

Lagrangian Relaxation in CP

Willem-Jan van Hoeve

CPAIOR 2016 Master Class

Tepper School of Business • William Larimer Mellon Founder

- 1. Motivation for using Lagrangian Relaxations in CP
- 2. Lagrangian-based domain filtering
 - Example: Traveling Salesman Problem
- 3. Relaxed Decision Diagrams
 - Example: Disjunctive Scheduling
- 4. Lagrangian Propagation
 - Improve communication between constraints

Acknowledgements: Presentations from Andre Cire and Hadrien Cambazard

Move subset (or all) of constraints into the objective with 'penalty' multipliers μ :

Move subset (or all) of constraints into the objective with 'penalty' multipliers μ :

min	$c^{T}x$	\longrightarrow	$L(\mu) =$	\min	$c^{T}x + \mu^{T}(b_2 - A_2x)$
s.t.	$A_1 x = b_1$			s.t.	$A_1 x = b_1$
	$A_2 x = b_2$				$x \ge 0$
	$x \ge 0$				

Weak duality: for any choice of μ , Lagrangean $L(\mu)$ provides a lower bound on the original LP

Move subset (or all) of constraints into the objective with 'penalty' multipliers μ :

Weak duality: for any choice of μ , Lagrangean $L(\mu)$ provides a lower bound on the original LP

Goal: find optimal μ (providing the best bound) via

 $\max_{\mu \ge 0} L(\mu)$

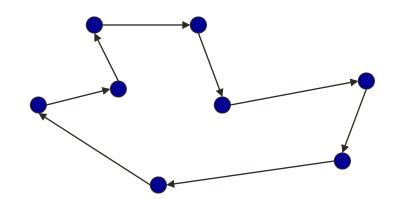
Lagrangian Relaxations are Awesome

- Can be applied to nonlinear programming problems (NLPs), LPs, and in the context of integer programming
- Can provide better bounds than LP relaxation:

 $Z_{LP} \leq Z_{Lagr} \leq Z_{IP}$

- Provides domain filtering analogous to that based on LP duality
- Can be efficiently and/or heuristically solved
- Lagrangian relaxation can dualize 'difficult' constraints
 - Can exploit the problem structure, e.g., the Lagrangian relaxation may decouple, or $L(\mu)$ may be very fast to solve combinatorially

• Visit all vertices exactly once, with minimum total distance



Graph G = (V,E) with vertex set V and edge set E

|V| = n

w(i,j): distance between i and j

CP model for the TSP (version 1)

- Permutation model
 - variable x_i represents the i-th city to be visited
 - introduce copy of vertex 1: vertex n+1

 $\begin{array}{ll} \mbox{min} & z \\ \mbox{s.t.} & z = \sum_i w(x_i, \, x_{i+1}) \\ & \mbox{alldifferent}(x_1, \, \dots, \, x_n) \\ & x_{n+1} = x_1 \end{array}$

CP Solving

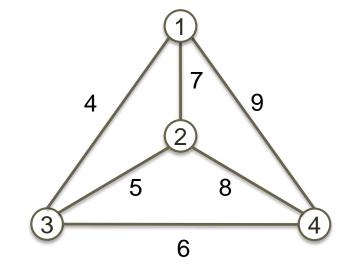
s.t. $z = \sum_{i=1..4} w(x_i, x_{i+1})$ (1) *alldifferent*($x_1, ..., x_4$) (2)

$$\mathbf{X}_5 = \mathbf{X}_1 \tag{3}$$

Variable **domains**:

 $D(z) = \{ 0..inf \}$ $D(x_i) = \{1,2,3,4\}$ for i=1,...,5

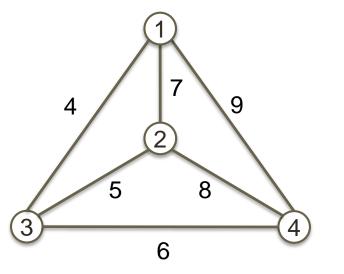
Propagate (1) to update $D(z) = \{16,...,36\}$

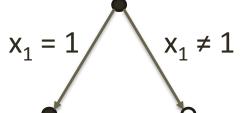


(1)

s.t. $z = \sum_{i=1..4} w(x_i, x_{i+1})$ all different $(x_1, ..., x_4)$ (2)

$$\mathbf{x}_5 = \mathbf{x}_1 \tag{3}$$





Propagate (2) : $D(x_2) = \{2,3,4\}$ $D(x_3) = \{2,3,4\}$ $D(x_4) = \{2,3,4\}$ Propagate (3): $D(x_5) = \{1\}$ Propagate (1) : no updates

min

Ζ

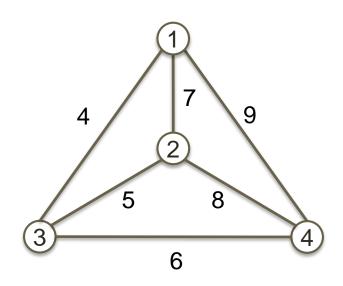
CP Solving – cont'd

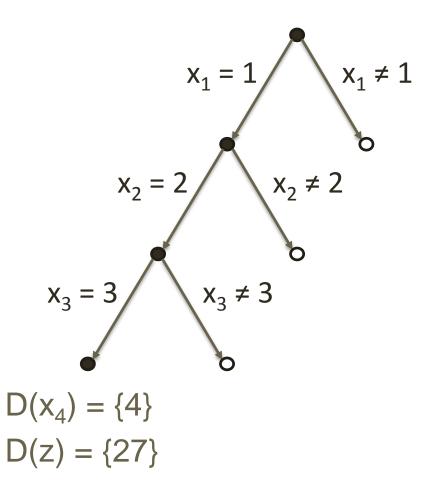
CP Solving – cont'd

min z

s.t.
$$z = \sum_{i=1..4} w(x_i, x_{i+1})$$
 (1)
alldifferent($x_1, ..., x_4$) (2)

$$\mathbf{x}_5 = \mathbf{x}_1 \tag{3}$$





- Objective is handled separately from constraints
- Interaction via domain propagation only
- Weak bounds

- Successor model
 - variable next_i represents the immediate successor of city i
 - min $z = \sum_i w(i, next_i)$
 - s.t. $alldifferent(next_1, ..., next_n)$ $path(next_1, ..., next_n)$

Other CP models for the TSP

- Successor model
 - variable next_i represents the immediate successor of city i
 - min $z = \sum_i w(i, next_i)$
 - s.t. $alldifferent(next_1, ..., next_n)$ $path(next_1, ..., next_n)$

objective and constraints
still decoupled

Other CP models for the TSP

- Successor model
 - variable next_i represents the immediate successor of city i
 - min $z = \sum_i w(i, next_i)$
 - s.t. $alldifferent(next_1, ..., next_n)$ $path(next_1, ..., next_n)$

- objective and constraints still decoupled
- Integrated model using 'optimization' constraint

[Focacci et al., 1999, 2002]

min z

s.t. $alldifferent(next_1, ..., next_n)$ [redundant] WeightedPath(next, w, z)

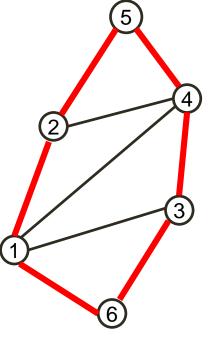
Optimization Constraint

- WeightedPath(next, w, z)
 - Ensures that variables next_i represent a Hamiltonian path such that the total weight of the path equals variable z
- Benefits:
 - Stronger bounds from constraint structure, e.g., based on LP relaxation
 - 'Cost-based' domain filtering:

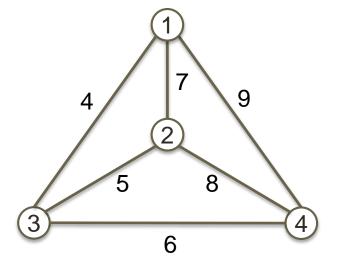
if next_i=v leads to path of weight > max(D(z)), remove v from D(next_i)

Relaxations for TSP

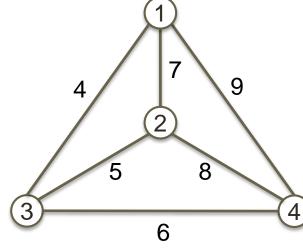
- Observe that the TSP is a combination of two constraints
 - The degree of each node is 2
 - The solution is connected (no subtours)
- Relaxations:
 - relax connectedness: Assignment Problem
 - relax degree constraints: 1-Tree Relaxation



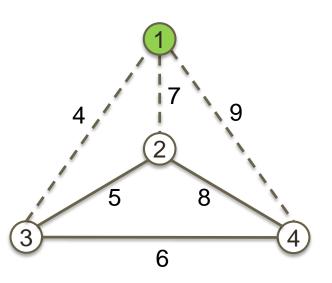
- Relax the degree constraints [Held & Karp, 1970, 1971]
 - E.g., minimum spanning tree (has n-1 edges)



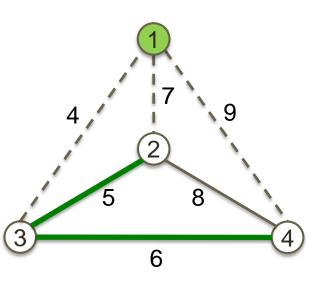
- Relax the degree constraints [Held & Karp, 1970, 1971]
 - E.g., minimum spanning tree (has n-1 edges)
 - -1-Tree extends this with one more edge
 - Choose any node v (which is called the 1-node)
 - Build a minimum spanning tree T on $G = (V \{v\}, E)$
 - Add the smallest two edges linking v to T



- Relax the degree constraints [Held & Karp, 1970, 1971]
 - E.g., minimum spanning tree (has n-1 edges)
 - -1-Tree extends this with one more edge
 - Choose any node v (which is called the 1-node)
 - Build a minimum spanning tree T on $G = (V \setminus \{v\}, E)$
 - Add the smallest two edges linking v to T



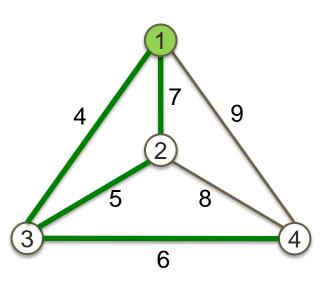
- Relax the degree constraints [Held & Karp, 1970, 1971]
 - E.g., minimum spanning tree (has n-1 edges)
 - -1-Tree extends this with one more edge
 - Choose any node v (which is called the 1-node)
 - Build a minimum spanning tree T on $G = (V \setminus \{v\}, E)$
 - Add the smallest two edges linking v to T



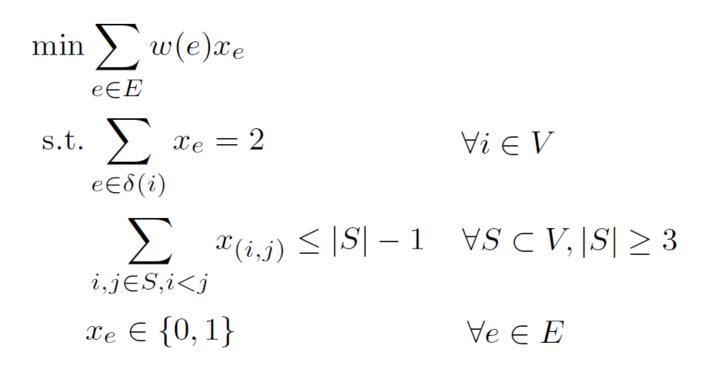
- Relax the degree constraints [Held & Karp, 1970, 1971]
 - E.g., minimum spanning tree (has n-1 edges)
 - -1-Tree extends this with one more edge
 - Choose any node v (which is called the 1-node)
 - Build a minimum spanning tree T on $G = (V \setminus \{v\}, E)$
 - Add the smallest two edges linking v to T

P.S. An MST can be found in $O(m \alpha(m,n))$ time

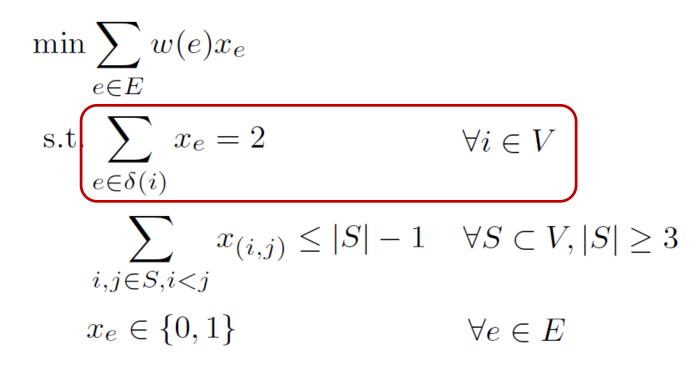
14



Let binary variable x_e represent whether edge e is used

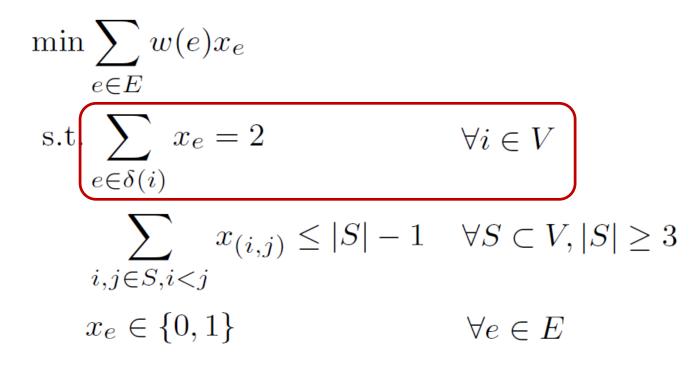


Let binary variable x_e represent whether edge e is used



Improved 1-Tree: Lagrangian relaxation

Let binary variable x_e represent whether edge e is used



Lagrangian multipliers π_i (penalties for node degree violation)

$$\min \sum_{e \in E} w(e) x_e + \sum_{i \in V \setminus \{1\}} \pi_i (2 - \sum_{e \in \delta(i)} x_e)$$

s.t.
$$\sum_{i,j \in S, i < j} x_{(i,j)} \le |S| - 1 \qquad \forall S \subset V \setminus \{1\}, |S| \ge 3$$

$$x_e \in \{0, 1\}$$

$$\min \sum_{e \in E} w(e)x_e + \sum_{i \in V \setminus \{1\}} \pi_i (2 - \sum_{e \in \delta(i)} x_e)$$

s.t.
$$\sum_{i,j \in S, i < j} x_{(i,j)} \le |S| - 1 \qquad \forall S \subset V \setminus \{1\}, |S| \ge 3$$
$$\sum_{e \in \delta(1)} x_e = 2$$
$$\sum_{e \in E} x_e = |V|$$
$$x_e \in \{0,1\}$$

$$\min \sum_{e \in E} w(e)x_e + \sum_{i \in V \setminus \{1\}} \pi_i (2 - \sum_{e \in \delta(i)} x_e) = \sum_{(i,j) \in E} (w(i,j) - \pi_i - \pi_j) x_{(i,j)} + 2 \sum_{i \in V} \pi_i$$

s.t.
$$\sum_{i,j \in S, i < j} x_{(i,j)} \le |S| - 1 \quad \forall S \subset V \setminus \{1\}, |S| \ge 3$$
$$\sum_{e \in \delta(1)} x_e = 2$$
$$\sum_{e \in E} x_e = |V|$$
$$x_e \in \{0,1\}$$

$$\min \sum_{e \in E} w(e) x_e + \sum_{i \in V \setminus \{1\}} \pi_i (2 - \sum_{e \in \delta(i)} x_e) = \sum_{(i,j) \in E} (w(i,j) - \pi_i - \pi_j) x_{(i,j)} + 2 \sum_{i \in V} \pi_i$$

s.t.
$$\sum_{i,j \in S, i < j} x_{(i,j)} \le |S| - 1 \quad \forall S \subset V \setminus \{1\}, |S| \ge 3$$

$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = |V|$$

 $x_e \in \{0, 1\}$

How to find the best penalties π ?

