
Length-Lex Bounds Consistency for
Knapsack Constraints?

Yuri Malitsky,1 Meinolf Sellmann,1 Willem-Jan van Hoeve2

1 Brown University, Department of Computer Science
115 Waterman Street, P.O. Box 1910, Providence, RI 02912
2 Carnegie Mellon University, Tepper School of Business

5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract. Recently, a new domain store for set-variables has been proposed
which totally orders all values in the domain of a set-variable based on cardinal-
ity and lexicography. Traditionally, knapsack constraints have been studied with
respect to the required and possible set domain representation. For this domain-
store efficient filtering algorithms achieving relaxed and approximated consis-
tency are known. In this work, we study the complexity of achieving length-lex
and approximated length-lex bounds consistency. We show that these strength-
ened levels of consistency can still be achieved in (pseudo-)polynomial time. In
addition, we devise heuristic algorithms that work efficiently in practice.

1 Introduction
The constraint programming paradigm is inherently associated with the decomposition
of a given problem into its constituting parts as given by the constraints describing it.
Based on this decomposition, the standard solution scheme of constraint programming
interleaves search and constraint propagation. The latter consists in constraint-specific
filtering algorithms that remove inconsistent values from the variable domains. Thus,
information from one constraint is propagated to the other constraints solely through
variable domains.

While the decomposition allows the solver to apply filtering algorithms that are
custom tailored for specific constraints, the main drawback of this scheme is that the
information exchange via variable domains inherently weakens the ability to reason
about the given problem. Consider for example the well-known example of three binary
not-equal constraints working on three variables that all must be assigned either value
A or value B. Clearly, no solution exists, but no constraint is able to convey information
to the other constraints through the domain store that would make it possible to infer
that the problem is infeasible.

Consequently, constraint programming research has looked for ways to strengthen
inference by softening the effects of problem decomposition. The concept of global
constraints has been an area of very productive research. In our example above, the All-
Different constraint represents the conjunction of all three binary not-equal constraints.
Other schemes such as CP-based Lagrangian relaxation [17] or CP-based Bender’s de-
composition [5, 9] have been proposed where constraints exchange dual or no-good
? This work was supported by the National Science Foundation through the Career: Cornflower

Project (award number 0644113).

information on top of the traditional domain information. Recently, [1] proposed to use
a multi-dimensional decision diagram as domain store which allows much more infor-
mation to be represented and exchanged.

An alternative route is to consider more elaborate domains. For set variables, the
traditional domain representation has been to specify a lower bound of mandatory el-
ements and an upper bound of possible elements. In other words, the domain of a set-
variable would be (partially) ordered based on the subset relation. This representation
is equivalent to a representation through a number of binary variables.

As an easy way to strengthen the information captured, a variable representing the
cardinality of the set could be added to this representation. In [13], Sadler and Gervet
apply a lexicographic order to the domain of a set-variable. That is, the lower bound and
upper bound become the lexicographically smallest and largest set that the variable can
be assigned. In [8], Gervet and Van Hentenryck propose a length-lexicographic order
for the domains of set variables. Domain elements (i.e., the sets that can potentially be
assigned to the set-variable) are first ordered by increasing cardinality, while sets with
equal cardinality are ordered lexicographically. The benefits of the length-lexicographic
representation with respect to the traditional subset bounds representation are that it has
less space requirements, unary constraints can be efficiently filtered, and it automati-
cally breaks some symmetry.

In order to fully benefit from new domain representations such as the length-lexico-
graphic set-variable domains, ways must be devised on how to exploit and strengthen
the additional information efficiently. For the length-lexicographic representation, a first
step in this direction was made by Dooms et al. [4], who presented domain filtering
algorithms for open constraints where the set-variable representing the scope of an
open constraint has a length-lexicographically ordered domain. For many important
constraints involving set-variables, however, it remains an open question whether or
not it is possible to efficiently filter the domains to some specified level of consistency
when they are length-lexicographically ordered. Addressing this question with respect
to knapsack constraints is the central topic of this paper.

Knapsack constraints have typically been defined over a number of binary variables
which model whether an item is included in or excluded from the knapsack. An alter-
native way of modeling the constraint is by associating it with one set-variable. For the
latter case, filtering algorithms for knapsack constraints achieving bounds-consistency
for the subset-domain representation (which is equivalent to achieving generalized arc-
consistency (GAC) for the binary variable representation) have been studied in [19,
14]. Since determining whether an item must be included or excluded in all feasible
improving solutions is naturally NP-hard, the filtering algorithms either run in pseudo-
polynomial time [14, 19], or they only achieve relaxed or approximated consistency [6,
11, 14, 16].

The length-lex domain representation provides information beyond the classical
sets of required and possible items. A priori, it is not clear that the knapsack prob-
lem does not become strongly NP-hard when we require that the set of items must
be assigned a value within given length-lex bounds. If this was the case, we would
no longer be able to approximate the problem efficiently. In this paper, we show that
there still exists a pseudo-polynomial filtering algorithm that establishes length-lex
bounds-consistency for knapsacks. We also show how to transform this algorithm into a
fully-polynomial approximation scheme and explain how this algorithm can be used to

obtain a polynomial-time algorithm which achieves approximated length-lex bounds-
consistency for knapsack constraints.

While a complexity analysis of knapsack problems under length-lex constraints is
interesting in its own right, in practice we often find that even polynomial-time filter-
ing algorithms can be too heavy to pay-off within a search. For that reason, we also
propose efficient heuristic filtering algorithms that communicate and exploit only the
cardinality information embedded in the length-lex domain representation. We evaluate
those heuristics empirically in the context of multi-knapsack problems where we find
that exploiting cardinality information can effectively reduce the size of the search-tree.

2 Domain Representations for Set-Variables
We assume basic familiarity with constraint programming. Here we recall the basic
definitions concerning constraint programming with set-variables [7].

