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Abstract. We introduce an iterative framework for computing lower
bounds to graph coloring problems. We utilize relaxed decision diagrams
to compactly represent an exponential set of color classes, or indepen-
dent sets, some of which may contain edge conflicts. Our procedure uses
minimum network flow models to compute lower bounds on the color-
ing number and identify conflicts. Infeasible color classes associated with
these conflicts are removed by refining the decision diagram. We prove
that in the best case, our approach may use exponentially smaller dia-
grams than exact diagrams for proving optimality. We also provide an ex-
perimental evaluation on benchmark instances, and report an improved
lower bound for one open instance.

1 Introduction

Graph coloring is a fundamental combinatorial optimization problem that asks
to color the vertices of a given graph with a minimum number of colors, such
that adjacent vertices are colored differently. Graph coloring is a core compo-
nent of many applications, in particular those related to timetabling or schedul-
ing [26, 16, 3, 18]. The most efficient exact solution methods are the Randall-
Brown algorithm using the Dsatur vertex ordering [23, 8, 22], integer linear pro-
gramming [15], and column generation (branch-and-price) [20, 19, 14, 13, 21].

A major challenge for exact graph coloring methods is to find strong lower
bounds to help accelerate the proof of optimality. A natural lower bound is
the clique number of a graph—the size of the largest complete subgraph, which
requires all its vertices to be colored differently. In this work, we explore an al-
ternative approach that does not directly rely on maximal cliques, but instead
makes use of relaxed decision diagrams [2]. Relaxed decision diagrams provide
a graphical discrete relaxation of a solution set and can be used to derive opti-
mization bounds [2, 7, 6].

For the graph coloring problem, we let the decision diagram compactly rep-
resent the collection of independent sets of the input graph, each of which cor-
responds to a color class (a subset of vertices with the same color). We obtain
a graph coloring lower bound by solving a constrained minimum network flow
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over the decision diagram that ensures that each vertex only appears in one
color class. However, in our relaxed decision diagram, not all color classes may
be exact. We therefore identify conflicts (adjacent vertices) in each color class,
which are subsequently removed from the diagram by a refinement step. We it-
eratively apply this process until no more conflicts are found. We show that an
integral conflict-free solution to the constrained minimum network flow problem
is guaranteed to be optimal.

Our approach is relatively generic, in that the iterative refinement process
based on conflicts is not restricted to graph coloring problems. For example, we
can define a very similar procedure for bin packing problems, in which case a
subset of items is conflicting if its weight exceeds the capacity of the bin. In fact,
it can be viewed as a ‘dual’ form of column generation: instead of iteratively gen-
erating new columns (color classes), our approach iteratively removes infeasible
color classes from consideration. In both cases, however, a solution is defined as
a subset of columns.
Contributions. The main contributions of this work include 1) the introduc-
tion of a new framework for obtaining graph coloring lower bounds based on
relaxed decision diagrams, and proving its correctness, 2) a proof that relaxed
decision diagrams can be exponentially smaller than their exact versions for find-
ing optimal solutions, and 3) an experimental evaluation of our lower bounds on
benchmark instances, with an improved lower bound for one open instance.

2 Graph Coloring by Independent Sets

We first present a formal definition of graph coloring [24]. Let G = (V,E) be an
undirected simple graph with vertex set V and edge set E. We define n = |V |
and m = |E|. We denote by Ni the set of neighbors of i ∈ V . For convenience, we
label the vertices V as integers {1, . . . , n}. A vertex coloring of G is a mapping
of each vertex to a color such that adjacent vertices are assigned different colors.
We refer to the subset of vertices with the same color as a color class. The graph
coloring problem is to find a vertex coloring with the minimum number of colors.
The minimum number of colors to color G is called the coloring number or the
chromatic number of G, denoted by χ(G).