- In this case, we can exploit a combinatorial interpretation
- No need to solve an LP

Held-Karp Iteration

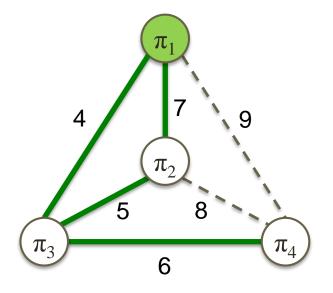
$$\min \sum_{(i,j)\in E} (w(i,j) - \pi_i - \pi_j) x_{(i,j)} + 2\sum_{i\in V} \pi_i$$

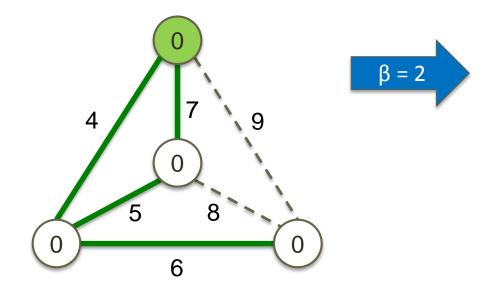
Find minimum 1-tree T w.r.t. $w'(i,j) = w(i,j) - \pi_i - \pi_j$

- Lower bound: $cost(T) + 2 \sum_{i} \pi_{i}$
- If T is not a tour, update multipliers as
 - $\pi_i += (2 \text{degree}(i))^*\beta$

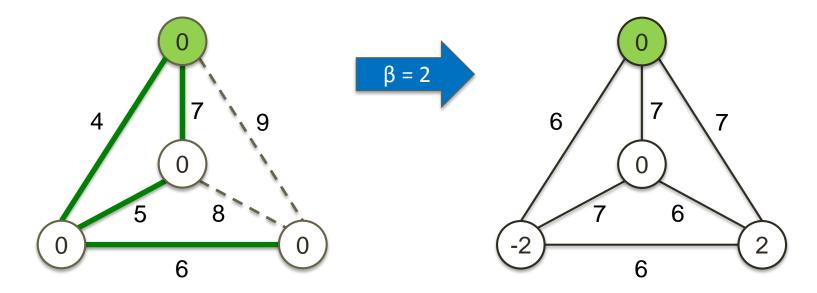
and repeat

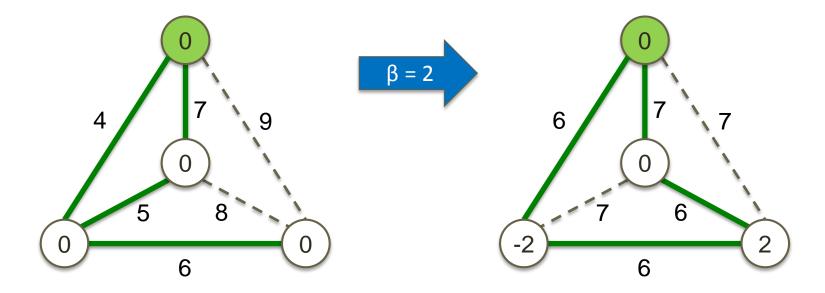
(step size β different per iteration)

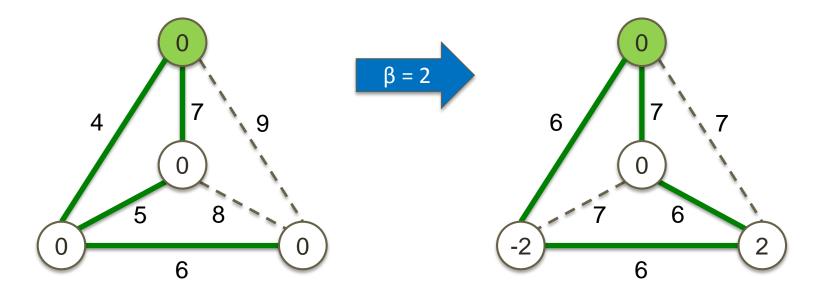








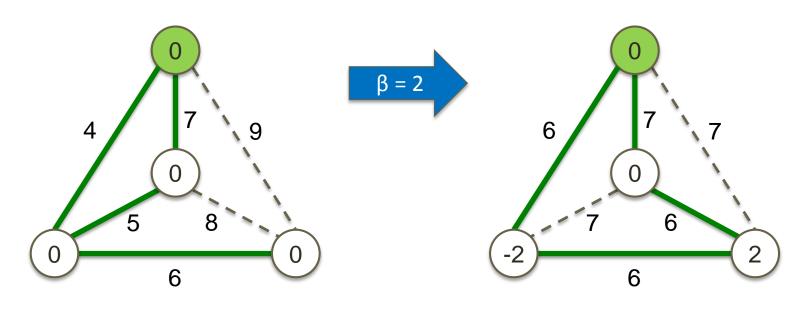




bound: 22

bound: 25 (optimal)

Example



Cost-based propagation?

bound: 22

bound: 25 (optimal)

- We need to reason on the graph structure – manipulate the graph, remove costly edges, etc.
- Not easily done with 'next' and 'position' variables
 - e.g., how can we enforce that a given edge e=(i,j) is mandatory?
- Ideally, we want to have access to the graph rather than local successor/predecessor information
 - modify definition of our global constraint

Integrated model based on graph representation

min z

- s.t. *weighted-circuit*(X, G, z)
- G=(V,E,w) is the graph with vertex set V, edge set E, weights w
- Set of binary variables X = { x_e | e ∈ E } representing the tour
 In CP, X can be modeled using a 'set variable'
- Variable z represents the total weight

[Benchimol et al. 2012]

• Given constraint

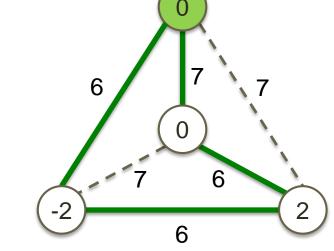
weighted-circuit(X, G, z)

- Apply the Held-Karp relaxation to
 - remove sub-optimal edges (x_e = 0),
 i.e., total weight > max(D(z))
 - force mandatory edges ($x_e = 1$)
 - update bounds of z

• Given constraint

weighted-circuit(X,G,z)

- Apply the Held-Karp relaxation to
 - remove sub-optimal edges $(x_e = 0)$, i.e., total weight > max(D(z))
 - force mandatory edges ($x_e = 1$)
 - update bounds of z



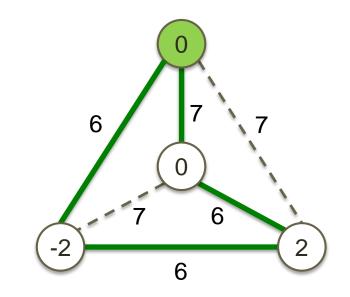
• Given constraint

weighted-circuit(X,G,z)

- Apply the Held-Karp relaxation to
 - remove sub-optimal edges $(x_e = 0)$, i.e., total weight > max(D(z))
 - force mandatory edges ($x_e = 1$)
 - update bounds of z

Suppose $D(z) = \{25\}$

bound: 25



• Effectiveness depends on multipliers! [Sellmann, 2004] Suppose $D(z) = \{25\}$

• Apply the Held-Karp relaxation to

- remove sub-optimal edges (x_e = 0),
 i.e., total weight > max(D(z))
- force mandatory edges ($x_e = 1$)
- update bounds of z

Given constraint

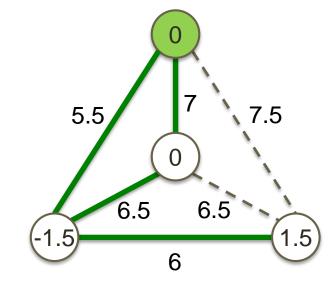
weighted-circuit(X,G,z)

Propagation

• Given constraint

weighted-circuit(X,G,z)

- Apply the Held-Karp relaxation to
 - remove sub-optimal edges $(x_e = 0)$, i.e., total weight > max(D(z))
 - force mandatory edges ($x_e = 1$)
 - update bounds of z
- Effectiveness depends on multipliers! [Sellmann, 2004]



bound: 25

Suppose $D(z) = \{25\}$

• Effectiveness depends on multipliers! [Sellmann, 2004] [Benchimol et al. 2010, 2012] [Regin et al. 2010]

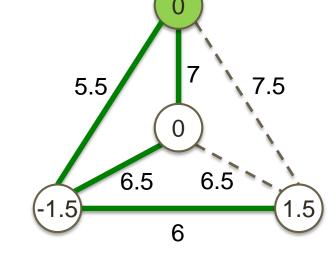
- remove sub-optimal edges ($x_{e} = 0$),
 - i.e., total weight > max(D(z))
 - force mandatory edges ($x_e = 1$)
 - update bounds of z

Propagation

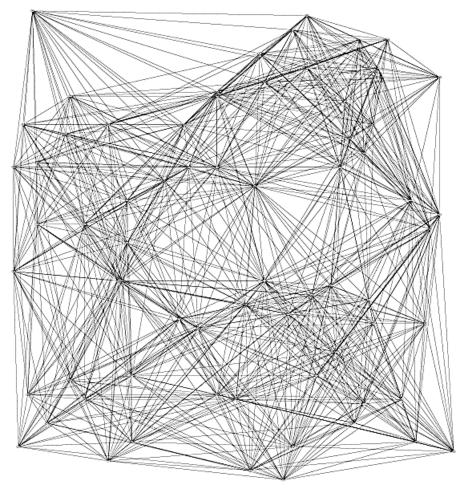
Given constraint

Suppose $D(z) = \{25\}$

bound: 25

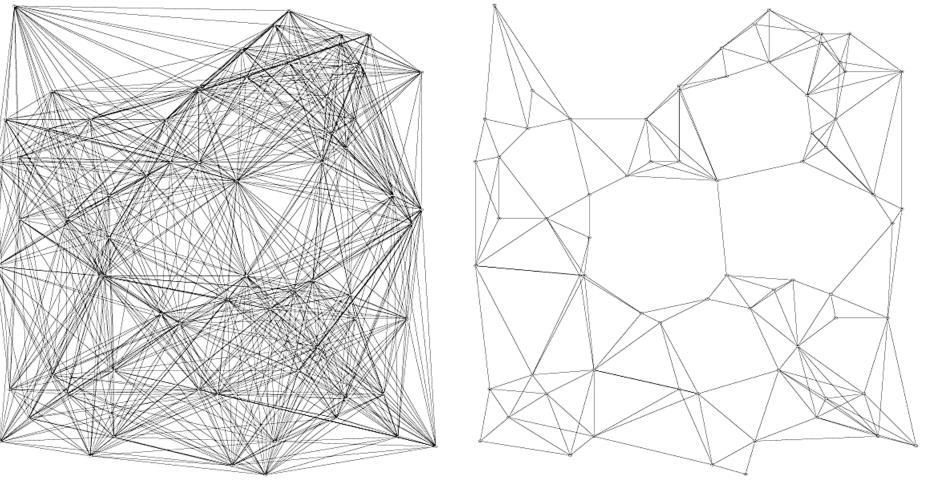


Impact of Propagation (st70 from TSPLIB)



upper bound = 700

Impact of Propagation (st70 from TSPLIB)



upper bound = 675

upper bound = 700

Impact on Complete (Exact) Solver

	1-tree no filtering			1-tree with filtering			Concorde		
size	solved	time	nodes/s	solved	time	nodes/s	solved	time	nodes/s
50	1.00	0.13	299.26	1.00	0.03	712.39	1.00	0.18	19.59
100	1.00	3.19	55.10	1.00	0.34	160.65	1.00	0.31	6.10
150	1.00	18.31	13.83	1.00	1.42	46.91	1.00	0.59	4.52
200	1.00	132.30	5.16	1.00	4.68	33.00	1.00	0.97	3.18
250	0.97	409.88	2.13	1.00	10.98	25.76	1.00	1.98	2.83
300	0.80	770.67	1.38	1.00	24.35	20.29	1.00	2.32	2.15
350	0.67	1,239.25	0.61	1.00	39.54	15.96	1.00	3.74	1.92
400	0.33	1,589.71	0.42	0.97	108.45	11.04	1.00	4.57	1.64
450	0.17	1,722.56	0.34	1.00	121.08	12.16	1.00	4.99	1.68
500	0.00	1,800.00	0.21	0.97	194.32	8.81	1.00	6.42	1.38
550	0.00	1,800.00	0.20	0.97	206.99	7.98	1.00	5.00	1.00

randomly generated symmetric TSPs, time limit 1800s

average over 30 instances per size class

Impact on Complete (Exact) Solver

	1-tree no filtering			1-tree with filtering				Concorde		
\mathbf{size}	solved	time	nodes/s	solved	time	nodes/s	solved	time	nodes/s	
$50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350$	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.97 \\ 0.80 \\ 0.67$	$\begin{array}{r} 0.13\\ 3.19\\ 18.31\\ 132.30\\ 409.88\\ 770.67\\ 1,239.25\end{array}$	$299.26 \\ 55.10 \\ 13.83 \\ 5.16 \\ 2.13 \\ 1.38 \\ 0.61$	$ \begin{array}{r} 1.00 \\ $	$\begin{array}{r} 0.03 \\ 0.34 \\ 1.42 \\ 4.68 \\ 10.98 \\ 24.35 \\ 39.54 \end{array}$	$712.39 \\160.65 \\46.91 \\33.00 \\25.76 \\20.29 \\15.96$	$ \begin{array}{r} 1.00 \\ $	$\begin{array}{c} 0.18 \\ 0.31 \\ 0.59 \\ 0.97 \\ 1.98 \\ 2.32 \\ 3.74 \end{array}$	$ \begin{array}{c} 19.59\\ 6.10\\ 4.52\\ 3.18\\ 2.83\\ 2.15\\ 1.92 \end{array} $	
$400 \\ 450 \\ 500 \\ 550$	$\begin{array}{c} 0.33 \\ 0.17 \\ 0.00 \\ 0.00 \end{array}$	1,589.71 1,722.56 1,800.00 1,800.00	$\begin{array}{c} 0.42 \\ 0.34 \\ 0.21 \\ 0.20 \end{array}$	$0.97 \\ 1.00 \\ 0.97 \\ 0.97$	$108.45 \\ 121.08 \\ 194.32 \\ 206.99$	$11.04 \\ 12.16 \\ 8.81 \\ 7.98$	$1.00 \\ 1.00 \\ 1.00 \\ 1.00$	$4.57 \\ 4.99 \\ 6.42 \\ 5.00$	$1.64 \\ 1.68 \\ 1.38 \\ 1.00$	

randomly generated symmetric TSPs, time limit 1800s

average over 30 instances per size class

Impact on Complete (Exact) Solver

	1-tree no filtering			1-tree with filtering			Concorde		
size	solved	time	nodes/s	solved	time	nodes/s	solved	time	nodes/s
$50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400$	$ \begin{array}{r} 1.00\\ 1.00\\ 1.00\\ 0.97\\ 0.80\\ 0.67\\ 0.33\end{array} $	$\begin{array}{r} 0.13\\ 3.19\\ 18.31\\ 132.30\\ 409.88\\ 770.67\\ 1,239.25\\ 1,589.71\end{array}$	$299.26 \\ 55.10 \\ 13.83 \\ 5.16 \\ 2.13 \\ 1.38 \\ 0.61 \\ 0.42$	$ \begin{array}{r} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 0.97 \end{array} $	$\begin{array}{r} 0.03 \\ 0.34 \\ 1.42 \\ 4.68 \\ 10.98 \\ 24.35 \\ 39.54 \\ 108.45 \end{array}$	$712.39 \\ 160.65 \\ 46.91 \\ 33.00 \\ 25.76 \\ 20.29 \\ 15.96 \\ 11.04$	$ \begin{array}{r} 1.00\\ 1.00$	$\begin{array}{c} 0.18\\ 0.31\\ 0.59\\ 0.97\\ 1.98\\ 2.32\\ 3.74\\ 4.57\end{array}$	$ \begin{array}{r} 19.59 \\ 6.10 \\ 4.52 \\ 3.18 \\ 2.83 \\ 2.15 \\ 1.92 \\ 1.64 \\ \end{array} $
$450 \\ 500 \\ 550$	$0.17 \\ 0.00 \\ 0.00$	1,722.56 1,800.00 1,800.00	0.42 0.34 0.21 0.20	1.00 0.97 0.97	$ \begin{array}{r} 100.40 \\ 121.08 \\ 194.32 \\ 206.99 \\ \end{array} $	$ 12.16 \\ 8.81 \\ 7.98 $	$1.00 \\ 1.00 \\ 1.00 $	$4.99 \\ 6.42 \\ 5.00$	1.64 1.68 1.38 1.00

randomly generated symmetric TSPs, time limit 1800s

average over 30 instances per size class

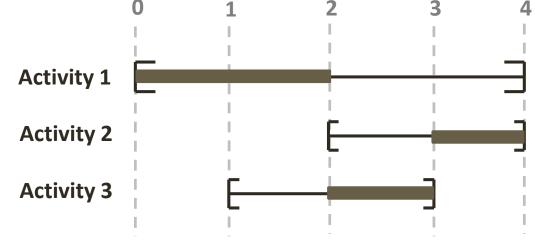
Extended to ATSP [Fages & Lorca, 2012] and degree-constraint MST [Fages et al., 2016]