A set-variable is a variable whose domain values are sets. We assume that the el-
ements originate from a finite universe of elements. Because the number of possible
values of a set-variable can be enormous (the size of a power set, in the worst case),
one usually represents the domain of a set-variable S by a ‘lower bound’ L(S) and an
‘upper bound’ U(S) on the values that S can take.

A natural representation for the domain of a set-variable is based on the subset
ordering of the universe. That is, the lower bound L(S) represents all mandatory ele-
ments, while the upper bound U(S) represents all possible elements, i.e., D(S) = {s |
L(S) ⊆ s ⊆ U(S)}. We refer to this representation as the subset representation. In
addition, at times also a lower bound l(S) and upper bound u(S) on the cardinality
of S are maintained. We can add these two bounds to the subset representation for the
domain of S, i.e.,D(S) = [L(S), U(S), l(S), u(S)] = {s | L(S) ⊆ s ⊆ U(S), l(S) ≤
|s| ≤ u(S)}. We refer to this representation as the subset-cardinality representation.

An alternate representation is based on the length-lexicographic ordering of the uni-
verse [8] where the lower bound L(S) represents the smallest set that can be assigned to
S, while the upper bound U(S) represents the largest set, i.e., D(S) = {s | L(S) ≤LL
s ≤LL U(S)}. Here ≤LL denotes the length-lexicographic order. We refer to this repre-
sentation as the length-lex representation.

Example 1. Let S be a set-variable representing a set of cardinality 2 or 3, in which
element 4 is required, while any element from the set {1, 2, 3, 4, 5} may appear. Using
the subset-cardinality representation, D(S) = [{4}, {1, 2, 3, 4, 5}, 2, 3]. Note that the
bounds of this representation do not correspond to feasible assignments for this variable.

Using the length-lex representation, we have D(S) = [{1, 4}, {3, 4, 5}]. Note that
in this case, the bounds do correspond to feasible assignments for this variable. How-
ever, this representation also allows to assign sets that do not include element 4, for
example, sets {1, 5} and {2, 3} are within the two specified bounds.

As pointed out in the example, a drawback of the length-lex representation is that
it does not allow to represent (and exploit) mandatory elements directly. Therefore, we
introduce an adapted representation that does allow to capture that information, combin-
ing the subset-cardinality and length-lex representations. We propose to maintain a set
R(S) of required elements, a set P (S) of possible elements other than R(S), and two
sets Llex(S) and Ulex(S) that denote the length-lexicographically smallest and largest

set that we can add to R(S). In other words, the domain of a set-variable S is repre-
sented as D(S) = [R(S), Llex(S), Ulex(S), P (S)] = {s | s = R(S) ∪ t, Llex(S) ≤LL
t ≤LL Ulex(S), t ⊆ P (S)}. We finally define the shorthands L(S) = R(S) ∪ Llex(S)
and U(S) = R(S) ∪ Ulex(S). We refer to this representation as the length-lex∗ repre-
sentation. 3

Example 2. Continuing Example 1, the length-lex∗ representation gives R(S) = {4},
Llex(S) = {1}, Ulex(S) = {3, 5}, and P (S) = {1, 2, 3, 5}. This defines the following
domain (in length-lex order) for S: {1, 4}, {2, 4}, {3, 4}, {4, 5}, {1, 2, 4}, {1, 3, 4},
{1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}.

For constraints involving set-variables, the filtering task is to increase the lower
bounds and decrease the upper bounds of the domains. Ideally, we would like to achieve
a specified level of consistency, for example bounds consistency or approximated bounds
consistency. The respective definitions of these consistencies depend on the applied do-
main representation. For the length-lex∗ representation, we have:

Definition 1. Let S denote a set-variable with length-lex∗ domain D(S) = [R(S),
Llex(S), Ulex(S), P (S)]. A constraint C(S) is called length-lex∗ bounds consistent iff

– R(S) = inf
⊆
{s | s ∈ D(S) ∧ s ∈ C(S)},

– P (S) = sup
⊆
{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S),

– Llex(S) = min
≤LL

{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S),

– Ulex(S) = max
≤LL

{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S).

The notion of approximated length-lex∗ bounds consistency will be presented in Sec-
tion 5.

3 The Knapsack Problem
In this section we fix notation that we use throughout the paper. First, we define the
knapsack constraint KP(S, p,B,w,C) representing the knapsack problem on a set of
items denoted by a set-variable S defined on the universe of n items I , a profit vector p
such that pi > 0 is the profit of item i ∈ I , a weight vector w such that wi > 0 is the
weight of item i ∈ I , a lower bound B on the total profit, and a capacity C on the total
weight of the knapsack. More formally, we have

KP(S, p,B,w,C) = {s | s ∈ D(S),
∑
i∈s

pi ≥ B,
∑
i∈s

wi ≤ C}.

As an alternative to the set-variable S, we can represent the set of items to include by a
vector of binary variables x indexed by I , i.e., (i ∈ S) ⇔ (xi = 1). It is well-known
that achieving generalized arc consistency with respect to the variables x corresponds
to achieving subset bounds consistency with respect to the set-variable S [7].

3 Note that our length-lex∗ representation is closely related to the ‘hybrid’ domain representa-
tion of Sadler and Gervet [13, Definition 3]. The difference is that the hybrid representation
separates the lexicographic ordering and the bounds on the cardinality, while we treat them
simultaneously using length-lex bounds. Furthermore, the hybrid representation allows the
lexicographic bounds and the required elements to share elements, which we forbid.

4 Exact Pseudo-Polynomial Algorithms for Knapsack
Let us begin by ignoring the lexicographic bounds and assume that we are only given
bounds on the number of items to include. The traditional way to achieve GAC for the
binary variable representation of a knapsack constraint is by exploiting the dynamic
programming (DP) principle. Since the maximum profit is achieved by either excluding
or including any particular item, we have the following recursion equation: For all k ∈
N and 0 ≤ q ≤

∑
i pi, the minimum weight Dk,q needed to achieve profit q using only

items in {1, . . . , k} is

Dk,q ← min{Dk−1,q, Dk−1,q−pk
+ wk}.

