
Mathematical Programming manuscript No.
(will be inserted by the editor)

Graph Coloring with Decision Diagrams

Willem-Jan van Hoeve

Received: date / Accepted: date

Abstract We introduce an iterative framework for solving graph coloring problems
using decision diagrams. The decision diagram compactly represents all possible
color classes, some of which may contain edge conflicts. In each iteration, we use
a constrained minimum network flow model to compute a lower bound and identify
conflicts. Infeasible color classes associated with these conflicts are removed by re-
fining the decision diagram. We prove that in the best case, our approach may use
exponentially smaller diagrams than exact diagrams for proving optimality. We also
develop a primal heuristic based on the decision diagram to find a feasible solution
at each iteration. We provide an experimental evaluation on all 137 DIMACS graph
coloring instances. Our procedure can solve 52 instances optimally, of which 44 are
solved within 1 minute. We also compare our method to a state-of-the-art graph col-
oring solver based on branch-and-price, and show that we obtain competitive results.
Lastly, we report an improved lower bound for the open instance C2000.9.

Keywords Graph coloring · Decision diagrams · Integer programming

1 Introduction

Graph coloring is a fundamental combinatorial optimization problem that asks to
color the vertices of a given graph with a minimum number of colors, such that adja-
cent vertices are colored differently. Graph coloring is a core component of many ap-
plications, in particular those related to timetabling or scheduling [35,20,3,22]. The
most efficient exact solution techniques include enumerative methods based on the
Dsatur vertex ordering [30,10,28,32,14], methods based on integer linear program-
ming formulations [25,26,19], constraint programming [16], and column generation
(branch-and-price) [24,23,17,16,27].

Willem-Jan van Hoeve
Carnegie Mellon University, Tepper School of Business
5000 Forbes Avenue, Pittsburgh, PA 15232, USA
E-mail: vanhoeve@andrew.cmu.edu

2 W.-J. van Hoeve

A major challenge for exact graph coloring methods is finding strong lower bounds
to help accelerate the proof of optimality. A natural lower bound is the clique number
of a graph—the size of the largest complete subgraph, which requires all its vertices
to be colored differently. In this work, we explore an alternative approach that does
not directly rely on maximal cliques, but instead makes use of relaxed decision di-
agrams [2]. Relaxed decision diagrams provide a graphical discrete relaxation of a
solution set and can be used to derive optimization bounds [2,9,7] as well as exact
solution methods [8,5].

For the graph coloring problem, we let the decision diagram compactly represent
the collection of independent sets of the input graph, each of which corresponds to
a color class (a subset of vertices with the same color). We obtain a graph color-
ing lower bound by solving a constrained minimum network flow over the decision
diagram that ensures that each vertex only appears in one color class. However, in
our relaxed decision diagram, not all color classes may be exact. We therefore iden-
tify conflicts (adjacent vertices) in each color class, which are subsequently removed
from the diagram by a refinement step. We iteratively apply this process until no more
conflicts are found. We show that an integral conflict-free solution to the constrained
minimum network flow problem is guaranteed to be optimal. We also develop a pri-
mal heuristic that is based on the network flow solution.

Our approach is relatively generic, in that the iterative refinement process based
on conflicts is not restricted to graph coloring problems. For example, we can define
a very similar procedure for bin packing problems, in which case a subset of items
is conflicting if its weight exceeds the capacity of the bin. In fact, it can be viewed
as a ‘dual’ form of column generation: instead of iteratively generating new columns
(color classes), our approach iteratively removes infeasible color classes from con-
sideration. In both cases, however, a solution is defined as a subset of color classes.
Contributions. The main contributions of this work include 1) the introduction of
a new framework for obtaining graph coloring lower and upper bounds based on re-
laxed decision diagrams, and proving its correctness, 2) a proof that relaxed decision
diagrams can be exponentially smaller than their exact versions for finding optimal
solutions, and 3) an experimental evaluation of our framework on the DIMACS graph
coloring benchmark, demonstrating that our approach is competitive with a state-of-
art exact graph coloring solver based on branch-and-price, and reporting an improved
lower bound for instance C2000.9.

We note that a preliminary version of this work appeared as an extended abstract
in IPCO 2020 [18], which focused primarily on computing lower bounds. The present
version introduces a primal heuristic, includes full proofs, provides more details of
the implementation, and presents an extensive computational evaluation on all 137
DIMACS benchmark instances.

2 Graph Coloring by Independent Sets

We first present a formal definition of graph coloring [33]. Let G = (V,E) be an
undirected simple graph with vertex set V and edge set E. We define n = |V | and
m = |E|. We denote by Ni the set of neighbors of i ∈V . For convenience, we label the

Graph Coloring with Decision Diagrams 3

vertices V as integers {1, . . . ,n}. A vertex coloring of G is a mapping of each vertex
to a color such that adjacent vertices are assigned different colors. We refer to the
subset of vertices with the same color as a color class. The graph coloring problem is
to find a vertex coloring with the minimum number of colors. The minimum number
of colors to color G is called the coloring number or the chromatic number of G,
denoted by χ(G).

Observe that each color class is defined as a subset of vertices that are pairwise
non-adjacent. In other words, a color class corresponds to an independent set of G,
and conversely each independent set of G can be used as a color class. This allows
to formulate the graph coloring problem as follows. Let I be the collection of all
independent sets of G. We introduce a binary variable zi for each independent set i∈ I,
representing whether i is used as a color class in a solution. We let binary parameter
ai j represent whether vertex j ∈ V belongs to independent set i ∈ I (ai j = 1) or not
(ai j = 0). The graph coloring problem can then be formulated as the following integer
program:

χ(G) = min ∑
i∈I

zi

s.t. ∑
i∈I

ai jzi = 1 ∀ j ∈V,

zi ∈ {0,1} ∀i ∈ I,

(1)

where the equality constraint ensures that each vertex belongs to one color class. This
formulation forms the basis of the column generation approaches for graph coloring,
as first proposed by Mehrotra and Trick [24]. Instead of enumerating all exponentially
many independent sets I, column generation iteratively adds new independent sets
(with negative reduced cost) to an initial collection. In our approach, we instead start
with compactly representing all subsets of V , and iteratively remove sets that contain
adjacent vertices.

Notation: An edge {i, j} ∈ E is an unordered pair of vertices. In what follows, we
will denote an edge {i, j} by either one of its equivalent ordered definitions (i, j) or
(j, i). This notational distinction is convenient because our edge conflict separation
procedure requires an ordering of the vertices.

3 Decision Diagrams

Decision diagrams were originally developed to represent switching circuits and,
more generally, Boolean functions [21,1,34]. They became particularly popular af-
ter the introduction of efficient compilation methods for Reduced Ordered Binary
Decision Diagrams [11,12], and have been applied widely to verification and con-
figuration problems. More recently, decision diagrams have been applied to solve
optimization problems [5], which is the context we follow in this paper.

3.1 Definitions

For our purposes, a decision diagram will represent the set of solutions to an opti-
mization problem P defined on an ordered set of decision variables X = {x1, . . . ,xn}.

4 W.-J. van Hoeve

In this paper, we assume that each variable is binary. The feasible set of P is denoted
by Sol(P).

A decision diagram for P is a layered directed acyclic graph D= (N,A) with node
set N and arc set A. D has n+1 layers that represent state-dependent decisions for the
variables. The first layer (layer 1) is a single root node r, while the last layer (layer
n+ 1) is a single terminal node t. Layer j is a collection of nodes associated with
variable x j ∈ X , for j = 1, . . . ,n. Arcs are directed from a node u in layer j to a node v
in layer j+1, and have an associated label `(u,v) which can be either 0 or 1. We refer
to the former as 0-arcs and to the latter as 1-arcs. For each node, the outgoing 0-arc
and 1-arc must be unique. The layer of node u is denoted by L(u). Each arc, and each
node, must belong to a path from r to t. Each arc-specified r-t path p= (a1,a2, . . . ,an)
defines a variable assignment by letting x j = `(a j) for j = 1, . . . ,n. We slightly abuse
notation and denote by Sol(D) the collection of variable assignments defined by all
r-t paths in D.

Definition 1 A decision diagram D is exact for problem P if Sol(D) = Sol(P). A
decision diagram D is relaxed for problem P if Sol(D)⊇ Sol(P).

The benefit of using decision diagrams for representing solutions is that equiva-
lent nodes, i.e., nodes with the same set of completions, can be merged. A decision
diagram is called reduced if no two nodes in a layer are equivalent. A key property is
that for a given fixed variable ordering, there exists a unique reduced ordered decision
diagram [11]. Nonetheless, even reduced decision diagrams may be exponentially
large to represent all solutions for a given problem.

3.2 Exact Compilation

In this work we apply top-down compilation methods that depend on state-dependent
information (similar to state variables in dynamic programming models). We limit
our exposition to the compilation of decision diagrams for independent set problems,
as proposed by Bergman et al. [6,7]. We define a binary variable xi for each i ∈ V
representing whether i is selected. The state information we maintain is the set of
‘eligible vertices’, i.e., the set of graph vertices that can be added to the independent
sets represented by paths into the node.

Formally, for each node u in the decision diagram we recursively define a set
S(u) ⊆ V , and we initialize S(r) = V . For node u in layer L(u) = j we distinguish
two cases. If j /∈ S(u), we define a 0-arc (or transition) from u to v, with S(v) = S(u).
Otherwise, if j ∈ S(u), we define both a 1-arc and a 0-arc out of u, with

S(v) =
{

S(u)\ ({ j}∪N j) if (u,v) is a 1-arc,
S(u)\{ j} if (u,v) is a 0-arc. (2)

The top-down compilation procedure starts at the root node, creates all nodes in
the next layer (following the 0-arcs and 1-arcs), and merges the nodes that are equiva-
lent. Bergman et al. [6,7] showed that for independent sets, the state information S(u)
(the set of eligible vertices) suffices to determine node equivalence, i.e., two nodes u

Graph Coloring with Decision Diagrams 5

1 2

3 4

a. Input graph

x1

x2

x3

x4

r

1234

24 234

- 4 3 34

- 4

-

t

b. Exact decision diagram

Fig. 1 Input graph for Example 1 (a) and the associated exact decision diagram representing all indepen-
dent sets (b). The diagram uses the lexicographic ordering of the vertices. Dashed arcs represent 0-arcs,
while solid arcs represent 1-arcs. For convenience, the set of eligible vertices (the state information) is
given in each node.

and v are equivalent if and only if S(u) = S(v). This top-down compilation procedure
therefore yields the unique reduced decision diagram for representing all independent
sets (for a given variable ordering), as shown in [6,7].

Example 1 Consider the graph in Figure 1.a. We depict the exact decision diagram
representing all independent sets for this graph in Figure 1.b.

3.3 Compilation by Separation

As an alternative to exact compilation, we can apply constraint separation to iter-
atively construct a decision diagram [13,5]. In general, the input to the constraint
separation problem is a relaxed decision diagram, and a tuple representing a (partial)
variable assignment that violates a constraint. The purpose is to identify and elimi-
nate those paths in the decision diagram that correspond to the given tuple [13]. In our
case, we deviate from the literature in that we wish to separate an edge conflict along
a prescribed path in the decision diagram. This results in a more ‘lazy’ implementa-
tion of constraint separation that will hopefully result in smaller decision diagrams.
We do apply a similar technique as [13], however. That is, the path is separated by
introducing a new node in each layer of the diagram, following the arc labels pre-
scribed by the path. In the last layer that the path traverses, we forbid the prescribed
arc label, thus eliminating the assignment. We will next describe this procedure in
more detail, in the context of representing independent sets.

