Optimal Multi-Agent Scheduling with Constraint Programming

Willem-Jan van Hoeve, Carla P. Gomes,

Bart Selman
Dept. of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853

Abstract

We consider the problem of computing optimal sched-
ules in multi-agent systems. In these problems, actions
of one agent can influence the actions of other agents,
while the objective is to maximize the total ‘quality’
of the schedule. More specifically, we focus on multi-
agent scheduling problems with time windows, hard
and soft precedence relations, and a nonlinear objec-
tive function. We show how we can model and effi-
ciently solve these problems with constraint program-
ming technology. Elements of our proposed method
include constraint-based reasoning, search strategies,
problem decomposition, scheduling algorithms, and a
linear programming relaxation. We present experimen-
tal results on realistic problem instances to display the
different elements of the solution process.

Introduction

Multi-agent planning and scheduling problems arise in many
contexts such as supply chain management, coordinating
space missions, or configuring and executing military sce-
narios. In these situations, the agents usually need to per-
form certain tasks in order to achieve a common goal. Often
the agents need to respect various restrictions such as tempo-
ral constraints and interdependency relations. Furthermore,
depending on the application at hand, these problems may be
subject to several uncertainties, for example the actual out-
come and duration of executing a task, and changing envi-
ronmental conditions. Multi-agent planning and scheduling
problems are among the most difficult problems in Artificial
Intelligence. While the centralized deterministic version is
already NP-hard, the non-deterministic distributed version is
even NEXP-complete (Bernstein et al. 2002).

In this paper we present an efficient method to com-
pute provably optimal solutions for centralized determinis-
tic multi-agent scheduling problems. The motivation for our
work stems from the application studied in the DARPA pro-
gram COORDINATORSs. In this application, agents corre-
spond to military units that need to achieve a common goal.
Initially, each agent has its own local view of the situation,
and an initial schedule of tasks to execute. During the course
of action, the actual duration and quality of executed tasks as

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Michele Lombardi
DEIS, University of Bologna
Viale Risorgimento 2, 40136, Bologna, Italy

well as environmental changes typically force the agents to
adapt their schedule. Because of interdependency relations
between the tasks, proposed changes must be communicated
and negotiated with the other agents. The aim of the project
is to automate the coordination process of negotiation and
rescheduling in a distributed fashion.

Our system, described in this paper, is able to compute
provably optimal centralized solutions for deterministic sce-
narios sketched above. Within the program, our system is
applied in several ways. Most importantly, it is used to eval-
uate the performance of distributed approaches. Namely, for
a given (simulated) problem, we create a deterministic prob-
lem by replacing all uncertainty with the actual outcomes.
The optimal centralized solution to this problem serves as
an upper bound for the performance of a distributed ap-
proach. To obtain an average expected performance bound
to a problem, we average the optimal solutions for a suffi-
ciently large number of samples instead. Furthermore, sam-
pling the outcome space has also been applied to evaluate
the test problems themselves. Problem instances contain-
ing rare outcome outliers resulting in extremely low or high
solution quality should ideally be avoided for performance
evaluation. We recognize such problems by analyzing the
distribution of optimal solutions over a large number of sam-
ples. Finally, our system is also in use to study adaptive algo-
rithm selection procedures (Rosenfeld 2007), and as part of
an environment to simulate user interaction (Sarne & Grosz
2007), within this program. Hence, the main requirements
for our system are guaranteed optimality and computational
efficiency. As the experiments will show, we can optimally
solve large problem instances involving 2250 actions and
100 agents, in only 13 seconds of computation time.