Observe that each color class is defined as a subset of variables that are pair-
wise non-adjacent. In other words, a color class corresponds to an independent
set of G, and conversely each independent set of G can be used as a color class.
This allows to formulate the graph coloring problem as follows. Let I be the
collection of all independent sets of G. We introduce a binary variable yi for
each independent set i ∈ I, representing whether i is used as a color class in a
solution. We let binary parameter aij represent whether vertex j ∈ V belongs
to independent set i ∈ I. The graph coloring problem can then be formulated as
the following integer program:

min
∑
i∈I yi

s.t.
∑
i∈I aijyi = 1 ∀j ∈ V,

yi ∈ {0, 1} ∀i ∈ I,
(1)
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where the equality constraint ensures that each vertex belongs to one color class.
This formulation forms the basis of the column generation approaches for graph
coloring, as first proposed in [20]. Instead of enumerating all exponentially many
independent sets I, column generation iteratively adds new independent sets
(with negative reduced cost) to an initial collection. In our approach, we start
with all subsets sets I and iteratively remove sets that contain adjacent vertices.

3 Decision Diagrams

Decision diagrams were originally developed to represent switching circuits and,
more generally, Boolean functions [17, 1, 25]. They became particularly popular
after the introduction of efficient compilation methods for Reduced Ordered
Binary Decision Diagrams [9, 10], and have been applied widely to verification
and configuration problems. More recently, decision diagrams have been applied
to solve optimization problems [6], which is the context we follow in this paper.

Definitions For our purposes, a decision diagram will represent the set of solu-
tions to an optimization problem P defined on an ordered set of decision variables
X = {x1, . . . , xn}. In this paper, we assume that each variable is binary. The
feasible set of P is denoted by Sol(P ).

A decision diagram for P is a layered directed acyclic graph D = (N,A) with
node set N and arc set A. D has n + 1 layers that represent state-dependent
decisions for the variables. The first layer (layer 1) is a single root node r, while
the last layer (layer n+ 1) is a single terminal node t. Layer j is a collection of
nodes associated with variable xj ∈ X, for j = 1, . . . , n. Arcs are directed from
a node u in layer j to a node v in layer j+1, and have an associated label `(u, v)
which can be either 0 or 1. We refer to the former as 0-arcs and to the latter as
1-arcs. The layer of node u is denoted by L(u). Each arc, and each node, must
belong to a path from r to t. Each arc-specified r-t path p = (a1, a2, . . . , an)
defines a variable assignment by letting xj = `(aj) for j = 1, . . . , n. We slightly
abuse notation and denote by Sol(D) the collection of variable assignments for
all r-t paths in D.

Definition 1. A decision diagram D is exact for problem P if Sol(D) = Sol(P ).
A decision diagram D is relaxed for problem P if Sol(D) ⊇ Sol(P ).

The benefit of using decision diagrams for representing solutions is that equiv-
alent nodes, i.e., nodes with the same set of completions, can be merged. A de-
cision diagram is called reduced if no two nodes in a layer are equivalent. A key
property is that for a given fixed variable ordering, there exists a unique reduced
ordered decision diagram [9]. Nonetheless, even reduced decision diagrams may
be exponentially large to represent all solutions for a given problem.

Exact Compilation In this work we apply top-down compilation methods that
depend on state-dependent information (similar to state variables in dynamic
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Fig. 1. Input graph for Example 1 (a) and the associated exact decision diagram rep-
resenting all independent sets (b). The diagram uses the lexicographic ordering of the
vertices. Dashed arcs represent 0-arcs, while solid arcs represent 1-arcs. For convenience,
the set of eligible vertices (the state information) is given in each node.

programming models). We limit the exposition to the compilation of decision
diagrams for independent set problems [4, 5]. We define a binary variable xi for
each i ∈ V representing whether i is selected. The state information we maintain
is the set of ‘eligible vertices’, i.e., the set of graph vertices that can be added to
the independent sets represented by paths into the node.

Formally, for each node u in the decision diagram we recursively define a set
S(u) ⊆ V , and we initialize S(r) = V , S(t) = ∅. For node u in layer L(u) = j
we distinguish two cases. If j /∈ S(u), we define a 0-arc (or transition) from u to
v, with S(v) = S(u). Otherwise, if j ∈ S(u), we define both a 1-arc and a 0-arc
out of u, with

S(v) =

{
S(u) \ ({j} ∪Nj) if (u, v) is a 1-arc
S(u) \ {j} if (u, v) is a 0-arc

The top-down compilation procedure starts at the root node, creates all nodes
in the next layer (following the 0-arcs and 1-arcs), and merges the nodes that are
equivalent. In our case, two nodes u and v are equivalent if S(u) = S(v). This
top-down compilation procedure yields the unique reduced decision diagram for
representing all independent sets (for a given ordering), as shown in [4, 5].