As we will work with relaxed decision diagrams, we need to define an initial
diagram D. We start with the simplest possible diagram, having only one node per
layer. As before, we can recursively define the diagram. That is, we initialize the root
node state as S(r) = V . For node u in layer L(u) = j, we again define a 0-arc and
a 1-arc. This time, however, we merge their endpoints and connect both arcs to the

6 W.-J. van Hoeve

node in layer j+1. Doing so, the state of node u is S(u) = { j, . . . ,n}, for j = 1, . . . ,n,
and S(t) = ∅. Since the resulting diagram represents all 2n binary n-tuples, it also
contains all independent sets for the graph under consideration, and is therefore a
valid relaxed decision diagram.

The input to our separation algorithm is:

– a reduced decision diagram D, i.e., no layer contains multiple equivalent nodes,
– an edge conflict (j,k) ∈ E, where j < k,
– a path u j,u j+1, . . . ,uk−1 with arc labels l j, l j+1, . . . , lk−1 associated with the con-

flict (j,k), and containing no edge conflicts (j′,k′) such that j ≤ j′ < k′ < k.

The goal of the separation algorithm is to resolve the conflict along the path by split-
ting nodes, and arcs, appropriately. This is described in Algorithm 1.

In the algorithm, we represent D as a two-dimensional vector D[][] of nodes, such
that D is a vector of ‘layers’ and D[] is a vector of ‘nodes’, one for each layer. Both are
indexed starting from 1. The size of vector D is fixed to n+1, while we dynamically
update the size of the layers D[]. The root is represented as D[1][1] and the terminal as
D[n+1][1]. Each node u = D[j][i] (u is the i-th node in layer j) has state information
D[j][i].S = S(u), a reference to the node in layer j + 1 that represents the endpoint
of its 1-arc D[j][i].oneArc, and a similar reference for its 0-arc D[j][i].zeroArc. If the
1-arc does not exist, the reference holds value -1.

Algorithm 1 considers each node D[i][ui] along the path in sequence (line 3) and
splits off the next node in the path. This is done by first creating a temporary node w
(lines 4-6). If an equivalent node already exists in layer i+1, we direct the path to its
index (lines 7-8). Otherwise we complete the definition of w by copying the outgoing
arcs of node D[i+ 1][ui+1] (lines 10-12), and we add w to layer i+ 1 (lines 13-14).
Lastly, we redirect the path from ui to the new node with index t (lines 16-18).

Example 2 Figure 2 gives an illustration of Algorithm 1. When we apply the algo-
rithm to the decision diagram (a), with the all-ones path and conflicting edge (1,3) as
input, we obtain the decision diagram (b).

The following lemmas characterize the outcome of Algorithm 1. The first lemma
states that the algorithm soundly removes conflicts from paths in the decision dia-
gram:

Lemma 1 Let decision diagram D, edge conflict (j,k), and node-label specified path
(u j, l j,u j+1, l j+1, . . . ,uk−1, lk−1) be the input to Algorithm 1. The application of the al-
gorithm results in a decision diagram in which the arc-specified path (l j, . . . , lk−1,1)
starting at u j no longer exists, but (l j, . . . , lk−1,0) does.

Proof We start with the observation that the first label on the path (i.e., l j) must be 1,
since otherwise there cannot be a conflict with node k. Therefore, when we start the
loop in line 3 for i = j, the creation of new node w (line 4) and the elimination of Ni
(line 5) removes k ∈ Ni from S(w). In later iterations, i.e., for i > j, node w inherits
its state from its parent node (line 5), and can therefore never include k.

Note that the state update in line 6 eliminates Ni from S(w) when li = 1, which
may potentially eliminate 1-arcs from the given path. However, since no conflicts

Graph Coloring with Decision Diagrams 7

Algorithm 1: Separating edge conflict (j,k) in decision diagram D.
1 input: reduced decision diagram D (D[i][j] represents the jth node in layer i), path node indices

u j, . . . ,uk−1, path arc labels l j, . . . , lk−1, conflict (j,k) (it is assumed that the path contains no
edge conflicts (j′,k′) such that j ≤ j′ < k′ < k), and list of neighbors Ni for each i ∈V

2 output: reduced decision diagram in which the conflict along the path has been eliminated
3 for i = j, . . . ,k−1 do
4 create node w // split the path towards node w
5 w.S←D[i][ui].S\{i} // copy the parent state and remove i
6 if li = 1 then w.S← w.S\Ni // remove Ni in case of 1-arc
7 t←−1 // t is index of the new node in layer i+1
8 if ∃k such that D[i+1][k].S = w.S then t← k // check for equivalent node
9 else

10 if i+1 ∈ w.S then w.oneArc← D[i+1][ui+1].oneArc // copy 1-arc
11 else w.oneArc←−1
12 w.zeroArc← D[i+1][ui+1].zeroArc // copy 0-arc
13 D[i+1].add(w) // append w as new node to layer i+1
14 t← |D[i+1]| // update t to last index of layer i+1

15 if li = 1 then D[i][ui].oneArc← t // re-direct path in case of 1-arc
16 else D[i][ui].zeroArc← t // re-direct path in case of 0-arc
17 ui+1← t // update path index

(a)

x1

x2

x3

x4

r

t

lower bound:
flow paths:

conflicting edge:

1
(1,1,1,1)

(1,3)

(b) r

t

2
(1,1,0,1)
(0,0,1,0)
(2,4)

(c) r

t

2
(1,1,0,0)
(0,0,1,1)
(3,4)

(d) r

t

2
(1,0,0,1)
(0,1,1,0)
-

Fig. 2 Applying constraint separation to the input graph of Example 1. The initial relaxed diagram (a) is
iteratively refined until the optimal solution (the flow paths) no longer contains infeasible color classes.

(j′,k′) with j ≤ j′ < k′ < k appear on the path, no 1-arc other than the last one will
be removed from the path. As a consequence, at each iteration i of the algorithm,
there exists an arc a along the arc-specified path with arc label `(a) = li. Merging w
into an equivalent node (line 8) does not influence the existence of the arc label li at
iteration i.

When i = k−1, since k does not appear in S(w), the 1-arc out of w is eliminated.
As a result, only the 0-arc is connected to the child node of uk−1. Therefore, upon
termination there is no more path starting at uk with arc labels (l1, . . . , lk−1,1), but
there exists a path with labels (l1, . . . , lk−1,0). ut

8 W.-J. van Hoeve

The following lemma shows that the set of solutions (paths) represented by the dia-
gram becomes strictly smaller after applying the algorithm:

Lemma 2 Algorithm 1 does not introduce new arc-specified paths to the input deci-
sion diagram.

Proof New paths can only be introduced by re-directing arcs or by merging non-
equivalent nodes. The node splitting process redirects the path from ui to the new
node w but maintains the original paths since the outgoing arc(s) are copied (lines
10-12). Furthermore, the algorithm only merges equivalent nodes (line 8). ut

Lemma 3 Given a reduced decision diagram as input, Algorithm 1 produces a re-
duced decision diagram.

Proof The state representation S(u) for node u suffices to determine state equivalence
in each layer, and equivalent nodes are merged (line 8). Therefore, if the input dia-
gram is reduced, so is the resulting diagram. ut

The next lemma shows that the algorithm can only increase the size of the diagram
linearly. Recall that the n vertices of the input graph are labeled {1, . . . ,n} and corre-
spond to the layer indices of the decision diagram.

Lemma 4 Given edge conflict (j,k) with j < k as input, Algorithm 1 increases the
size of the relaxed decision diagram by at most k− j nodes.

Proof In each iteration only one node is created (lines 3-4), and there are k− j itera-
tions. ut

We note that a similar result was first presented by Cire and Hooker [13, Theorem 2]:
separating a given (partial) variable assignment from a decision diagram can increase
each layer by at most one node. As an extension, Perez and Régin [29] describe an
algorithm that separates multiple variable assignments (of a specific form) at once.

Lemma 4 is an appealing property, because separating k conflicts will only in-
crease the size of the diagram by at most kn nodes. However, iterative application
of the algorithm may require separating the same edge multiple times, over distinct
paths, which may ultimately lead to an exponential number of conflicts to be sepa-
rated.

Theorem 1 Given a reduced decision diagram D as input, and an oracle that pro-
vides us with edge conflicts and associated paths in D, repeated application of Algo-
rithm 1 results in the unique exact decision diagram.

Proof This follows from Lemma 3 and repeated application of Algorithm 1. ut

In Section 5 we will present an iterative refinement procedure that repeatedly applies
Algorithm 1, as in Theorem 1. The characteristics of the separation algorithm de-
scribed above ensure that our approach produces the smallest decision diagram for
separating the conflict at each iteration (Lemma 3) and ultimately terminates with the
optimal solution (Theorem 1).

Graph Coloring with Decision Diagrams 9

4 Network Flow-Based Formulation

We next reformulate the graph coloring problem based on independent sets, as a
constrained network flow problem on a given decision diagram D = (N,A). We let
δ+(u) and δ−(u) denote the set of arcs leaving, respectively entering node u ∈ N.
For each arc a∈ A we introduce a variable ya that represents the ‘flow’ through a. We
then define:

(F) = min ∑
a∈δ+(r)

ya (3)

s.t. ∑
a=(u,v)|L(u)= j,`(a)=1

ya = 1 ∀ j ∈V (4)

∑
a∈δ−(u)

ya− ∑
a∈δ+(u)

ya = 0 ∀u ∈ N \{r, t} (5)

ya ∈ {0,1, . . . ,n} ∀a ∈ A (6)

The objective function (3) minimizes the total amount of flow. Constraints (4) define
that in each layer exactly one 1-arc is selected. Constraints (5) ensure flow conserva-
tion. Constraints (6) ensure that the flow is integer.

Lemma 5 A solution to model (F) corresponds to a (not necessarily unique) parti-
tion of vertex set V .

Proof A solution to model (F) is an r-t flow, and can therefore be decomposed into a
collection of paths and cycles. Since the decision diagram is a directed acyclic graph,
no cycles exist. A partition can be found by applying the following algorithm that
decomposes the flow into paths:

– Initialize the sets V ′ =V and P = /0 (P will represent a collection of subsets of V).
Define a ‘residual’ flow vector y′ that is initialized as y′a = ya for all a ∈ A.

– While V is not empty: Select any i ∈ V ′. By constraints (4), there is exactly one
arc a= (u,v) for which y′a = 1. By constraints (5) there exists an r-u path and a v-t
path for which y′a ≥ 1 for each arc a along the path, which together with arc (u,v)
forms an r-t path p. Define the set S = { j | a = (u,v) ∈ p,L(u) = j, `(a) = 1}.
Update V ′ =V ′ \S, P = P+S, and y′(a) := y′(a)−1 for all a ∈ p.1

By constraints (4) each vertex i ∈ V must be part of exactly one path, and therefore
P is a partition of V . The cardinality of P is equal to the number of paths in the
decomposition, which equals the value of the objective function (3). ut

Theorem 2 If the decision diagram is exact, model (F) finds an optimal solution to
the graph coloring problem.

Proof By the proof of Lemma 5, we can decompose the solution to (F) into paths
corresponding to a partition of V . Because each path in the exact decision diagram
represents an independent set, the partition represents a coloring of the input graph.
Since (F) minimizes the number of paths, the optimal objective function value is the
chromatic number. ut

1 The operator + indicates the addition of a set to a set (instead of the union).

10 W.-J. van Hoeve

By the definition of relaxed decision diagrams, we have the following corollary:

Corollary 1 If the decision diagram is relaxed, the objective value of model (F) is a
lower bound on the chromatic number.

One may wonder whether model (F) can be solved in polynomial time, because of
the structure imposed by the additional constraints (4). Such result would not imply
a polynomial solution method for graph coloring, because the decision diagram may
have exponential size. The answer, however, is negative:

Theorem 3 Solving model (F) for an arbitrary decision diagram is NP-hard.