Our approach is based on constraint programming tech-
nology. This has several advantages. First, it allows us to
specify the problem in a rich modeling language, and to
apply the corresponding default constraint-based reasoning.
As we will see below, our model is very close to the origi-
nal representation of the problem. Second, in the constraint
programming framework we can specify detailed search
heuristics, tailored to the specific needs of the problem. In
addition, we have implemented a problem decomposition
scheme to further improve our search process. Third, we
have implemented an “optimization constraint”, based on a
linear programming relaxation of the problem, to strengthen

Method5

A: John

Q:8
. l D:6
.7
e\\%?’
Method1 Method3 e ’ Method6
A: John A:John 7 A: Mary
Q7 Q6 -7 Q6
D: 6 D; 67 D:4
Method2 e ’ Method4 Method7
A: Mary e A: Peter A: Mary
Q5 Q5 Q5
D:4 D:4 D:3

TaskGroupl

Task3

QAF: sync_sum
TW: [11,19]

Method10

A: Mary\\ A: John A: John
Q6 * Q3 Q9
D: 4 D:2 D:8

Method12

Method9 I Method11

N

Method13

A: Peter | At Mary A: Peter
Q:6 Q:8 Q:4
D: 4 D:7 D:3

Figure 1: Example of a cTAEMS problem. QAF stands for quality accumulation function, TW for time window, A for agent, Q

for quality, and D for duration.

the optimization reasoning. Fourth, we optionally apply ad-
vanced scheduling algorithms, such as the edge-finding al-
gorithm. The constraint-based architecture of constraint pro-
gramming allows us to implement all these technologies ef-
ficiently in one system.

In the following section we provide a detailed description
of the problem class that is the subject of this paper. There-
after, we present our constraint programming model. This
is followed by a description of the solution process. Finally,
we present extensive computational results.

Problem Description

The problems that we consider in this work consist of a set
of agents that may execute certain methods. Each executed
method contributes an amount of quality to a hierarchical
objective function. Furthermore, the problems contain tem-
poral constraints and interdependency relations that need to
be respected. The goal is to find for each agent a schedule of
methods to execute at a certain time, such that the total qual-
ity is maximized. To represent these problems, we make use
of the modeling language TAEMS: a framework for Task
Analysis, Environment Modeling, and Simulation (Horling
et al. 1999). In fact, we consider a subset of this framework,
called cTAEMS, which is particularly suitable to represent
coordination problems (Boddy et al. 2007).

In cTAEMS, a problem is represented by fasks and meth-
ods, which are linked to each other in a hierarchical way. An
example is depicted in Figure 1, consisting of 9 tasks and
13 methods. A method i is owned by a single agent A[i].
Each agent is restricted to execute at most one method at a
time. If a method ¢ is executed, it generates a certain qual-
ity Q[é], while its execution takes a duration D[i|. A task is

not owned by an agent, but serves to accumulate quality via
its subtasks (or submethods). This is done via a quality ac-
cumulation function, or QAF. The possible QAFs are: min,
max, sum, sync-sum, exactly-one, and sum-and. Here min,
max, and sum represent the minimum, maximum, or sum,
respectively. The sync-sum represents the sum of all sub-
tasks (or submethods) that are synchronized, i.e., starting at
the same time. The exactly-one restricts at most one sub-
task (or submethod) to have positive quality. The sum-and
requires all subtasks (or submethods) to have positive qual-
ity, or none. The accumulation of quality only takes place
after a method has been completed. The total quality of the
problem is represented by the root task (called TaskGroupl
in Figure 1). The goal is to execute a subset of methods such
that the quality of the root task is maximized. For exam-
ple, Figure 2 presents an optimal solution for the problem in
Figure 1.

The execution of a method takes place from its start time
until its end time. The integer time representation is such
that the duration includes the start and end time. For exam-
ple, in Figure 2, Method6 starts at time 7, ends at time 10,
and has a duration of 4. The start and end time of a task
are inherited recursively from the start and end time of its
children. Both methods and tasks may be subject to a time
window, representing the earliest start time and latest end
time (denoted by TW in Figure 1). Time windows also ap-
ply to the tasks and methods underneath a task. Hence, the
time window of a method is defined by the intersection of
the time windows of all tasks on the path from the method
to the root task of the hierarchy.