Example 1. Consider the graph in Figure 1.a. We depict the exact decision dia-
gram representing all independent sets for this graph in Figure 1.b.

Compilation by Separation As an alternative to exact compilation, we can
apply constraint separation to iteratively construct the decision diagram [11,
6]. We will apply this method to compile relaxed decision diagrams, and again
describe it in the context of independent sets.
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Fig. 2. Applying constraint separation to the input graph of Example 1. The initial
relaxed diagram (a) is iteratively refined until the optimal solution (the flow paths) no
longer contains infeasible color classes.

We initialize each layer j of D as a single node uj , with state information
S(uj) = {j, . . . , n}, for j = 1, . . . , n, and S(un+1) = ∅. We define a 0-arc
and a 1-arc between nodes uj and uj+1, for j = 1, . . . , n. The input to our
separation algorithm is a relaxed decision diagram D together with a path p =
uj , uj+1, . . . , uk with associated arc labels lj , lj+1, . . . , lk−1, and a conflict, i.e.,
the edge between vertices j and k, where j < k. The goal of the separation
algorithm is to resolve the conflict along path p by splitting nodes, and arcs,
appropriately. This is described in Algorithm 1.

We represent D as a two-dimensional vector D[ ][ ] of nodes, such that D
is a vector of ‘layers’ and D[ ] is a vector of ‘nodes’, one for each layer. Both
are indexed starting from 1. The size of vector D is fixed to n + 1, while we
dynamically update the size of the layers D[ ]. The root is represented as D[1][1]
and the terminal as D[n+ 1][1]. Each node u = D[j][i] (u is the i-th node in layer
j) has state information D[j][i].S = S(u), a reference to the node in layer j + 1
that represents the endpoint of its 1-arc D[j][i].oneArc, and a similar reference for
its 0-arc D[j][i].zeroArc. If the 1-arc does not exist, the reference holds value -1.

Algorithm 1 considers each node D[i][ui] along the path in sequence (line 2)
and splits off the next node in the path. This is done by first creating a temporary
node w (lines 3-5). If an equivalent node already exists in layer i+ 1, we direct
the path to its index (lines 6-7). Otherwise we complete the definition of w by
copying the outgoing arcs of node D[i + 1][ui+1] (lines 9-11), and we add w to
layer i + 1 (lines 12-13). Lastly, we redirect the path from ui to the new node
with index t (lines 15-17). Fig. 2 gives an illustration of the algorithm. When
we apply the algorithm to the decision diagram (a), with the all-ones path and
conflicting edge (1, 3) as input, we obtain the decision diagram (b).
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Algorithm 1: Compilation by separation.

1 Input: relaxed decision diagram D (D[j][i] represents the ith node in layer j),
path node indices uj , . . . , uk−1, path arc labels lj , . . . , lk−1, conflict (j, k), and
list of neighbors Ni for each i ∈ V

2 for i = j, . . . , k − 1 do
3 create node w // goal is to split the path towards node w
4 w.S← D[i][ui].S \ {i} // copy the state and remove i
5 if li = 1 then S(w)← S(w) \Ni // remove Ni for 1-arc
6 t← −1 // t is index of the new node in layer i+ 1
7 if ∃k such that D[i+ 1][k].S = w .S then t← k // equivalent node
8 if t = −1 then
9 if i+ 1 ∈ w.S then w.oneArc = D[i+ 1][ui+1].oneArc // copy 1-arc

10 else w.oneArc = -1
11 w.zeroArc = D[i+ 1][ui+1].zeroArc // copy 0-arc
12 D[i+ 1].add(w) // append w as new node to layer i+ 1
13 t← |D[i+ 1]| // update t to last index of layer i+ 1

14 end
15 if li = 1 then D[i][ui].oneArc= t // re-direct path in case of 1-arc
16 else D[i][ui].zeroArc= t // re-direct path in case of 0-arc
17 ui+1 = t // update path index

18 end

Compilation by constraint separation proceeds in iterations by gradually re-
fining the relaxed decision diagram. For our model, it has some useful properties:

Lemma 1. Each decision diagram that is compiled by separation is reduced, i.e.,
no two nodes on any layer are equivalent.