Proof By reduction from minimum set partitioning. We are given a collection S of
sets based on a universe of elements E, and need to find a subset of S of minimum
cardinality such that each element in E belongs to exactly one subset. We define a
decision diagram with |E|+1 node layers, such that layer i represents the i-th element
from E following an arbitrary but fixed ordering of E. We then define an r-t path for
each set s ∈ S by introducing nodes and arcs between each layer i and i+ 1, with
arc label 1 if the i-th element of E is in s and 0 otherwise. To do so, we apply the
following algorithm, for each set s ∈ S:

– Initialize u = r (start at the root node).
– For i= 1, . . . , |E|: If there does not exist an arc a= (u,v) with label `(a) = I[i∈ s],

add a new node v to layer i+1 and define arc a. Update u = v.

The resulting diagram has at most |S| nodes in any layer, where each node has at most
two outgoing arcs, and is therefore of size O(|E||S|). An optimal solution to model
(F) directly corresponds to solving the minimum set partitioning problem. ut

As stated in Lemma 5, a solution to model (F) may give rise to multiple partitions of
vertex set V . Indeed, paths in the solution are not explicitly given, but instead follow
from the arc flow values. Moreover, paths can share nodes and 0-arcs. This gives rise
to the following result:

Theorem 4 If the decision diagram is relaxed, deciding whether a solution to model
(F) corresponds to a feasible graph coloring solution is NP-complete, even if the
objective value of (F) is the chromatic number of the input graph.

Proof Let G = (V,E) be the input graph, and consider the following transforma-
tion. Let (V ′,E ′) be a copy of (V,E), and define G′ = (V ∪V ′,E ∪E ′). By design,
χ(G) = χ(G′). We define a relaxed decision diagram for G′ where the first |V | layers
are associated with V , and the remaining layers are associated with V ′. Up to, and
including, layer |V |, we let the decision diagram be exact. All nodes in layer |V |+1
are merged into a single node u, with state S(u) =V ′. Layers |V |+1 to 2|V | are each
defined to contain a single node, and connect to the next layer with both the 1-arc and
the 0-arc. We solve model (F) with this relaxed decision diagram as input. Because
the layers associated with V are exact, by Theorem 2 the optimal objective value of
(F) will be at least χ(G). Because the layers associated with V ′ do not restrict the
solution further, we know that the optimal objective value of (F) is equal to χ(G)
and thus to χ(G′). Furthermore, the optimal solution corresponds to a collection of

Graph Coloring with Decision Diagrams 11

Algorithm 2: Edge conflict detection via flow decomposition.
1 input: decision diagram D = (N,A) (D[i][j] represents the jth node in layer i), solution to model

(F) (represented as D[i][j].oneArcFlow and D[i][j].zeroArcFlow) with optimal objective
value B, input graph G = (V,E) and list of neighbors Ni for each i ∈V

2 output: certificate of edge conflict with associated node and arc-label specified paths (an empty
conflict represent feasibility)

3 define: node index vector P, arc label vector L, vector of selected vertices S
4 while B≥ 1 do
5 empty P,L,S
6 P.add(1) // start at root node
7 for i = 1, . . . , n do
8 u← P.last
9 if D[i][u].oneArcFlow = 1 then // select 1-arc if it carries flow

10 for j ∈ S do
11 if (j, i) ∈ E then
12 return conflict (j, i) with node path Pj,Pj+1, . . . ,Pi−1 and arc-label path

L j,L j+1, . . . ,Li−1

13 P.add(D[i][u].oneArc)
14 L.add(1)
15 S.add(i)

16 else
17 P.add(D[i][u].zeroArc)
18 L.add(0)

19 for i = 1, . . . ,n do
20 if Li = 0 then D[i][Pi].zeroArcFlow← D[i][Pi].zeroArcFlow−1
21 else D[i][Pi].oneArcFlow← D[i][Pi].oneArcFlow−1

22 B← B−1

23 return 0

conflict-free paths for the first |V | layers, all ending in u. For layers |V |+ 1 to 2|V |,
the solution will assign a value of 1 to each 1-arc, and a value of χ(G′)− 1 to each
0-arc (by flow conservation starting at node u).

To decide whether the solution of (F) corresponds a feasible coloring to G′ (i.e.,
on (V,E) and (V ′,E ′) simultaneously), we need to decompose it into χ(G′) conflict-
free paths. Starting from the root, the first |V | arcs along these paths are given by the
solution to (F), since that part of the diagram is exact. Each of these paths can be
arbitrarily extended to contain a subset of 1-arcs from layers |V |+ 1 to 2|V |. Com-
pleting a feasible coloring to G′ therefore amounts to decomposing the solution into
χ(G′) conflict-free paths in layers |V |+1 up to 2|V |. This is equivalent to determining
whether the original input graph is χ(G)-colorable, which is NP-complete [15]. ut

5 Iterative Refinement Procedure

In this section we describe the iterative refinement procedure that employs Algo-
rithm 1 to separate edge conflicts from paths in the relaxed decision diagram. While
the worst-case complexity results in the previous section are negative (Theorems 3

12 W.-J. van Hoeve

Algorithm 3: Iterative refinement by conflict detection and separation.
1 input: input graph G = (V,E), and list of neighbors Ni for each i ∈V
2 output: chromatic number of G
3 foundSol← false
4 initialize width-1 decision diagram D
5 while foundSol = false do
6 solve model (F) with decision diagram D
7 lowerBound← obj(F)
8 apply Algorithm 2 to determine conflict (j,k) with node/label path vectors P,L
9 if no conflict is detected then foundSol← true

10 else separate conflict (j,k) along path P,L in D using Algorithm 1

11 return lowerBound

and 4), we can, however, efficiently identify a conflict in a given solution, as pre-
sented in Algorithm 2.

Theorem 5 For a given solution to (F) and decision diagram D, Algorithm 2 either
determines feasibility or identifies an edge conflict and associated path, in O(n3)
time).

Proof Algorithm 2 implements a path decomposition of the flow. By the specification
of model (F), each path in the decomposition carries a flow of value 1. While the
remaining flow is at least 1 (line 4), the algorithm identifies a path from r to t such
that the flow along each arc is at least 1. The algorithm maintains a vector P of node
indices and vector L of arc labels representing the path. It also maintains a vector S
of vertices i for which the associated label in the path is 1. Before vertex i is added to
S, we inspect whether there exists an edge (j, i) ∈ E with j ∈ S. If so, we terminate
and return the conflict (j, i) as well as the node and label specified paths P and L (line
12). Otherwise, we update P and L based on whether a 1-arc (lines 15-16) or 0-arc
(lines 20-21) is selected. If no conflict has been identified, the flow along the path is
decreased by 1 (lines 24-27), as is the remaining flow value (line 28). If during the
process no conflict is detected, the path decomposition represents a feasible coloring,
and the algorithm returns 0 (line 30).

Finding one r-t path takes n steps (line 7). The edge inspection (lines 10-11) takes
O(n) time per event, which makes the total time for identifying a single path O(n2).
Since there are at most n paths, i.e., B≤ n, the total time is O(n3). ut

We can now describe our overall iterative refinement procedure, presented as Al-
gorithm 3. The algorithm repeatedly solves the flow model (line 6), the objective
of which provides a lower bound (line 7). If the solution contains a conflict (line
8), the decision diagram is refined accordingly (line 10), and we repeat the process.
Otherwise, we return the optimal solution (line 9). The process is illustrated in the
following example.

Example 3 Figure 2 depicts the iterative refinement procedure when applied to the
input graph given in Figure 1(a). We start with the trivial relaxation in Fig. 2(a),
which encodes all possible subsets of V , and find the all-ones solution as a single
path. Thus, the lower bound is 1. The first conflict we identify is edge (1,3) which

Graph Coloring with Decision Diagrams 13

is subsequently separated. An optimal flow for the diagram in Fig. 2(b) contains two
paths which yields lower bound 2, and we can identify conflict (2,4) to be separated.
This continues until we find the diagram in Fig. 2(d) and identify flow paths without
conflicts. Observe that the diagram in Fig. 2(d) is not exact, yet it yields an optimal
solution. Furthermore, observe that the flow paths are not unique. If we had identified
the flow paths (1,0,0,1) and (0,1,1,0) as optimal solution for the diagram in Fig. 2(b),
the algorithm would have terminated after one iteration.

Theorem 6 Given graph G, Algorithm 3 computes the chromatic number of G.

Proof The validity of the lower bound is provided by Corollary 1. Feasibility of the
solution is determined by Algorithm 2 and guaranteed by Theorem 5. In case of a
conflict, Algorithm 2 returns the first edge (j, i) it encounters along the path P, L
(line 10-11). Therefore, no edge conflicts (j′, i′) with j ≤ j′ < i′ < i exist along the
path, and (j, i), P, and L satisfy the conditions for Algorithm 1. Since at each iteration
of Algorithm 3 the decision diagram is refined in case of a conflict, termination is
guaranteed by Theorem 1. ut

Example 3 shows that iterative refinement may yield a relaxed decision diagram
that is smaller than the exact decision diagram, to prove optimality. This is formalized
in the following key result:

Theorem 7 For a given graph G, the iterative refinement procedure can find the
chromatic number of G with a relaxed decision diagram that is exponentially smaller
(in the size of G) than the exact diagram that is defined on the same variable ordering.

Proof We prove that there exists a graph coloring instance class, and associated
vertex ordering, such that the exact decision diagram is of exponential size while
a polynomial-size relaxed decision diagram exists that proves optimality. Consider
a graph G = (V,E) with vertex labels V = {1, . . . ,n} and edge set {(i, i+ 1) | i ∈
{1, . . . ,n− 1}}, i.e., G is a path from vertex 1 to n. We define the following fixed
variable ordering to compile the decision diagrams:

– For layers i = 1, . . . ,bn/3c, we associate the variable corresponding to vertex 1+
3(i−1).

– For layers i = bn/3c+ 1, . . . ,n, we associate the variable corresponding to an
arbitrary vertex that has not been assigned to layers 1, . . . , i−1.

We first the consider the exact decision diagram that is compiled according to this
ordering.

– Observation 1: Up to layer bn/3c, none of the associated vertices is adjacent, and
appears in each of the states. Therefore, each state up to layer bn/3c has two
outgoing arcs, the 0-arc and the 1-arc.

– Observation 2: Consider the transition of a node u with state S(u) into state S(u′),
following the transition rules (2). Up to layer bn/3c, the transition along each
1-arc eliminates the associated vertex as well as its neighbors, while each 0-arc
eliminates the associated vertex. Furthermore, up to layer bn/3c, the associated
vertices have no common neighbors. Therefore, when expanding layer i into layer
i+1, each of the resulting states is distinct, for i < bn/3c.

14 W.-J. van Hoeve

These two observations imply that the exact decision diagram requires at least O(2bn/3c)
states (the size of layer bn/3c).

Next, consider the relaxed decision diagram that is constructed by applying the
iterative refinement procedure, starting with a width-1 diagram. The initial solution
is the path consisting of all 1-arcs. After refining the first conflict the lower bound
becomes 2, which is the chromatic number of G. For this diagram, there exists an
optimal solution to (F) and associated path decomposition consisting of two conflict-
free paths (one with 1-arcs associated with odd vertices, and the other with 1-arcs
associated with even vertices). The iterative refinement procedure can therefore ter-
minate with a decision diagram of O(n) size. ut

6 Primal Heuristic

In this section we describe how the relaxed decision diagram, together with the op-
timal flow solution, can be used to develop a primal heuristic. The heuristic is pre-
sented in Algorithm 4. It follows a similar structure as the flow path decomposition
of Algorithm 2. Namely, until all vertices have been assigned to a color class (line
6), the algorithm identifies a path in the decision diagram. The heuristic greedily fol-
lows the 1-arcs that have at least as much flow value as the alternative 0-arc (line
11). Otherwise, the 0-arc is selected by default (line 20). If the 1-arc is selected, the
corresponding vertex is added to the path’s color class (line 16), and the vertex and
its neighbors are added to the set NS of neighbors. Once the path is completed, the
color class is added if it exists (line 25) and the flow values are updated according
the minimum flow value ‘val’ along the path (lines 27-29). If the color class is not
used, and not all vertices have been assigned to a color class (line 30), the remaining
vertices are added to the first non-conflicting color class (lines 32-35) or otherwise to
a newly created color class (line 37).

