
HADDOCK: A Language and Architecture for
Decision Diagram Compilation

R. Gentzel1, L. Michel1, and W.-J. van Hoeve2[0000−0002−0023−753X]

1 University of Connecticut, Storrs CT 06269, USA
2 Carnegie Mellon University, Pittsburgh PA 15213, USA

rebecca.gentzel@uconn.edu,ldm@engr.uconn.edu,vanhoeve@andrew.cmu.edu

Abstract. Multi-valued decision diagrams (MDDs) were introduced into
constraint programming over a decade ago as a powerful alternative to
domain propagation. While effective MDD-propagation algorithms have
been proposed for various constraints, to date no system exists that can
generically compile and combine MDD propagation for arbitrary con-
straints. To fill this need, we introduce Haddock, a declarative language
and architecture for MDD compilation. Haddock supports the specifi-
cation, implementation, and composition of a broad range of MDD prop-
agators that delivers the strength one expects from MDDs at a fraction
of the development effort and with comparable performance. This paper
describes the language, the framework architecture, outlines its perfor-
mance credentials and demonstrates how to specify and implement novel
MDD propagators.

1 Introduction

Binary decision diagrams (BDDs) were first introduced to represent Boolean
functions in the context of switching circuit verification [27,1]. They became
widely popular within various branches of computer science after Bryant pro-
posed effective algorithms to compile BDDs with a fixed variable ordering [7,8].
Since then, many variants of decision diagrams have been developed, including
multi-valued decision diagrams (MDDs) for representing functions with discrete
(multi-valued) variables [30]. In the context of constraint programming, decision
diagrams can be interpreted as a compact graphical representation of the solution
set to a given discrete structure, typically represented by a (global) constraint.
For example, decision diagrams were used to develop propagation algorithms for
constraints over sets [25,20,13], n-ary table constraints [10], and Regular con-
straints [9]. All these works use MDDs as an efficient data structure to perform
traditional domain propagation.

Andersen et al. [2] were the first to recognize that instead of propagating
domains, it is possible to propagate MDDs: in addition to a domain store, the
constraint solver maintains an MDD store on which constraints perform filtering.
The key contribution of [2] is to introduce relaxed decision diagrams that are
of polynomial size by explicitly limiting their width (the maximum number of
nodes per layer). When the width is limited to one, MDD propagation defaults to

2 Gentzel et al.

domain propagation. Larger widths can lead to increasingly more effective MDD
propagation, as shown in a range of papers that study the compilation and
application of MDD-based constraint programming [16,18,17,19,22,11,4,24].

MDD propagation methods are all based on the same underlying princi-
ples for compiling, refining, and filtering the decision diagram, as summarized
in [22]. Yet, their implementations are often dedicated to their specific task or
purpose [15,14,28,29,12]. To date, no system exists that allows users or develop-
ers to easily define and combine MDD propagators in constraint programming
models. In this work, we take on this task and present Haddock,3 a language
and architecture that uses an MDD specification to automatically compile and
integrate decision diagrams into a CP solver.

Contributions. Our primary contribution is the introduction of a specification
language and associated implementation architecture that not only allows the
automatic compilation of the diagram, but also generates the rules for refining
(splitting) and filtering (propagating) MDD abstractions. This concretizes and
generalizes the framework for MDD-based constraint programming proposed in
[22]. While that framework allows one to describe MDD propagators based on
transitions between states, it does not provide concrete functionality for generic
propagation, refinement, or composition. Another related compilation framework
is proposed in [6,5], which uses a dynamic programming formulation as input to
compile the diagram. We will apply similar concepts, but we note that a dynamic
programming model alone is not sufficient, e.g., for describing some of the MDD
propagation rules or the integration into a CP solver. Instead, we adopt the
formalism of labeled transition systems as an abstraction of MDDs.

We have implemented Haddock in the C++ version of MiniCP [26].4 So far,
Haddock contains MDD specifications for AllDiff, Among, Gcc, Sequence,
and (weighted) Sum constraints, as well as some problem-specific MDD propa-
gators. Haddock allows the user to declare multiple MDDs within a CP model,
each associated with a suitable set of constraints, and automatically integrates
the MDD propagators into the constraint propagation fixpoint computation.
Haddock offers comparable performance for MDD propagation at a fraction of
the development effort needed for dedicated implementations.

Motivating Example. We will use the Among constraint as the running
example for this paper. Recall that Among(x, lb, ub, S) is defined as

lb ≤
n−1∑
i=0

(xi ∈ S) ≤ ub (1)

for an array of n variables x, a lower bound lb, an upper bound ub, and a
set of values S. In [22], an MDD propagator for Among, establishing MDD
consistency in polynomial time, was proposed and implemented. The pseudo-
C++ Haddock fragment shown on the right of Fig. 1 generates code with

3 Haddock stands for ‘Handling Automatically Decision Diagrams Over Constraint
Kernels’. It also refers to a saltwater fish, as well as to a fictional character from the
Tintin comic series by Hergé, both of which are however irrelevant to this paper.

4 Code: https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK

https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK
https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK

HADDOCK: A Language and Architecture for Decision Diagrams 3

int main() {
int width = 64, H = 40;
int L1 = 0, U1 = 6, N1 = 8;
int L2 = 22, U2 = 30, N2 = 30;
int L3 = 4, U3 = 5, N3 = 7;
auto cp = makeSolver();
auto vars = boolVarArray(cp, H);
auto mdd = new MDD(cp, width);
for (int i=0; i<H−N1+1; i++)

amongMDD(mdd,
vars.sub(i , i+N1),L1,U1,{1});

for (int i=0; i<H−N2+1; i++)
amongMDD(mdd,

vars.sub(i , i+N2),L2,U2,{1});
for (int i=0; i<H−N3+1; i+=7)

amongMDD(mdd,
vars.sub(i , i+N3),L3,U3,{1});

cp−>post(mdd);
...