Lemma 2. Compilation by separation will terminate with an exact decision di-
agram if each possible conflict, along any path, is separated.

These two lemmas follow from the fact that for independent set problems, the
state information is sufficient to prove equivalence [4, 5]. Lemma 1 will ensure
that our approach produces the smallest decision diagram at each iteration, while
Lemma 2 will guarantee termination and optimality.

4 Network Flow Model

We next formulate the graph coloring problem based on independent sets as a
network flow problem on the decision diagram. We let δ+(u) and δ−(u) denote
the set of arcs leaving, respectively entering node u ∈ N . For each arc a ∈ A we
introduce a variable ya that represents the ‘flow’ through a. We then define:

(F ) = min
∑

a∈δ+(r)

ya (2)

s.t.
∑

a=(u,v)|L(u)=j,`(a)=1

ya = 1 ∀j ∈ V (3)
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∑
a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N \ {r, t} (4)

ya ∈ {0, 1, . . . , n} ∀a ∈ A (5)

The objective function (2) minimizes the total amount of flow. Constraints (3)
define that in each layer exactly one 1-arc is selected. Constraints (4) ensure flow
conservation. Constraints (5) make sure the flow is integer.

Lemma 3. A solution to model (F) corresponds to a partition of vertex set V .

Proof. The partition can be found by decomposing the flow into paths. For
vertex i ∈ V there is exactly one arc a = (u, v) for which ya = 1, by constraints
(3). By constraints (4) there exists an r-u path and a v-t path for which ya ≥ 1
for each arc a along the path, which together with arc (u, v) forms an r-t path.
Let P be the collection of such r-t paths; the cardinality of P is given by the
objective function (2). Each path (a1, a2, . . . , an) ∈ P corresponds to a subset of
vertices {i | `(ai) = 1}. By constraints (3), these subsets are disjoint. ut

Theorem 1. If the decision diagram is exact, model (F) finds an optimal solu-
tion to the graph coloring problem.

Proof. Since each path in the exact decision diagram corresponds to an inde-
pendent set, the theorem follows from Lemma 3. ut

By the definition of relaxed decision diagrams, we have the following corollary:

Corollary 1. If the decision diagram is relaxed, the objective value of model (F)
is a lower bound on the graph coloring problem.

One may wonder whether model (F) can be solved in polynomial time, since the
NP-hardness of graph coloring may be accounted for by the worst-case exponen-
tial size of the decision diagram. The answer, however, is negative:

Theorem 2. Solving model (F) for an arbitrary decision diagram is NP-hard.

The proof follows from a reduction from minimum set partitioning and is given
in the appendix. Note that paths in the solution are not explicitly given, but
instead follow from the arc flow values. Moreover, paths can share nodes (and 0-
arcs). We can therefore restrict the proof of Theorem 2 to be paths corresponding
to a solution to the minimum set partitioning problem:

Corollary 2. If the decision diagram is relaxed, deciding whether a given solu-
tion to model (F) corresponds to a feasible graph coloring solution is NP-hard.

5 Iterative Refinement Procedure

While the worst-case complexity results in the previous section are negative, we
can, however, efficiently identify a conflict in a given solution:
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Algorithm 2: Iterative refinement by conflict detection and separation.

1 Input: decision diagram D and input graph data
2 foundSol ← false
3 while foundSol = false do
4 solve model (F) with decision diagram D
5 lowerBound ← obj(F)
6 if flow decomposition algorithm finds no conflict then foundSol ← true
7 else separate conflict in D using Algorithm 1

8 end

Theorem 3. For a given solution to (F) we can in polynomial time (in the
size of the decision diagram) either determine feasibility or identify a subset of
vertices that creates an infeasibility.