The maximum profit is then easily determined by finding the maximal q such that
Dn,q ≤ C. In [14], a filtering algorithm for knapsacks was developed that exploits
Trick’s well-known filtering technique for dynamic programs [19]. The main idea is to
consider a dynamic program as a graph where each cell is a node and each node has
exactly those predecessors as given by the dynamic programming recursion equation.
For example, the predecessors of Dk,q are Dk−1,q and Dk−1,q−pk

. Edges are weighted
by associating the edge from predecessor Dk−1,q with weight 0 (as it does not cost
anything to not include item k), and the edge from predecessor Dk−1,q−pk

with weight
wk. This way, the values computed by the DP correspond directly to the shortest path
distances from root-node D0,0.

Moreover, every path from the root to some node Dn,q corresponds directly to a
knapsack solution and vice versa. We call such paths “admissible” if and only if q ≥
B and their length is lower or equal C. Now, by exploiting shorter path constraint
filtering [15], we can shrink the graph by eliminating all edges in the graph which can
not be visited by any admissible path. To this end, we introduce an artificial sink-node t
that has predecessors Dn,q for all q ≥ B. Then, shortest path distances from the root to
all nodes and the corresponding shortest-path distances from all nodes to the sink-node
t can be used to determine which edges can still be used on some admissible path [15].
Finally, we infer that item k must (cannot) be included in any feasible and improving
knapsack iff for all q the only predecessor of Dk,q in the shrunken graph is Dk−1,q−pk

(Dk−1,q) [19].

In the presence of constraints limiting the cardinality to fall into a given interval
[l, u], the following analogous dynamic programming recursion solves the knapsack
problem with cardinality bounds:

Wk,q,c ← min{Wk−1,q,c,Wk−1,q−pk,c−1 + wk}.

Again, since item k is either included or excluded in the optimal solution, Wk,q,c

gives the minimum weight needed to achieve a profit of exactly q ∈ N when using
exactly c of the first k items. And again, based on this recursion the optimum is easily
determined by finding the maximum q and c ∈ [l, u] such that Wn,q,c ≤ C. By intro-
ducing an artificial sink t with predecessors Wn,q,c for all q ≥ B and c ∈ [l, u], we
exploit once more shorter path filtering to determine all items that must or cannot be
included by a knapsack constraint augmented by a constraint on the cardinality. Fur-
thermore, we can infer new bounds on the cardinalities by finding the minimum and
maximum values for c for which there exists a predecessor Wn,q,c of t in the shrunken

graph. The total runtime of this algorithm is in O(n2u||p||∞) = O(n3||p||∞), where
||p||∞ = maxi pi.

Now, when we want to achieve length-lex∗ bounds consistency for knapsack con-
straints in the set-variable representation, we can exploit the above algorithm by de-
composing the constraint as follows. Let S be a set variable with length-lex∗ domain
D(S) = [R(S), Llex(S), Ulex(S), P (S)], based on a universe of items {1, . . . , n} (re-
call we use shorthands L(S) = R(S) ∪ Llex(S) and U(S) = R(S) ∪ Ulex(S)). Then

KP(S, p,B,w,C)⇔ KP(S1, p, B,w,C) ∨ KP(S2, p, B,w,C) ∨ KP(S3, p, B,w,C),
(1)

where S1, S2, and S3 are set-variables with respective length-lex∗ domains

D(S1) = D(S) ∩ [L(S),min≤LL({n− |L(S)|+ 1, . . . , n}, U(S))],

D(S2) = D(S) ∩ [{1, . . . , |L(S)|+ 1}, {n− |U(S)|+ 2, . . . , n}],
D(S3) = D(S) ∩ [max≤LL(L(S), {1, . . . , |U(S)|}), U(S)].

Note that S1 and S3 have real lexicographic bounds but are fixed in cardinality with
|S1| = |L(S)| and |S3| = |U(S)|. On the other hand, S2 has only trivial lexicographic
bounds, and it holds that |L(S)| < |S2| < |U(S)| (provided that |U(S)|− |L(S)| ≥ 2).
Therefore, for S2 we can exploit the algorithm that we sketched above. Thus, for a
complete pseudo-polynomial length-lex bounds consistency algorithm, we only lack a
pseudo-polynomial filtering algorithm for knapsacks with fixed cardinality and arbitrary
lexicographic bounds.

So let us consider the following problem: Given a natural number n, a profit vector
p ∈ Qn, a profit threshold B ∈ N, a weight vector w ∈ Qn, a capacity C ∈ N, a
fixed cardinality κ ∈ N, and lexicographic bounds L,U ⊆ {1, . . . , n}, find a solution
x ∈ {0, 1}n such that

pTx ≥ B wTx ≤ C (2)

1Tx = κ L ≤lex {i | xi = 1} ≤lex U (3)
x ∈ {0, 1}n. (4)

By using a three-dimensional DP like before, we can directly enforce the capacity
and profit restrictions (simply by only allowing nodes Wn,q,c to connect to the sink-
node t for which c = κ and q ≥ B). The filtering problem can then be addressed by
identifying edges in the DP-induced graph for which there exists no admissible path
from the root to the sink, whereby admissibility now enforces both a path-length lower
or equal C and that the corresponding knapsack solution is a set of items S for which
L ≤lex S ≤lex U . To this end, we intend to reuse the idea of shorter-path constraint
filtering. However, a simple forward and backward shortest path computation is no
longer sufficient because the concatenation of a path from the source to a node in the
graph and a path from that node to the sink may violate the lexicographic bounds.