}

void amongMDD(MDDSpec& mdd,
vector x,int lb ,int ub,
set<int> S) {

mdd.add(x);
auto c = mdd.makeConstraint(x,”amongMDD”);
int Ld = mdd.addState(c,0),Ud = mdd.addState(c,0);
int Lu = mdd.addState(c,0),Uu = mdd.addState(c,0);
mdd.arcExist(cs,[=](p, c, x, v) −> bool {

return (p[Ld] + v∈S + c[Lu] <= ub) &&
(p[Ud] + v∈S + c[Uu] >= lb);

});
mdd.forward(Ld,[=](o,p,x,v){o[Ld]=p[Ld]+v∈S;});
mdd.forward(Ud,[=](o,p,x,v){o[Ud]=p[Ud]+v∈S;});
mdd.reverse(Lu,[=](o,c,x,v){o[Lu]=c[Lu]+v∈S;});
mdd.reverse(Uu,[=](o,c,x,v){o[Uu]=c[Uu]+v∈S;});
mdd.relax(Ld,[=](o,l, r){ o[Ld]=min(l[Ld],r[Ld]);});
mdd.relax(Ud,[=](o,l,r){ o[Ud]=max(l[Ud],r[Ud]);});
mdd.relax(Lu,[=](o,l, r){ o[Lu]=min(l[Lu],r[Lu]);});
mdd.relax(Uu,[=](o,l,r){ o[Uu]=max(l[Uu],r[Uu]);});
}

Fig. 1. Pseudo-C++ code to create a nurse rostering model using an MDD (left) and
pseudo-C++ Haddock code for creating an Among MDD propagator (right).

equivalent MDD propagation behavior. The amongMDD function takes a reference
to an MDDSpec object mdd that accumulates all the specifications. Its other
arguments are the array of variables x, the bounds lb and ub, and the set of
values S. Line 4 tracks the array of variables and line 5 creates a descriptor for
the four properties specified in lines 6-7 and to be held in a state. The remainder
of the code relies on closures to define the arc existence condition as well as the
transition functions and relaxations for the four properties. The method forward

is used to add top-down transitions while reverse adds bottom-up transitions.
With 18 lines of code, a developer specifies a reusable factory that models

instances of Among. Multiple calls to this factory results in a composition of
specifications to model their conjunction. An example of this is shown on the
left of Fig. 1 for the nurse rostering problem. It creates the traditional deci-
sion variables (line 8), an MDD propagator (line 9), and multiple amongMDD

constraints for various shifts of windows of length N1, N2, and N3. A call to
x.sub(a,b) returns the sub-sequence of variables [xa, xa+1, ..., xb]. Finally, it
posts the MDD representing the conjunction of these constraints on line 18.
The search is omitted for brevity’s sake. The remainder of the paper explains
this MDD specification language, its semantics, and how to mechanically derive
propagators. Section 2 formally describes MDDs in terms of labeled transition
systems. Section 3 introduces the different elements of our description language
using states and transitions. We formally introduce the resulting MDD language
in Section 4. Section 5 describes the implementation details of Haddock, fol-
lowed by an experimental evaluation Section 6. We conclude in Section 7.

2 Decision Diagrams as Labeled Transition Systems

MDDs are commonly defined as layered directed acyclic graphs [30,5]. For our
purposes, however, it is more convenient to formalize an MDD using a labeled

4 Gentzel et al.

transition system (LTS) as abstraction. Namely, an LTS allows us to describe
the rules that govern an MDD rather than the MDD itself, and it provides
a computational device to compile MDDs. Furthermore, an LTS abstraction
can more clearly express the steps of generic MDD compilation, such as the
computation of intermediate states, than the concrete acyclic directed graph.

We first recall the definition of labeled transition systems [23]:

Definition 1. A labeled transition system is a triplet 〈S,→, Λ〉 where S is a
set of states, → is a relation of labeled transitions between states from S and Λ
is a set of labels used to tag transitions.

A transition from state S0 to state S1 (both in S) belonging to the relation →
is denoted S0

`→ S1 with ` ∈ Λ. A start state S⊥ has no predecessors according
to the transition relation → while an end state S> has no successors.

Next we define an LTS to represent a single constraint (without loss of gen-
erality) from which we will derive our MDD definition.

Definition 2. Given a constraint c(x) of arity k over an ordered set of variables
x = x0, . . . , xk−1 with domains D(x0), . . . , D(xk−1), we define the associated
labeled transition system as L(c, x) = 〈S,→, Λ〉 in which S, Λ and → are defined
as follows:

– the state set S is stratified in k + 1 layers L0 through Lk with transitions
from → connecting states between layers i and i+ 1 exclusively;

– the transition label set Λ is defined as
⋃

i∈0..k−1D(xi);
– a transition between two states a ∈ Li and b ∈ Li+1 carries a label v ∈ D(xi);
– the layer L0 consists of a single source state S⊥;
– the layer Lk consists of a single sink state S>.

By interpreting states as nodes and transitions as arcs, L(c, x) represents a di-
rected acyclic graph. In particular, a path from S⊥ to S> corresponds to a
complete variable assignment. While Definition 2 directly links variable assign-
ments to transitions between layers in the LTS, the constraint c is implicitly
represented in the states S and the transition function. We next define MDDs
as labeled transition systems with specific properties:

Definition 3. Given a constraint c(x) over an ordered set of variables x, a
relaxed MDD with respect to c(x) is an LTS L(c, x) such that each state in S
lies on at least one S⊥-S> path and each feasible solution to c corresponds to
an S⊥-S> path. An exact MDD with respect to c(x) is a relaxed MDD in which
additionally every path from S⊥ to S> corresponds to a feasible solution to c.