Many More Applications

- TSP [Caseau et al., 1997]
- TSPTW [Focacci et al., 2000, 2002]
- Traveling Tournament Problem [Benoist et al., 2001]
- Capacitated Network Design [Sellmann et al., 2002]
- Automated Recording Problem [Sellmann et al, 2003]
- Network Design [Cronholm et al, 2004]
- Resource-Constrained Shortest Path Problem [Gellermann et al., 2005] [Gualandi, 2012]
- Personnel Scheduling [Menana et al., 2009]
- Multileaf Sequencing Collimator [Cambazard et al., 2009]
- Parallel Machine Scheduling [Edis et al., 2011]
- Traveling Purchaser Problem [Cambazard, 2012]
- Empirical Model Learning [Lombardi et al., 2013]
- NPV in Resource-Constrained Projects [Gu et al., 2013]

Disjunctive Scheduling / Sequencing

- Sequencing and scheduling of activities on a resource
- Activities
 - Processing time: p_i
 - Release time: r_i
 - Deadline: d_i
- Resource
 - Nonpreemptive
 - Process one activity at a time



Variants and Extension

- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
 - Makespan
 - Sum of setup times
 - (Weighted) sum of completion times
 - (Weighted) tardiness
 - number of late jobs

- ...

Variants and Extension

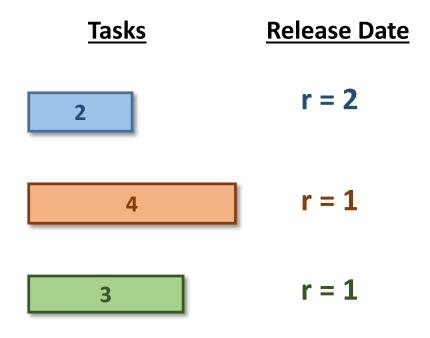
- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
 - Makespan
 - Sum of setup times
 - (Weighted) sum of completion times
 - (Weighted) tardiness
 - number of late jobs

Includes:

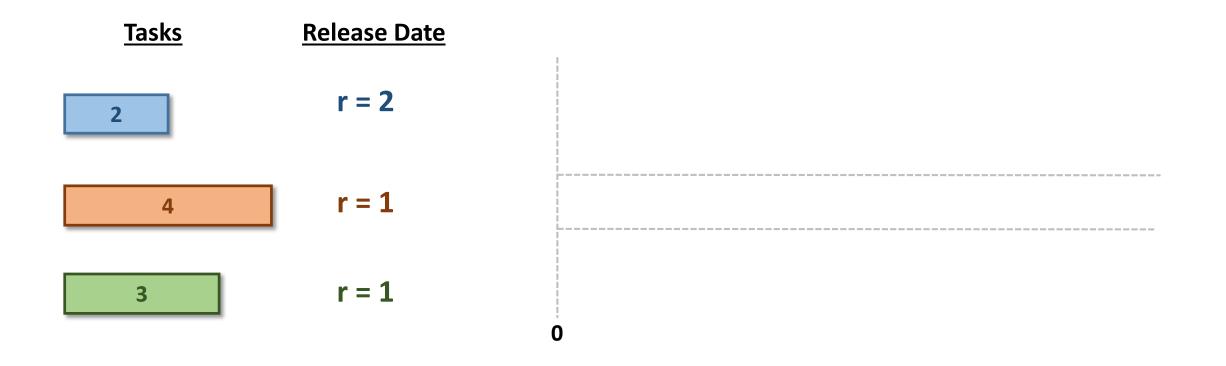
- TSP with time windows
- single-machine scheduling
- sequential ordering problem

- ...

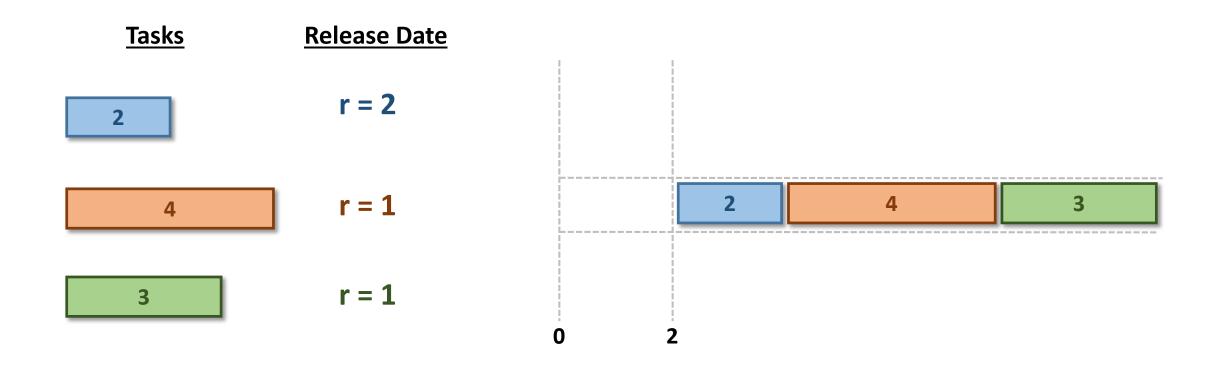
. . .

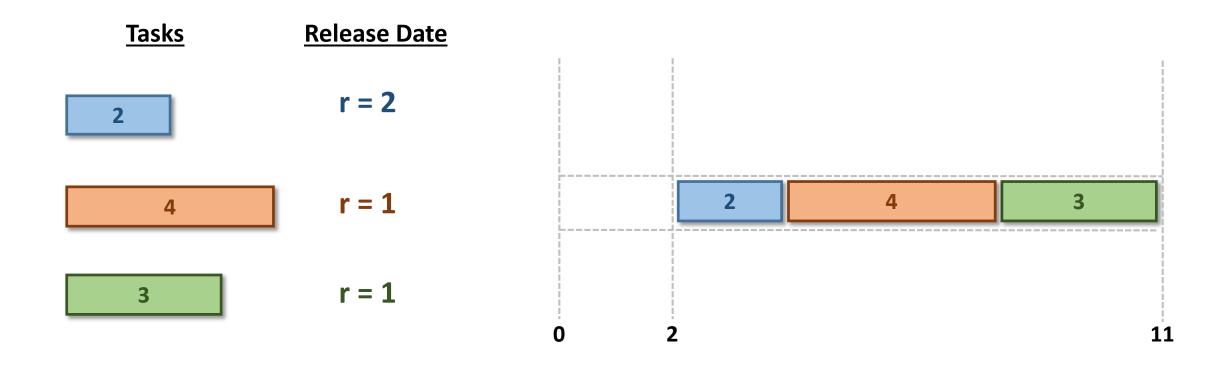


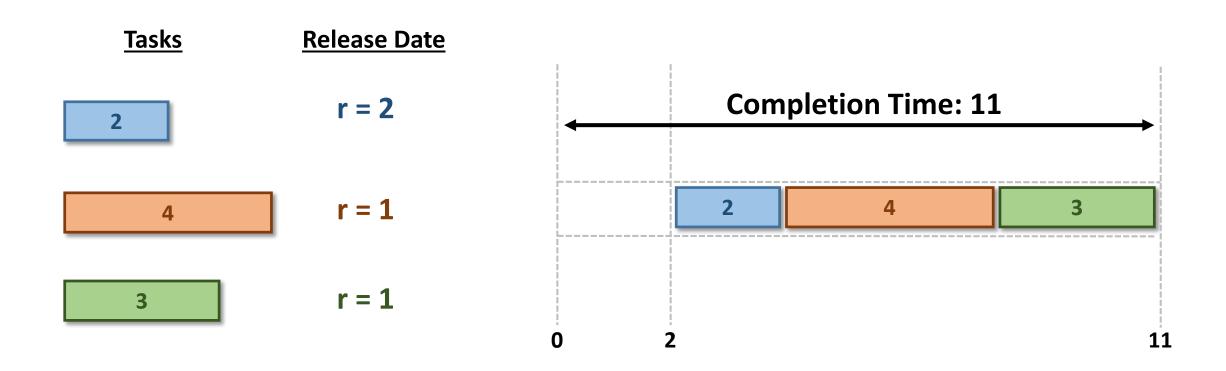
- 3 tasks to perform on a machine
- Each task has a processing time and a release time
- The machine can perform at most one task at a time, non-preemptively
- Objective: minimize completion time

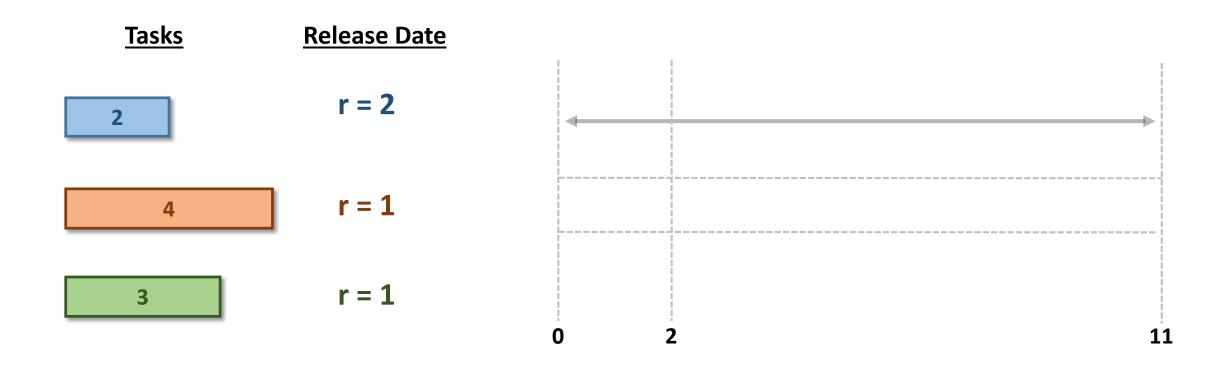


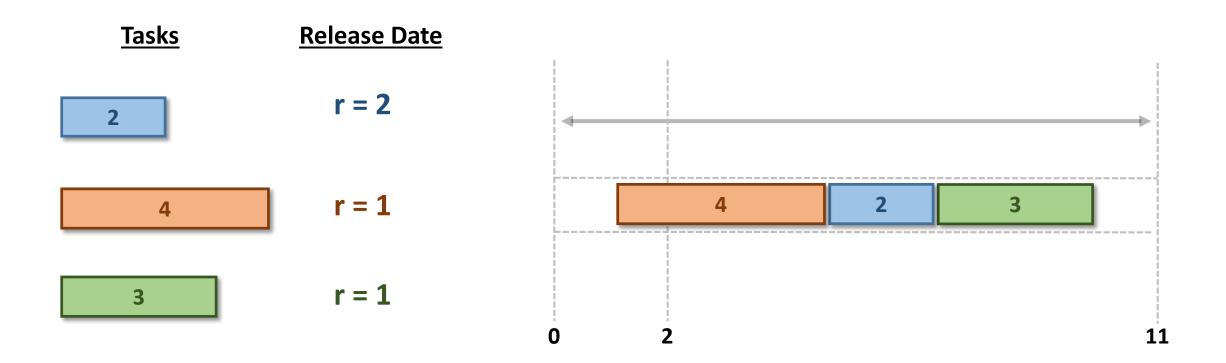


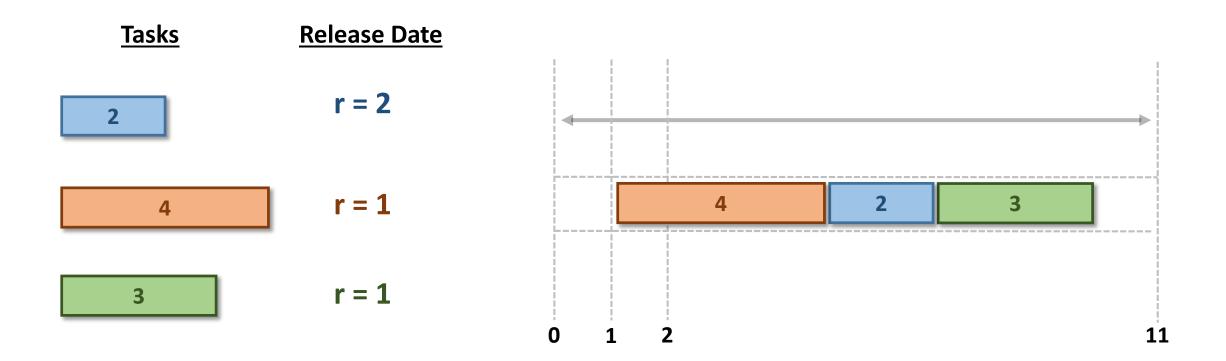


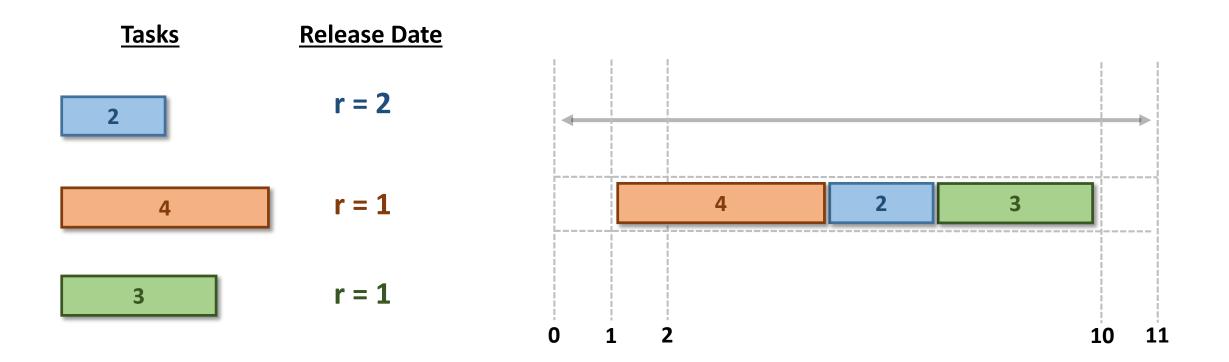


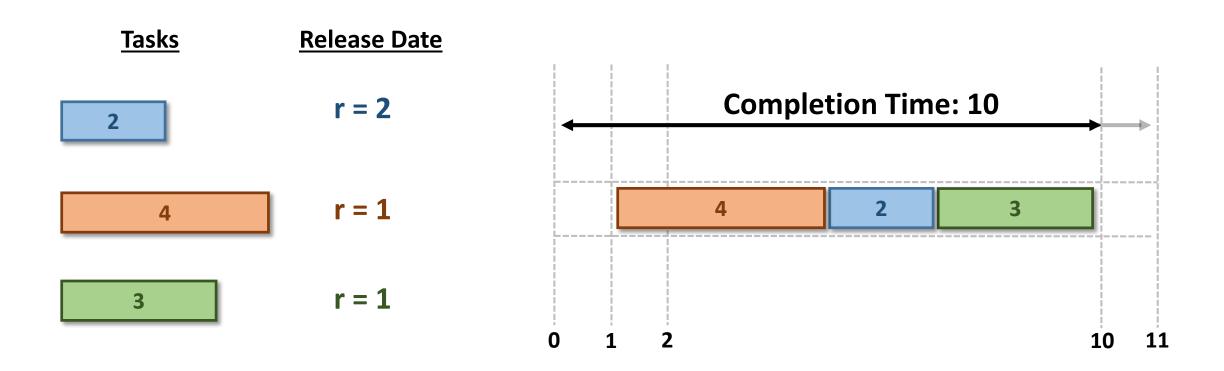










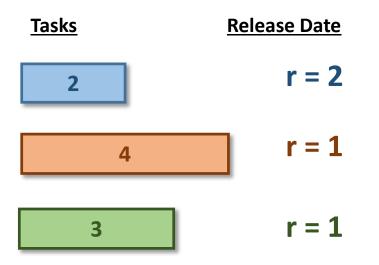


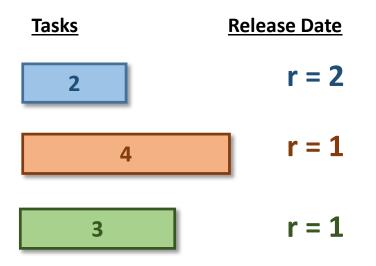
CP Model

- min C_{max}
- s.t. NoOverlap(s_j | p_j : all j) $C_{max} = max\{s_1+p_1, ..., s_n+p_n\}$ $s_i \in \{r_i, ..., T\}, all i$