Note that both L and U define (potentially non-admissible) paths in the DP-induced
graph that we denote with πL and πU , respectively. Conversely, for any path π from the
root to any node in the DP, we can define a corresponding set S of items that the path
includes in the knapsack: Sπ ← {k | (Wk−1,q−pk,c−1,Wk,q,c) ∈ π}.

In order to identify exactly those nodes in the graph that have no admissible paths
running through them, it will be important to know the shortest path distance from the
root to a given node when the choices implied by that path π already ensure that the
resulting set Sπ must obey the lexicographic bounds L,U . Formally:

Definition 2. For a path π from the root toWk,q,c, we write L <lex Sπ (or Sπ <lex U)
if and only if for all S ⊆ {1, . . . , n} such that S ∩ (Sπ ∪ {k + 1, . . . , n}) = S and
|S| = κ it holds that L <lex S (S <lex U).

Conversely, we will also need to argue about paths from nodes in the DP-induced
graph to the sink-node t:

Definition 3. For a path π from Wk,q,c to t, we write L ≤lex Sπ (or Sπ ≤lex U) if
and only if for T ← Sπ ∪ (L ∩ {1, . . . , k}) (T ← Sπ ∪ (U ∩ {1, . . . , k})) it holds that
|T | = κ and L ≤lex T (T ≤lex U).

To make our task easier, we may assume that the first item is a member of L (other-
wise the item is disallowed and can be removed from consideration), and that the first
item is not in U (as otherwise the item must be taken and could also be removed from
the problem). Then, for all nodes but the root, we distinguish three situations.

Remark 1. 1. For all nodes Wk,q,c that are neither on πL nor on πU , a shortest ad-
missible path from the root to t that visits this node obviously decomposes into a
part from the root to the given node π1, and from the node to the sink π2. Since the
current node is neither on πL nor on πU , we know that L <lex Sπ1 <lex U .

2. For a node Wk,q,c on πL, on top of option 1, the shortest admissible path from root
to t through this node may follow πL from the root to the node, and some path π2

from the node to t with L ≤lex Sπ2 .
3. For a node Wk,q,c on πU , on top of option 1, the shortest admissible path from root

to t through this node may follow πU from the root to the node, and some path π2

from the node to t with Sπ2 ≤lex U .
Note that options 2 and 3 may occur at the same time.

Consequently, we can compute the length of the shortest admissible path through a
given node Wk,q,c, if we know the following six quantities:

– For Wk,q,c ∈ πL, M1
k,q,c gives the distance from the root to Wk,q,c when following

πL, that is M1
k,q,c ←

∑
i∈L,i≤k wi. For Wk,q,c /∈ πL, we set M1

k,q,c ←∞.
– For Wk,q,c ∈ πU , M2

k,q,c gives the distance from the root to Wk,q,c when following
πU , that is M2

k,q,c ←
∑
i∈U,i≤k wi. For Wk,q,c /∈ πU , we set M2

k,q,c ←∞.
– For arbitrary nodes Wk,q,c, M3

k,q,c gives the length of the shortest path π from the
root to Wk,q,c with L <lex Sπ <lex U .

– For arbitrary nodes Wk,q,c, M4
k,q,c gives the length of the shortest path π from

Wk,q,c to t.
– For arbitrary nodes Wk,q,c, M5

k,q,c gives the length of the shortest path π from
Wk,q,c to t with L ≤lex Sπ .

– For arbitrary nodes Wk,q,c, M6
k,q,c gives the length of the shortest path π from

Wk,q,c to t with Sπ ≤lex U .

Lemma 1. – The length of a shortest admissible path through an edge (Wk,q,c,Wk+1,q,c)
is

min{M3
k,q,c +M4

k+1,q,c,M
1
k,q,c +D1

k,q,c,M
2
k,q,c +D2

k,q,c},

where D1
k,q,c = M4

k+1,q,c if k + 1 ∈ L and D1
k,q,c = M5

k+1,q,c otherwise, and
D2
k,q,c = M6

k+1,q,c if k + 1 /∈ U and D2
k,q,c =∞ otherwise.

– The length of a shortest admissible path through an edge (Wk,q,c,Wk+1,q+pk+1,c+1)

is

min{M3
k,q,c+M4

k+1,q+pk+1,c+1+wk+1, M
1
k,q,c+E1

k,q,c+wk+1, M
2
k,q,c+E2

k,q,c+wk+1},

where E1
k,q,c = M5

k+1,q+pk+1,c+1 if k + 1 ∈ L and E1
k,q,c = ∞ otherwise, and

E2
k,q,c = M4

k+1,q+pk+1,c+1 if k+1 /∈ U and E2
k,q,c = M6

k+1,q+pk+1,c+1 otherwise.

Proof. Assume Wk,q,c ∈ πL. Denote with π1 the path from the root to Wk,q,c by fol-
lowing πL. Since 1 ∈ L and 1 /∈ U , we know that Sπ1 <lex U . Consequently, it is
sufficient for quantity M5 to consider the lower lexicographic bound only when com-
bined with M1. The analogue holds for the combination of M2 and M6. With this
observation, the lemma follows from Remark 1. ut

Consequently, our task is to compute quantitiesM1, . . . ,M6. For M1 and M2, this
is straightforward. For M3, . . . ,M6, in the following we devise recursion equations
which allow us to compute them by means of dynamic programming.

Recall that M3 measures the shortest path distance from the root when this path
already ensures that the final path will strictly obey both lexicographic bounds (let us
call such a path an M3-path). When considering the inclusion or exclusion of item k,
we can either use an M3-path to reach the predecessor of a node, in which case we
know that any continuation results in an M3-path. Alternatively, we can consider a
predecessor node on πL when the exclusion of k results in an M3 path. Analogously,
we can consider a predecessor node on πU when the inclusion of k results in an M3

path. Consequently, we have the following recursion equation:

M3
k,q,c = min{M3

k−1,q,c,M
3
k−1,q−pk,c−1 + wk, A

1
k,q,c, A

2
k,q,c},

whereby A1
k,q,c = M1

k−1,q,c if k ∈ L and A1
k,q,c = ∞ otherwise, and A2

k,q,c =
M2
k−1,q−pk,c−1 + wk if k /∈ U and A2

k,q,c =∞ otherwise.