In order to compile an MDD, constraints must be appropriately defined in terms
of states S and the transition function→. We must furthermore specify a suitable
state relaxation function to merge non-identical states.

Example 1. Consider the constraint Among({x0, x1, x2, x3}, l = 1, u = 2, S =
{1}) where each variable has domain {0, 1}. Similar to [22], we define a state s
by four properties, as a tuple (L↓(s), U↓(s), L↑(s), U↑(s)), where

HADDOCK: A Language and Architecture for Decision Diagrams 5

L↓(s) represents the minimum occurrence of values in S along any S⊥-s path,
U↓(s) represents the maximum occurrence of values in S along any S⊥-s path,
L↑(s) represents the minimum occurrence of values in S along any s-S> path,
U↑(s) represents the maximum occurrence of values in S along any s-S> path.

We initialize layer L0 with the state S⊥ = (0, 0,∞,∞) and layer Ln with the
state S> = (∞,∞, 0, 0).

We next consider the transition relation s
v→ s′ from state s ∈ Li via an arc

labeled with v ∈ D(xi) to a state s′ ∈ Li+1. This transition affects the properties
L↓(s) and U↓(s) as

L↓(s′) = L↓(s) + (v ∈ S)
U↓(s′) = U↓(s) + (v ∈ S).

We call such properties forward properties since they follow the orientation of
the transition. The properties L↑(s) and U↑(s), however, are updated reversely
along the transition:

L↑(s) = L↑(s′) + (v ∈ S)
U↑(s) = U↑(s′) + (v ∈ S).

We therefore call such properties reverse properties. Lastly, we use the state
properties to define an existence rule, i.e., transition s

v→ s′ exists if

(L↓(s) + (v ∈ S) + L↑(s′) ≤ u) ∧ (U↓(s) + (v ∈ S) + U↑(s′) ≥ l).

Fig. 2(a) depicts an LTS that represents an exact MDD for our constraint. The
values of the properties are indicated inside the nodes representing the states.
One can inspect that each path from S⊥ to S> corresponds to a solution to the
constraint, and vice-versa. The width of the exact MDD is three.

To define a relaxed MDD, we specify a merge operator that takes two states
a, b ∈ Li and merges them into a single state s. For Among, we define it as:

L↓(s) = min(L↓(a), L↓(b)) L↑(s) = min(L↑(a), L↑(b))
U↓(s) = max(U↓(a), U↓(b)) U↑(s) = max(U↑(a), U↑(b)).

Observe that this merging operator relaxes the state computation. It therefore
may introduce non-solutions to the MDD but will never lead to the removal
of solutions. Fig. 2(b) depicts a relaxed MDD, where the width is limited to a
maximum of two. Each solution to the constraint is present as a path from S⊥
to S>, but it also contains non-solutions, e.g., (0, 0, 0, 0). ut

The properties of a state s in the LTS represent information over the collec-
tion of paths from S⊥ to s (i.e., prefixes) and from s to S> (i.e., suffixes). Note
that producing a suitable LTS specification for any given constraint c will yield a
different set of state properties, transition definitions, existence conditions, and
merging rules. The following sections explain how to do this systematically.

3 States and Transition Functions

This section describes the core elements of the LTS representation in Haddock
in terms of states and transitions.

6 Gentzel et al.

x0

x1

x2

x3

(0, 0, 1, 2)

(0, 0, 1, 2) (1, 1, 0, 1)

(0, 0, 1, 2) (1, 1, 0, 1) (2, 2, 0, 0)

(0, 0, 1, 1) (1, 1, 0, 1) (2, 2, 0, 0)

(1, 2, 0, 0)

0 1

0 1 0 1

0 1 0 1 0

1 0 1 0

a. Exact decision diagram

(0, 0, 0, 3)

(0, 0, 0, 3) (1, 1, 0, 2)

(0, 1, 0, 2) (2, 2, 0, 1)

(0, 1, 0, 1) (1, 2, 0, 1)

(0, 3, 0, 0)

0 1

0 1 0 1

0 1 0

0 1 0 1

b. Relaxed decision diagram

Fig. 2. Exact (a) and relaxed (b) MDDs for the constraint Among({x0, x1, x2, x3}, l =
1, u = 2, S = {1}), where all variable domains are {0, 1}. Each state s depicts its tuple
of properties (L↓(s), U↓(s), L↑(s), U↑(s)) as defined in Example 1.

3.1 States

For exposition purposes, we assume that states are defined by properties that are
integer-valued, but we note that these can represent Booleans and even richer
types such as floating points or sets.

Definition 4. A state is a tuple s = 〈Pi0 , Pi1 , . . . , Pin−1〉 with n properties de-
noted Pik where each Pik ∈ Z.

It is important to realize that our LTS, and resulting MDD, can carry proper-
ties for multiple constraints. The identifiers (names) created for a constraint c
are collected in a set P(c) = {i0, . . . , in−1}. These identifiers are unique across
constraints, i.e., two constraints are guaranteed to use different property names.

3.2 Forward and Reverse Transition Rules

As shown in Example 1, a transition s
`→ s′ can be processed following the

orientation of the transition (forward), or reversely. A state property may be
subject to transition rules that are forward, reverse, or both. We therefore define
the set of property indices ∆↓ ⊆ {0, . . . , n−1} and ∆↑ ⊆ {0, . . . , n−1} to indicate
the properties that will be processed by the forward and reverse transition rules,
respectively. We start by defining how individual properties are updated by a
transition, by means of forward and reverse property transition rules:

Definition 5. A forward property transition rule for property Pi is a function
T ↓i : S × Z × D → Z. It takes as input a source state s ∈ Lj, the layer index j
(i.e., variable xj), and a domain value v ∈ D(xj) to produce a value for property
Pi in the destination state s′ ∈ Lj+1.