The proof, given in the appendix, is constructive and based on a path de-
composition of the network flow. We apply this path decomposition to identify
and separate conflicts inside an iterative refinement procedure, described at a
high-level in Algorithm 2. The algorithm repeatedly solves the flow model, the
objective of which provides a lower bound. If the solution contains a conflict, the
decision diagram is refined, and we repeat the process. Otherwise, we found an
optimal solution and terminate. Note that depending on the flow decomposition,
the same solution to (F) might either return a feasible solution or a conflict.

Example 2. Figure 2 depicts the iterative refinement procedure when applied
to the input graph given in Figure 1.a. We start with the trivial relaxation in
(a), which encodes all possible subsets of V , and find the all-ones solution as
a single path. Thus, the lower bound is 1. The first conflict we identify is edge
(1,3) which is subsequently separated. An optimal flow for diagram (b) contains
two paths which yields lower bound 2, and we can identify conflict (2,4) to be
separated. This continues until we find the diagram (d) and identify flow paths
without conflicts.

Example 2 shows that iterative refinement may yield relaxed decision dia-
gram that are smaller than exact decision diagrams, to prove optimality. This is
formalized in the following key result, the proof of which is given in the appendix:

Theorem 4. The iterative refinement procedure can find a provably optimal so-
lution with a relaxed decision diagram that is exponentially smaller than the exact
diagram that is defined on the same variable ordering.

6 Implementation and Experimental Results

We implemented our method in C++, and performed an experimental evalua-
tion on the 137 graph coloring benchmark instances obtained from [12], which
includes all DIMACS graph coloring instances [16]. We use CPLEX 12.9 as inte-
ger and linear programming solver. The decision diagrams have a given maximum
size (either 100,000 or 1,000,000 nodes).
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IP > LP+IP 2
LP+IP > IP 31
LP+IP = IP 104
(LP+IP)/IP 0.53 (s.d.=0.38)

a. Impact of adding LP to IP

single> multiple 3
multiple > single 43
multiple = single 91
multiple/single 0.36 (s.d.=0.39)

b. Single vs. multiple conflicts

Table 1. Evaluating the impact of solving linear programming models before solving
the integer programming models (a) and single conflict and multiple conflict resolution
(b). In each case, we first list the number of instances for which either method finds
a better bound. For those cases with equal bounds, we report the ratio of the average
time to the best solution and the standard deviation.

Implementation Details The single most important parameter that influ-
ences the performance of the algorithm is the variable ordering of the decision
diagram. We apply the following variable ordering heuristic, which dominated
all other heuristics we tested: among all unselected vertices, select the one that
is connected to the most vertices that have been selected so far. In case of ties,
select a vertex with the highest degree.

Second, observe that solving the continuous linear programming relaxation
of model (F) provides a valid lower bound, as well as a path decomposition
that can be used to identify conflicts. While the LP bound may be weaker than
the IP bound, it is faster to compute and may therefore speed up the overall
process. We implemented this by starting with LP-based iterative refinement,
which is continued until a conflict-free LP optimum solution is found. After that,
we continue with the IP-based iterative refinement to prove integer optimality.

Third, instead of resolving a single conflict (separation) in each iteration, it
is possible to resolve multiple conflicts; one for each path in the decomposition
(if it exists). The validity of identifying and separating multiple conflicts per
iteration relies on the specific state information for independent sets, as well as
on the indexing of our data structure D[ ][ ].

We ran experiments to assess the impact of adding the LP-based iterative
refinement and multiple conflicts. The results are shown in Table 1. For each fea-
ture, we ran our algorithm with and without that feature, on all 137 benchmark
instances for a maximum of 300s per instance. The impact is measured by the
quality of the bound (number of instances with a better bound), and when the
bounds are equal, by the computation time to the best bound. Both using LP
and multiple conflicts have a substantial positive impact on the performance,
reducing the time to the best bound by a factor 0.53 (LP), resp. 0.38 (multiple
conflicts).