Quantity M4 plainly computes the shortest path distance to the sink t, so the com-
mon recursion equation works without modification:

M4
k,q,c = min{M4

k+1,q,c,M
4
k+1,q+pk+1,c+1 + wk+1}.

Quantity M5 measures the distance to the sink-node t when only paths are allowed
that obey the lexicographic lower bound when we prepend the lower-bound path to the
current node. When considering the exclusion of an item k + 1 with k + 1 ∈ L, we
are sure to strictly obey the lexicographic lower bound and can therefore use the unre-
stricted shortest path distance to the sink of the corresponding successor node. Conse-
quently, we have the following recursion equation:

M5
k,q,c = min{Bk,q,c,M5

k+1,q,c},

wherebyBk,q,c = min{M4
k+1,q,c,M

5
k+1,q+pk+1,c+1+wk+1} if k+1 ∈ L andBk,q,c =

∞ otherwise. The analogue argument for M6 gives:

M6
k,q,c = min{Ck,q,c,M6

k+1,q+pk+1,c+1 + wk+1},

wherebyCk,q,c = min{M4
k+1,q+pk+1,c+1+wk+1,M

6
k+1,q,c} if k+1 /∈ U andCk,q,c =

∞ otherwise.

With these results, we are now able to prove the following theorem:

Theorem 1. Let S be a set-variable with length-lex∗ domain based on a universe of
elements {1, . . . , n}. For a Knapsack constraint KP(S, p,B,w,C), length-lex∗ bounds
consistency can be achieved in time O(n3||p||∞).

Proof. We first decompose the constraint according to Equation 1. As discussed ear-
lier, we can identify all possible and required items for KP(S2, p, B,w,C) in pseudo-
polynomial time. Next we consider KP(S1, p, B,w,C) and KP(S3, p, B,w,C) and
filter edges according to the algorithm sketched above (whereby the lexicographic up-
per or lower bound are set to the trivial bound for the given cardinality κ ← |L(S)|
or κ ← |U(S)| when |L(S)| < |U(S)|). We set up the DP-induced graph and com-
pute quantities M1, . . . ,M6 for all nodes. Then, we filter all nodes and edges from the
graph which cannot be visited by any admissible path. Using Trick’s DP-filtering tech-
nique, this allows us to identify all items which must or cannot be part of any feasible
improving solution for KP(S1, p, B,w,C) and KP(S3, p, B,w,C).

In this way we also determine whether there exist admissible paths at the cardinality
bounds at all, i.e., whether the constraints can still be satisfied or not. If this is the case,
in order to compute a new lexicographic lower bound at the lower cardinality bound, we
simply include the first item if that is still possible after filtering edges from the graph.
Then we filter again and try to include the next item and so forth. The correctness of the
edge-filtering algorithm guarantees that we compute an admissible path π such that Sπ
is the lexicographically smallest feasible and improving solution with |Sπ| = |L(S)|.
For the new lexicographic upper bound we proceed analogously.

If we find that one of the two constraints is not satisfiable anymore, then we use
KP(S2, p, B,w,C) again to determine a new lower and/or upper bound on the cardi-
nality. If one of the cardinality bounds are updated, we repeat the computation of a new
lexicographical lower and/or upper bound as before.

The total runtime of this algorithm is dominated by the computation of new lex-
icographical upper and lower bounds which require up to |U(S)| calls to the edge-
filtering algorithm whose runtime is determined by the size of the DP-induced graph
which is in O(n|U(S)|||p||∞). The total runtime is therefore in O(n|U(S)|2||p||∞) =
O(n3||p||∞). ut

5 Approximated Length-Lex Bounds Consistency for Knapsack
constraints

The results of the previous section show that the fully polynomial-time approximeabil-
ity of knapsack problems is not affected by additional length-lex bounds constraints.
We can utilize our approximation scheme to achieve approximated length-lex∗ bounds
consistency for knapsack constraints in the spirit of [14]:

Definition 4. Let S denote a set-variable with length-lex∗ domain D(S) = [R(S),
Llex(S), Ulex(S), P (S)]. The knapsack constraint KP(S, p,B,w,C) is called ε-length-
lex∗ bounds consistent when it holds:

– P ∗[i ∈ S] ≥ B − εP ∗, for all i ∈ P (S),
– P ∗[i /∈ S] < B − εP ∗, for all i ∈ R(S),
– P ∗[S = R(S) ∪Llex(S)] ≥ B − εP ∗ and P ∗[S = R(S) ∪Ulex(S)] ≥ B − εP ∗,

where P ∗ gives the optimal knapsack solution (potentially under the additional con-
straints given in brackets).

Theorem 2. Approximated ε-length-lex∗ bounds consistency for knapsack constraints
can be achieved in time O(n

4

ε).

Proof. In this proof we again use the shorthands L(S) = R(S)∪Llex(S) and U(S) =
R(S) ∪ Ulex(S).

We apply the standard approach from [10] for transforming a dynamic program
into a fully polynomial-time approximation scheme (FPTAS): We scale the profits by
setting p̃i ← bpi

K c for K ← ε||p||∞
|U(S)| . Then, we invoke our pseudo-polynomial filtering

algorithm on KP(S, p̃, B − ε||p||∞, w, C). Note that ||p̃||∞ ≤ |U(S)|
ε . Therefore, the

algorithm runs in time O(n2|U(S)|||p̃||∞) = O(n
2|U(S)|2

ε).
We show that the algorithm is sound and achieves ε-length-lex∗ bounds consistency.