HADDOCK: A Language and Architecture for Decision Diagrams 7

Definition 6. A reverse property transition rule for property Pi is a function
T ↑i : S × Z×D → Z. It takes as input a state s ∈ Lj+1, the layer index j (i.e.,
variable xj), and a domain value v ∈ D(xj) to produce a value for property Pi

in the destination state s′ ∈ Lj.

We next use the individual property transition rules to define forward and
reverse state transition rules:

Definition 7. A forward state transition rule is a function T ↓ : S × S × Z ×
D → S. Given a source state s = 〈P0, . . . , Pn−1〉 ∈ Lj, a destination state
d = 〈Q0, . . . , Qn−1〉 ∈ Lj+1, the layer index j (i.e., variable xj), a domain value
v ∈ D(xj) and the set of forward property indices ∆↓, it computes the forward
property transitions of the successor state s′ in Lj. The function is defined as
follows:

∀i ∈ {0, . . . , n− 1} : Q′i =

{
T ↓i (s, j, v) if i ∈ ∆↓
Qi if i /∈ ∆↓

and, finally
T ↓(s, d, j, v) = 〈Q′0, . . . , Q′n−1〉.

Definition 8. A reverse state transition rule is a function T ↑ : S × S × Z ×
D → S. Given a source state s = 〈P0, . . . , Pn−1〉 ∈ Lj+1, a destination state
d = 〈Q0, . . . , Qn−1〉 ∈ Lj, the layer index j (i.e., variable xj), a domain value
v ∈ D(xj) and the set of reverse property indices ∆↑, it computes the reverse
property transitions of the successor state s′ in Lj. The function is defined as
follows:

∀i ∈ {0, . . . , n− 1} : Q′i =

{
T ↑i (s, j, v) if i ∈ ∆↑
Qi if i /∈ ∆↑

and, finally
T ↑(s, d, j, v) = 〈Q′0, . . . , Q′n−1〉.

In the definitions of the state transition rules, the destination state d and the
source state s provide values for properties not listed in ∆↓ and ∆↑, respectively.

3.3 Relaxation Functions

By design, a state s is generally subject to multiple forward and reverse state
transitions. These are aggregated, or merged, via pointwise property relaxation
functions. Relaxation functions are also applied to merge non-identical states
when a layer exceeds the given maximum MDD width.

Definition 9. A property relaxation function for property Pi takes the form Ri :
S×S → Z. It takes as input states s` = 〈P `

0 , . . . , P
`
n−1〉 and sr = 〈P r

0 , . . . , P
r
n−1〉

and returns P ′i = Ri(s
`, sr) as the merged property.

The individual property relaxations are used to define state relaxation functions:

Definition 10. A state relaxation function takes the form R : S × S → S.
Given states s` and sr it computes 〈R0(s`, sr), . . . , Rn−1(s`, sr)〉.

8 Gentzel et al.

3.4 Transition Existence Functions

A critical component of MDD propagation is arc filtering, i.e., the removal of
arcs that do not belong to any path corresponding to a solution to the constraint.
Arc filtering is performed by applying transition existence functions, which rely
on the source and destination states, as well as the transition label:

Definition 11. A transition existence function takes the form Et : S ×S ×Z×
D → B. Given a parent state p, a child state c, a layer j for state c, and a
transition label v, the function returns the existence of path S> p

v→ c S⊥
whose labels correspond to a solution to the constraint.

3.5 State Functions

State transitions are defined pointwise in terms of forward and reverse property
transitions. This does not provide for state-wide reasoning involving multiple
state properties. In some cases, for example the MDD propagation for Sequence
constraints [4], it is desirable to process multiple state properties simultaneously.
State update functions provide this capability:

Definition 12. A state update function takes the form U : S → S. It is
a state transformation function that updates property Pi based on properties
P0, . . . , Pi−1, Pi+1, . . . , Pn−1 for i = 0, . . . , n− 1.

Analogous to transition existence functions, we also define state existence func-
tions:

Definition 13. A state existence function takes the form Es : S → B. Given a
state p the function returns the existence of paths S> p and p S⊥ whose
labels correspond to a solution to the constraint.

Example 2. Continuing Example 1, we recognize that the state properties, the
forward and reverse transition functions, the relaxation functions, and the transi-
tion existence function all follow the specifications in this section. As an example
of a state existence function for Among, we could define for a state s:

Es(s) = (L↓(s) + L↑(s) ≤ u) ∧ (U↓(s) + U↑(s) ≥ l).

ut

4 MDD Language

It is, perhaps, valuable to cast an LTS as a virtual machine formalism in which to
capture the computational aspects of an MDD. An LTS faithfully models state
derivation via tentative variable assignments as well as state relaxations with
transitions. Yet, it remains a computational artifact that is delicate to describe
and harder to maintain. This section introduces an MDD language to express
the set of source-to-sink paths forming the MDD that an LTS computes. To a

HADDOCK: A Language and Architecture for Decision Diagrams 9

large extent, MDD languages are to LTS what regular expressions are to DFAs.
Namely, an MDD language enables a developer to elevate the discourse and cap-
ture the language to be recognized in a fairly compact and declarative fashion. It
leaves to a “compiler” the delicate task of producing the state machine. Figure 1
provides an illustration of an MDD language given in pseudo-C++. The purpose
of this section is to describe the language more precisely.

Definition 14. Given a constraint c(x0, . . . , xk−1) over an ordered set of vari-
ables X = {x0, . . . , xk−1} with domains D(x0), . . . , D(xk−1) the MDD language
for c is a tuple Mc = 〈X,P, S⊥, S>, T ↓, T ↑, U,Et, Es, R〉 where P is the set of
properties used to model states, S⊥ is the source state, S> is the sink state, T ↓

is the forward state transition rule, T ↑ is the reverse state transition rule, U is
the state update function, Et is the transition existence function, and Es is the
state existence function.