We added two other features to streamline the solving process. After reading
in the data, we run the Dsatur heuristic to quickly find an upper bound, to help
prove optimality in some cases. Furthermore, before running the LP and IP-
based iterative refinement, we run a refinement procedure based on the longest
path (with respect to 1-arcs) on the decision diagram, for at most 100 iterations.
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Relaxed DD
Instance n m d χ χ LB TTB

abb313GPIA 1,557 53,356 0.04 8 10 7 1.71
C2000.9 2,000 1,799,532 0.90 0 400 98 1,826.92
DSJC250.1 250 3,218 0.10 6 8 5 0.01
latin square 10 900 307,350 0.76 90 97 90 0.73
wap01a 2,368 110,871 0.04 41 48* 40 1.20
wap02a 2,464 111,742 0.04 40 45* 40 1.61
wap03a 4,730 286,722 0.03 40 56* 40 0.88
wap04a 5,231 294,902 0.02 40 42 40 1.05
wap06a 947 43,571 0.10 40 54* 40 0.15
wap07a 1,809 103,368 0.06 40 41 39 705.66
wap08a 1,870 104,176 0.06 40 45* 39 107.23

Table 2. Performance of the relaxed decision diagram on a selection of open instances.
For each instance we list the number of nodes (n) and edges (m), edge density (d),
and the best known lower bound (χ) and upper bound (χ). For the relaxed decision
diagram, we report the lower bound (LB) and time to best bound (TTB). The time
limit was set to 3,600s (the maximum size of 1,000,000 was never exceeded). Upper
bounds marked with an asterisk were computed with the Dsatur heuristic.

Experimental Analysis The aim of our first experiment is to compare the per-
formance of the iterative refinement and the exact compilation. We consider all
instances that are solved to optimality by either method—47 instances in total.
The details can be found in Table 3 in the Appendix. The exact decision diagram
can be remarkably small, which allows solving 37 instances directly. Perhaps even
more remarkable is that the relaxed diagram can sometimes be orders of magni-
tude smaller than the exact diagram for proving optimality, demonstrating the
value of Theorem 4 in practice.

The second set of experiments, presented in Table 2, investigates the quality
of the bounds of the iterative refinement procedure. The table considers a selec-
tion of open instances.1 We report the lower bound (LB) and the time to the
best lower bound in seconds (TTB). We were able to improve the lower bound
for instance C2000.9 (marked in bold).

7 Conclusion

We introduced a new approach for obtaining lower bounds to graph coloring
problems, by solving a minimum network flow problem defined over a relaxed
decision diagram. By separating conflicts in the network flow solution, the re-
laxed decision diagram is iteratively refined, which results in stronger bounds. We
showed both theoretically and experimentally that relaxed decision diagrams can
be orders of magnitude smaller than exact diagrams when proving optimality.
This allowed to find an improved lower bound for one open benchmark instance.

1 According to the website with benchmark results [12] – accessed November 29, 2019.
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Graph Coloring Lower Bounds from Decision Diagrams: Appendix