Soundness: Assume our algorithm excludes an item s from P (S). It does so only when
there exists no admissible path that includes the item, which is the same as to say that
there exists no admissible solution to KP(S, p̃, B−ε||p||∞K , w, C) that includes the item.
Denote with S̃ ∈ D(S) the solution with s ∈ S̃ that maximizes P̃ ∗[s ∈ S] =

∑
i∈S̃ p̃i

while
∑
i∈S̃ wi ≤ C. Furthermore, denote with S∗ ∈ D(S) the solution with s ∈ S∗

that maximizes P ∗[s ∈ S] =
∑
i∈S∗ pi while

∑
i∈S∗ wi ≤ C. It holds:

B − ε||p||∞ > KP̃ ∗[i ∈ S] (5)

≥
∑
i∈S̃

pi −K|U(S)| ≥
∑
i∈S̃

pi − ε||p||∞ (6)

Therefore, P ∗[s ∈ S] =
∑
i∈S̃ pi < B, which means it is sound to remove item s from

consideration. The analogous argument holds for items that are included by our algo-
rithm. Next, our algorithm computes length-lex lower and upper boundsLlex(S), ULex(S)
on the undecided items such that no set lower than L(S) = R(S) ∪ Llex(S) and no set
larger than U(S) = R(S) ∪ Ulex(S) is admissible for KP(S, p̃, B−ε||p||∞K , w, C). The
same argument as before shows that no set lower than L(S) or larger than U(S) can
then be admissible for KP(S, p,B,w,C).
Completeness: Assume for some item s it holds that P ∗[s ∈ S] < B−εP ∗. Therefore,
for all S̃ ∈ D(S) with s ∈ S̃ and

∑
i∈S̃ wi ≤ C it holds that

∑
i∈S̃ pi < B − εP ∗ ≤

B − ε||p||∞. Thus:

B − ε||p||∞ >
∑
i∈S̃

p̃i ≥ K
∑
i∈S̃

p̃i

for all S̃, and therefore s is removed from P (S). The analogous results follows for
items that must be included. For the length-lex bounds, finally, it holds that they define
admissible solutions for KP(S, p̃, B−ε||p||∞K , w, C). It holds:

B − ε||p||∞ ≤ K
∑

i∈L(S)

p̃i ≤
∑

i∈L(S)

pi = P ∗[S = L(S)].

And the analogue is true for the set U(S). ut

6 Fast Heuristic Filtering Algorithms for Knapsacks with
Bounded Cardinalities

We have seen that cardinality and lexicographic information can be inferred and taken
into account for knapsack constraints without compromising the fully polynomial-time
approximeability of the problem. However, although polynomial, a runtime in O(n4)
is not practically appealing in light of the delicate trade-off between the time to per-
form this type of inference and the value of the additional information gained by it. In
order to make inference faster, we may decide that we only want to reason about the
cardinality of the final set of items included in the knapsack. We presented an exact
pseudo-polynomial time algorithm for this task in Section 4. In an effort to reduce the
filtering-time, in this section we devise a heuristic algorithm which runs in linear time.

6.1 Lagrangian Relaxation-based Cardinality Bounds

To derive cardinality bounds, as we did earlier in [18], we consider the Lagrangian
relaxation of the knapsack problem. In linear programming, it is well-known that the
optimal dual value for the capacity constraint is the efficiency (the profit over weight)
of the critical item s, which is defined as the first item in the efficiency ordering whose
inclusion overloads the knapsack: s ← min{s′ |

∑s′

i=1 wi > C}, whereby i < j
implies pi/wi ≥ pj/wj . Using this value as Lagrangian multiplier, we are left with the
following relaxed problem: maximize pTx− (wTx−C)ps/ws = (p−wps/ws)Tx+
Cps/ws such that xi ∈ {0, 1}. Obviously, the maximum is obtained by setting xi ←
1 if p̃i ← pi − wips/ws > 0, and xi ← 0 if p̃i < 0 (for p̃i = 0 we can set xi
arbitrarily). By this setting, we obtain a valid upper bound U on the profit that can be
achieved. IfU < B, we can backtrack right away as the current subproblem cannot have
any improving feasible solutions. Otherwise, we would like to infer which items must
be included/excluded as they must/cannot be part of any improving feasible solution.
Moreover, we would like to tighten the bounds on the number of items that must/can be
included in the knapsack.

When sorting items according to decreasing Lagrangian profits p̃i, we can easily
deduce lower and upper bounds on the number of items that must/can be included:

l← max{l,min{l′ |
l′∑
i=1

p̃i ≥ B − C
ps
ws
}},

whereby we assume that i < j implies p̃i ≥ p̃j . Analogously, we set

u← min{u,max{u′ |
u′∑
i=1

p̃i ≥ B − C
ps
ws
}}.

Input: set S with associated profit vector p̃ and a bound B̃.
Pick a random element r in S.
Set L← {i ∈ S | p̃i ≥ p̃r} and R← {i ∈ S | p̃i < p̃r}.
p̃(L)←

P
i∈L p̃i

if p̃(L) ≥ B̃ then
return lowerBound(L, p̃, B̃)

else
return |L|+lowerBound(R, p̃, B̃ − p̃(L))

Algorithm 1: Linear-time algorithm to determine a lower bound on the cardinality.

The effort for the above update is obviously dominated by sorting the items, which can
be done in time O(n log n). However, a complete sorting is actually not necessary. Just
like the critical item s of a knapsack instance can be computed in linear time [3], so can
the new cardinality bounds l and u. In Algorithm 1, we show how a lower bound on the
cardinality can be computed in expected linear time. The algorithm works like a quick-
sort algorithm, whereby only one part of the items needs to be investigated recursively.
According to the master theorem for recursive algorithms [2, Section 4.3, 4.4], this
lowers the time from O(n log n) to O(n) when we assume that, on average, the set of
items is cut in half in each recursion iteration. While this works well in practice, in
theory we can even guarantee a linear runtime by replacing the random choice of the
splitting item by the median item, where the median can be computed in linear time [2].