The main differences with Algorithm 2 are that arcs can be selected in the path
even if their flow value is zero, and that 1-arcs in the path need not necessarily be
added to the color class.

Theorem 8 Given input graph G, decision diagram D, and a solution to model (F),
Algorithm 4 finds a coloring of G in O(n3) time.

Proof In each iteration we either find a path with at least one unselected vertex, or
determine that no such path exists. In the first case, we decrease the number of avail-
able vertices by at least one. In the second case, we terminate the path decomposition
and continue adding the vertices to available color classes. Since each color class
only contains non-adjacent vertices, the algorithm finds a feasible coloring of G, in
at most n iterations.

Computing one path takes n steps (line 9), in which the neighbor membership test
(line 15) takes O(n) time. Overall, this bounds the complexity to O(n2) per path. The
second part of the algorithm (adding the unassigned vertices) can be amortized to
take O(n) time for each unassigned vertex i /∈ S. Namely, all classes c∈C are disjoint
and therefore the maximum number of edge checks (line 33) is bounded by n. The
overall complexity of the algorithm is therefore O(n3)+O(n2) = O(n3). ut

Graph Coloring with Decision Diagrams 15

Algorithm 4: Flow-based primal heuristic.
1 input: decision diagram D = (N,A) (D[i][j] represents the jth node in layer i), solution to model

(F) (represented as D[i][j].oneArcFlow and D[i][j].zeroArcFlow), and input graph G = (V,E)
2 output: coloring of G
3 define: node index vector P, arc label vector L, vector of selected vertices S, set of neighbors NS,

collection of color classes C
4 begin
5 colorUsed← true
6 while (|S|< n)∧ (colorUsed=true) do
7 class← /0; colorUsed← false; empty P,L,NS ; val← n
8 P.add(1)
9 for i = 1, . . . , n do

10 u← P.last
11 if D[i][u].oneArcFlow ≥D[i][u].zeroArcFlow then // prefer selecting 1-arc
12 val←min(val,D[i][u].oneArcFlow)
13 P.add(D[i][u].oneArc)
14 L.add(1)
15 if (i /∈ NS) then
16 class.add(i)
17 S← S∪{i}
18 NS← NS∪{i}∪{ j | (i, j) ∈ E}
19 colorUsed← true

20 else
21 val←min(val,D[i][u].zeroArcFlow)
22 P.add(D[i][u].zeroArc)
23 L.add(0)

24 if colorUsed then
25 C.add(class)
26 if val > 0 then
27 for i = 1, . . . ,n do
28 if Li = 0 then D[i][Pi].zeroArcFlow← D[i][Pi].zeroArcFlow−val
29 else D[i][Pi].oneArcFlow← D[i][Pi].oneArcFlow−val

30 if |S|< n then
31 for i /∈ S do
32 for c ∈C do
33 if 6 ∃ j ∈ c | (i, j) ∈ E then
34 c.add(i) // add i to existing color class
35 S← S∪{i}
36 break

37 if i /∈ S then
38 C.add({i}) // add i as new color class
39 S← S∪{i}

40 return C

16 W.-J. van Hoeve

Algorithm 5: Iterative refinement with lower and upper bounds.
1 input: input graph G = (V,E)
2 output: chromatic number of G
3 begin
4 initialize width-1 decision diagram D
5 lowerBound← 0
6 upperBound← n
7 while lowerBound < upperBound do
8 solve model (F) with decision diagram D
9 lowerBound← obj(F)

10 apply Algorithm 4 to determine coloring C
11 upperBound←min(upperBound, |C|)
12 apply Algorithm 2 to determine conflict (j,k) with node/label path vectors P,L
13 if no conflict is detected then upperBound← obj(F)
14 else separate conflict (j,k) along path P,L in D using Algorithm 1

15 return lowerBound

The addition of the primal heuristic can help speed up the iterative refinement
procedure. In addition to terminating the refinement when no more edge conflict is
detected (Algorithm 3), we can prove optimality when the lower bound equals the
best found solution. This is described in Algorithm 5, which extends Algorithm 3 with
an upper bound based on the primal heuristic, and the associated stopping criterion.

7 Implementation Details

We next describe the main features of the implementation that influence its computa-
tional efficiency.

7.1 Variable Ordering

The single most important parameter that influences the performance of the algorithm
is the variable ordering of the decision diagram. This is a well-known feature of deci-
sion diagrams in general, and has also been studied for independent set problems [6,
7]. The orderings developed in those works are applied to a top-down compilation
(layer by layer) of the diagram, and can therefore dynamically incorporate the state
information at each layer to select the next variable. In our case, we instead adopt
an iterative refinement strategy, which prevents the application of dynamic ordering
heuristics. Instead, our variable ordering is computed in a pre-processing phase and
applied in a fixed manner. We consider the following variable ordering heuristics:

– Lexicographic: Order the variables by the specification of the input graph, i.e.,
{1,2, . . . ,n}.

– Dsatur: Order the variables using the Dsatur heuristic.
– Max-Connected-Degree: Among all unselected vertices, select the one that is con-

nected to the most vertices that have been selected so far. In case of ties, select a
vertex with the highest degree.

Graph Coloring with Decision Diagrams 17

As we will see in Section 8, none of these heuristics strictly dominates the others.
Although the lexicographic ordering is the weakest, it was for example effective on
the highly structured queen instances from the DIMACS benchmark set. The Dsatur
and Max-Connected-Degree heuristics have similar relative performance, with the
Max-Connected-Degree heuristics performing better on average.

7.2 Network Flow Model

It is common in column generation to replace the equality constraints of the set par-
titioning model (1) with inequality constraints, yielding a set covering formulation.
Such reformulation often has computational benefits. We can do the same for our net-
work flow model, i.e., the equality constraints (4) can be replaced by the following
inequalities:

∑
a=(u,v)|L(u)= j,`(a)=1

ya ≥ 1 ∀ j ∈V. (7)

This is an equivalent formulation, since all solutions to model (F) with constraint
(4) are also solutions with respect to constraints (7). Furthermore, although a vertex
may now be associated with multiple paths, we can arbitrarily select one of these
paths to assign the vertex to its color class. All results presented in this paper can
be easily adapted to handle the inequality constraints. In a preliminary experiment,
we compared the two formulations, and found that the inequality constraints indeed
perform better on average. Therefore, the results in Section 8 all utilize the inequality
constraints (7).

The constrained network flow problem (F) is NP-hard to solve in general (see
Lemma 3). In practice, however, modern mixed-integer programming solvers can op-
timally solve instances with tens or hundreds of thousands variables in reasonable
time. Nonetheless, this is still the computational bottleneck for each iteration of our
iterative refinement algorithm. To help speed up this process, we therefore explored
the use of its linear programming (LP) relaxation, which is obtained by replacing the
integrality constraints (6) by 0≤ ya ≤ n for all a ∈ A. Naturally, the LP relaxation of
(F) provides a lower bound on the chromatic number. In addition, as the continuous
solution is a flow, we can also apply the path decomposition approach to identify
conflicts. In our implementation, we apply a path decomposition algorithm for con-
tinuous flows that is similar to the one for the primal heuristic (Algorithm 4): the path
selects a 1-arc if it has at least as much flow as the 0-arc, and otherwise selects the
0-arc by default. While the LP bound may be weaker than the integer programming
(IP) bound, it is faster to compute and may therefore speed up the overall process.

We implemented the LP relaxation as a separate phase of Algorithm 5. That is, in
line 8, we start by solving the LP relaxation during each iteration. This is continued
until a conflict-free path decomposition is found, yielding the LP optimum. After that,
we continue by applying the IP model, as before. We evaluated the potential benefit
of LP-based iterative refinement on all 137 DIMACS instances. We ran Algorithm 5
with and without the LP relaxation, each with maximum of 300s per instance. This
yielded the following results:

18 W.-J. van Hoeve

– For 2 instances, IP alone found a better lower bound than LP followed by IP;
– For 31 instances, the LP followed by IP yielded a better lower bound than IP

alone;
– For 104 instances, the lower bounds from both methods were equal. For these

instances, however, adding the LP relaxation reduced the time to find the best
bound by about 50%.

Based on these results, we conclude that the LP relaxation is advantageous, and it
is applied to obtain the results in Section 8. In the implementation, the lower bound
is calculated as dz∗− 10−5e, where z∗ is the optimal objective value reported by the
solver.

7.3 Separate Multiple Conflicts Per Iterations

Instead of separating a single conflict in each iteration, it is possible to identify and
separate multiple conflicts; one for each path in the decomposition (if the path con-
tains a conflict). This requires a slight adaptation of Algorithm 2: instead of termi-
nating once a conflict is found, the algorithm now records the conflict, completes the
path to the terminal, and continues the path decomposition. When the remaining flow
is zero, and the path decomposition is complete, the algorithm terminates and re-
turns the collection of conflicts. This also has implications for the conflict separation
procedure (Algorithm 1), which is now applied in sequence for each conflict.

We point out that separating each conflict will change the structure of the decision
diagram, as new nodes are introduced and arcs are redirected. We must therefore
ensure that the paths, in particular the node indices, that represent these conflicts still
exist when multiple conflicts are separated. Recall that the vertex partition defined
by the path decomposition is disjoint. Furthermore, the separation of conflicts only
adds nodes at the end of each layer; no nodes are removed from the layer or inserted
in between other nodes. This guarantees that the node indices of each path remain
accurate.

We evaluated the impact of separating multiple cuts per iteration, on all 137 DI-
MACS instances. We ran Algorithm 5 with single and multiple conflict separation, in
each case for a maximum of 300s per instance. The results are as follows:

– For 3 instances, single conflict separation found a better lower bound than multi-
ple conflict separation;

– For 43 instances, multiple conflict separation found a better lower bound than
single conflict separation;

– For 91 instances, the lower bounds from both methods were equal. For these
instances, however, multiple conflict separation was about 2.8 times faster than
single conflict separation to find the best bound.

Based on these results, we conclude that separating multiple conflicts per iteration is
quite effective, and it is applied to obtain the results in Section 8.

Graph Coloring with Decision Diagrams 19

7.4 Improved Relaxation by Redirecting Arcs

In previous work, it has been observed that relaxed decision diagrams can be strength-
ened by redirecting arcs appropriately [4,31]. We apply a similar approach here, tai-
lored to the state representation for independent set problems. Recall that each state
in the diagram is a subset of eligible vertices. The transition rules (2) prescribe how
for a node u its state S(u) is updated according to a 1-arc or 0-arc transition, result-
ing in a new state S(u′). For exact decision diagrams, the transition is required to
end in state u′ on the next layer. For relaxed decision diagrams, u′ may not exist, in
which case the transition is directed to another state. To ensure a proper relaxation,
we must select a state (in fact, any state) v in the next layer, such that S(u′) ⊆ S(v).
A natural heuristic choice is to select the ‘most similar’ node, i.e., a node v for which
S(u′)∩S(v) is maximized.