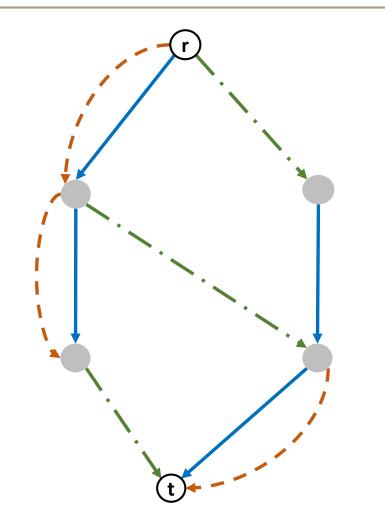
Conventional propagation

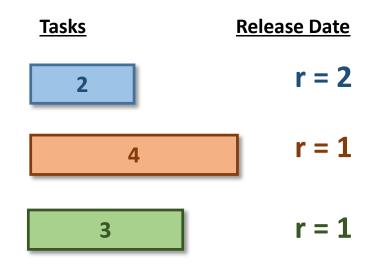
- Use Cartesian product of variable domains as relaxation
- Propagate domains to strengthen relaxation



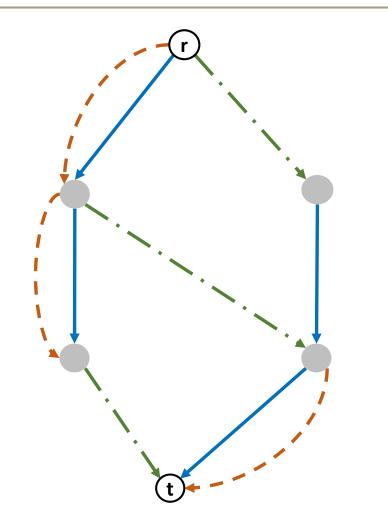


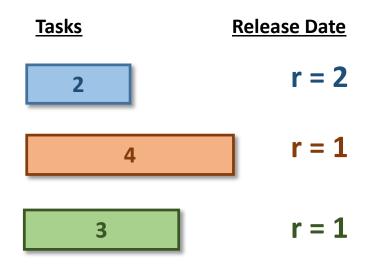
• Layered Acyclic Graph



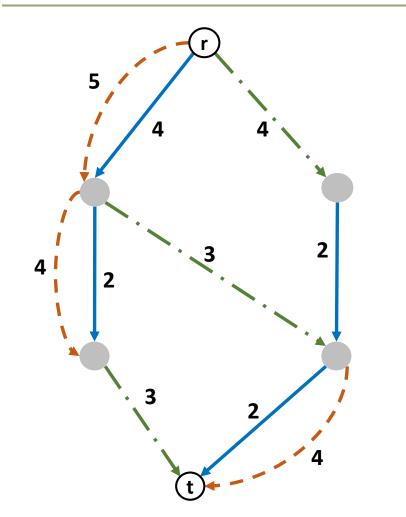


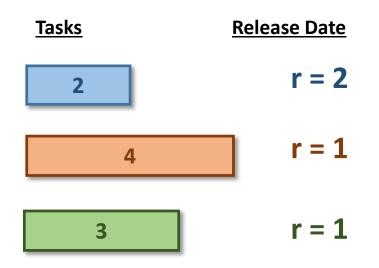
• Layered Acyclic Graph



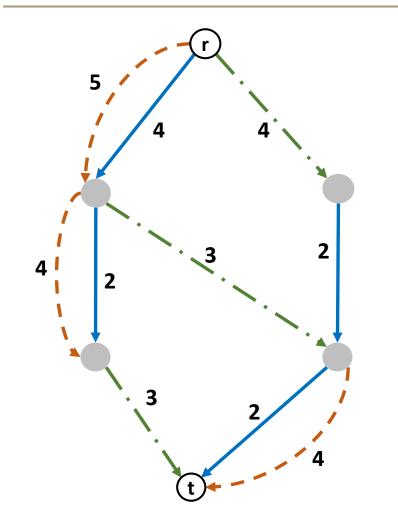


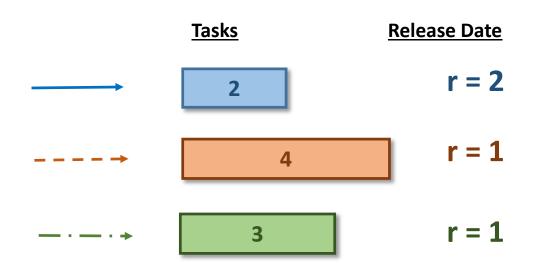
- Layered Acyclic Graph
- Arcs have weights



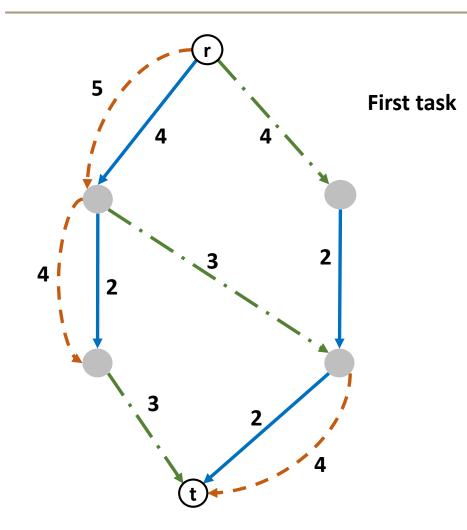


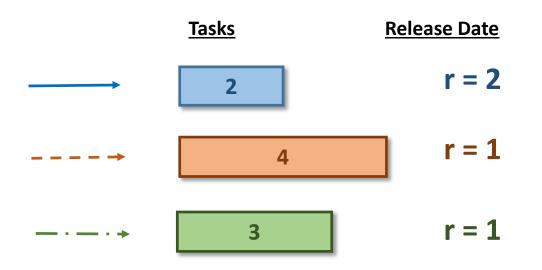
- Layered Acyclic Graph
- Arcs have weights



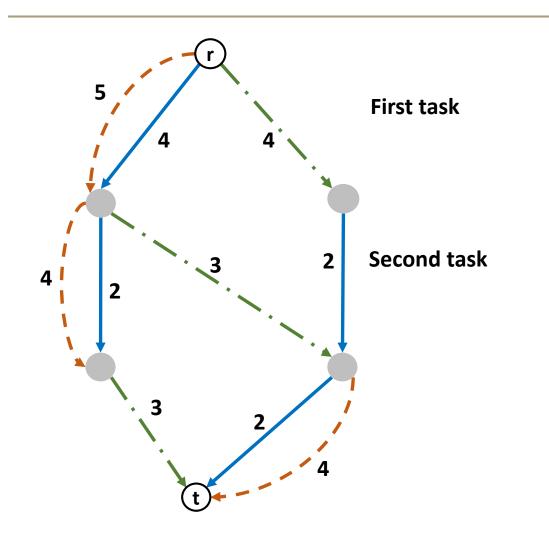


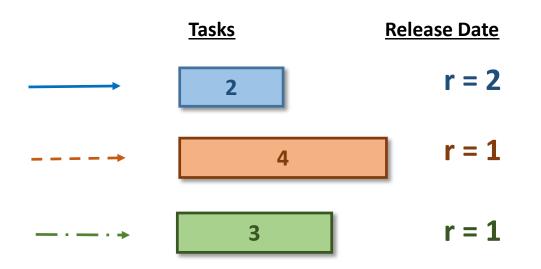
- Layered Acyclic Graph
- Arcs have weights
- Paths correspond to solutions, path lengths the solution costs



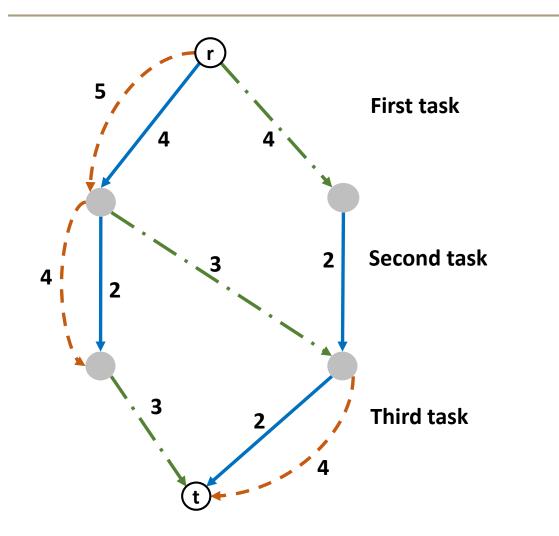


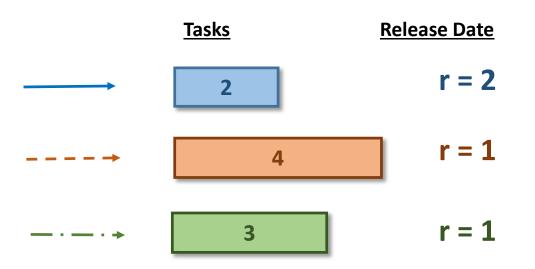
- Layered Acyclic Graph
- Arcs have weights
- Paths correspond to solutions, path lengths the solution costs



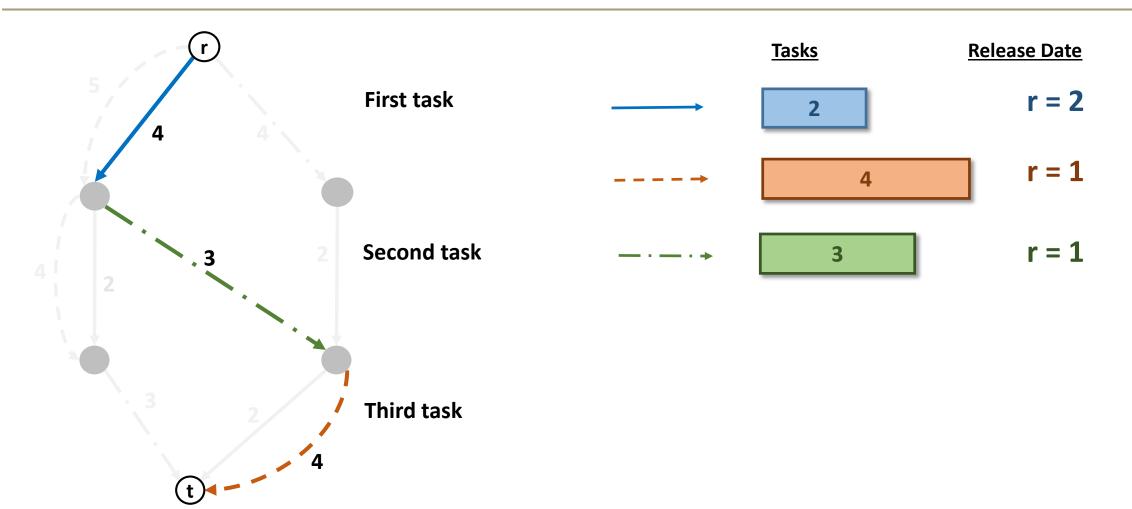


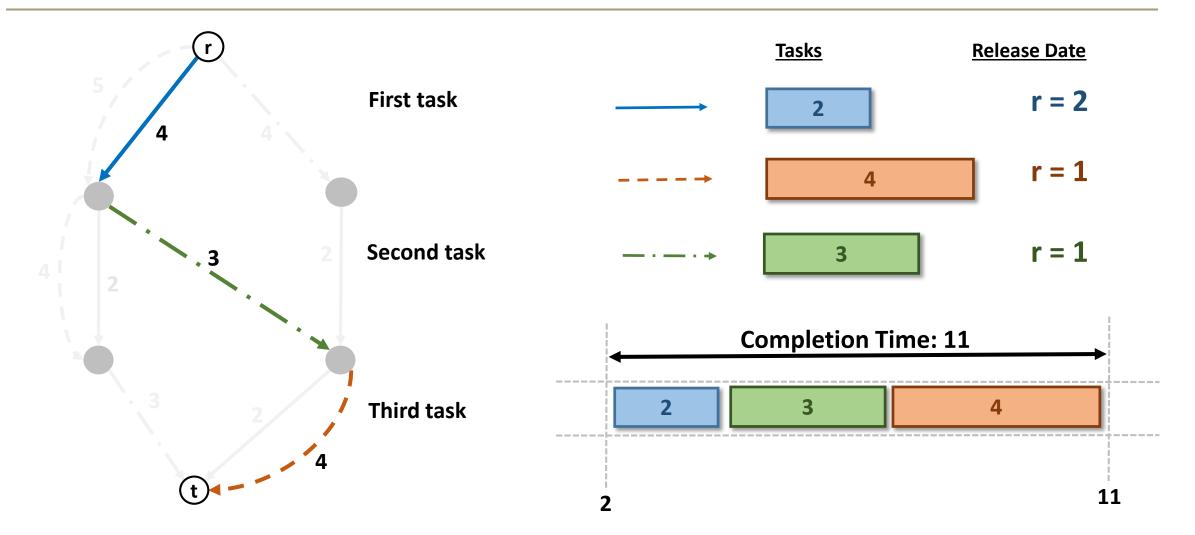
- Layered Acyclic Graph
- Arcs have weights
- Paths correspond to solutions, path lengths the solution costs