Finally, there may exist precedence relations between
tasks and/or methods. The possible precedence relations are:

time 0 5 10 15 20
L R B R B B B O

John: Method1 Method12
Mary: Method6 | Method11
Peter: RYEITLES Method9

Figure 2: The optimal schedule for the agents corresponding
to the problem of Figure 1, with total quality 34.

enable, disable, facilitate, and hinder. A precedence rela-
tion influences the execution of the target, proportional to
the quality of the source at the time of execution of the tar-
get. An enable relation states that we may only execute the
target from the moment that the source has positive quality.
For example, in Figure 1 we may execute Methodl1 after
Task2 has accumulated (some) positive quality. A disable
relation forbids the execution of the target from the moment
that the source has positive quality. The facilitate and hinder
relations are ‘soft’” enabling and disabling relations, and have
a coefficient 0 < ¢ < 1. Suppose the source can maximally
accumulate maxQ quality. If the source has accumulated
quality g at the time of execution of the target, a facilitate
relation decreases the duration, and increases the quality, of
the target with a factor ¢ - ¢/maxQ. For a hinder relation,
this factor is used to increase the duration and to decrease
the quality of the target. By definition, facilitate and hin-
der relations only affect the duration of methods, while the
‘duration’ of a task is undefined.

As a final remark, cTAEMS allows the data to be speci-
fied by means of probability distributions rather than fixed
numbers. In this work we restrict ourselves to deterministic
data, however. If necessary, we replace the distributions by
their minimum, maximum, expected, or sampled value.

Related Work

In the last decade there has been an increasing interest in
centralized and distributed approaches to solve multi-agent
planning and scheduling problems. In the context of dis-
tributed multi-agent systems representable with cTAEMS,
several approaches have been developed. In those ap-
proaches, the main target is the coordination problem under
changing environmental conditions. Naturally, each of the
approaches also includes a ‘scheduler’ to compute and eval-
uate alternative solutions.

One approach, introduced by (Musliner et al. 2006), rep-
resents the non-deterministic cTAEMS problem as a Markov
decision process (MDP). When computing a schedule (in
fact a policy), the MDP is only partially ‘unrolled’ in order to
keep the computational complexity under control. Another
approach, proposed by (Szekely et al. 2006), applies a se-
lective combination of different heuristic solution methods,
including a partially-centralized solution repair, and locally
optimized resource allocation. Finally, (Smith et al. 2006)
represent cTAEMS problems as Simple Temporal Networks,
and apply constraint-based reasoning to compute a solution
to the deterministic version of the problem. However, none

of the above methods computes provably optimal solutions
to (non-)deterministic cTAEMS problems. The main contri-
bution of this work is to present the first scalable solver that
efficiently computes optimal solutions to the centralized de-
terministic cTAEMS problem.

Constraint Programming Model
Variables

For each method ¢, we introduce the following decision vari-
ables: a binary variable x; representing whether or not ¢ is
executed, and an integer variable start; representing the start
time of ¢. Together, they determine any potential schedule.
Furthermore, we make use of the following auxiliary
variables. For each task ¢+ we introduce an integer vari-
able start;, representing its starting time. For each task or
method ¢ we introduce an integer variable end; representing
the end time of 4, and a floating-point variable qual, repre-
senting the quality of <. For each method ¢ we further intro-
duce a floating point variable dur; representing its duration.
Finally, for each precedence relation r we introduce floating
point variables Qfactor, and Dfactor, representing the fac-
tor of r applied to modify quality and duration, respectively.

Temporal Constraints

The temporal constraints are expressed as follows. For each
method ¢ with duration D[¢] and time window [L, U]:

dur; = D[i] - a4, (1)

start; + dur; — 1 = end;, 2)
start; > L, 3)

end; < U. 4

In case method ¢ is the target of facilitate or hinder relations,
we need to augment equation (1), which is described below.

Resource Constraints

The resource constraints ensure that the methods of an agent
do not overlap (each agent corresponds to a unary resource).
For each agent a and each two different methods ¢ and 7 with
Ali] = A[j] = a, we state:

(start; > end;) V (start; > end;).