Consider now the conflict separation algorithm (Algorithm 1). As we follow the
arcs along the path, we split off new nodes and copy their associated 1-arcs and
0-arcs by directing them to the original nodes along the given path (lines 10, 12).
However, we could alternatively redirect the arcs to other nodes in the layer, which
may result in a better relaxation. For this purpose, we implemented the ‘most similar’
heuristic described above to redirect arcs in Algorithm 1. An initial evaluation of its
performance indicated that this redirection strategy can be beneficial in some cases,
but can be detrimental in other cases. For the experiments in Section 8, we therefore
ran our procedure with and without redirecting arcs.

7.5 Initialization

We added two other features to streamline the solving process. First, before entering
the iterative refinement procedure, we apply the Dsatur heuristic to initialize the upper
bound (replacing n in line 6 of Algorithm 3).

Second, before running the LP and IP-based iterative refinement, we run a re-
finement procedure based on the longest path (with respect to 1-arcs) in the decision
diagram. The intuition is that in the initial iterations, conflicts are likely to be found
on paths with many 1-arcs. It is computationally much cheaper to identify such paths
using a longest path algorithm (which runs in linear time in the size of the decision
diagram), than using the LP or IP model. Once a longest path is found, we return the
first conflict that is detected and separate it, similar to the paths found by the flow
decomposition. If the longest path does not contain a conflict, or if a maximum num-
ber of iterations is reached, we terminate this process. We apply longest path-based
conflict separation to obtain the results in Section 8, for a maximum of 100 iterations.

8 Experimental Results

We implemented our method in C++, and performed an experimental evaluation on
the 137 DIMACS graph coloring benchmark instances [20]. We use CPLEX 12.9 as
integer and linear programming solver, using a single thread and the Barrier Method

20 W.-J. van Hoeve

as root LP algorithm. All reported experiments are run on a machine with an Intel
Xeon E5345@2.33GHz CPU running Ubuntu 18.04.

As mentioned in Section 7, in each run the iterative refinement procedure deploys
the LP relaxation prior to the IP model, separates multiple conflicts per iteration, and
initializes the procedure by running the Dsatur heuristic to obtain an upper bound, as
well as a longest path-based conflict separation for at most 100 iterations.

8.1 Size of Exact and Relaxed Decision Diagrams

The aim of our first experiment is to compare the performance of the iterative re-
finement procedure and the exact compilation. In particular, we wish to understand
whether small relaxed decision diagrams can still be as effective as exact decision
diagrams for proving optimality. For this experiment, we apply the Max-Connected-
Degree variable ordering, and we do not apply the arc redirection strategy. We con-
sider all instances that are solved to optimality by either method within a time limit of
1 hour, and a maximum decision diagram size of 1,000,000 nodes. There were 52 in-
stances solved to optimality under these settings: 46 were solved within one minute,
and 36 within one second. Iterative refinement was able to solve 50 instances, whereas
the exact decision diagram solved 39 instances. Table 1 reports the performance of
both methods on these 52 instances in terms of running time and decision diagram
size. Two instances that are solved by the exact decision diagram could not be solved
within the given time limit by the relaxed decision diagram. Conversely, 13 instances
were solved by the relaxed decision diagram but not the exact decision diagram.

Figure 3 presents a scatter plot comparing the size of the relaxed and the exact
decision diagrams for the 52 instances that were solved optimally. A first observation
is that the exact decision diagram can be remarkably small for some instances. Per-
haps even more remarkable is that the relaxed diagram can sometimes be orders of
magnitude smaller than the exact diagram for proving optimality, demonstrating the
value of Theorem 7 in practice. As an example, for the Max-Connected-Degree vari-
able ordering, instance DSJR500.1 (n = 500, m = 3,555) requires an exact decision
diagram of at least 1M nodes, whereas the relaxed decision diagram only needs 627
nodes to prove optimality.

8.2 Detailed Comparison of Algorithmic Settings

We next present the performance of the algorithm under different parameter settings.
In each case, the algorithm is executed with a time limit of 1 hour and a maximum of
1,000,000 nodes. We evaluate each of the variable orderings (Lexicographic, Dsatur,
and Max-Connected-Degree) for the iterative refinement procedure, without the op-
tion of redirecting arcs. For the most effective ordering (Max-Connected-Degree) we
also evaluate the performance with redirecting arcs. In addition, we compile the exact
decision diagram for each of the variable orderings. Together with the initial upper
bound provided by the Dsatur heuristic, this gives a total of eight algorithmic settings
that can be responsible for the best lower and upper bound that we report for each
DIMACS instance:

Graph Coloring with Decision Diagrams 21

Relaxed DD Exact DD
Instance n m LB UB Size Time LB UB Size Time R/E

1-FullIns 3 30 100 4 4 250 0.06 4 4 748 0.09 0.33
2-FullIns 3 52 201 5 5 1,233 0.83 5 5 12,867 2.73 0.10
3-FullIns 3 80 346 6 6 6,058 13.15 6 6 435,083 581.71 0.01
david 87 406 11 11 247 0.01 11 11 37,030 5.07 0.01
DSJC125.9 125 6,961 44 44 9,435 25.11 44 44 9,869 1.19 0.96
DSJR500.1c 500 121,275 85 85 138,048 1,358.57 85 85 145,777 5.62 0.95
fpsol2.i.1 496 11,654 65 65 6,947 10.33 65 65 8,296 0.37 0.84
fpsol2.i.2 451 8,691 30 30 958 0.21 30 30 10,168 0.56 0.09
fpsol2.i.3 425 8,688 30 30 971 0.25 30 30 10,258 0.76 0.09
huck 74 301 11 11 787 0.23 11 11 1,078 0.07 0.73
inithx.i.1 864 18,707 54 54 3,994 3.17 54 54 15,805 0.68 0.25
inithx.i.2 645 13,979 31 31 22,340 121.09 31 31 24,589 4.01 0.91
inithx.i.3 621 13,969 31 31 22,503 163.70 31 31 24,551 2.37 0.92
jean 80 254 10 10 292 0.01 10 10 5,252 0.73 0.06
miles1000 128 3,216 42 42 4,105 1.87 42 42 8,032 0.33 0.51
miles1500 128 5,198 73 73 2,698 1.10 73 73 4,008 0.16 0.67
miles250 128 387 8 8 295 0.01 8 8 2,813 0.46 0.10
miles500 128 1,170 20 20 362 0.04 20 20 15,273 1.71 0.02
miles750 128 2,113 31 31 711 0.12 31 31 13,154 0.96 0.05
mulsol.i.1 197 3,925 49 49 1,108 0.40 49 49 2,488 0.07 0.45
mulsol.i.2 188 3,885 31 31 794 0.19 31 31 2,612 0.09 0.30
mulsol.i.3 184 3,916 31 31 790 0.19 31 31 2,622 0.09 0.30
mulsol.i.4 185 3,946 31 31 807 0.19 31 31 2,637 0.09 0.31
mulsol.i.5 186 3,973 31 31 808 0.19 31 31 2,650 0.09 0.30
myciel3 11 20 4 4 60 0.04 4 4 63 0.02 0.95
myciel4 23 71 5 5 453 7.03 5 5 460 0.85 0.98
queen5 5 25 160 5 5 195 0.01 5 5 561 0.03 0.35
queen6 6 36 290 7 7 1,811 2.35 7 7 2,687 0.36 0.67
queen7 7 49 476 7 7 3,303 2.77 7 7 13,839 0.88 0.24
queen8 8 64 728 9 9 28,742 310.31 9 9 81,575 107.59 0.35
r125.1 125 209 5 5 340 0.02 5 5 921 0.05 0.37
r125.1c 125 7,501 46 46 3,570 2.08 46 46 4,008 0.13 0.89
r125.5 125 3,838 36 36 20,065 212.90 36 36 23,243 2.03 0.86
r250.1c 250 30,227 64 64 16,426 31.19 64 64 20,323 0.61 0.81
zeroin.i.1 211 4,100 49 49 1,025 0.32 49 49 2,770 0.12 0.37
zeroin.i.2 211 3,541 30 30 775 0.17 30 30 3,471 0.17 0.22
zeroin.i.3 206 3,540 30 30 770 0.20 30 30 3,458 0.19 0.22

4-FullIns 3 114 541 7 7 17,295 99.58 0 - 856,849 timeout 0.02
5-FullIns 3 154 792 8 8 61,201 1,233.00 0 - > 1M - ≤ 0.06
anna 138 493 11 11 357 0.01 0 - > 1M - ≤ 0.00
DSJR500.1 500 3,555 12 12 627 0.03 0 - > 1M - ≤ 0.00
games120 120 638 9 9 36,092 92.74 0 - > 1M - ≤ 0.04
le450 25a 450 8,260 25 25 944 0.17 0 - > 1M - ≤ 0.00
le450 25b 450 8,263 25 25 828 0.14 0 - > 1M - ≤ 0.00
le450 5d 450 9,757 5 5 701 0.03 0 - > 1M - ≤ 0.00
r1000.1 1,000 14,378 20 20 1,235 0.20 0 - > 1M - ≤ 0.00
r250.1 250 867 8 8 11,974 7.32 0 - > 1M - ≤ 0.01
school1 385 19,095 14 14 2,366 1.67 0 - > 1M - ≤ 0.00
school1 nsh 352 14,612 14 14 7,406 15.59 0 - > 1M - ≤ 0.01
wap05a 905 43,081 50 50 19,431 15.80 0 - > 1M - ≤ 0.02

2-Insertions 3 37 72 3 4 2,656 timeout 4 4 2,964 930.37 0.90
r250.5 250 14,849 65 67 123,585 timeout 65 65 232,727 134.95 0.53

Table 1 Comparing the performance of relaxed and exact decision diagrams on instances that were opti-
mally solved by either method. For each instance we list the number of nodes (n) and edges (m). We report
the lower bound (LB), upper bound (UB), solving time (in seconds), and the size of the decision diagram.
The last column (R/E) represents the ratio of the relaxed and exact diagram sizes. The time limit was set
to 3,600s, and the maximum size was set to 1 million nodes.

A: Lexicographic ordering;
B: Dsatur ordering;
C: Max-Connected-Degree ordering;

22 W.-J. van Hoeve

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1000000

Si
ze

 o
f

re
la

xe
d

 d
ec

is
io

n
 d

ia
gr

am

Size of exact decision diagram

Fig. 3 Comparing the size of exact and relaxed decision diagrams for 52 DIMACS instances that were
solved to optimality by either method.

D: Max-Connected-Degree ordering with redirecting arcs;
E: Lexicographic ordering with exact compilation;
F: Dsatur ordering with exact compilation;
G: Max-Connected-Degree ordering with exact compilation;
H: Dsatur heuristic (provides upper bound only).

In Table 2 we provide the best lower and upper bound found by any method for each
of the DIMACS instances, and indicate for each bound which method(s) obtained
that bound. However, if the best upper bound was found by the initial Dsatur heuristic
(setting ‘H’), we only report that.