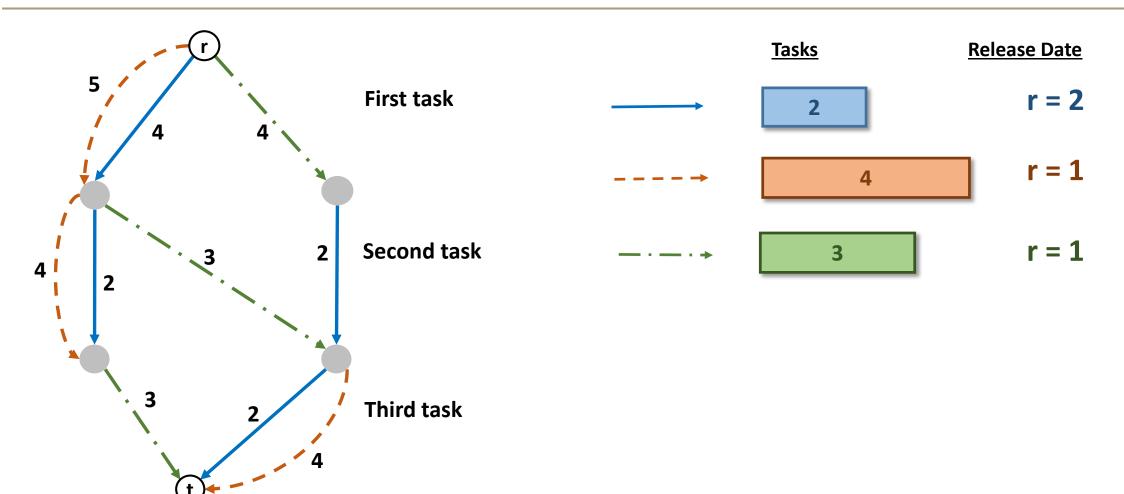


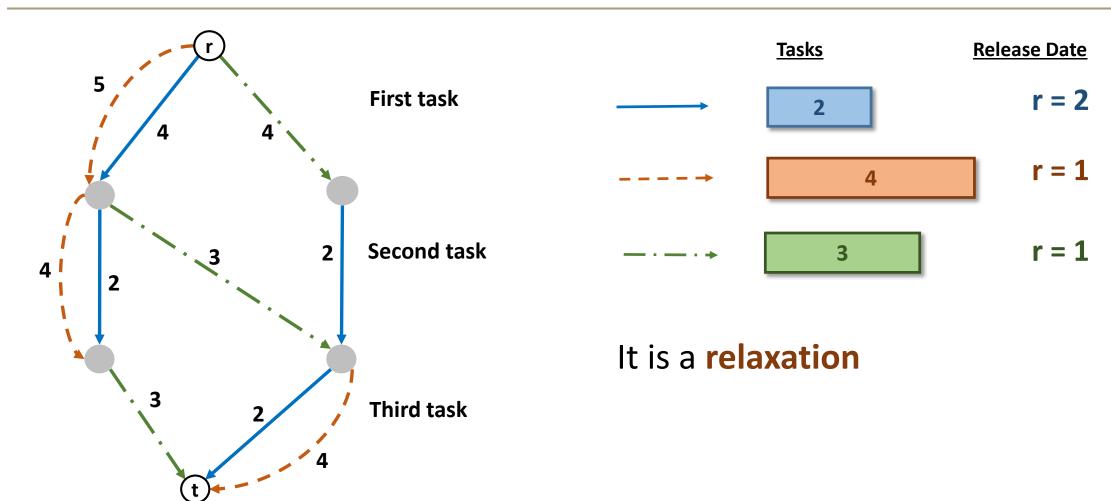


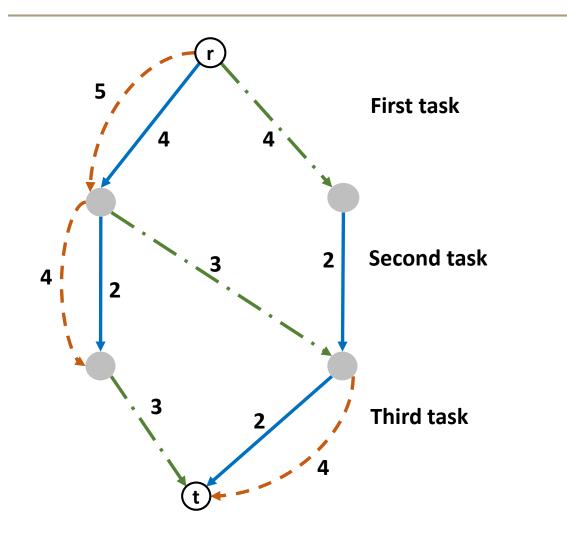
- Layered Acyclic Graph
- Arcs have weights
- Paths correspond to solutions, path lengths the solution costs

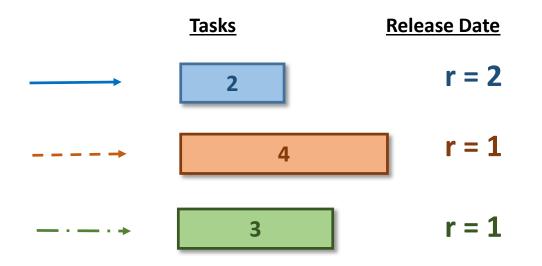






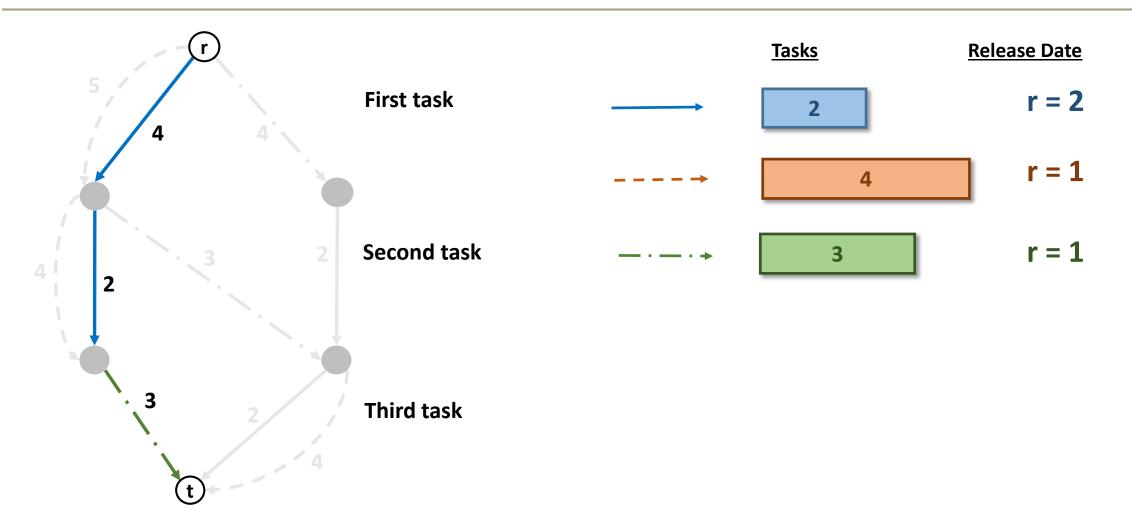


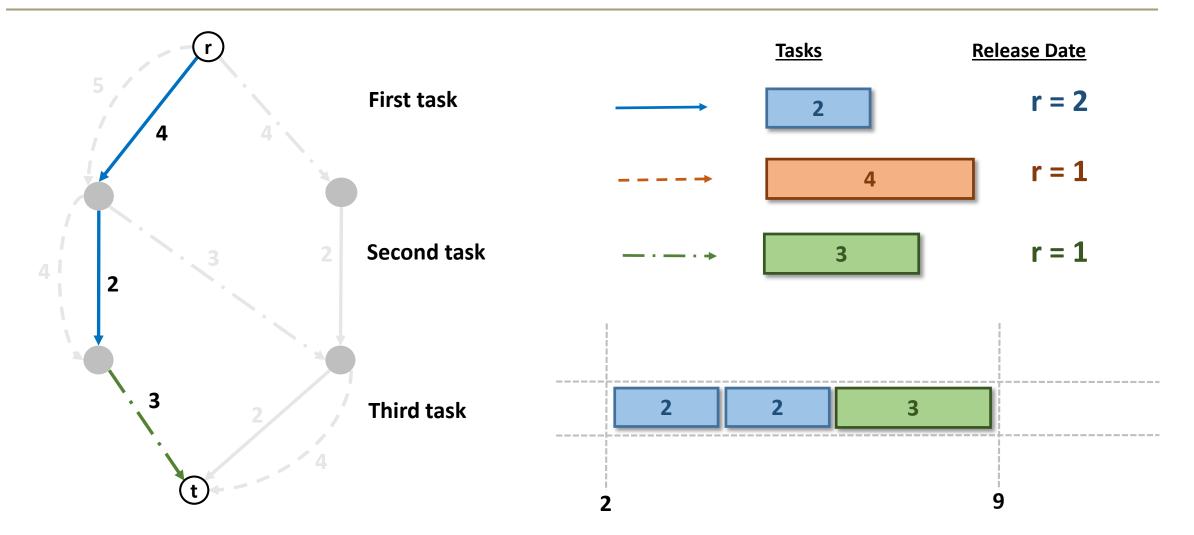


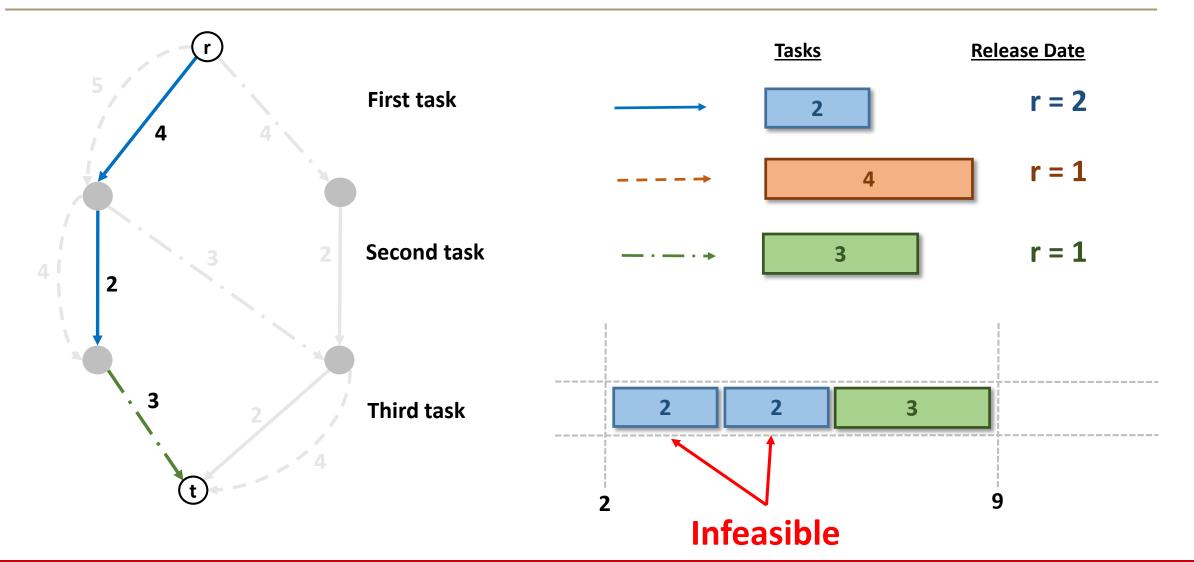


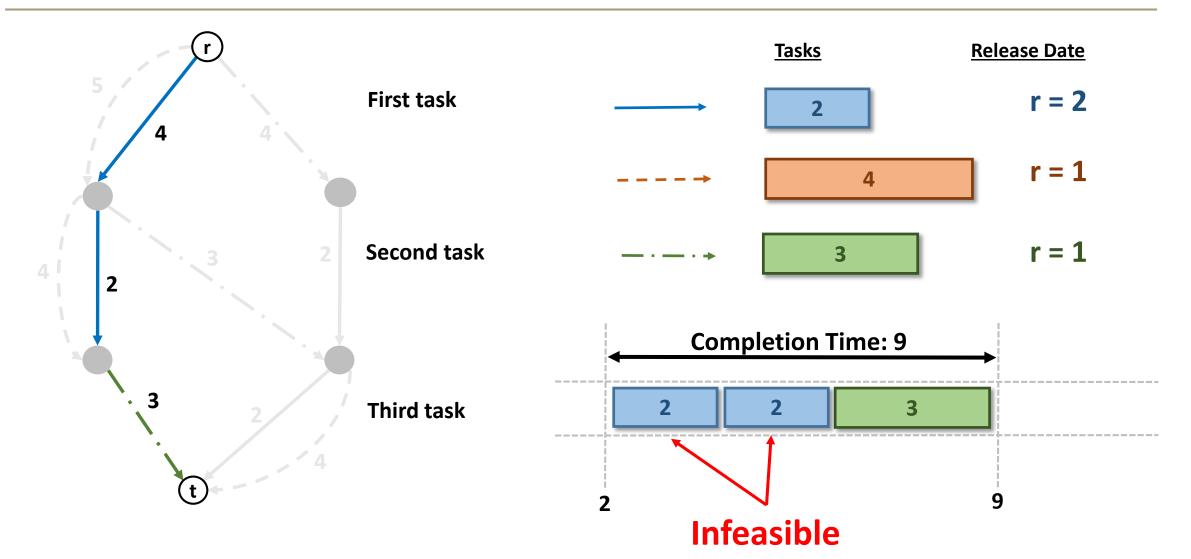
It is a **relaxation**

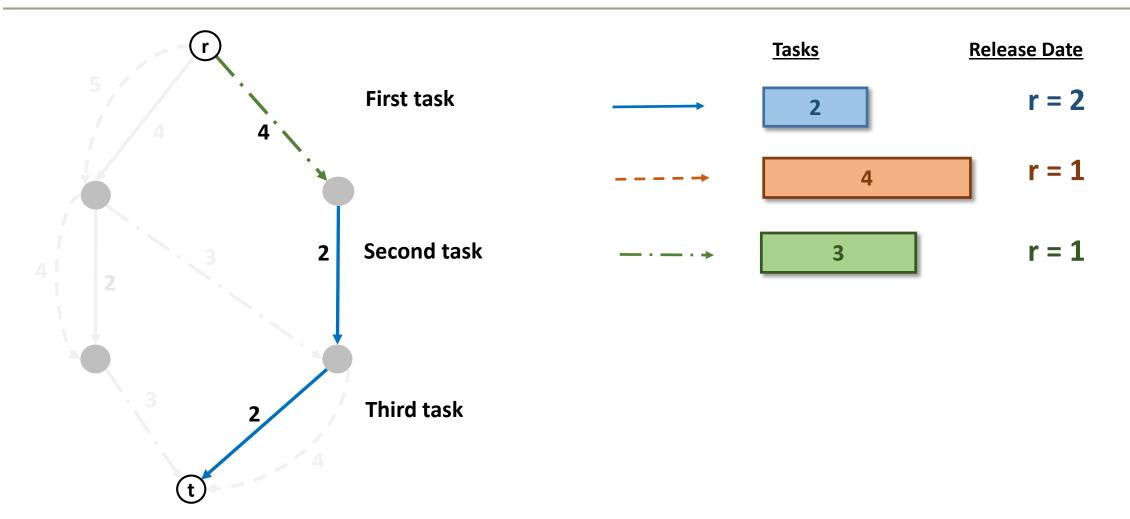
• All feasible solutions encoded by some path, but it may contain some infeasible solutions as well