Alternatively, we can group together all non-overlapping
constraints for each agent in one UnaryResource constraint.
This allows to reason over all disjunctions together, for ex-
ample using the edge-finding algorithm (Carlier & Pinson
1994; Vilim 2004). For each agent a, we then state

UnaryResource(Sy,, Eq, Ry),

where S, = {start; | A[i] = a} represents the start vari-
ables, £, = {end; | A[i] = a} the end variables, and
R, = {x; | A[i] = a} the “requirement” variables of meth-
ods i with A[i] = a.

Quality Accumulation

Next we consider the constraints to link together the quality
of the tasks and the methods. For each method 7 with quality
Q[i] we state:

qual, = Q[i] - x;. 5)
For each task ¢ with subtasks s1, ..., s, and quality accu-
mulation function f € {min, max, sum} we state:
qual, = fi=1,..x qualg,. (6)
If the quality accumulation function is sync-sum we state:
qualt = Zi:l k qualsﬂ (7)

yeeey

(x5, = 1) = (starts, = starty) fori=1,... k. (8)

If the quality accumulation function is exactly-one we state:
qual, = max;—1,.. qualsi7)

(e, =1) 4.+ (2, =1) < 1. (10)

If the quality accumulation function is sum-and we state:

qual, = Zi:l,...,k qual,_, (11)
(s, =1) Ao A (zs,, = 1))V (qual, = 0). (12)

In case the method or the task is the target of precedence
relations, we need to augment the corresponding quality
constraints. This is described below.

The objective function value is represented by the quality
of the root task, qual,.... Hence, to maximize its quality,

we add the ‘constraint’: maximize qual, ;.

Precedence Relations

First we model the effect of precedence relations to the qual-
ity variables. If method ¢ is the target of precedence relations
r1,...,T m, We replace equation (5) by:

-...- Qfactor,, - Q[i] - ;.

If task ¢ is the target of precedence relations r1, . .., 7,,, and
has a quality accumulation function f, we replace the corre-
sponding quality constraint (6), (7), (9), or (11) by:

qual; = Qfactor,,

qual, = Qfactor,, -...- Qfactor, - fi—1 . rqual .

The duration variables are similarly updated. If method 7 is
the target of facilitate and/or hinder relations 1, . . . , T,, W€
replace equation (1) by:

dur; = Dfactor,, - ... Dfactor, - D[] - ;.

Next we describe how we model the factor variables. Re-
call that the precedence relations depend on the quality of
the source at the start time of the target. For a precedence
relation r from source ¢ to target j (with coefficient c,., where
applicable), we state:

Qfactor, = (QExpr(s, start;) > 0) (enable),
Qfactor, = 1 — (QExpr(i,start;) > 0) (disable),
Qfactor, = 1+ (¢, - QExpr(i, start;)/maxQ;) (facilitate),
Dfactor, = 1 — (¢, - QExpr(i, start;)/maxQ;) (facilitate),
Qfactor, =1 — (¢, - QExpr(i, start;) /maxQ;) (hinder),
Dfactor, = 1+ (¢, - QExpr(z, start;) /maxQ;) (hinder),

where QExpr (4, start;) is a recursive expression represent-
ing the quality of ¢ at the start time of j, and maxQ;
is the maximum possible quality of i. The expression
QExpr(i,start;) contains both temporal conditions and
quality accumulation functions following from the subtree
rooted at the source of the relation. For example, if r is an
enable relation from method ¢ to method j, we have

Qfactor, = ((end; > start;) > 0).

Linear Programming Constraint

The objective function is composed of the functions min,
max, sum, and complex nonlinear expressions following
from the precedence relations. In order to potentially im-
prove the optimization reasoning of the constraint program-
ming solver, we have additionally implemented a (redun-
dant) optimization constraint, based on a linear program-
ming relaxation of the problem. We state the constraint as:

LP-constraint(z, start, end, qual),

where z, start and end are shorthands for the arrays con-
sisting of the variables x;, start; and end; for all methods 1,
and qual, . represents the quality variable of the root task.
Each time the LP-constraint is invoked, it builds an internal
linear programming model, taking into account the whole
cTAEMS problem structure. Based on the continuous solu-
tion of this model, the upper bound of qual,. is potentially
improved. Furthermore, we apply reduced-cost based filter-
ing to remove inconsistent values from the domains of the
variables x; (Focacci, Lodi, & Milano 1999).