We note that with the exception of X, all elements in the tuple Mc depend on
the constraint c.

An MDD language is an abstraction to describe the states and rules that
define a labeled transition system 〈S,→, Λ〉 for a given constraint. The LTS
can be interpreted as a computational device that recognizes acceptable paths
forming the MDD for the constraint. This is formalized in the following theorem.

Theorem 1. Let c(x0, . . . , xk−1) be a constraint over an ordered set of variables
X = {x0, . . . , xk−1} with domains D(x0), . . . , D(xk−1). An MDD language Mc

is sufficient to define an exact or relaxed MDD for c.

Proof. The LTS defines states by the properties in P, and relies on S⊥ and S>
for initialization. It produces new states by using the forward and reverse state
transition rules T ↓, T ↑, the state update rule U , and the values in D(xj) for layer
j. The existence of each transition and state is given by Et and Es.

We use the LTS to compute an MDD by organizing the transitions into k+1
layers where S⊥ initializes layer 0, S> initializes layer k, and the transition values
for layer j correspond to the domain values of xj . All transitions out of states in
layer k − 1 are directed to S> via the relaxation operator R. This process may
create paths not connected to S⊥ or S>; we remove such paths from the LTS.

If no maximum width per layer is imposed, the process will create an exact
MDD, which follows from the definition of the properties, state transition rules,
state update rules, and transition and state existence functions, i.e., each path
from S⊥ to S> corresponds to a solution to c.

In presence of a maximum width per layer, we can arbitrarily merge nodes
using the relaxation operator R, which by definition computes a relaxation of
the merged states. Hence this process produces a relaxed MDD. ut

Since we use MDDs to represent and propagate multiple constraints simul-
taneously, we need a formalism that supports this functionality. Indeed, MDD
languages can be combined by defining an appropriate conjunction operator, and
the result is again an MDD language, as shown in the following theorem:

10 Gentzel et al.

Theorem 2. Let M1 and M2 be MDD languages. There exists a conjunction
operator ∧ for MDD languages such that M1 ∧M2 is also an MDD language,
and represents the set of paths that are common to M1 and M2.

The proof relies on the definition of the conjunction operator, which is detailed
in Appendix 5. It essentially concatenates the tuples that define M1 and M2.
For example, if M1 and M2 are defined on overlapping sets of variables X1

and X2, the conjunction is defined on X1 ∪ X2 (e.g., ordered first by X1 and
then by X2). The conjunction operator forms the basis of the implementation in
Haddock for composing multiple constraints into an MDD.

Observe that Theorem 1 leaves open many design choices for an actual im-
plementation of the LTS and associated MDD. Section 5 explains how, opera-
tionally, Haddock uses MDD languages to produce the actual LTS and MDD.

5 Implementation

The purpose of an MDD specification is to mechanize the construction and
the propagation of an actual MDD. Sub-section 5.1 first considers the creation
(posting) of an MDD. Sub-section 5.2 explores the actual propagation of events
occurring through the course of a CP-style search.

5.1 Posting

Haddock embraces an incremental refinement scheme to construct an MDD [17].
It starts by creating a width-one MDD connecting S⊥ to S> which is then re-
fined via node splitting until each layer Li for i ∈ 1..k − 1 reaches at most its
target width w and the MDD settles into an MDD propagation fixpoint.

Initialization Given an MDD language 〈X,P, S⊥, S>, T ↓, T ↑, U,Et, Es, R〉, the
source state S⊥ and sink state S> have their properties initialized to values
suitable for an empty prefix and suffix, respectively, for the constraint c the
MDD models. Specifically, each property in Pi ∈ P subject to a forward property
transition rule T ↓i should be initialized in S⊥ while each property Pi subject to

a reverse property transition rule T ↑i should be initialized in S>.

Example 3. Recall that for Among, P = {L↓, U↓, L↑, U↑}, and, therefore, let
S⊥ = [L↓ 7→ 0, U↓ 7→ 0] and S> = [L↑ 7→ 0, U↑ 7→ 0]. Namely, the forward
properties are initialized to 0 in the source state and the reverse properties are
initialized to 0 in the sink state. ut

Construction The construction of an MDD proceeds in phases. First, a two
pass (forward and reverse) process creates a width one MDD. The second phase
widens the MDD up to width w through node splitting.

5 Curious readers can find it in the online supplement.

HADDOCK: A Language and Architecture for Decision Diagrams 11

First phase The forward pass loops through layers 1..k − 1 to generate states.
Assume that the algorithm operates on layer Lj , i.e., all layers L0 · · · Lj−1 are
already constructed (each layer is a singleton in this phase). It picks the one
state s ∈ Lj−1, and, for each value v ∈ D(xj−1), it computes the successor state

s′ according to s
v→ s′, i.e., it evaluates

sv = T ↓(s, S>, j, v).

Note how it relies on S> as an initial approximation for the reverse-defined
properties. Finally, it uses the state update function U , the relaxation function
R and the domain of D(xj−1) = {v0, v1, v2, . . . , v`} to deliver

s′ = U(R(· · ·R(R(sv0 , sv1), sv2) · · · , sv`))

and define Lj = {s′}. The reverse pass iterates backward through the layers.
At iteration j, it uses the singleton state s′ ∈ Lj , its one child c ∈ Lj+1, and a
value v ∈ D(xj) to compute sv = T ↑(c, s′, j, v). The computation integrates the
down state s′ obtained from the forward pass. Once again, an application of the
relaxation yields the now final value for s′ via

s′ = U(R(· · ·R(R(sv0 , sv1), sv2) · · · , sv`)) with Lj = {s′}.