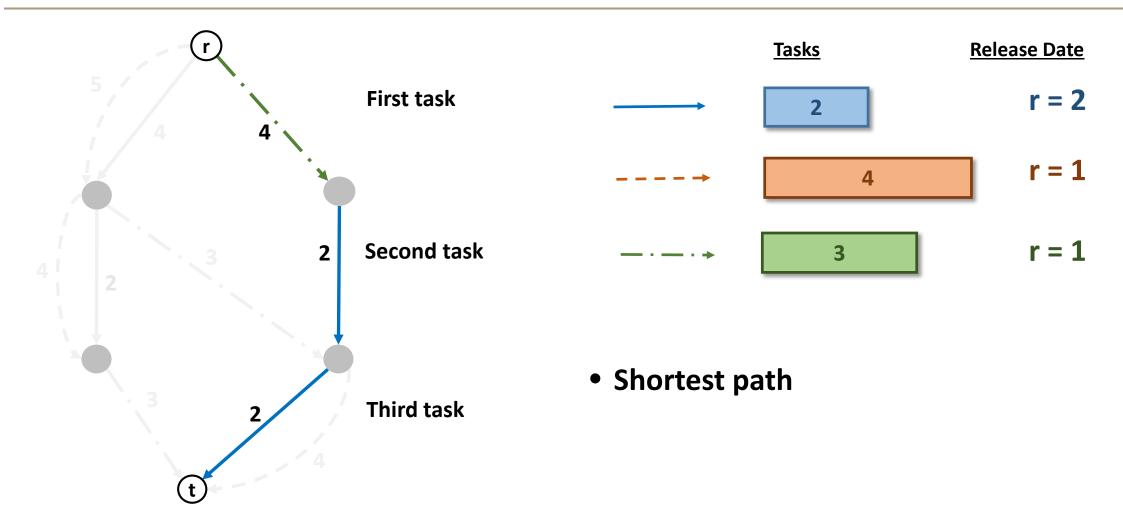


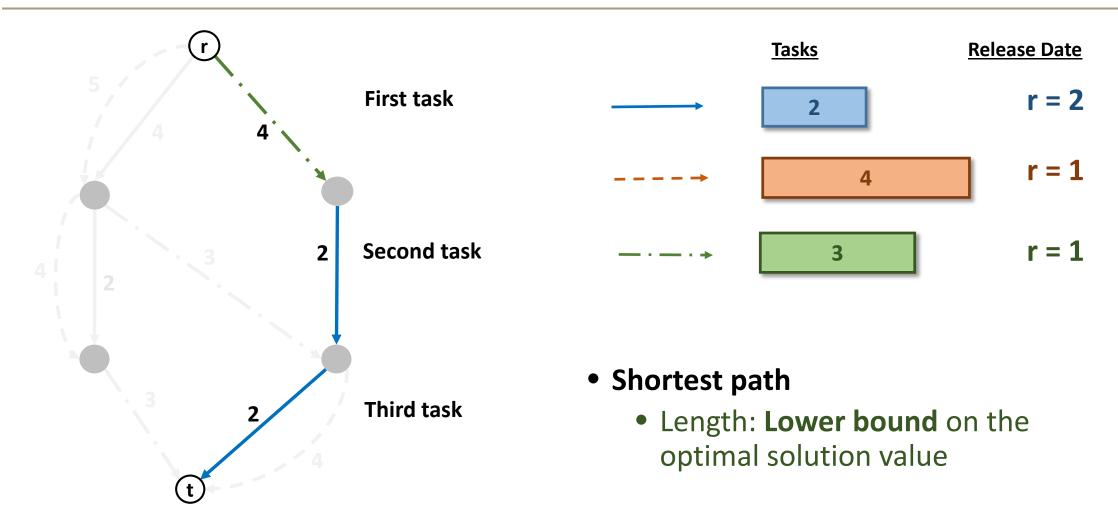


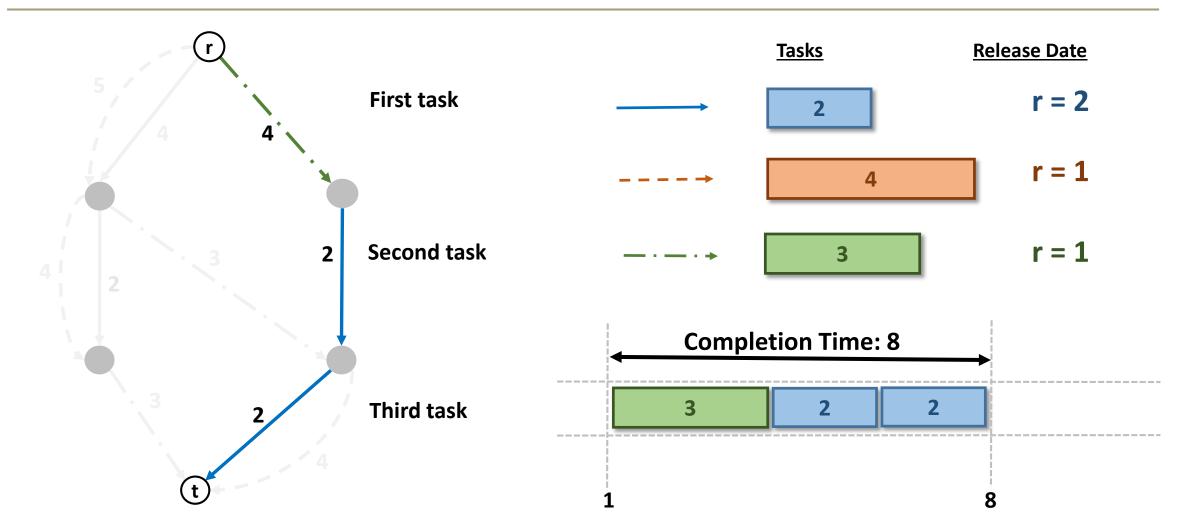






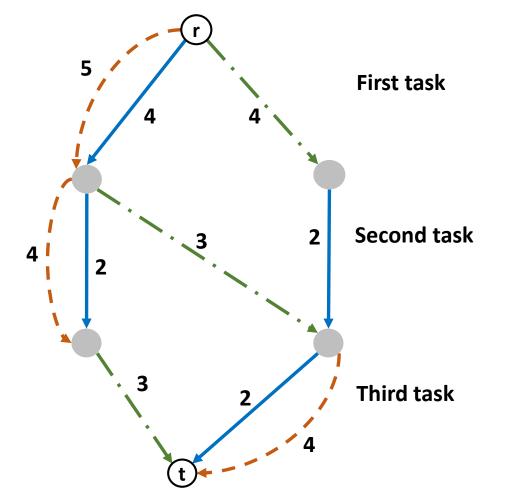






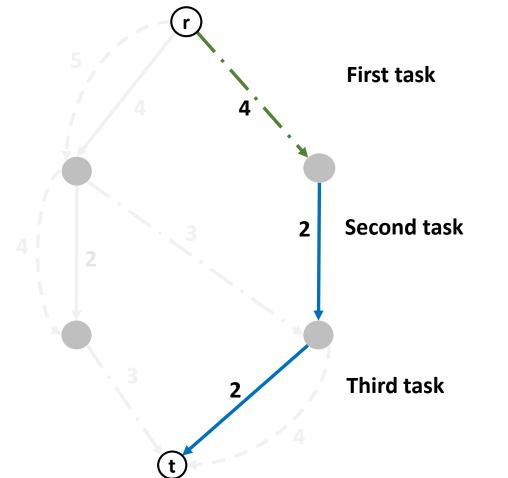
- Obtain optimization bounds (as LP relaxations do)
- As an inference mechanism
 - For example, as **global constraints** in CP (MDD-based CP)
- To guide **search** (in new branch-and-bound methods)

Issues



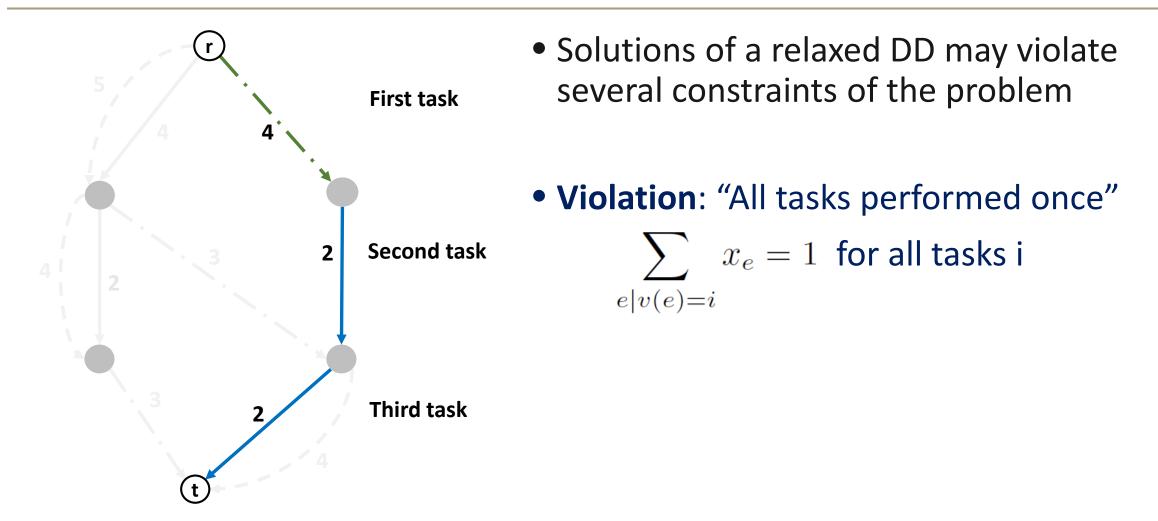
• Solutions of a relaxed DD may violate several constraints of the problem

Issues



• Solutions of a relaxed DD may violate several constraints of the problem

Issues



Remedy: Lagrangian Relaxation

min z = shortest path

s.t. $\sum_{e|v(e)=i} x_e = 1$, for all tasks i (+other problem constraints) [Bergman et al., 2015]

min z =shortest path

[Bergman et al., 2015]

s.t. $\sum_{e|v(e)=i} x_e = 1$, for all tasks i \longrightarrow Lagrangian multipliers λ_i (+other problem constraints)

min z =shortest path

[Bergman et al., 2015]

s.t. $\sum_{e|v(e)=i} x_e = 1$, for all tasks i \longrightarrow Lagrangian multipliers λ_i (+other problem constraints)

- min $z = \text{shortest path} + \sum_i \lambda_i (1 \sum_{e|v(e)=i} x_e)$
- s.t. (other problem constraints)

min z =shortest path

[Bergman et al., 2015]

s.t. $\sum_{e|v(e)=i} x_e = 1$, for all tasks i \longrightarrow Lagrangian multipliers λ_i (+other problem constraints)

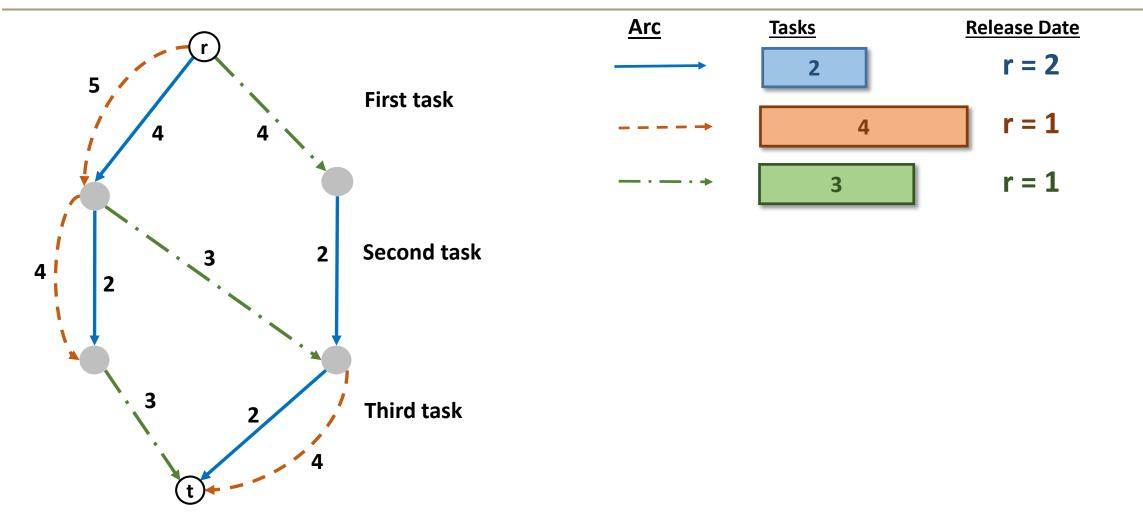
- min $z = \text{shortest path} + \sum_i \lambda_i (1 \sum_{e|v(e)=i} x_e)$
- s.t. (other problem constraints)

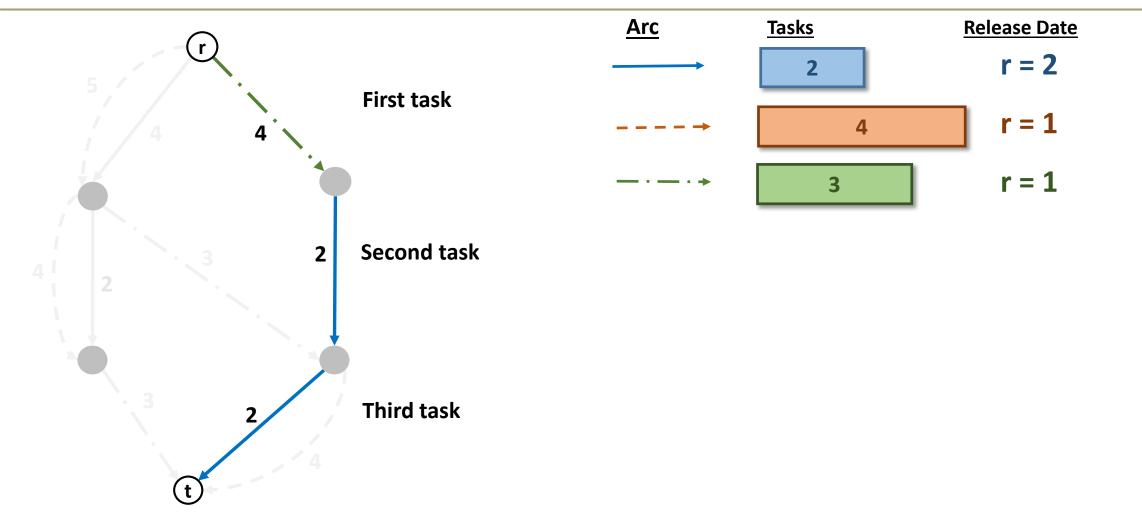
This is done by updating shortest path weights!

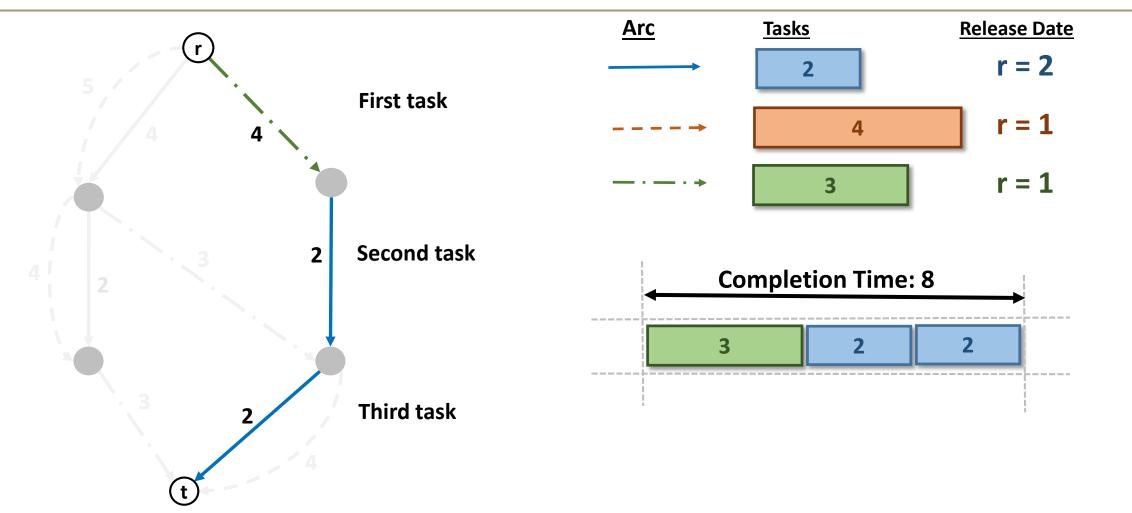
 We penalize infeasible solutions in a relaxed DD: Any separable constraint of the form
 f₁(x₁) + f₂(x₂) + ... + f_n(x_n) ≤ c