Solution Techniques
Search Strategy

In constraint programming, the variable and value selection
heuristics determine the shape of the search tree, which is
usually traversed in a depth-first order. We have experi-
mented with several different heuristics, and report here the
most effective strategy, following from our experiments.

Our model consist of two sets of decision variables; the
assignment variables x; and the start variables start; for
each method i. We apply a two-phase depth-first search,
consisting of a selection phase and a scheduling phase. In
the selection phase, we assign all assignment variables, in
a greedy fashion. Namely, we choose first the variable x;
(for method 4) for which the quality Q[¢] is lowest (ties are
broken lexicographically). As a value selection heuristic, we
first choose value 0, and then value 1. By applying this strat-
egy to the depth-first search, we start with an empty schedule
that is gradually augmented with methods having the highest
quality.

In the scheduling phase we assign the start variables. As
variable selection heuristic we choose first the variable with
the smallest domain size (ties are again broken lexicograph-
ically). As value selection heuristic we choose first the min-
imum value in the domain.

Problem Decomposition

When certain parts of a problem are independent, one can
decompose the problem and solve the parts independently.

aggregate over all instances base

no decomposition LP constraint disjunctions best known

optimal solutions 100% 99.0%
average time (s) 0.03 0.75
median time (s) 0.02 0.02
average backtracks 78.3 42532
median backtracks 59 103

100% 100% 74.7% *
1.28 0.03
0.44 0.02
71.7 82.4
58 59

* no proof of optimality

Table 1: Computational results on problem set I. The base settings of our solver are: apply problem decomposition, omit the
LP-constraint, and apply the UnaryResource constraint. Time limit is set to 300 seconds. The ‘best known’ column refers to
the previously best known solutions. (Average and median values are taken over optimally solved instances only.)

In constraint programming, independent subproblems are
usually detected by means of the constraint (hyper-)graph.
In the constraint graph of a model, the nodes represent the
variables, while relations between variables (the constraints)
are represented by (hyper-)edges. Independent subproblems
are equivalent to connected components in the constraint
graph, which thus represent distinct subsets of variables and
their corresponding constraints. As the connected compo-
nents can be found in linear time (in the size of the graph),
problem decomposition can be very effective.

In our case, it suffices to build the constraint graph on the
decision variables x; and start; for all methods . In fact,
we can simply group them together and create one node for
each method . We add an edge between two nodes ¢ and j if
there is a constraint involving method ¢ and j. For example,
if methods ¢ and ;7 belong to the same agent, and their time
windows overlap, the non-overlapping constraint will place
an edge between the nodes representing ¢ and j. Naturally,
at most one edge needs to be maintained for each pair of
nodes.

Unfortunately, all decision variables are linked together
via the objective function and the quality constraints. Hence,
the constraint graph consists of one connected component,
which prevents the application of problem decomposition.
We have circumvented this restriction by decomposing the
objective function more carefully. Namely, as we are maxi-
mizing, the arguments of the functions sum and max may be
evaluated (and maximized) independently, while preserving
optimality. For the min function this is not the case, because
its arguments are dependent in case of maximization. Con-
sequently, while building the constraint graph, we consider
the quality accumulation functions of the objective function
individually. When this function is a min, sync-sum, exactly-
one, or sum-and, we add an edge between all methods un-
derneath this function. We don’t add any edges when the
function is a sum or a max. Doing so, we are able to effec-
tively decompose the problem in many cases.