Of course, the Lagrangian relaxation also allows us to filter items by exploiting
the idea of CP-based Lagrangian relaxation [17]. In our case, filtering is particularly
easy as items that must be included have p̃i > B − U . Those that cannot be included
have p̃i < U − B. In case that the external cardinality bounds are tight (this happens
when p̃l < 0 or p̃u > 0), we can even decide that an item must be included when
p̃i− p̃l+1 > B−U when the lower cardinality bound is tight, and that an item must be
excluded when p̃i − p̃u < B − U when the upper cardinality bound is tight.

6.2 Redundant Knapsack constraints

In terms of running time, the above linear time algorithm that heuristically filters knap-
sack constraints and exploits and provides upper and lower bounds on the cardinal-
ity is already much more appealing than the exact or approximate algorithms devised
earlier. However, we can do even more: In [11], an algorithm for the propagation of
knapsack constraints was devised which runs in amortized expected sublinear time.
The question arises how this algorithm can be exploited to reason about knapsack
cardinalities at the same time as it infers which items must or cannot be included in
any feasible improving solution. A simple option is to post redundant knapsack con-
straints: If we are given the conjunction KP(S, p,B,w,C) ∧ (l ≤ |S| ≤ u), we can
post the following three traditional knapsack constraints (whereby x1, . . . , xn are bi-
nary variables): KP(x1, . . . , xn, p, B,w,C), KP(x1, . . . , xn, (1, . . . , 1)T , l, w, C), and
KP(x1, . . . , xn, p, B, (1, . . . , 1)T , u). Note that the different constraints do not only al-
low us to perform filtering in the item variables, they also allow us to infer strengthened
bound on the cardinalities. For example, the floor of the linear upper bound computed
for the propagation of KP(x1, . . . , xn, (1, . . . , 1)T , l, w, C) gives a valid upper bound
on the number of items that can be included in any feasible and improving solution.

Lagrangian KP KP+Card
Class #Items Time #CPs Time #CPs Time #CPs

P1 15 1.89 26.7k 1.51 24.1k 2.19 22.4k
20 2.40k 31.4M 888.51 12.6M 978.79 8.62M

P2 15 5.98 85.4k 1.51 22.1k 2.34 21.6k
20 4.26k 57.8M 414.25 5.48M 468.65 3.74M

P3 15 2.41 32.2k 0.33 4.88k 0.54 4.84k
20 264.33 3.32M 12.85 0.19M 22.37 0.19M

Table 1. Average running time (seconds) and the average number of choice points over 20 in-
stances with five knapsack constraints and 15 or 20 items using three different models.

7 Experimental Results
Despite the fact that the algorithms developed in Sections 4 and 5 are polynomial, their
comparably large computation costs render them impractical within backtrack search
where we face a delicate trade-off between inference efficiency and effectiveness. To
assess whether communicating information beyond the traditional inclusion or exclu-
sion of items, we therefore implemented the heuristic algorithms for reasoning about
knapsacks with cardinality constraints.

As our benchmark, we use multi-knapsack problems where we have to distribute a
set of items over multiple knapsacks while the capacity restrictions on the individual
knapsacks must be respected. We aim at maximizing the profit of the knapsack that is
assigned the least profit. Problems are generated using the code from Pisinger [12]. We
distinguish three different problem classes:

P1: Multi-Knapsack problems where all knapsacks use the same profit and weight vec-
tor. Constraints differ in the available capacity for each knapsack.

P2: Multi-Knapsack problems where all knapsacks use the same profit vector. Con-
straints differ in the weight vector and the available capacity for each knapsack.

P3: Multi-Knapsack problems where all knapsacks use different profit and weight vec-
tors.

In each algorithm, we branch on the item that has the least knapsacks left to be
assigned to, and we assign it to that knapsack that has been assigned the least profit yet.
We compare three different models:

KP vs KP+Card Lagrangian vs KP+Card
Time #CPs Time #CPs

Class #Items avg var avg var avg var avg var
P1 15 -43.4 0.8 7.0 0.3 -4.6 16.4 24.9 10.7

20 -32.4 9.6 18.1 3.0 51.0 12.1 67.2 6.1
P2 15 -54.2 0.6 1.2 0.0 64.1 5.4 77.5 3.1

20 -50.6 4.5 8.9 1.5 92.3 0.6 95.8 0.2
P3 15 -55.3 1.1 1.2 0.2 81.5 5.2 90.2 2.1

20 -67.3 0.3 0.6 0.0 -353 3.9k -284 2.8k

Table 2. Average (avg) percent difference in running times and choice points as well as their
variance (var) when comparing models on a collection of multi-knapsack problems. A positive
value states the strategy listed first is the given percentage larger.

– KP: the plain knapsack model where each knapsack constraint is propagated by
the expected sublinear-time algorithm introduced in [11]. The partitioning of items
is enforced by introducing item variables, whereby each of those variables has the
indices of the knapsacks plus a dummy index for left-over items as its domain.

– KP + Card: the model where redundant knapsack constraints exploit cardinality
information. Each knapsack is modelled by three constraints, one for the actual
knapsack, one for the combination of cardinality upper bound and the knapsack’s
profit, and one for the combination of the original weights in combination with the
cardinality lower bound. All knapsacks are propagated by the algorithm from [11].
The partitioning of items is enforced by a global cardinality constraint which ex-
ploits and strengthens the cardinality bounds on the knapsacks.

– Lagrangian: the model where we use a Lagrangian bound to propagate knapsack
constraints and infer knapsack cardinalities. The partitioning of items is again en-
forced by a global cardinality constraint.