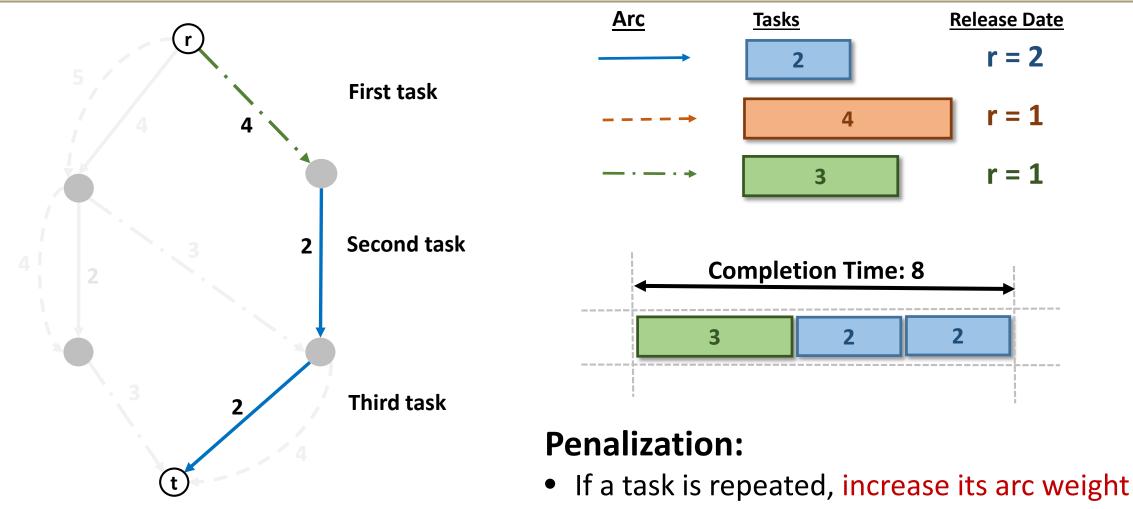
that **must** be satisfied by solutions of an MDD can be dualized

- We need only to focus on the shortest path solution
 - Identify a violated constraint and penalize
 - Systematic way directly adapted from LP
 - Shortest paths are **very fast** to compute

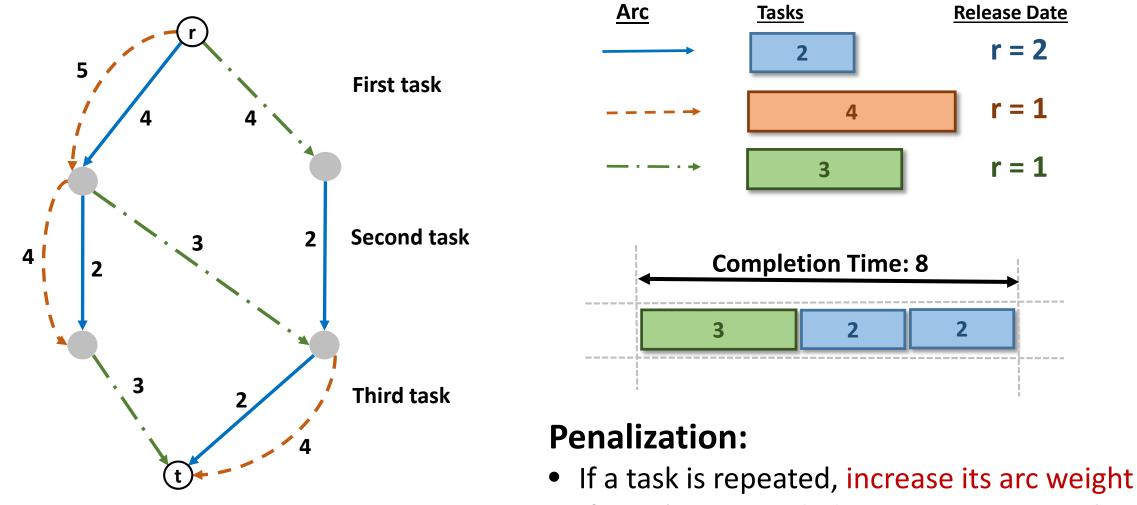




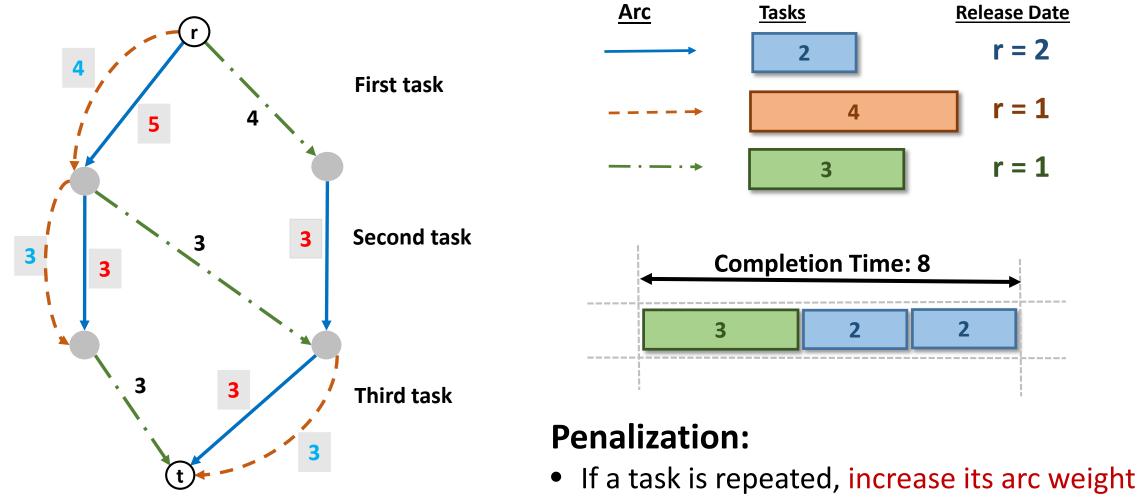




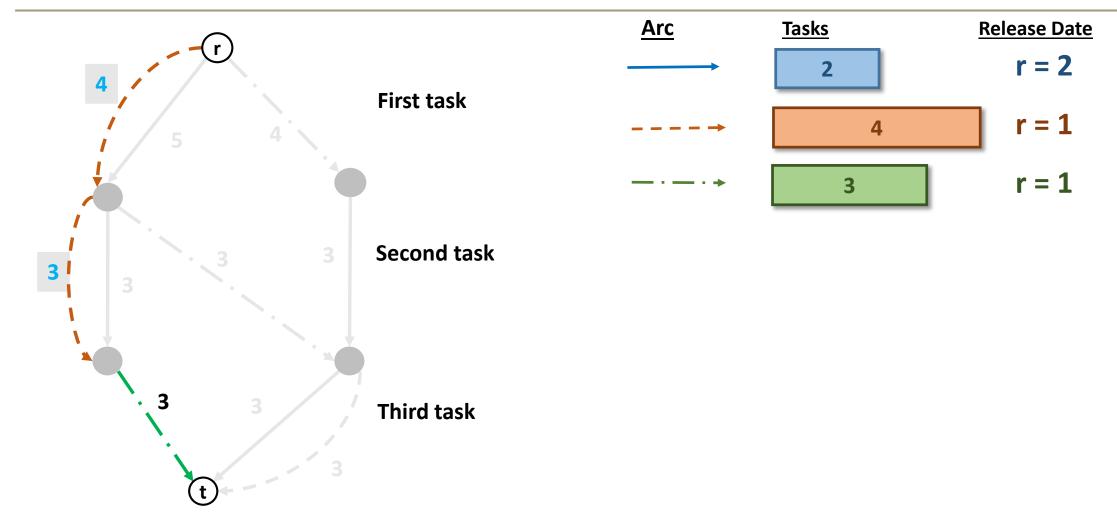
• If a task is unused, decrease its arc weight



• If a task is unused, decrease its arc weight



• If a task is unused, decrease its arc weight



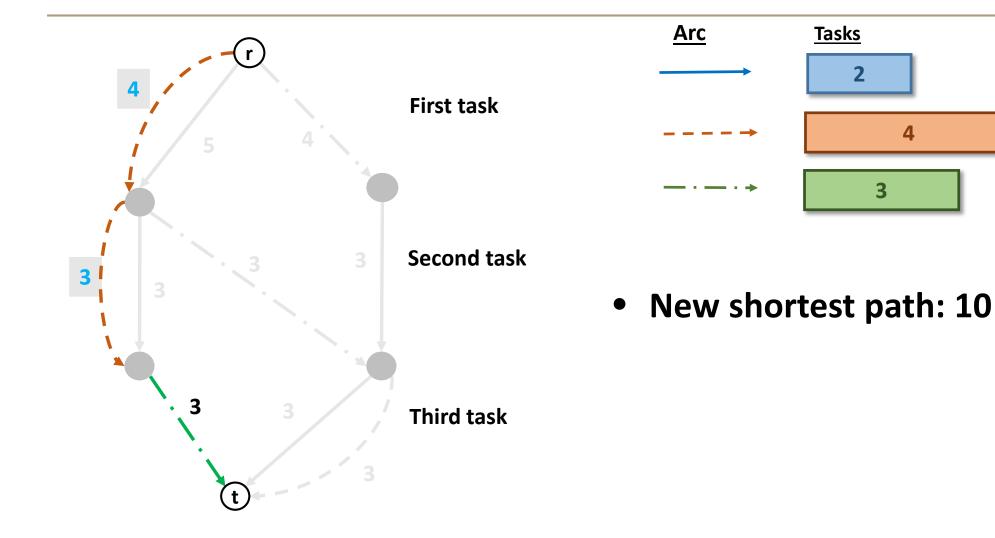
Release Date

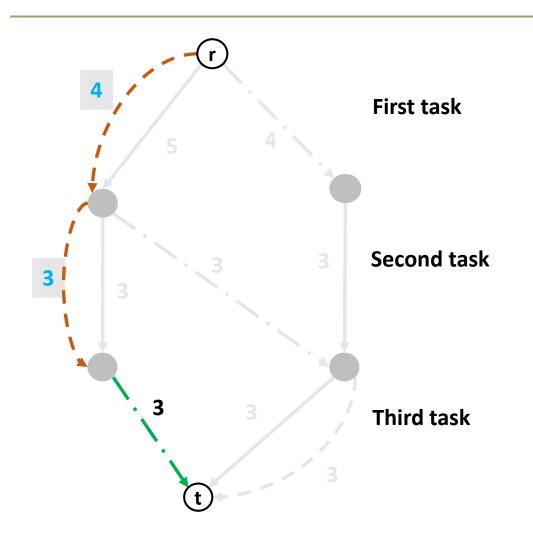
r = 2

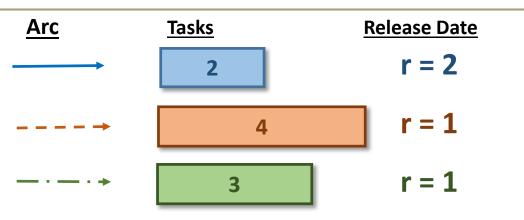
r = 1

r = 1

4

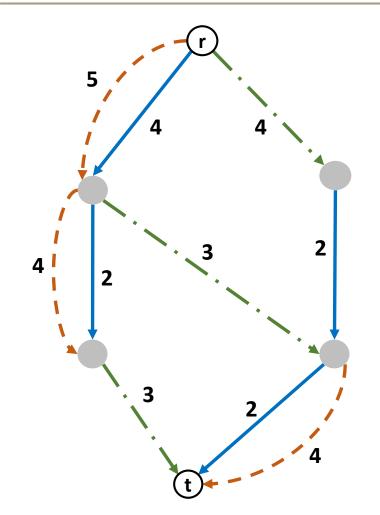




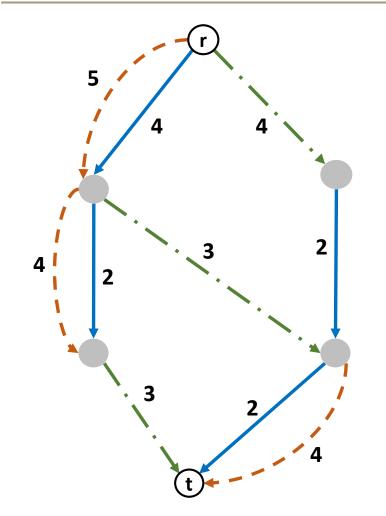


- New shortest path: 10
 - Guaranteed to be a valid
 lower bound for any penalties

Additional Filtering

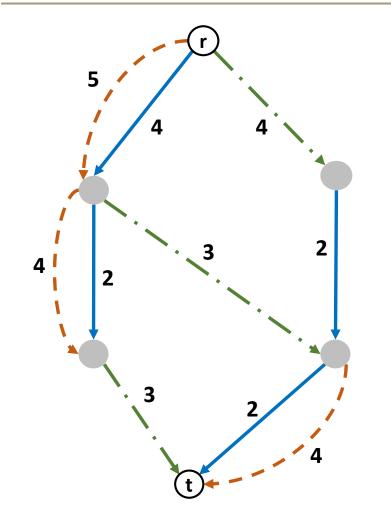


Additional Filtering



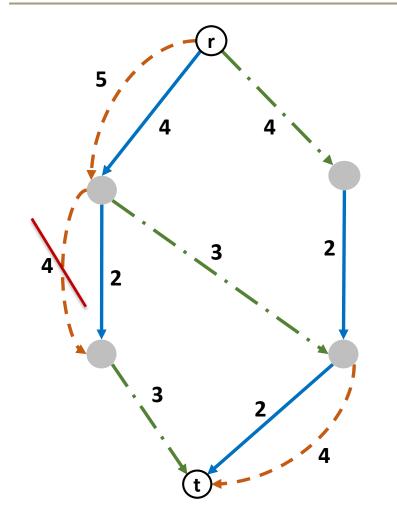
 If minimum solution value through an arc exceeds max(D(z)) then arc can be deleted

Additional Filtering



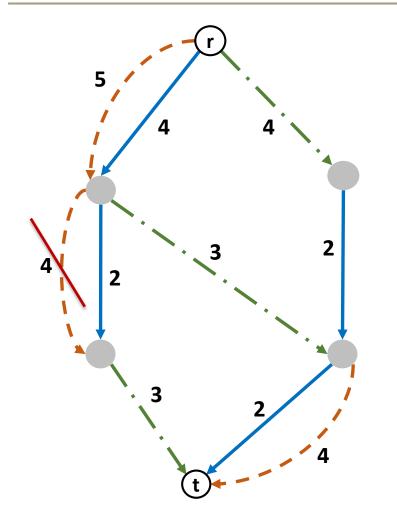
- If minimum solution value through an arc exceeds max(D(z)) then arc can be deleted
- Suppose a solution of value 10 is known

Additional Filtering



- If minimum solution value through an arc exceeds max(D(z)) then arc can be deleted
- Suppose a solution of value 10 is known

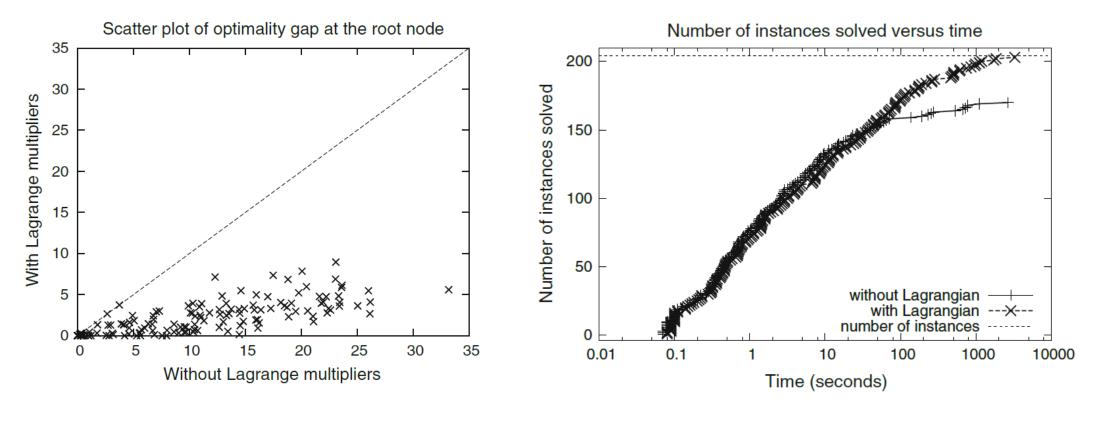
Additional Filtering



- If minimum solution value through an arc exceeds max(D(z)) then arc can be deleted
- Suppose a solution of value 10 is known
- MDD filtering extends to Lagrangian weights: More filtering possible

Impact on TSP with Time Windows

Impact on TSP with Time Windows



TSPTW instances

(Constraints, 2015)

(Dumas and GendreauDumasExtended)