Experimental Results

Our model is implemented in ILOG CP Solver 6.3, and
uses the default constraints and corresponding domain fil-
tering algorithms, where applicable. We have implemented
our two-phase search strategy, the problem decomposition,
and the LP-constraint within ILOG CP Solver 6.3. For the
LP-constraint we use ILOG CPLEX 10.1 to solve the lin-

ear programming relaxation. The UnaryResource constraint
applies the edge-finding algorithm of ILOG Scheduler 6.3.
All our experiments are run on a 3.8GHz Intel machine with
2GB memory, and we apply a time limit of 300 seconds per
instance.

We have performed experiments on benchmark instances
originating from the DARPA program COORDINATORsS.
They represent realistic problem scenarios that are designed
to evaluate different aspects of the problem, such as the
tightness of time windows, the number and types of prece-
dence relations, and different quality accumulation func-
tions. Problem set I consists of 2550 small to medium-sized
instances, containing 8 to 64 methods (up to 128 decision
variables), and 2 to 9 agents. We have used this set to evalu-
ate the performance of our different solution strategies. Ta-
ble 1 presents the computational results for this problem set,
aggregating the results over all 2550 instances. We report
the median and average time and number of backtracks, and
the percentage of problems that could be optimally solved.
We compare our results with the previously best known so-
lutions, computed by a heuristic solver developed by Global
InfoTek, Inc.! (unfortunately we were not able to determine
the corresponding running times).

The column ‘base’ represents the results for our base
settings: apply problem decomposition, omit the LP-con-
straint, and apply the UnaryResource constraint. With these
settings we obtain the best results: all problems are solved
to optimality, in the fastest time. The column ‘no decom-
position’ shows the results if we omit the problem decom-
position. In that case, only 99% of the instances are solved
optimally (within the time limit of 300 seconds), while the
time and number of backtracks increase drastically. The
next column, ‘LP constraint’ shows the results when we acti-
vate the LP-constraint. Although we can solve all problems
within the time limit, and the number of backtracks slightly
decreases, the application of this constraint is too costly in
terms of running time, for these instances. However, we note
that for instances containing more sum functions (not re-
ported here), the LP-constraint can be crucial to compute an
optimal solution efficiently. Finally, column ‘disjunctions’
shows the results when we replace the UnaryResource con-
straint with the disjunctive representation. In other words,
the edge-finding algorithm is replaced by individual non-
overlapping constraints. The results indicate that the two

"http://www.globalinfotek.com/

aggregate over all instances Cornell ~ Smith et al.

optimal solutions 49% 20% *

best lowerbound 70% 50%
results on largest instances Cornell Smith et al.
instance #methods #agents obj. value time (s) obj. value time (s)
bigl001s 2250 100 2050.25 (opt) 126 2050.25* 3.7
bigl 00EVAL 2250 100 2046.50 (opt) 129 2046.50* 42

bigl00EVA2 2250 100
bigl00EVA3 2250 100

2059.25 (opt) 124 2059.25* 4.0
2110.00 (opt) 13.9 2110.00* 4.0

biglOOEVA4 2250 99 2040.25 (opt) 13.0 204025* 44
bigl00EVAS 2250 99 2041.75 (opt) 127 2041.75* 44
big701s 1350 70 1314.12 (Ib) 300.0 1303.83 3.0
big70EVAL 1350 70 1312.00 (opt) 83.5 1298.04 33
big70EVA2 1350 70 1310.81 (opt) 109.7 1293.34 3.1
big70EVA3 1350 69 1321.87 (Ib) 300.0 1307.34 33
big70EVA4 1350 70 1309.00 (Ib) 300.0 1293.75 3.0
big70EVAS 1350 70 1298.38 (opt) 238.0 1278.19 2.8

* no proof of optimality

Table 2: Computational results for problem set II. Columns
‘#methods’ and ‘#agents’ denote the number of methods and
agents, respectively. The columns under ‘Cornell’ represent
the objective function, optimality, and running time of our
method, respectively. The ‘Smith et al.’ columns refer to the
objective function value and corresponding running time of
the previously best known solutions, as computed by Smith
et al. (2006). Time limit is set to 300 seconds.

approaches are comparable for these instances.