Out of the 137 instances, 54 instances were solved to optimality in total. The
performance of the algorithmic settings are summarized in the following table, which
reports the number of instances for which that setting obtained the optimal solution
(#Optimal), the best lower bound (#Best LB), and the best upper bound (#Best UB):

Setting #Optimal #Best LB #Best UB

A 22 59 10
B 46 113 18
C 50 117 19
D 49 113 20
E 26 30 10
F 40 46 12
G 39 46 9
H - - 109

Graph Coloring with Decision Diagrams 23

Decision Diagram
Instance n m d χ χ LB Setting UB Setting

1-FullIns 3 30 100 0.23 4 4 4 ABCDEFG 4 H *
1-FullIns 4 93 593 0.14 5 5 4 ABCDG 5 H
1-FullIns 5 282 3247 0.08 6 6 4 ABCD 6 H
1-Insertions 4 67 232 0.10 5 5 3 ABCDFG 5 H
1-Insertions 5 202 1227 0.06 6 6 3 ABCD 6 H
1-Insertions 6 607 6337 0.03 4 7 3 ABCD 7 H
2-FullIns 3 52 201 0.15 5 5 5 ABCDEFG 5 H *
2-FullIns 4 212 1621 0.07 6 6 5 C 6 H
2-FullIns 5 852 12201 0.03 7 7 4 ABCD 7 H
2-Insertions 3 37 72 0.11 4 4 4 EFG 4 H *
2-Insertions 4 149 541 0.05 5 5 3 ABCD 5 H
2-Insertions 5 597 3936 0.02 6 6 3 ABCD 6 H
3-FullIns 3 80 346 0.11 6 6 6 CDEFG 6 H *
3-FullIns 4 405 3524 0.04 7 7 5 ABCD 7 H
3-FullIns 5 2030 33751 0.02 8 8 5 ABCD 8 H
3-Insertions 3 56 110 0.07 4 4 3 ABCDEFG 4 H
3-Insertions 4 281 1046 0.03 5 5 3 ABCD 5 H
3-Insertions 5 1406 9695 0.01 4 6 3 ABCD 6 H
4-FullIns 3 114 541 0.08 7 7 7 C 7 H *
4-FullIns 4 690 6650 0.03 8 8 7 C 8 H
4-FullIns 5 4146 77305 0.01 9 9 7 C 9 H
4-Insertions 3 79 156 0.05 4 4 3 ABCDG 4 H
4-Insertions 4 475 1795 0.02 5 5 3 ABCD 5 H
5-FullIns 3 154 792 0.07 8 8 8 C 8 H *
5-FullIns 4 1085 11395 0.02 9 9 8 C 9 H
abb313GPIA 1557 53356 0.04 9 9 8 ABCD 10 H
anna 138 493 0.05 11 11 11 BCD 11 H *
ash331GPIA 662 4181 0.02 4 4 4 ABCD 5 H
ash608GPIA 1216 7844 0.01 4 4 4 B 5 H
ash958GPIA 1916 12506 0.01 4 4 4 B 5 H
C2000.5 2000 999836 0.50 99 145 20 CD 208 H
C2000.9 2000 1799532 0.90 98 400 85 BD 563 H
C4000.5 4000 4000268 0.50 107 259 20 CD 381 H
david 87 406 0.11 11 11 11 BCDFG 11 H *
DSJC1000.1 1000 49629 0.10 10 20 6 BCD 26 H
DSJC1000.5 1000 249826 0.50 73 82 19 CD 119 H
DSJC1000.9 1000 449449 0.90 216 222 86 D 304 H
DSJC125.1 125 736 0.09 5 5 5 BCD 6 H
DSJC125.5 125 3891 0.50 17 17 16 EFG 20 EFG
DSJC125.9 125 6961 0.90 44 44 44 ABCDEFG 44 ABCDEFG *
DSJC250.1 250 3218 0.10 6 8 5 BCD 10 H
DSJC250.5 250 15668 0.50 26 28 16 BCD 36 H
DSJC250.9 250 27897 0.90 72 72 72 ABF 72 AF *
DSJC500.1 500 12458 0.10 9 12 5 BCD 16 H
DSJC500.5 500 62624 0.50 43 47 18 CD 68 H
DSJC500.9 500 112437 0.90 123 126 123 EFG 136 EF
DSJR500.1 500 3555 0.03 12 12 12 BCD 12 H *
DSJR500.1c 500 121275 0.97 85 85 85 BCDEFG 85 BCDEFG *
DSJR500.5 500 58862 0.47 122 122 115 D 126 BC
flat1000 50 0 1000 245000 0.49 50 50 19 CD 115 H
flat1000 60 0 1000 245830 0.49 60 60 19 C 114 H
flat1000 76 0 1000 246708 0.49 72 81 19 C 116 H

Table 2 Lower and upper bounds obtained by the various settings of the decision diagram procedure (A,
B, . . . , H) for all DIMACS instances. For each instance we report the number of nodes and edges, the
density, and the best known lower bound (χ) and upper bound χ). Bounds in bold meet the best known
bounds. Instances solved to optimality are indicated with an asterisk.

24 W.-J. van Hoeve

Decision Diagram
Instance n m d χ χ LB Setting UB Setting

flat300 20 0 300 21375 0.48 20 20 16 CD 42 H
flat300 26 0 300 21633 0.48 26 26 16 CD 43 H
flat300 28 0 300 21695 0.48 28 28 16 CD 44 H
fpsol2.i.1 496 11654 0.09 65 65 65 BCDFG 65 H *
fpsol2.i.2 451 8691 0.09 30 30 30 BCDFG 30 H *
fpsol2.i.3 425 8688 0.10 30 30 30 BCDFG 30 H *
games120 120 638 0.09 9 9 9 BCD 9 H *
homer 561 1629 0.01 13 13 10 BCD 13 H
huck 74 301 0.11 11 11 11 BCDFG 11 H *
inithx.i.1 864 18707 0.05 54 54 54 BCDFG 54 H *
inithx.i.2 645 13979 0.07 31 31 31 BCDFG 31 H *
inithx.i.3 621 13969 0.07 31 31 31 BCDFG 31 H *
jean 80 254 0.08 10 10 10 BCDFG 10 H *
latin square 10 900 307350 0.76 90 97 90 ABCD 130 H
le450 15a 450 8168 0.08 15 15 15 BCD 17 BD
le450 15b 450 8169 0.08 15 15 15 BCD 17 H
le450 15c 450 16680 0.17 15 15 15 BCD 25 H
le450 15d 450 16750 0.17 15 15 15 BCD 25 H
le450 25a 450 8260 0.08 25 25 25 BCD 25 H *
le450 25b 450 8263 0.08 25 25 25 BCD 25 H *
le450 25c 450 17343 0.17 25 25 25 BCD 29 H
le450 25d 450 17425 0.17 25 25 25 BCD 28 H
le450 5a 450 5714 0.06 5 5 5 BCD 10 H
le450 5b 450 5734 0.06 5 5 5 BCD 9 H
le450 5c 450 9803 0.10 5 5 5 BCD 8 H
le450 5d 450 9757 0.10 5 5 5 BCD 5 H *
miles1000 128 3216 0.40 42 42 42 BCDEFG 42 H *
miles1500 128 5198 0.64 73 73 73 ABCDEFG 73 H *
miles250 128 387 0.05 8 8 8 BCDFG 8 H *
miles500 128 1170 0.14 20 20 20 BCDFG 20 H *
miles750 128 2113 0.26 31 31 31 BCDFG 31 H *
mug100 1 100 166 0.03 4 4 3 ABCD 4 H
mug100 25 100 166 0.03 4 4 3 ABCD 4 H
mug88 1 88 146 0.04 4 4 3 ABCD 4 H
mug88 25 88 146 0.04 4 4 3 ABCD 4 H
mulsol.i.1 197 3925 0.20 49 49 49 ABCDEFG 49 H *
mulsol.i.2 188 3885 0.22 31 31 31 ABCDEFG 31 H *
mulsol.i.3 184 3916 0.23 31 31 31 ABCDEFG 31 H *
mulsol.i.4 185 3946 0.23 31 31 31 ABCDEFG 31 H *
mulsol.i.5 186 3973 0.23 31 31 31 ABCDEFG 31 H *
myciel3 11 20 0.36 4 4 4 ABCDEFG 4 H *
myciel4 23 71 0.28 5 5 5 ABCDEFG 5 H *
myciel5 47 236 0.22 6 6 5 ABCDEFG 6 H
myciel6 95 755 0.17 7 7 4 ABCDF 7 H
myciel7 191 2360 0.13 8 8 4 ABCD 8 H
qg.order100 10000 990000 0.02 100 100 100 ABCD 112 B
qg.order30 900 26100 0.06 30 30 30 ABCD 32 ACD
qg.order40 1600 62400 0.05 40 40 40 ABCD 45 H
qg.order60 3600 212400 0.03 60 60 60 ABCD 64 ACD
queen10 10 100 1470 0.30 11 11 10 ABCD 14 H
queen11 11 121 1980 0.27 11 11 11 AB 15 BCD
queen12 12 144 2596 0.25 12 12 12 AB 16 H
queen13 13 169 3328 0.23 13 13 13 AB 17 H
queen14 14 196 4186 0.22 14 14 14 AB 19 H
queen15 15 225 5180 0.21 15 15 15 AB 21 H
queen16 16 256 6320 0.19 16 17 16 AB 21 A

Table 2 (Continued)

Graph Coloring with Decision Diagrams 25

Decision Diagram
Instance n m d χ χ LB Setting UB Setting

queen5 5 25 160 0.53 5 5 5 ABCDEFG 5 H *
queen6 6 36 290 0.46 7 7 7 ABCDEFG 7 ABCDEFG *
queen7 7 49 476 0.40 7 7 7 ABCDEFG 7 ABCDEFG *
queen8 12 96 1368 0.30 12 12 12 AB 12 H *
queen8 8 64 728 0.36 9 9 9 ABCDEFG 9 ACDEFG *
queen9 9 81 1056 0.33 10 10 10 ACD 11 AF
r1000.1 1000 14378 0.03 20 20 20 BCD 20 H *
r1000.1c 1000 485090 0.97 96 98 88 B 110 H
r1000.5 1000 238267 0.48 234 234 214 BD 244 B
r125.1 125 209 0.03 5 5 5 BCDFG 5 H *
r125.1c 125 7501 0.97 46 46 46 ABCDEFG 46 H *
r125.5 125 3838 0.50 36 36 36 BCDEFG 36 BCDEFG *
r250.1 250 867 0.03 8 8 8 BCD 8 H *
r250.1c 250 30227 0.97 64 64 64 ABCDEFG 64 ABCDEFG *
r250.5 250 14849 0.48 65 65 65 BCDEFG 65 DEFG *
school1 385 19095 0.26 14 14 14 BCD 14 BCD *
school1 nsh 352 14612 0.24 14 14 14 BCD 14 BCD *
wap01a 2368 110871 0.04 41 43 40 BCD 46 BCD
wap02a 2464 111742 0.04 40 42 40 BCD 45 H
wap03a 4730 286722 0.03 40 47 40 BCD 53 BCD
wap04a 5231 294902 0.02 40 42 40 BCD 48 BCD
wap05a 905 43081 0.11 50 50 50 CD 50 BCD *
wap06a 947 43571 0.10 40 40 40 BCD 43 CD
wap07a 1809 103368 0.06 40 41 40 B 46 BCD
wap08a 1870 104176 0.06 40 42 40 B 45 H
will199GPIA 701 6772 0.03 7 7 6 BCD 7 H
zeroin.i.1 211 4100 0.19 49 49 49 ABCDEFG 49 H *
zeroin.i.2 211 3541 0.16 30 30 30 ABCDEFG 30 H *
zeroin.i.3 206 3540 0.17 30 30 30 ABCDEFG 30 H *

Table 2 (Continued)

The best performing settings are C and D (the Max-Connected-Degree ordering with-
out and with redirecting arcs), and B (the Dsatur ordering). Note also the strong per-
formance of the Dsatur heuristic which finds the best upper bound for 109 instances.