Beyond Single Optimization Constraints

- Constraint propagation is CP's major strength
 - Rich modeling interface, fast domain filtering, "combinatorial programming"
- ...but also its major weakness (when using domains)
 - Cartesian product of variable domains is weak relaxation,
 - Conventional domain propagation has limited communication power
 - Propagating relaxed MDDs can help, but not in all cases

- Constraint propagation is CP's major strength
 - Rich modeling interface, fast domain filtering, "combinatorial programming"
- ...but also its major weakness (when using domains)
 - Cartesian product of variable domains is weak relaxation,
 - Conventional domain propagation has limited communication power
 - Propagating relaxed MDDs can help, but not in all cases
- Up next: Lagrangian Propagation instead of domain propagation – Via Lagrangian decomposition [Bergman et al. CP2015], [Ha et al., CP2015]

$(P) \quad \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$

$(P) \quad \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$

 $= \max\{fx \mid Ay \le b, Cx \le d, x = y, x \in X, y \in Y\}$

 $(P) \quad \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$

 $= \max\{fx \mid Ay \le b, Cx \le d x = y, x \in X, y \in Y\}$

$$(P) \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$$
$$= \max\{fx \mid Ay \le b, Cx \le d, x = y, x \in X, y \in Y\}$$

$$L_P(\lambda) := \max\{fx + \lambda(y - x) \mid Cx \le d, x \in X, Ay \le b, y \in Y\}$$

$$(P) \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$$
$$= \max\{fx \mid Ay \le b, Cx \le d, x = y, x \in X, y \in Y\}$$
$$L_P(\lambda) := \max\{fx + \lambda(y - x) \mid Cx \le d, x \in X, Ay \le b, y \in Y\}$$
$$= \max\{(f - \lambda)x \mid Cx \le d, x \in X\} + \max\{\lambda y \mid Ay \le by \in Y\}$$

$$(P) \max\{fx \mid Ax \le b, Cx \le d, x \in X\}$$
$$= \max\{fx \mid Ay \le b, Cx \le d(x = y), x \in X, y \in Y\}$$
$$L_P(\lambda) := \max\{fx + \lambda(y - x) \mid Cx \le d, x \in X, Ay \le b, y \in Y\}$$
$$= \max\{(f - \lambda)x \mid Cx \le d, x \in X\} + \max\{\lambda y \mid Ay \le by \in Y\}$$

• Bound from Lagrangian Decomposition at least as strong as Lagrangian relaxation from either dualizing $Ax \le b$ or $Cx \le d$

 $alldiff(x_1, x_2, x_3)$ $\texttt{alldiff}(x_2, x_4, x_5)$ $\texttt{alldiff}(x_3, x_5)$ $x_1 \in \{a, b\}$ $x_2 \in \{b, c\}$ $x_3 \in \{a, c\}$ $x_4 \in \{a, b\}$ $x_5 \in \{a, b, c\}$

 $alldiff(x_1, x_2, x_3)$ $\texttt{alldiff}(x_2, x_4, x_5)$ $alldiff(x_3, x_5)$ $x_1 \in \{a, b\}$ $x_2 \in \{b, c\}$ $x_3 \in \{\mathbf{a}, c\}$ $x_4 \in \{a, b\}$ $x_5 \in \{a, b, c\}$


```
alldiff(x_1, x_2, x_3)
alldiff(x_2, x_4, x_5)
alldiff(x_3, x_5)
x_1 \in \{a, b\}
x_2 \in \{b, c\}
x_3 \in \{a, c\}
x_4 \in \{a, b\}
x_5 \in \{a, b, c\}
```

- Domain consistent; even pairwise consistent
- Constraint propagation has no effect here...

 $alldiff(x_1, x_2, x_3)$ $alldiff(x_2, x_4, x_5)$ $alldiff(x_3, x_5)$ $x_1 \in \{a, b\}$ $x_2 \in \{b, c\}$ $x_3 \in \{a, c\}$ $x_4 \in \{a, b\}$ $x_5 \in \{a, b, c\}$

 $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$ $x_1 \in \{a, b\}$ $x_2, y_2 \in \{b, c\}$ $x_2 = y_2$ $x_3, z_3 \in \{a, c\}$ $x_3 = z_3$ $y_4 \in \{a, b\}$ $y_5, z_5 \in \{a, b, c\}$ $y_5 = z_5$

- Domain consistent; even pairwise consistent
- Constraint propagation has no effect here...

 $alldiff(x_1, x_2, x_3)$ $alldiff(x_2, x_4, x_5)$ $alldiff(x_3, x_5)$ $x_1 \in \{a, b\}$ $x_2 \in \{b, c\}$ $x_3 \in \{a, c\}$ $x_4 \in \{a, b\}$ $x_5 \in \{a, b, c\}$

 $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$ $x_1 \in \{a, b\}$ $x_2, y_2 \in \{b, c\}$ $x_3, z_3 \in \{a, c\}$ $y_4 \in \{a, b\}$ $y_5, z_5 \in \{a, b, c\}$

 $\begin{aligned} x_2 &= y_2 \\ x_3 &= z_3 \\ y_5 &= z_5 \end{aligned}$

- Domain consistent; even pairwise consistent
- Constraint propagation has no effect here...

- $\max \quad \overline{\lambda}_2(x_2 \neq y_2) + \overline{\lambda}_3(x_3 \neq z_3) + \overline{\lambda}_5(y_5 \neq z_5)$
- s.t. $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$

- $\max \quad \overline{\lambda}_2(x_2 \neq y_2) + \overline{\lambda}_3(x_3 \neq z_3) + \overline{\lambda}_5(y_5 \neq z_5)$
- s.t. $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$

Represent $x_i \neq y_i$ as $((x_i = v) - (y_i = v))$ for all $v \in D(x_i)$ So $\overline{\lambda}_i := \lambda_i[v]$

- $\max \quad \overline{\lambda}_2(x_2 \neq y_2) + \overline{\lambda}_3(x_3 \neq z_3) + \overline{\lambda}_5(y_5 \neq z_5)$
- s.t. $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$

Represent $x_i \neq y_i$ as $((x_i = v) - (y_i = v))$ for all $v \in D(x_i)$ So $\overline{\lambda}_i := \lambda_i[v]$

$$\max \sum_{v \in D(x_2)} \lambda_2[v]((x_2 = v) - (y_2 = v)) + \dots$$

- $\max \quad \overline{\lambda}_2(x_2 \neq y_2) + \overline{\lambda}_3(x_3 \neq z_3) + \overline{\lambda}_5(y_5 \neq z_5)$
- s.t. $alldiff(x_1, x_2, x_3)$ $alldiff(y_2, y_4, y_5)$ $alldiff(z_3, z_5)$

Represent $x_i \neq y_i$ as $((x_i = v) - (y_i = v))$ for all $v \in D(x_i)$ So $\overline{\lambda}_i := \lambda_i[v]$

$$\max \sum_{v \in D(x_2)} \lambda_2[v]((x_2 = v) - (y_2 = v)) + \dots$$
$$= \lambda_2[x_2] - \lambda_2[y_2] + \lambda_3[x_3] - \lambda_3[z_3] + \lambda_5[y_5] - \lambda_5[z_5]$$

$$\begin{aligned} \operatorname{obj}_{1} &= \max \left\{ \left. \overline{\lambda}_{2}[x_{2}] + \overline{\lambda}_{3}[x_{3}] \mid \operatorname{alldiff}(x_{1}, x_{2}, x_{3}) \right\} \\ \operatorname{obj}_{2} &= \max \left\{ -\overline{\lambda}_{2}[y_{2}] + \overline{\lambda}_{5}[y_{5}] \mid \operatorname{alldiff}(y_{2}, y_{4}, y_{5}) \right\} \\ \operatorname{obj}_{3} &= \max \left\{ -\overline{\lambda}_{3}[z_{3}] - \overline{\lambda}_{5}[z_{5}] \mid \operatorname{alldiff}(z_{3}, z_{5}) \right\} \end{aligned}$$

Final Decomposition

$$\begin{array}{l} \operatorname{obj}_{1} = \max \left\{ \ \overline{\lambda}_{2}[x_{2}] + \overline{\lambda}_{3}[x_{3}] \mid \operatorname{alldiff}(x_{1}, x_{2}, x_{3}) \right\} \\ \operatorname{obj}_{2} = \max \left\{ -\overline{\lambda}_{2}[y_{2}] + \overline{\lambda}_{5}[y_{5}] \mid \operatorname{alldiff}(y_{2}, y_{4}, y_{5}) \right\} \\ \operatorname{obj}_{3} = \max \left\{ -\overline{\lambda}_{3}[z_{3}] - \overline{\lambda}_{5}[z_{5}] \mid \operatorname{alldiff}(z_{3}, z_{5}) \right\} \end{array}$$

Final Decomposition

$$\begin{array}{l} \operatorname{obj}_{1} = \max \left\{ \ \overline{\lambda}_{2}[x_{2}] + \overline{\lambda}_{3}[x_{3}] \mid \operatorname{alldiff}(x_{1}, x_{2}, x_{3}) \right\} \\ \operatorname{obj}_{2} = \max \left\{ -\overline{\lambda}_{2}[y_{2}] + \overline{\lambda}_{5}[y_{5}] \mid \operatorname{alldiff}(y_{2}, y_{4}, y_{5}) \right\} \\ \operatorname{obj}_{3} = \max \left\{ -\overline{\lambda}_{3}[z_{3}] - \overline{\lambda}_{5}[z_{5}] \mid \operatorname{alldiff}(z_{3}, z_{5}) \right\} \end{array} \right\}$$

$$\begin{array}{c} \operatorname{sum \ gives \ upper \ bound \ on \ satisfiability} \end{array}$$

- Can be used for feasibility problems and optimization problems
 - Synchronize the 'support' solutions within the constraints
 - Systematic method to improve bounding in CP
 - 'Generic relaxation'

Final Decomposition

$$\begin{array}{l} \operatorname{obj}_{1} = \max \left\{ \ \overline{\lambda}_{2}[x_{2}] + \overline{\lambda}_{3}[x_{3}] \mid \operatorname{alldiff}(x_{1}, x_{2}, x_{3}) \right\} \\ \operatorname{obj}_{2} = \max \left\{ -\overline{\lambda}_{2}[y_{2}] + \overline{\lambda}_{5}[y_{5}] \mid \operatorname{alldiff}(y_{2}, y_{4}, y_{5}) \right\} \\ \operatorname{obj}_{3} = \max \left\{ -\overline{\lambda}_{3}[z_{3}] - \overline{\lambda}_{5}[z_{5}] \mid \operatorname{alldiff}(z_{3}, z_{5}) \right\} \end{array} \qquad \begin{array}{c} \operatorname{sum \ gives \ upper \ bound} \\ \operatorname{on \ satisfiability} \end{array}$$

- Can be used for feasibility problems and optimization problems
 - Synchronize the 'support' solutions within the constraints
 - Systematic method to improve bounding in CP
 - 'Generic relaxation'
- Extended cost-based domain filtering!

'Global' Lagrangian Domain Filtering

• Consider Lagrangian Decomposition with subproblems j=1..m - Let $z_j|_{x_i=v}$ be the objective value of j-th subproblem, subject to $x_i=v$

'Global' Lagrangian Domain Filtering

- Consider Lagrangian Decomposition with subproblems j=1..m - Let $z_j|_{x_i=v}$ be the objective value of j-th subproblem, subject to $x_i=v$
- We have, given lower bound B:

- If $\sum_{j} z_j |_{x_i=v} < B$ then v can be removed from D(x_i)

'Global' Lagrangian Domain Filtering

- Consider Lagrangian Decomposition with subproblems j=1..m - Let $z_j|_{x_i=v}$ be the objective value of j-th subproblem, subject to $x_i=v$
- We have, given lower bound B:

- If $\sum_{j} z_j |_{x_i=v} < B$ then v can be removed from D(x_i)

E.g., for our example, we can deduce $x_1 \neq a, x_2 \neq b, x_3 \neq c, x_5 \neq c$

alldiff (x_1, x_2, x_3) alldiff (x_2, x_4, x_5) alldiff (x_3, x_5)

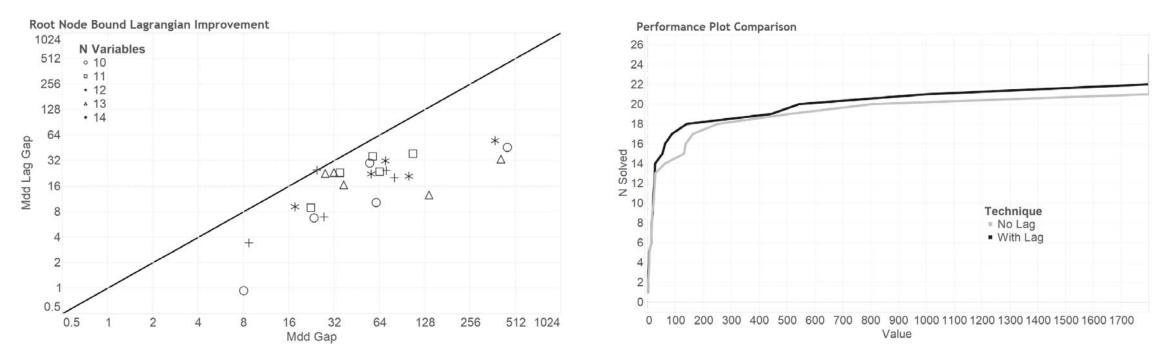
$$x_1 \in \{a, b\}$$
$$x_2 \in \{b, c\}$$
$$x_3 \in \{a, c\}$$
$$x_4 \in \{a, b\}$$
$$x_5 \in \{a, b, c\}$$

- Keep Lagrangian multipliers under control
 - Apply to a select subset of constraints
 - Can solve at root and keep multipliers fixed during search
 - Optimality not required for Lagrangian relaxation
- Computing of $z_i |_{x_i=v}$ may be challenging
 - Depends on constraint structure
 - Can use relaxation of the constraint instead (any bound holds)
 - Can use Relaxed Decision Diagram: Automatic extension

Experimental Results: Alldifferent

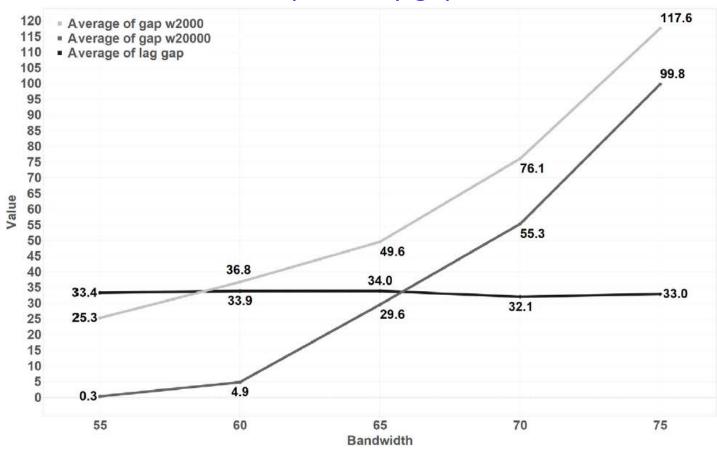
performance plot comparison

root node bound improvement



Systems of overlapping all different constraints, with weighted sum as objective. Each MDD represents a subset of constraints

Experimental Results: Set Covering



optimality gap

- Single MDD relaxation
 - widths 2,000 and 2,0000
- Lagrangian Decomposition
 - split constraints into multiple
 MDDs
- Problem instances with increasing bandwidth
- Lagrangian Decomposition
 much more stable!

More References

- Fontaine, Michel, Van Hentenryck [CP 2014]
- Ha, Quimper, Rousseau [CP 2015]
- Bergman, Cire, v.H. [CP 2015]
- Chu, Gange, Stuckey, "Lagrangian Decomposition via Subproblem Search" CPAIOR 2016
 - Monday May 30, 10:45-12:00 session

- Lagrangian Relaxation and Decomposition provide systematic and efficient approach to
 - improve optimization bounds in CP
 - improve constraint propagation
- CP's is ideal environment for automated Lagrangian relaxations
 - problem is represented with building blocks (constraints) that communicate
 - "combinatorial programming"