All experiments were run on an AMD Athlon 64 X2 Dual Core Processor 3800+
using Ilog Solver 6.5. In Tables 1 and 2 we show the average runtime and choice points
on collections of 20 instances in the different banchmark classes P1, P2, and P3. We see
how exploiting cardinality information effectively reduces the number of choice points.
This is generally highly desirable as a more effective inference mechanism leaves less
room for mistakes when organizing the search. For multi-knapsack problems, the trade-
off between inference time and effectiveness is not in favor of even slightly more costly
inference, and we observe that the plain KP model works fastest in all cases. Note that,
in this model, inference works in expected sublinear time, while in the two other models
global cardinality constraits need to be propagated to infer new cardinality bounds on
the knapsacks. The Lagrangian model also suffers from a linear-time filtering routine
for knapsack, and we see that it cannot compete with with KP and KP+Card.

KP KP+Card
ID Time #CPs Time #CPs
1 4.5K 52.2M 5.4K 39.5M
2 1.4K 17.2M 2.6K 16.7M
3 2.4K 31.7M 2.4K 19.6M
4 1.8K 20.8M 2.9K 20.7M
5 15.3K 196.2M 17.6K 136.3M
6 0.5K 6.7M 0.5K 4.0M
7 4.3K 55.8M 3.1K 23.6M
8 2.4K 33.2M 2.6K 22.1M
9 3.2K 41.9M 4.5K 35.9M

10 4.3K 56.5M 3.1K 24.9M
avg 4.0K 51.2M 4.5K 34.3M

Table 3. Running times (seconds) and the number
of choice points for 10 instances with five knap-
sack constraints and 22 items using the KP and
KP+Card models.

We were curious to see whether
the reductions in choice points be-
come more important as problem in-
stances become even harder. In Ta-
ble 3 we compare KP and KP+Card
on ten 22 item knapsack problems. We
observe that the exchange of cardi-
nality information is becoming more
and more competitive, and for even
harder problem instances we expect
that the more costly yet more ef-
fective inference will eventually be-
come beneficial. The results show
that, with increasing difficulty of the
problem, the cardinality constraints
significantly boost the performance
of the algorithm, providing an av-
erage decrease of more than 30%
in the number of choice points. For
more general problems, where knap-
sack constraints are mixed with other constraints, this reduction may be very beneficial.

8 Conclusions
We studied the complexity of knapsack constraints with length-lex domains and showed
that the problem remains fully polynomial-time approximeable. Based on this result,
we showed how ε-approximate length-lex bounds consistency for knapsacks can be
achieved in time O(n4/ε). Compromising inference effectiveness for efficiency, we
provided heuristic filtering algorithms for knapsack constraints that incorporate cardi-
nality information only. Experiments on multi-knapsack problems showed that these
algorithms effectively reduce the number of choice points. Whether or not this reduc-
tion is worthwhile will depend on the concrete problem that needs to be solved.

References

1. H.R. Andersen, T. Hadzic, J.N. Hooker, and P. Tiedemann. A Constraint Store Based on
Multivalued Decision Diagrams. In Proceedings of CP, volume 4741 of LNCS, pages 118–
132. Springer, 2007.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (Second
Edition). MIT Press / McGraw-Hill, 2001.

3. G. Dantzig. Discrete variable extremum problems. Operations Research, 5:226–277, 1957.
4. G. Dooms, L. Mercier, P. Van Hentenryck, W.-J. van Hoeve, and L. Michel. Length-Lex

Open Constraints. Technical Report CS-07-09, Brown University, 2007.
5. A. Eremin and M. Wallace. Hybrid Benders Decomposition Algorithms in Constraint Logic

Programming. In Proceedings of CP, volume 2239 of LNCS, pages 1–15. Springer, 2001.
6. T. Fahle and M. Sellmann. Cost Based Filtering for the Constrained Knapsack Problem.

Annals of Operations Research, 115(1):73–93, 2002.
7. C. Gervet. Constraints over structured domains. In F. Rossi, P. van Beek, and T. Walsh,

editors, Handbook of Constraint Programming, chapter 17. Elsevier, 2006.
8. C. Gervet and P. Van Hentenryck. Length-lex ordering for set CSPs. In Proceedings of AAAI,

2006.
9. J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Program-

ming, 96(33-60):22, 2003.
10. O.H. Ibarra and C.E. Kim. Fast Approximation Algorithms for the Knapsack and Sum of

Subset Problems. Journal of the ACM, 22(4):463–468, 1975.
11. I. Katriel, M. Sellmann, E. Upfal, and P. Van Hentenryck. Propagating Knapsack Constraints

in Sublinear Time. In Proceedings of AAAI. AAAI Press, 2007.
12. D. Pisinger. Where are the hard knapsack problems? Computers and Operations Research,

32:2271–2282, 2005.
13. A. Sadler and C. Gervet. Enhancing set constraint solvers with lexicographic bounds. Jour-

nal of Heuristics, 14(1):23–67, 2008.
14. M. Sellmann. Approximated Consistency for Knapsack Constraints. In Proceedings of CP,

volume 2833 of LNCS, pages 679–693. Springer, 2003.
15. M. Sellmann. Cost-Based Filtering for Shorter Path Constraints. In Proceedings of CP,

volume 2833 of LNCS, pages 694–708. Springer, 2003.
16. M. Sellmann. The Practice of Approximated Consistency for Knapsack Constraints. In

Proceedings of AAAI, pages 179–184. AAAI Press, 2004.
17. M. Sellmann and T. Fahle. Constraint Programming Based Lagrangian Relaxation for the

Automatic Recording Problem. Annals of Operations Research, 118(1):17–33, 2003.
18. M. Sellmann, G. Kliewer, and A. Koberstein. Lagrangian Cardinality Cuts and Variable

Fixing for Capacitated Network Design. In Proceedings of ESA, pages 845–858, 2002.
19. M.A. Trick. A Dynamic Programming Approach for Consistency and Propagation for Knap-

sack Constraints. Annals of Operations Research, 118(1):73–84, 2003.