Finally, we have tested our solver on large problem in-
stances to test its robustness and scalability. For this we used
problem set II, that consists of 66 medium-sized to large in-
stances, containing 135 to 2250 methods (up to 4500 deci-
sion variables), and 8 to 100 agents. We have solved these
problems with our base setting (with and without decompo-
sition), and present the experimental results in Table 2. The
upper part of Table 2 shows aggregated results over all in-
stances, while the lower part presents detailed results on the
largest instances. For these instances, we also report whether
the solution is optimal (opt) or a lowerbound (Ib). We com-
pare our method with the previously best known solutions,
which were computed using the method proposed by (Smith
et al. 2006) (that does not take into account optimality, how-
ever). In many cases our solver is able to compute an optimal
solution, and to improve or meet the current best solution.
Moreover, even for the largest instances, our running times
are often very fast. These results indicate that our method is
both robust, efficient and scalable.

Conclusion

We have presented an efficient and scalable method to com-
pute optimal solutions to multi-agent scheduling problems,
based on constraint programming. We have focused in par-
ticular on problems that are representable by the cTAEMS
language. Our system computes deterministic centralized
optimal schedules to such problems, and has been applied

successfully to evaluate distributed approaches, to analyze
problem structure, to design adaptive algorithm selection
procedures, and to simulate user-interaction in multi-agent
systems.

Acknowledgments

This material is based upon work supported by the Intel-
ligent Information Systems Institute (IISI) at Cornell Uni-
versity (AFOSR grant FA9550-04-1-0151), DARPA (CO-
ORDINATORSs grant FA8750-05-C-0033), and NSF (grant
0514429). Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of AFOSR,
DARPA, NSF, or the U.S. Government.

References

Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S. 2002.
The Complexity of Decentralized Control of Markov Decision
Processes. Mathematics of Operations Research 27(4):819-840.
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent, R.;
Long, A.; Kohout, B.; and Maheswaran, R. 2007. C_TAEMS
Language Specification — Version 2.03.

Carlier, J., and Pinson, E. 1994. Adjustment of Heads and Tails
for the Job-shop Problem. European Journal of Operational Re-
search 78:146-161.

Focacci, F.; Lodi, A.; and Milano, M. 1999. Cost-Based Domain
Filtering. In Proceedings of the Fifth International Conference
on Principles and Practice of Constraint Programming (CP °99),
volume 1713 of LNCS, 189-203. Springer.

Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.; Zhang,
S.; Decker, K.; and Garvey, A. 1999. The Taems White Paper.
Musliner, D.; Durfee, E.; Wu, J.; Dolgov, D.; Goldman, R.; and
Boddy, M. 2006. Coordinated Plan Management Using Multi-
agent MDPs. In AAAI Spring Symposium on Distributed Plan
and Schedule Management, 73-80. AAAI Press.

Rosenfeld, A. 2007. A Study of Dynamic Coordination Mecha-
nisms. Ph.D. Dissertation, Bar-Ilan University.

Sarne, D., and Grosz, B. 2007. Estimating Information Value in
Collaborative Multi-Agent Planning Systems. In AAMAS. Forth-
coming.

Smith, S.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.; and
Rubinstein, Z. 2006. Multi-Agent Management of Joint Sched-
ules. In AAAI Spring Symposium on Distributed Plan and Sched-
ule Management, 128-135. AAAI Press.

Szekely, P.; Maheswaran, R.; Neches, R.; Rogers, C.; Sanchez,
R.; Becker, M.; Fitzpatrick, S.; Gati, G.; Hanak, D.; Karsai,
G.; and van Buskirk, C. 2006. An Examination of Criticality-
Sensitive Approaches to Coordination. In AAAI Spring Sympo-
sium on Distributed Plan and Schedule Management, 136—-142.
AAAI Press.

Vilim, P. 2004. O(nlogn) Filtering Algorithms for Unary Re-
source Constraint. In Proceedings of CPAIOR 2004, volume 3011
of LNCS, 319-334. Springer.