8.3 Benchmark Comparison

Even though Table 2 provides a comparison with the state of the art in terms of the
best lower and upper bounds from the literature, it is insightful to compare the running
time of our approach to existing methods as well. As mentioned in Section 1, a num-
ber of approaches have been successfully applied to exact graph coloring. Among
these, the branch-and-price method of Mehrotra and Trick [24] appears to be the
most effective and robust general approach, in particular the implementation by Held,
Cook, and Sewell [17]. Furthermore, both the Mehrotra-Trick approach and the de-
cision diagram approach rely on the independent set formulation for graph coloring,
which makes it natural to compare the two methods. We therefore selected the code
by Held et al. [17] for our benchmark comparison.2

2 The code has been downloaded from https://github.com/heldstephan/exactcolors.

26 W.-J. van Hoeve

Held et al. [17] Decision Diagram
Instance n m χ χ LB UB Time LB UB Time

1-FullIns 3 30 100 4 4 4 4 0.01 4 4 0.06
1-FullIns 4 93 593 5 5 4 5 timeout 4 5 timeout
1-FullIns 5 282 3,247 6 6 4 6 timeout 4 6 timeout
1-Insertions 4 67 232 5 5 3 5 timeout 3 5 timeout
1-Insertions 5 202 1,227 6 6 3 6 timeout 3 6 timeout
1-Insertions 6 607 6,337 4 7 - 7 timeout 3 7 timeout
2-FullIns 3 52 201 5 5 5 5 0.01 5 5 0.83
2-FullIns 4 212 1,621 6 6 5 6 timeout 5 6 timeout
2-FullIns 5 852 12,201 7 7 5 7 timeout 4 7 timeout
2-Insertions 3 37 72 4 4 4 4 553.00 3 4 timeout
2-Insertions 4 149 541 5 5 3 5 timeout 3 5 timeout
2-Insertions 5 597 3,936 6 6 - 6 timeout 3 6 timeout
3-FullIns 3 80 346 6 6 6 6 0.03 6 6 13.15
3-FullIns 4 405 3,524 7 7 6 7 timeout 5 7 timeout
3-FullIns 5 2,030 33,751 8 8 6 8 timeout 5 8 timeout
3-Insertions 3 56 110 4 4 3 4 timeout 3 4 timeout
3-Insertions 4 281 1,046 5 5 - 5 timeout 3 5 timeout
3-Insertions 5 1,406 9,695 4 6 - 6 timeout 3 6 timeout
4-FullIns 3 114 541 7 7 7 7 0.05 7 7 99.58
4-FullIns 4 690 6,650 8 8 7 8 timeout 7 8 timeout
4-FullIns 5 4,146 77,305 9 9 - 9 timeout 7 9 timeout
4-Insertions 3 79 156 4 4 3 4 timeout 3 4 timeout
4-Insertions 4 475 1,795 5 5 - 5 timeout 3 5 timeout
5-FullIns 3 154 792 8 8 8 8 0.07 8 8 1233.00
5-FullIns 4 1,085 11,395 9 9 8 9 timeout 8 9 timeout
abb313GPIA 1,557 53,356 9 9 - 10 timeout 8 10 timeout
anna 138 493 11 11 11 11 0.02 11 11 0.01
ash331GPIA 662 4,181 4 4 4 6 timeout 4 5 timeout
ash608GPIA 1,216 7,844 4 4 - 6 timeout 3 5 timeout
ash958GPIA 1,916 12,506 4 4 - 6 timeout 3 5 timeout
C2000.5 2,000 999,836 99 145 - 207 timeout 20 208 timeout
C2000.9 2,000 1,799,532 - 400 - 550 timeout 84 563 timeout
C4000.5 4,000 4,000,268 107 259 - 376 timeout 20 381 timeout
david 87 406 11 11 11 11 0.01 11 11 0.01
DSJC1000.1 1,000 49,629 10 20 - 25 timeout 6 26 timeout
DSJC1000.5 1,000 249,826 73 82 - 114 timeout 19 119 timeout
DSJC1000.9 1,000 449,449 216 222 - 301 timeout 85 304 timeout
DSJC125.1 125 736 5 5 5 6 timeout 5 6 timeout
DSJC125.5 125 3,891 17 17 16 18 timeout 14 22 timeout
DSJC125.9 125 6,961 44 44 44 44 19.23 44 44 25.11
DSJC250.1 250 3,218 7 8 - 10 timeout 5 10 timeout
DSJC250.5 250 15,668 26 28 26 30 timeout 16 36 timeout
DSJC250.9 250 27,897 72 72 71 73 timeout 71 74 timeout
DSJC500.1 500 12,458 9 12 - 16 timeout 5 16 timeout
DSJC500.5 500 62,624 43 47 - 65 timeout 18 68 timeout
DSJC500.9 500 112,437 123 126 - 163 timeout 84 165 timeout
DSJR500.1 500 3,555 12 12 12 12 1173.00 12 12 0.03
DSJR500.1c 500 121,275 85 85 85 85 2428.00 85 85 1358.57
DSJR500.5 500 58,862 122 122 - 132 timeout 112 126 timeout
flat1000 50 0 1,000 245,000 50 50 - 113 timeout 19 115 timeout
flat1000 60 0 1,000 245,830 60 60 - 112 timeout 19 114 timeout
flat1000 76 0 1,000 246,708 72 81 - 115 timeout 19 116 timeout

Table 3 Comparing the performance of the branch-and-price implementation by Held et al. [17] and the
decision diagram approach, using setting C. For each instance we list the number of nodes (n) and edges
(m), and the best known lower bound (χ) and upper bound (χ). For each method, we report the lower bound
(LB), upper bound (UB), and solving time (in seconds). The time limit was set to 3,600s. The decision
diagram size never exceeded the limit of 1 million nodes. Bounds in bold meet the best known bounds.

Graph Coloring with Decision Diagrams 27

Held et al. [17] Decision Diagram
Instance n m χ χ LB UB Time LB UB Time

flat300 20 0 300 21,375 20 20 - 42 timeout 16 42 timeout
flat300 26 0 300 21,633 26 26 - 42 timeout 16 43 timeout
flat300 28 0 300 21,695 28 28 28 33 timeout 16 44 timeout
fpsol2.i.1 496 11,654 65 65 65 65 1.13 65 65 10.33
fpsol2.i.2 451 8,691 30 30 30 30 1.00 30 30 0.21
fpsol2.i.3 425 8,688 30 30 30 30 1.00 30 30 0.25
games120 120 638 9 9 9 9 0.02 9 9 92.74
homer 561 1,628 13 13 13 13 1.00 10 13 timeout
huck 74 301 11 11 11 11 0.01 11 11 0.23
inithx.i.1 864 18,707 54 54 54 54 3.46 54 54 3.17
inithx.i.2 645 13,979 31 31 31 31 1.00 31 31 121.09
inithx.i.3 621 13,969 31 31 31 31 1.00 31 31 163.70
jean 80 254 10 10 10 10 0.01 10 10 0.01
latin square 10 900 307,350 90 97 - 129 timeout 90 130 timeout
le450 15a 450 8,168 15 15 - 17 timeout 15 18 timeout
le450 15b 450 8,169 15 15 - 17 timeout 15 17 timeout
le450 15c 450 16,680 15 15 - 24 timeout 15 25 timeout
le450 15d 450 16,750 15 15 - 24 timeout 15 25 timeout
le450 25a 450 8,260 25 25 25 25 3.05 25 25 0.17
le450 25b 450 8,263 25 25 25 25 2.46 25 25 0.14
le450 25c 450 17,343 25 25 - 28 timeout 25 29 timeout
le450 25d 450 17,425 25 25 - 29 timeout 25 28 timeout
le450 5a 450 5,714 5 5 - 10 timeout 5 10 timeout
le450 5b 450 5,734 5 5 - 7 timeout 5 9 timeout
le450 5c 450 9,803 5 5 - 11 timeout 5 8 timeout
le450 5d 450 9,757 5 5 - 11 timeout 5 5 0.03
miles1000 128 3,216 42 42 42 42 1.00 42 42 1.87
miles1500 128 5,198 73 73 73 73 0.41 73 73 1.10
miles250 128 387 8 8 8 8 0.02 8 8 0.01
miles500 128 1,170 20 20 20 20 0.04 20 20 0.04
miles750 128 2,113 31 31 31 31 0.16 31 31 0.12
mug100 1 100 166 4 4 4 4 6.00 3 4 timeout
mug100 25 100 166 4 4 4 4 4.19 3 4 timeout
mug88 1 88 146 4 4 4 4 3.00 3 4 timeout
mug88 25 88 146 4 4 4 4 3.33 3 4 timeout
mulsol.i.1 197 3,925 49 49 49 49 0.30 49 49 0.40
mulsol.i.2 188 3,885 31 31 31 31 1.00 31 31 0.19
mulsol.i.3 184 3,916 31 31 31 31 0.08 31 31 0.19
mulsol.i.4 185 3,946 31 31 31 31 0.11 31 31 0.19
mulsol.i.5 186 3,973 31 31 31 31 0.16 31 31 0.19
myciel3 11 20 4 4 4 4 0.02 4 4 0.04
myciel4 23 71 5 5 5 5 12.00 5 5 7.03
myciel5 47 236 6 6 4 6 timeout 5 6 timeout
myciel6 95 755 7 7 4 7 timeout 4 7 timeout
myciel7 191 2,360 8 8 5 8 timeout 4 8 timeout
qg.order100 10,000 990,000 100 100 - 106 timeout 100 116 timeout
qg.order30 900 26,100 30 30 - 32 timeout 30 32 timeout
qg.order40 1,600 62,400 40 40 - 42 timeout 40 45 timeout
qg.order60 3,600 212,400 60 60 - 63 timeout 60 64 timeout
queen10 10 100 2,940 11 11 11 11 781.00 10 14 timeout
queen11 11 121 3,960 11 11 11 12 timeout 10 15 timeout
queen12 12 144 5,192 12 12 12 13 timeout 10 16 timeout
queen13 13 169 6,656 13 13 13 15 timeout 10 17 timeout
queen14 14 196 4,186 14 14 14 16 timeout 10 19 timeout
queen15 15 225 5,180 15 15 15 17 timeout 10 21 timeout
queen16 16 256 12,640 16 17 - 21 timeout 10 22 timeout

Table 3 (Continued)

28 W.-J. van Hoeve

Held et al. [17] Decision Diagram
Instance n m χ χ LB UB Time LB UB Time

queen5 5 25 160 5 5 5 5 0.00 5 5 0.01
queen6 6 36 290 7 7 7 7 1.00 7 7 2.35
queen7 7 49 476 7 7 7 7 1.13 7 7 2.77
queen8 12 96 1,368 12 12 12 12 18.35 9 12 timeout
queen8 8 64 728 9 9 9 9 10.19 9 9 310.31
queen9 9 81 1,056 10 10 10 10 24.00 10 12 timeout
r1000.1 1,000 14,378 20 20 20 20 2.43 20 20 0.20
r1000.1c 1,000 485,090 96 98 - 107 timeout 82 110 timeout
r1000.5 1,000 238,267 234 234 - 248 timeout 213 246 timeout
r125.1 125 209 5 5 5 5 0.01 5 5 0.02
r125.1c 125 7,501 46 46 46 46 1.00 46 46 2.08
r125.5 125 3,838 36 36 36 36 34.55 36 36 212.90
r250.1 250 867 8 8 8 8 0.05 8 8 7.32
r250.1c 250 30,227 64 64 64 64 103.00 64 64 31.19
r250.5 250 14,849 65 65 65 65 592.00 65 67 timeout
school1 385 19,095 14 14 14 14 3065.00 14 14 1.67
school1 nsh 352 14,612 14 14 14 14 2463.00 14 14 15.59
wap01a 2,368 110,871 41 43 - 47 timeout 40 46 timeout
wap02a 2,464 111,742 40 42 - 46 timeout 40 45 timeout
wap03a 4,730 286,722 40 47 - 57 timeout 40 53 timeout
wap04a 5,231 294,902 40 42 - 46 timeout 40 48 timeout
wap05a 905 43,081 50 50 50 50 11.41 50 50 15.80
wap06a 947 43,571 40 40 - 44 timeout 40 43 timeout
wap07a 1,809 103,368 40 41 - 47 timeout 38 46 timeout
wap08a 1,870 104,176 40 42 - 44 timeout 39 45 timeout
will199GPIA 701 6,772 7 7 7 7 15.03 6 7 timeout
zeroin.i.1 211 4,100 49 49 49 49 0.17 49 49 0.32
zeroin.i.2 211 3,541 30 30 30 30 0.09 30 30 0.17
zeroin.i.3 206 3,540 30 30 30 30 0.10 30 30 0.20

Table 3 (Continued)

We compiled the code from Held, Cook, and Sewell on the same machine as
our decision diagram implementation, and it uses the same version of CPLEX. We
apply the code to all 137 DIMACS instances, with the same time limit as the decision
diagrams (1 hour). For a fair comparison, we only report the results for a fixed setting
(setting C) for the decision diagram approach. Table 3 reports the lower and upper
bounds as well as the running times for both methods. A high-level summary shows
that the methods are competitive (we refer to Held, Cook, and Sewell as ‘HCS’ and
to the decision diagram approach as ‘DD’):

– HCS solves more instances optimally (60) than DD (50).
– HCS is unable to return a lower bound (within the time limit) for 50 instances.