Proof of Theorem 2. By reduction from minimum set partitioning. We are given
a collection S of sets based on a universe of elements E, and need to find a
subset of S of minimum cardinality such that each element in E belongs to
exactly one subset. We define a polynomial-size decision diagram with |E| + 1
node layers, such that layer i represents the i−th element from E following an
arbitrary but fixed ordering of E. We then define an r-t path for each set in S
by introducing nodes and arcs between each layer i and i+ 1, with arc label 1 if
the i-th element of E is in S and 0 otherwise. An optimal solution to model (F)
directly corresponds to solving the minimum set partitioning problem. ut
Proof of Theorem 3. We apply a flow decomposition algorithm that iteratively
finds r-t paths with flow value 1, starting from the root. The algorithm maintains
the set of vertices i for which ya = 1, `(a) = 1 and L(a) = i. Each time a vertex
i is added to this set, we inspect whether there exists an edge (i, j) ∈ E with j in
the set. If so, we terminate and report that the current (partial) path violates the
edge constraint for (i, j). Otherwise, when the r-t path is completed, we subtract
the minimum flow value along the path from each of its arcs, and repeat the
process until all arcs out of the root have flow value zero. If in the process none
of the paths violates an edge constraint, we report that the solution is feasible.
Finding one r-t path takes linear time (in the size of the decision diagram, |D|).
The edge inspection takes O(n) time per event, which makes the total time for
identifying a single path O(n · |D|). Since there are at most n paths, the total
time is O(n2|D|). ut
Proof of Theorem 4. Consider a graph G = (V,E) with vertex labels V =
{1, . . . , n} and edge set {(i, i+1) | i ∈ {1, . . . , n−1}}, i.e., G is a path from vertex
1 to n, where n is an odd integer. We define the following fixed variable ordering
to compile the decision diagrams. For layers i = 1, . . . , dn/2e, we associate vertex
i if i is odd, and vertex dn/2e+ i if i is even. The remaining layers are defined in
the ‘reverse order’; layer i = dn/2e+ 1, . . . , n is associated with vertex n− i+ 2
if i is odd, and vertex n− i+ dn/2e if i is even.
Observation 1: up to layer dn/2e−1, vertex i appears in each state of layer i−1
since the vertices associated with these layers are not adjacent in G. Therefore,
each of these states has two outgoing arcs, the 0-arc and the 1-arc.
Observation 2: up to layer dn/2e−1, each 1-arc eliminates one element from the
set {dn/2e+ 1, . . . , n}. Therefore, the states of each layer, up to layer dn/2e− 1,
are distinct. These two observations imply that the exact decision diagram
requires at least O(2dn/2e) states (the size of layer dn/2e).

Without loss of generality, we assume that the iterative refinement procedure
applies a lexicographic search in each iteration to find an optimal solution to
model (F), and refines the decision diagram whenever an edge conflict is detected.
In iteration i, the algorithm will consider the conflict associated with edge (i, i+
dn/2e). Each of these conflicts is refined by adding one more node to state
i+ dn/2e+ 1. After dn/2e iterations, no more conflicts are found. The iterative
refinement procedure therefore terminates with a decision diagram of O(n) size.

ut
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Relaxed DD Exact DD
instance n m d LB UB time size LB UB time size R/E