Second phase The purpose is to widen each layer of the MDD to its final
width. The splitting algorithm is applied to relaxed nodes in a layer Lj for
which |Lj | < w. Let s be such a state and let δ−(s) denote the set of its parent
states in layer Lj−1 and δ+(s) denote the set of its child states in layer Lj+1.

One can compute, for each existing transition p
v→ s with p ∈ δ−(s), the true

state one would reach from p according to value v, i.e.,

sp = T ↓(p, s, j − 1, v) : ∀p ∈ δ−(s) and v on p
v→ s.

Several parents p might yield the same sp, which conveys that multiple transi-
tions lead to the same refined state. One can compute

refine(s) = {sp | ∀p ∈ δ−(s) and v on p
v→ s}

as the set of refined states meant to replace s and endow each s′ ∈ refine(s) with
a transition from its parents and the same child states as s, i.e, δ+(s). Some
transitions to states in δ+(s) may be invalid according to Et and are not added.
Any element of refine(s) that ends up childless as a result must be deleted. Such
deletion can trickle back up through multiple layers and bring their width below
the desired value. In such a situation one may wish to reboot the splitting to an
earlier layer rather than continuing on the current one. Pragmatically, it may be
useful to bound how far one can “reboot”, which we investigate in Section 6.

It is desirable to order refine(s) as its cardinality, together with that of Lj\{s}
may exceed w in which case not all states in refine(s) can be adopted “as is”
and some merging is required. Namely, given a state ordering relation 4 between

12 Gentzel et al.

states, the ordering of refine(s) is s′0 4 s′1 4 . . . 4 s′m−1 (|refine(s)| = m).
This ordering can induce up to ` equivalence classes of states deemed similar
enough to warrant the use of a single state to represent each class. Naturally,
` = w− |Lj |+ 1, i.e., ` is an upper bound on the number of classes based on the
number of unused slots in layer j. The new layer Lj becomes6

L′j = Lj \ {s} ∪

 ⋃
Ck∈{C0,...,Cl−1}

U(R(Ck))

with C0 · · ·Cl−1 as the l ≤ ` classes formed from s′0 4 . . . 4 s′m−1. Layer j’s
width satisfies |L′j | ≤ w. Changes to the topology of the MDD (state addition,
deletion and transitions) are events that require a fixpoint propagation to update
the values of properties held in the affected states, which is discussed next.

5.2 Propagation

MDD Events Propagation occurs in response to events affecting the MDD or its
connection to finite domain variables. Solver events like del(v, xj) reporting the
loss of a value v, i.e., v /∈ D(xj) for a variable xj appearing in the MDD induce
MDD events to convey the deletion of all transitions between layers j and j + 1
labeled by v. MDD events are handled within the MDD and are detailed below:

del(s) : loss of state s in a layer
add(s) : addition of state s in a layer

del(p
v→ c) : loss of a transition from p to c

add(p
v→ c) : addition of a transition from p to c

state(i, s) : properties i ⊆ P(c) appearing in state s have changed

The first four events change the topology of the MDD and affect one or more
states. The loss of p

v→ c means that the properties of p and c may now be
outdated and should be refreshed as that transition might have contributed to a
relaxation. For any event e, let affected↓(e) and affected↑(e) be the set of states
below and above the state, respectively, or the transition in e and affected by it.

Overall propagation Any state s of an MDD depends on its parent states δ−(s)
and its child states δ+(s). The layered and acyclic structure of the MDD graph
provides a natural strategy for updating states when changes occur. Since the
MDD is Berge acyclic [3], processing the updates through forward and reverse
passes that consider changes in reverse topological order and topological order,
respectively, is sensible. Passes can be repeated until a fixpoint is reached.

To this end, one needs an event list E and two priority queues Q↓ and Q↑ to
hold onto states. The priority is simply the layer index of the state. Processing
an event e ∈ E schedules affected↓(e) in Q↓ and affected↑(e) in Q↑ accordingly.
Eventually, one processes the states in Q↑ in reverse priority order, followed by

6 We take some liberty with notation and refer to the relaxation R over a set of states.

HADDOCK: A Language and Architecture for Decision Diagrams 13

the states in Q↓ in priority order. This propagation may delete transitions as
well as states, which induces additional rounds of splitting (as described in the
previous sub-section). Pragmatically, it may be desirable to bound the number
of passes in which splitting occurs to curtail the computational efforts.

Event Propagation A comprehensive treatment of events is not possible within
page limitations. Consider as an example the propagation rule for the event
e = state(i, s) concerning a change to the properties in i for state s in layer Lj .
Processing e means scheduling δ−(s) in Q↑ and δ+(s) in Q↓. When a child c of
s is pulled from Q↓ (the case with Q↑ is similar), state c must be updated since

s has changed and the relation s
v→ c connects them. This can be done with

cp = T ↓(p, c, j, vp) ∀p ∈ δ−(c),with p
vp→ c

and computing the relaxation of states cp for all parents p to yield

c′ = U(R({cp|p ∈ δ−(c),with p
vp→ c})).

If Es(c
′) does not hold, c′ itself is no longer sound and is deleted. If Es(c

′) holds

and c′ 6= c, c is changing. Therefore, every transition c
v→ d must be tested with

Et and invalid transitions removed. Such removal should trigger the scheduling
of affected nodes. Since c is now changed to c′, an event state(ψ, c′) should be
processed (ψ refers to the subset of properties whose value differ in c and c′).

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specifica-
tion [26]. All benchmarks were executed on a Macbook Pro with an i7-5557U
processor and 16GB. While a generic implementation is unlikely to match dedi-
cated implementations, Haddock let developers produce MDD-based propaga-
tors for global constraints with minimal effort. We demonstrate below 1) how
Haddock compares to an existing MDD implementation, 2) its new modeling
capabilities, and 3) the performance impact of the reboot depth parameter.

