!
[Sellmann, 2004]

Propagation
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Suppose D(z) = {25}

[Benchimol et al. 2010, 2012] [Regin et al. 2010]
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Impact of Propagation (st70 from TSPLIB)

23

upper bound = 700
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Impact of Propagation (st70 from TSPLIB)

23

upper bound = 700 upper bound = 675
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Impact on Complete (Exact) Solver

24

randomly generated symmetric TSPs, time limit 1800s
average over 30 instances per size class
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Impact on Complete (Exact) Solver

24

randomly generated symmetric TSPs, time limit 1800s
average over 30 instances per size class

Extended to ATSP [Fages & Lorca, 2012] and degree-constraint MST [Fages et al., 2016]
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• TSP [Caseau et al., 1997]
• TSPTW [Focacci et al., 2000, 2002]
• Traveling Tournament Problem [Benoist et al., 2001]
• Capacitated Network Design [Sellmann et al., 2002]
• Automated Recording Problem [Sellmann et al, 2003]
• Network Design [Cronholm et al, 2004]
• Resource-Constrained Shortest Path Problem [Gellermann et al., 2005] [Gualandi, 2012]
• Personnel Scheduling [Menana et al., 2009]
• Multileaf Sequencing Collimator [Cambazard et al., 2009]
• Parallel Machine Scheduling [Edis et al., 2011]
• Traveling Purchaser Problem [Cambazard, 2012]
• Empirical Model Learning [Lombardi et al., 2013]
• NPV in Resource-Constrained Projects [Gu et al., 2013]

Many More Applications

25
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• Sequencing and scheduling of activities on a resource

• Activities
– Processing time: pi

– Release time: ri

– Deadline: di

• Resource
– Nonpreemptive
– Process one activity at a time

Disjunctive Scheduling / Sequencing

26

Activity 1

Activity 2

Activity 3

0 1 2 3 4
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• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions
– Makespan
– Sum of setup times
– (Weighted) sum of completion times
– (Weighted) tardiness
– number of late jobs
– …

Variants and Extension

27
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• Precedence relations between activities

• Sequence-dependent setup times

• Various objective functions
– Makespan
– Sum of setup times
– (Weighted) sum of completion times
– (Weighted) tardiness
– number of late jobs
– …

Variants and Extension

27

Includes:
– TSP with time windows
– single-machine scheduling
– sequential ordering problem
– …
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Running Example

28

• 3 tasks to perform on a machine

• Each task has a processing time and a 
release time

• The machine can perform at most one 
task at a time, non-preemptively

• Objective: minimize completion time

2

4

3

r = 2

r = 1

r = 1

Tasks Release Date
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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min Cmax

s.t. NoOverlap(sj | pj : all j)
Cmax = max{s1+p1, …, sn+pn}
si ∈ {ri, ..., T}, all i

Conventional propagation
• Use Cartesian product of variable domains as relaxation
• Propagate domains to strengthen relaxation

CP Model

31
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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Relaxed Decision Diagram
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• Obtain optimization bounds (as LP relaxations do)

• As an inference mechanism
– For example, as global constraints in CP (MDD-based CP)

• To guide search (in new branch-and-bound methods)

Uses of Relaxed Decision Diagrams

38
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Issues
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for all tasks i
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min z = shortest path
s.t. ∑e|v(e)=i xe = 1,  for all tasks i

(+other problem constraints)

Remedy: Lagrangian Relaxation

41

[Bergman et al., 2015]
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min z = shortest path
s.t. ∑e|v(e)=i xe = 1,  for all tasks i

(+other problem constraints)

min z = shortest path + ∑i λi (1 - ∑e|v(e)=i xe )
s.t. (other problem constraints)

Remedy: Lagrangian Relaxation

41

Lagrangian multipliers λi

[Bergman et al., 2015]



Tepper School of Business • William Larimer Mellon Founder

min z = shortest path
s.t. ∑e|v(e)=i xe = 1,  for all tasks i

(+other problem constraints)

min z = shortest path + ∑i λi (1 - ∑e|v(e)=i xe )
s.t. (other problem constraints)

Remedy: Lagrangian Relaxation

41

Lagrangian multipliers λi

This is done by 
updating shortest 
path weights!