1-FullIns 3 30 100 0.23 4 4 * 0.03 249 4 4 * 0.04 747 0.33
2-FullIns 3 52 201 0.15 5 5 * 0.26 1,206 5 5 * 0.59 12,866 0.09
david 87 406 0.11 11 11 * 0.01 246 11 11 * 1.60 37,029 0.01
DSJC125.9 125 6,961 0.90 44 44 * 9.52 9,433 44 44 * 0.37 9,868 0.96
fpsol2.i.1 496 11,654 0.09 65 65 * 3.19 7,135 65 65 * 0.09 8,295 0.86
fpsol2.i.2 451 8,691 0.09 30 30 * 0.06 957 30 30 * 0.14 10,167 0.09
fpsol2.i.3 425 8,688 0.10 30 30 * 0.06 970 30 30 * 0.19 10,257 0.09
huck 74 301 0.11 11 11 * 0.09 786 11 11 * 0.02 1,077 0.73
inithx.i.1 864 18,707 0.05 54 54 * 0.83 3,993 54 54 * 0.21 15,804 0.25
inithx.i.2 645 13,979 0.07 31 31 * 34.57 21,787 31 31 * 1.05 24,588 0.89
inithx.i.3 621 13,969 0.07 31 31 * 51.19 22,777 31 31 * 0.79 24,550 0.93
jean 80 254 0.08 10 10 * 0.01 291 10 10 * 0.32 5,251 0.06
miles1000 128 3,216 0.40 42 42 * 0.58 4,104 42 42 * 0.11 8,031 0.51
miles1500 128 5,198 0.64 73 73 * 0.31 2,697 73 73 * 0.04 4,007 0.67
miles250 128 387 0.05 8 8 * 0.01 294 8 8 * 0.17 2,812 0.10
miles500 128 1,170 0.14 20 20 * 0.02 361 20 20 * 0.39 15,272 0.02
miles750 128 2,113 0.26 31 31 * 0.04 710 31 31 * 0.29 13,153 0.05
mulsol.i.1 197 3,925 0.20 49 49 * 0.12 1,107 49 49 * 0.02 2,487 0.45
mulsol.i.2 188 3,885 0.22 31 31 * 0.07 793 31 31 * 0.03 2,611 0.30
mulsol.i.3 184 3,916 0.23 31 31 * 0.06 789 31 31 * 0.03 2,621 0.30
mulsol.i.4 185 3,946 0.23 31 31 * 0.06 806 31 31 * 0.03 2,636 0.31
mulsol.i.5 186 3,973 0.23 31 31 * 0.06 807 31 31 * 0.03 2,649 0.30
myciel3 11 20 0.36 4 4 * 0.02 59 4 4 * 0.01 62 0.95
myciel4 23 71 0.28 5 5 * 2.31 454 5 5 * 0.35 459 0.99
queen5 5 25 160 0.53 5 5 * 0.01 194 5 5 * 0.01 560 0.35
queen6 6 36 290 0.46 7 7 * 1.03 1,927 7 7 * 0.11 2,686 0.72
queen7 7 49 476 0.40 7 7 * 0.89 3,267 7 7 * 0.23 13,838 0.24
queen8 8 64 728 0.36 9 9 * 164.56 30,606 9 9 * 38.82 81,574 0.38
r125.1 125 209 0.03 5 5 * 0.01 339 5 5 * 0.02 920 0.37
r125.1c 125 7,501 0.97 46 46 * 0.65 3,569 46 46 * 0.04 4,007 0.89
r125.5 125 3,838 0.50 36 36 * 57.31 18,924 36 36 * 0.49 23,242 0.81
r250.1c 250 30,227 0.97 64 64 * 11.54 18,059 64 64 * 0.15 20,322 0.89
zeroin.i.1 211 4,100 0.19 49 49 * 0.08 1,024 49 49 * 0.03 2,769 0.37
zeroin.i.2 211 3,541 0.16 30 30 * 0.05 774 30 30 * 0.05 3,470 0.22
zeroin.i.3 206 3,540 0.17 30 30 * 0.05 769 30 30 * 0.05 3,457 0.22

anna 138 493 0.05 11 11 * 0.01 356 0 11 2.80 ≥ 100k ≤ 0.00
DSJR500.1 500 3,555 0.03 12 12 * 0.01 626 0 12 1.43 ≥ 100k ≤ 0.01
games120 120 638 0.09 9 9 * 40.77 43,074 0 9 1.90 ≥ 100k ≤ 0.39
le450 25a 450 8,260 0.08 25 25 * 0.05 943 0 25 1.90 ≥ 100k ≤ 0.01
le450 25b 450 8,263 0.08 25 25 * 0.04 827 0 25 1.51 ≥ 100k ≤ 0.01
le450 5d 450 9,757 0.10 5 5 * 0.02 700 0 5 2.45 ≥ 100k ≤ 0.01
r1000.1 1,000 14,378 0.03 20 20 * 0.06 1,234 0 20 1.56 ≥ 100k ≤ 0.01
r250.1 250 867 0.03 8 8 * 3.03 11,614 0 8 1.40 ≥ 100k ≤ 0.11
school1 385 19,095 0.26 14 14 * 23.87 22,322 0 15 1.01 ≥ 100k ≤ 0.21
school1 nsh 352 14,612 0.24 14 14 * 23.80 23,430 0 16 1.23 ≥ 100k ≤ 0.21

2-Insertions 3 37 72 0.11 3 4 1,800 2,713 4 4 * 362.45 2,963 0.92
DSJC250.9 250 27,897 0.90 71 93 1,800 79,637 72 72 * 1,749.80 80,681 0.99

Table 3. A comparison of relaxed and exact decision diagrams on instances that were
optimally solved by either method (indicated by *). For each instance we list the number
of nodes (n) and edges (m), and edge density (d). We report the lower bound (LB),
upper bound (UB), solving time (in seconds), and the size of the decision diagram.
The last column (R/E) represents the ratio of the relaxed and exact diagram sizes.
The time limit was set to 1,800s, and the maximum size was set to 100,000 nodes.
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