Experiment 1: Comparison to State-of-the-Art. First, we compare Haddock
to the ‘Dedicated’ Among MDD propagator developed in [22,21] and a classic
finite-domain model (written in MiniCP) that uses a cumulative-sums encoding
for Sequence constraints as a reasonable baseline for domain propagation. We
evaluate these methods on the nurse rostering benchmark problems from [22].
Those problems ask to schedule work shifts for a nurse, subject to a collection
of Among (or Sequence) constraints. There are three classes of instances with
different lower and upper bounds on the number of work days in a sequence. Class
C-I requires at most 6 out of 8 consecutive work days and at least 22 out of 30
consecutive work days. C-II uses 6 out of 9 and 20 out of 30 while C-III uses 7 out
of 9 and 22 out of 30. Each instance also requires 4 or 5 work days each week and

14 Gentzel et al.

0 10 20 30 40 50 60
Width

101

102

103

104

105
Ba

ck
tra

ck
s

Classic vs Dedicated vs HADDOCK
Classic
C-I
C-II
C-III

Dedicated
C-I
C-II
C-III

HADDOCK
C-I
C-II
C-III

0 10 20 30 40 50 60
Width

10 1

100

101

102

CP
U

Ti
m

e
(s

ec
on

ds
)

Classic vs Dedicated vs HADDOCK

Fig. 3. Backtracks (left) and CPU time (right) for finding all solutions for amongNurse.

uses a horizon of 40 days. Runtimes reported in [21] were scaled to account for
processor differences. We used the highest Geekbench 5 scores reported for our
machine CPU (825) and an average score of 330 (standard deviation 10) for an
Intel Xeon E5345 that matches the 2.3GHz characterization in [21]. This yields
a scaling by 330

825 = 0.4. Important differences between Haddock and [21] are
that the implementation of [21] does not compute an MDD propagation fixpoint
and adopts a dedicated splitting heuristic that differs from ours.

Figure 3 compares the search tree size (left) and runtimes (right) between
the three approaches for finding all solutions (each model uses the same lexico-
graphic search strategy). ‘Classic’ refers to the conventional finite-domain model,
‘Dedicated’ refers to [21], and ‘Haddock’ is our implementation with a reboot
depth of 0 for clearer comparison. Observe that Haddock starts, at width 1,
with the exact same number of backtracks as Classic (a bit better than Ded-
icated, which is attributed to the lack of a fixpoint within [21]). Second, the
number of backtracks of Haddock are roughly comparable to [21]. Third, the
runtimes are within a small factor of each other with Haddock in front for class
C-III and behind (by a factor in the 1x-10x range) on C-II. Those results are
very promising given the generic nature of Haddock.

Experiment 2: Modeling Capabilities We next demonstrate the modeling capabil-
ities of Haddock on the classic All-Interval Series problem (#007 on CSPLIB).
Given an integer n, the problem asks to find a vector x = (x0, . . . , xn−1) such
that x is a permutation of {0, . . . , n − 1}, and the interval vector y = (|x1 −
x0|, |x2 − x1|, . . . , |xn−1 − xn−2|) is a permutation of {1, . . . , n− 1}.

To model this problem using MDDs, we defined the AbsDiffMDD(z0, z1, z2)
constraint in Haddock, representing the relation |z0 − z1| = z2. It main-
tains the set of values taken by each of the variables and defines explicit arc
existence functions based on this relationship. We then introduce constraints
AbsDiffMDD(xi, xi+1, yi), for i = 0, . . . , n − 2, which gives us a natural vari-
able ordering, interleaving vectors x and y. Lastly, we define AlldiffMDD(x)
and AlldiffMDD(y) constraints to model the permutations. The entire Abs-
DiffMDD language requires less than 120 lines for declaring its states, transi-
tions, and relaxation rules. Likewise, the AlldiffMDD language requires only
70 lines. For these constraints, Haddock applies a generic state ordering based
on the number of parent states (smallest first) during the node splitting process.

HADDOCK: A Language and Architecture for Decision Diagrams 15

Reboot Width 1 Width 2 Width 4 Width 8 Width 16 Width 32 Width 64

0 10,062 9,459 7,815 6,196 4,027 2,368 1,511

2 10,062 9,332 7,522 6,191 3,796 2,264 1,470

4 10,062 9,069 6,972 5,279 3,282 2,100 1,357

8 10,062 5,698 3,277 2,283 1,626 1,839 316

MAX 10,062 1,155 140 40 34 23 6

Table 1. MDD propagation on the All-Interval Series problem (n = 11).

We apply a lexicographic search on the x variables to compare the perfor-
mance over different settings. We report results for n = 11 (finding all solutions)
in Table 1. To evaluate the impact of MDD propagation, consider the base case
in which the reboot depth is set to 0. The table shows how increasing the width
from 1 (domain propagation) to larger widths reduces the search tree size, yield-
ing a factor 10 for maximum width 64. It is encouraging to see how MDDs can
be used like any other global constraints within a CP solver and deliver huge
reductions in the size of the search tree. We do note, however, that the reduction
in search tree size has no positive impact on the solving time. It remains an area
for future work to exploit better split ordering and an optimized implementation.

Experiment 3: Reboot Depth Sensitivity. We next investigate the impact of vary-
ing the reboot depth. Consider Table 1 once again. Rows 2 through 5 convey
the impact of reboots on the search tree size at all considered widths. Recall
that Haddock only relies on a syntactic value (the number of parents) to rank
states. Also recall that rebooting considers abandoning splitting at layer k when
it has induced state deletion in prior layers and return to those. The reboot

parameter controls how far back Haddock can jump when returning to ear-
lier layers. In this situation, rebooting can have a dramatic impact on the size
of the search at any width. The most extreme parameter settings of width=64
and unbounded reboots yield a search tree with only 6 nodes, i.e., 4 orders of
magnitude compared to the baseline in the upper left corner of the table.