DD returns a lower bound for all instances.
– The methods find a similar number of best known lower bounds (70 for HCS and

73 for DD) and best known upper bounds (82 for HCS and 80 for DD).
– In a relative comparison, HCS finds 21 better lower bounds than DD, while DD

finds 51 better lower bounds than HCS. For 65 instances they find the same lower
bound.

– HCS finds 37 better upper bounds than DD, while DD finds 13 better upper
bounds than HCS. For 87 instances they find the same upper bound.

Graph Coloring with Decision Diagrams 29

Instance n m d χ χ LB TTLB Setting UB TTUB Setting

1-Insertions 6 607 6,337 0.03 4 7 3 0.0 A 7 0.0 H
3-Insertions 5 1,406 9,695 0.01 4 6 3 0.1 A 6 0.0 H
C2000.5 2,000 999,836 0.50 99 145 20 823.1 D 208 0.6 H
C2000.9 2,000 1,799,532 0.90 98 400 145 4.7 days D 563 1.2 H
C4000.5 4,000 4,000,268 0.50 107 259 20 1,640.3 C 381 6.0 H
DSJC1000.1 1,000 49,629 0.10 10 20 6 3.1 B 26 0.0 H
DSJC1000.5 1,000 249,826 0.50 73 82 19 1,975.0 C 119 0.1 H
DSJC1000.9 1,000 449,449 0.90 216 222 86 3,290.7 D 304 0.2 H
DSJC250.1 250 3,218 0.10 6 8 5 0.0 B 10 0.0 H
DSJC250.5 250 15,668 0.50 26 28 16 594.5 C 36 0.0 H
DSJC500.1 500 12,458 0.10 9 12 5 0.1 C 16 0.0 H
DSJC500.5 500 62,624 0.50 43 47 18 1,317.3 C 68 0.0 H
DSJC500.9 500 112,437 0.90 123 126 123 27.3 F 132 10.7h F
flat1000 76 0 1,000 246,708 0.49 72 81 19 3,052.6 C 116 0.1 H
latin square 10 900 307,350 0.76 90 97 90 7.7 C 130 0.1 H
queen16 16 256 6,320 0.19 16 17 16 0.0 A 21 1.3 A
r1000.1c 1,000 485,090 0.97 96 98 88 2,985.7 B 110 0.1 H
wap01a 2,368 110,871 0.04 41 43 40 8.1 C 46 1.3 C
wap02a 2,464 111,742 0.04 40 42 40 3.1 B 45 0.2 H
wap03a 4,730 286,722 0.03 40 47 40 6.1 C 53 4.9 C
wap04a 5,231 294,902 0.02 40 42 40 7.3 B 48 2.4 C
wap07a 1,809 103,368 0.06 40 41 40 291.2 B 46 1.5 C
wap08a 1,870 104,176 0.06 40 42 40 3,224.2 B 45 0.1 H

Table 4 Performance of the decision diagram approach on the set of open DIMACS instances. For each
instance we list the number of nodes (n) and edges (m), edge density (d), and the best known lower bound
(χ) and upper bound (χ). We report the lower bound (LB), time to lower bound (TTB), upper bound (UB),
time to upper bound (TTUB), and the settings obtaining the best times. For all instances except C2000.9
and DSJC500.9 the times are given in seconds and a time limit of 3,600s was imposed. The instances
C2000.9 and DSJC500.9 were run for 4.7 days and 10.7 hours, respectively.

8.4 Results on Open Instances

The last set of experiments, presented in Table 4, investigates the quality of the
bounds of the iterative refinement procedure and exact compilation on the set of open
DIMACS instances. For each instance we report the best lower bound and upper
bound, as well the time to find those bounds and the associated algorithmic setting.
For instance C2000.9, we report an improved lower bound of value 145, after run-
ning the algorithm for 4.7 days.

Instance DSJC500.9 is an interesting case, because the exact decision diagram
(using the Dsatur variable ordering; setting F) contains 779,179 nodes. While this
yields a large integer program, the MIP presolve procedure of CPLEX substantially
reduces its size to 3,553 rows, 25,445 columns, and 83,106 nonzeros. It quickly finds
a lower bound of value 123, and an upper bound of 136 (the Dsatur heuristic finds
an upper bound of value 165). It takes 10.7 hours for CPLEX to further improve the
upper bound to value 132. Even after 2.7 days, no further bound improvements were
reported, however.

30 W.-J. van Hoeve

9 Conclusion

We introduced a new approach for solving graph coloring problems, based on a deci-
sion diagram representation of the possible color classes. As exact decision diagrams
may grow exponentially large, we proposed an iterative refinement scheme that op-
erates on relaxed decision diagrams instead. By solving a constrained minimum net-
work flow problem defined over the relaxed decision diagrams, we computed a lower
bound on the chromatic number. We showed how the network flow solution can be
decomposed into paths that are inspected for edge conflicts. These conflicts are then
separated in the decision diagram, resulting in an iterative refinement procedure yield-
ing increasingly stronger bounds. In addition, we developed a primal heuristic based,
again, on a path decomposition of the network flow solution.

We showed both theoretically and experimentally that relaxed decision diagrams
can be orders of magnitude smaller than exact diagrams when proving optimality.
We demonstrated that decision diagrams can be used to solve 54 out of 137 DIMACS
instances to optimality, of which 46 were solved within 1 minute and 36 within one
second. Moreover, we compared our method to a state-of-the-art exact graph color-
ing solver based on branch-and-price, and obtained competitive results. Lastly, we
computed an improved lower bound for the open instance C2000.9.

Acknowledgements

This work was partially supported by Office of Naval Research Grant No. N00014-
18-1-2129 and National Science Foundation Award #1918102.

References

1. S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27:509–516, 1978.
2. H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A Constraint Store Based on Multivalued

Decision Diagrams. In Proceedings of CP, volume 4741 of LNCS, pages 118–132. Springer, 2007.
3. N. Barnier and P. Brisset. Graph Coloring for Air Traffic Flow Management. Annals of Operations

Research, 130:163–178, 2004.
4. D. Bergman and A. A. Cire. On Finding the Optimal BDD Relaxation. In Proceedings of CPAIOR,

volume 10335 of LNCS, pages 41–50. Springer, 2017.
5. D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Decision Diagrams for Optimization.

Springer, 2016.
6. D. Bergman, A. A. Cire, W.-J. van Hoeve, and Hooker J. N. Variable Ordering for the Application of

BDDs to the Maximum Independent Set Problem. In Proceedings of CPAIOR, volume 7298 of LNCS,
pages 34–49. Springer, 2012.

7. D. Bergman, A. A. Cire, W.-J. van Hoeve, and Hooker J. N. Optimization Bounds from Binary
Decision Diagrams. INFORMS Journal on Computing, 26(2):253–268, 2014.

8. D. Bergman, A. A. Cire, W.-J. van Hoeve, and Hooker J. N. Discrete Optimization with Decision
Diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

9. D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD Relaxations for Combinatorial
Optimization. In Proceedings of CPAIOR, volume 6697 of LNCS, pages 20–35. Springer, 2011.

10. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251–256,
1979.

11. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, C-35:677–691, 1986.

Graph Coloring with Decision Diagrams 31

12. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Comput-
ing Surveys, 24:293– 318, 1992.

13. A. A. Cire and J. N. Hooker. The separation problem for binary decision diagrams. In Proceedings of
ISAIM, 2014.

14. F. Furini, V. Gabrel, and I.-C. Ternier. An Improved DSATUR-Based Branch-and-Bound Algorithm
for the Vertex Coloring Problem. Networks, 69(1):124–141, 2017.

15. M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

16. S. Gualandi and Malucelli F. Exact Solution of Graph Coloring Problems via Constraint Programming
and Column Generation. INFORMS Journal on Computing, 24(1):81–100, 2012.

17. S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for graph
coloring. Mathematical Programming Computation, 4(4):363–381, 2012.

18. W.-J. van Hoeve. Graph Coloring Lower Bounds from Decision Diagrams. In D. Bienstock and
G. Zambelli, editors, Proceedings of IPCO, volume 12125 of Lecture Notes in Computer Science,
pages 405–418. Springer, 2020.

19. A. Jabrayilov and P. Mutzel. New Integer Linear Programming Models for the Vertex Coloring Prob-
lem. In Proceedings of LATIN, volume 10807 of LNCS, pages 640–652. Springer, 2018.

20. D. S. Johnson and M. A Trick, editors. Cliques, Coloring, and Satisfiability: Second DIMACS Imple-
mentation Challenge, October 11-13, 1993, volume 26 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, 1996.

21. C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Systems Technical
Journal, 38:985–999, 1959.

22. R. Lewis and J. Thompson. On the application of graph colouring techniques in round-robin sports
scheduling. Computers & Operations Research, 38(1):190–204, 2011.

23. E. Malaguti, M. Monaci, and P. Toth. An exact approach for the Vertex Coloring Problem. Discrete
Optimization, 8:174–190, 2011.

24. A. Mehrotra and M. A. Trick. A Column Generation Approach for Graph Coloring. INFORMS
Journal on Computing, 8(4):344–354, 1996.

25. I. Méndez-Dı́az and P. Zabala. A Branch-and-Cut algorithm for graph coloring. Discrete Applied
Mathematics, 154:826–847, 2006.

26. I. Méndez-Dı́az and P. Zabala. A cutting plane algorithm for graph coloring. Discrete Applied Math-
ematics, 156:159–179, 2008.

27. D. R Morrison, E. C. Sewell, and S. H. Jacobson. Solving the Pricing Problem in a Branch-and-
Price Algorithm for Graph Coloring Using Zero-Suppressed Binary Decision Diagrams. INFORMS
Journal on Computing, 28(1):67–82, 2016.

28. J. Peemöller. A correction to Brelaz’s modification of Brown’s coloring algorithm. Communications
of the ACM, 26(8):595–597, 1983.

29. G. Perez and J.-C. Régin. Constructions and In-Place Operations for MDDs Based Constraints. In
Proceedings of CPAIOR, volume 9676 of LNCS, pages 279–293. Springer, 2016.

30. J. Randall-Brown. Chromatic scheduling and the chromatic number problem. Management Science,
19(4):456–463, 1972.

31. M. Römer, A. A. Cire, and L.-M. Rousseau. A Local Search Framework for Compiling Relaxed
Decision Diagrams. In Proceedings of CPAIOR, volume 10848 of LNCS, pages 512–520. Springer,
2018.

32. P. San Segundo. A new DSATUR-based algorithm for exact vertex coloring. Computers & Operations
Research, 39:1724–1733, 2012.

33. A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
34. I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM

monographs on discrete mathematics and applications. Society for Industrial and Applied Mathemat-
ics, 2000.

35. D. C. Wood. A technique for coloring a graph applicable to large-scale timetabling problems. The
Computer Journal, 12(4):317–322, 1969.