[Bergman et al., 2015]
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• We penalize infeasible solutions in a relaxed DD:
Any separable constraint of the form

f1(x1) + f2(x2) + … + fn(xn) ≤ c
that must be satisfied by solutions of an MDD can be dualized

• We need only to focus on the shortest path solution
– Identify a violated constraint and penalize
– Systematic way directly adapted from LP
– Shortest paths are very fast to compute

General Approach

42
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Improving Relaxed Decision Diagram
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Improving Relaxed Decision Diagram
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Improving Relaxed Decision Diagram
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Improving Relaxed Decision Diagram
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Improving Relaxed Decision Diagram
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Additional Filtering
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Additional Filtering
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• If minimum solution value through an 
arc exceeds max(D(z)) then arc can be 
deleted

• Suppose a solution of value 10 is 
known

• MDD filtering extends to Lagrangian 
weights: More filtering possible
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Impact on TSP with Time Windows
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Impact on TSP with Time Windows

49

(Constraints, 2015)TSPTW instances
(Dumas and GendreauDumasExtended)
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• Constraint propagation is CP’s major strength
– Rich modeling interface, fast domain filtering, “combinatorial 

programming”
• …but also its major weakness (when using domains)

– Cartesian product of variable domains is weak relaxation,
– Conventional domain propagation has limited communication power
– Propagating relaxed MDDs can help, but not in all cases

Beyond Single Optimization Constraints

50
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• Constraint propagation is CP’s major strength
– Rich modeling interface, fast domain filtering, “combinatorial 

programming”
• …but also its major weakness (when using domains)

– Cartesian product of variable domains is weak relaxation,
– Conventional domain propagation has limited communication power
– Propagating relaxed MDDs can help, but not in all cases

• Up next: Lagrangian Propagation instead of domain propagation
– Via Lagrangian decomposition [Bergman et al. CP2015], [Ha et al., CP2015]

Beyond Single Optimization Constraints

50



Tepper School of Business • William Larimer Mellon Founder

Lagrangian Decomposition
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[Guignard & Kim, 1987]
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Lagrangian Decomposition

51

[Guignard & Kim, 1987]

• Bound from Lagrangian Decomposition at least as strong as 
Lagrangian relaxation from either dualizing Ax ≤ b or Cx ≤ d
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Motivating CP Example
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• Constraint propagation has no effect here…
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Lagrangian Decomposition for CP
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Final Decomposition
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Final Decomposition
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sum gives upper bound
on satisfiability
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• Can be used for feasibility problems and optimization problems
– Synchronize the ‘support’ solutions within the constraints
– Systematic method to improve bounding in CP
– ‘Generic relaxation’

Final Decomposition

54
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• Can be used for feasibility problems and optimization problems
– Synchronize the ‘support’ solutions within the constraints
– Systematic method to improve bounding in CP
– ‘Generic relaxation’

• Extended cost-based domain filtering!

Final Decomposition

54

sum gives upper bound
on satisfiability
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• Consider Lagrangian Decomposition with subproblems j=1..m
– Let               be the objective value of j-th subproblem, subject to xi=v 

‘Global’ Lagrangian Domain Filtering
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• Consider Lagrangian Decomposition with subproblems j=1..m
– Let               be the objective value of j-th subproblem, subject to xi=v 

• We have, given lower bound B:

– If  ∑j < B  then v can be removed from D(xi)

‘Global’ Lagrangian Domain Filtering

55

E.g., for our example, we can deduce 
x1 ≠ a, x2 ≠ b, x3 ≠ c, x5 ≠ c 
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• Keep Lagrangian multipliers under control
– Apply to a select subset of constraints
– Can solve at root and keep multipliers fixed during search
– Optimality not required for Lagrangian relaxation

• Computing of zj |xi=v may be challenging
– Depends on constraint structure
– Can use relaxation of the constraint instead (any bound holds)
– Can use Relaxed Decision Diagram: Automatic extension

Discussion

56
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Systems of overlapping alldifferent constraints, with weighted sum as objective.
Each MDD represents a subset of constraints

Experimental Results: Alldifferent

57

root node bound improvement performance plot comparison
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Experimental Results: Set Covering

58

optimality gap
• Single MDD relaxation

– widths 2,000 and 2,0000

• Lagrangian Decomposition
– split constraints into multiple 

MDDs
• Problem instances with 

increasing bandwidth

• Lagrangian Decomposition 
much more stable!
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• Fontaine, Michel, Van Hentenryck [CP 2014]
• Ha, Quimper, Rousseau [CP 2015]
• Bergman, Cire, v.H. [CP 2015]

• Chu, Gange, Stuckey, “Lagrangian Decomposition via Sub-
problem Search” CPAIOR 2016
– Monday May 30, 10:45-12:00 session

More References
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Summary

60

• Lagrangian Relaxation and Decomposition provide systematic 
and efficient approach to
– improve optimization bounds in CP
– improve constraint propagation

• CP’s is ideal environment for automated Lagrangian relaxations
– problem is represented with building blocks (constraints) that 

communicate
– “combinatorial programming” 
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