7 Conclusion

This paper introduced Haddock, a system for Handling Automatically Deci-
sion Diagrams over Constraints Kernels. It described the language and framed
its implementation in terms of a compilation down to an LTS form. The resulting
system is generic and capable of capturing and automatically deriving implemen-
tation for several MDDs that were proposed before and for which only dedicated
implementations exist. The empirical evaluation showed that this very first im-
plementation of a generic MDD engine exhibits search tree reductions that are
qualitatively on par with prior work and achieves comparable runtime.

Acknowledgments Willem-Jan van Hoeve was partially supported by ONR Grant
No. N00014-18-1-2129 and NSF Award #1918102. L. Michel and R. Gentzel
were partially supported by Comcast under Grant #15228, Synchrony under
#790057267 and ONR/NIUVT under #N000014-20-1-2040.

16 Gentzel et al.

References

1. S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-
27:509–516, 1978.

2. H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A Constraint Store
Based on Multivalued Decision Diagrams. In Proceedings of CP, volume 4741 of
LNCS, pages 118–132. Springer, 2007.

3. Claude Berge. Hypergraphs - combinatorics of finite sets., volume 45 of North-
Holland mathematical library. North-Holland, 1989.

4. D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence
Constraints. JAIR, 50:697–722, 2014.

5. D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Decision Diagrams
for Optimization. Springer, 2016.

6. D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete Optimization
with Decision Diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

7. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35:677–691, 1986.

8. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys, 24:293– 318, 1992.

9. K. C. K. Cheng, W. Xia, and R. H. C. Yap. Space-time tradeoffs for the regular
constraint. In Constraint Programming Proceedings (CP 2012), volume 7514 of
LNCS, pages 223–237. Springer, 2012.

10. K. C. K. Cheng and R. H. C. Yap. Maintaining generalized arc consistency on ad-
hoc n-ary boolean constraints. In G. Brewka et al., editor, Proceedings of ECAI,
pages 78–82. IOS Press, 2006.

11. A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing
Problems. Operations Research, 61(6):1411–1428, 2013.

12. Diego de Uña, Graeme Gange, Peter Schachte, and Peter J. Stuckey. Compiling
CP subproblems to mdds and d-dnnfs. Constraints, 24(1):56–93, 2019.

13. G. Gange, V. Lagoon, and P. J. Stuckey. Fast Set Bounds Propagation using BDDs.
In M. Ghallab et al., editor, Proceedings of ECAI, pages 505–509. IOS Press, 2008.

14. Graeme Gange, Peter J. Stuckey, and Pascal Van Hentenryck. Explaining prop-
agators for edge-valued decision diagrams. In Proceedings of CP, volume 8124 of
LNCS, pages 340–355. Springer, 2013.

15. Graeme Gange, Peter J. Stuckey, and Radoslaw Szymanek. MDD propagators with
explanation. Constraints, 16(4):407–429, 2011.

16. T. Hadžić and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1 pro-
gramming. Technical report, Carnegie Mellon University, 2007.

17. T. Hadžić, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compi-
lation of constraints into multivalued decision diagrams. In P. J. Stuckey, editor,
Principles and Practice of Constraint Programming (CP 2008), volume 5202 of
Lecture Notes in Computer Science, pages 448–462. Springer, 2008.

18. T. Hadžić, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in
an MDD store. In L. Perron and M. A. Trick, editors, CPAIOR 2008 Proceedings,
volume 5015 of Lecture Notes in Computer Science, pages 318–322. Springer, 2008.

19. T. Hadzic, E. O’Mahony, B. O’Sullivan, and M. Sellmann. Enhanced Inference
for the Market Split Problem. In Proceedings of ICTAI, pages 716–723. IEEE
Computer Society, 2009.

20. P. Hawkins, V. Lagoon, and P.J. Stuckey. Solving Set Constraint Satisfaction
Problems Using ROBDDs. JAIR, 24(1):109–156, 2005.

HADDOCK: A Language and Architecture for Decision Diagrams 17

21. S. Hoda. Essays on equilibrium computation, MDD-based constraint programming
and scheduling. PhD thesis, Carnegie Mellon University, 2010.

22. S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-
Based Constraint Programming. In Proceedings of CP, volume 6308 of LNCS,
pages 266–280. Springer, 2010.

23. R. M. Keller. Formal Verification of Parallel Programs. Communications of the
ACM, 19(7):371–384, 1976.

24. J. Kinable, A. A. Cire, and W.-J. van Hoeve. Hybrid Optimization Methods for
Time-Dependent Sequencing Problems. European Journal of Operational Research,
259(3):887–897, 2017.

25. V. Lagoon and P. J. Stuckey. Set domain propagation using ROBDDs. In M. Wal-
lace, editor, Proceedings of CP, volume 3258 of LNCS, pages 347–361, 2004.

26. Laurent Michel, Pierre Schaus, Pascal Van Hentenryck. MiniCP: A
lightweight solver for constraint programming, 2018. Available from
https://minicp.bitbucket.io.

27. Chang-Yeong Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, 1959.

28. G. Perez and J.-C. Régin. Efficient Operations On MDDs for Building Constraint
Programming Models. In Proceedings of IJCAI, pages 374–380, 2015.

29. Guillaume Perez and Jean-Charles Régin. Soft and cost MDD propagators. In
Proceedings of AAAI, pages 3922–3928. AAAI Press, 2017.

30. I. Wegener. Branching programs and binary decision diagrams: theory and appli-
cations. SIAM monographs on discrete mathematics and applications. Society for
Industrial and Applied Mathematics, 2000.

	HADDOCK: A Language and Architecture for Decision Diagram Compilation

