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We explore the idea of obtaining bounds on the value of an optimization problem from a discrete relaxation

based on binary decision diagrams (BDDs). We show how to construct a BDD that represents a relaxation

of a 0–1 optimization problem, and how to obtain a bound for a separable objective function by solving

a shortest (or longest) path problem in the BDD. As a test case we apply the method to the maximum

independent set problem on a graph. We find that for most problem instances, it delivers tighter bounds, in

less computation time, than state-of-the-art integer programming software obtains by solving a continuous

relaxation augmented with cutting planes.
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1. Introduction

Bounds on the optimal value are often indispensable for the practical solution of discrete

optimization problems, as for example in branch-and-bound procedures. Such bounds are

frequently obtained by solving a continuous relaxation of the problem, perhaps a linear

programming (LP) relaxation of an integer programming model. In this paper, we explore

an alternative strategy of obtaining bounds from a discrete relaxation, namely a binary

decision diagram (BDD).

Binary decision diagrams are compact graphical representations of Boolean functions

(Akers 1978, Lee 1959, Bryant 1986). They were originally introduced for applications in

circuit design and formal verification (Hu 1995, Lee 1959) but have since been used for a

variety of other purposes. These include sequential pattern mining and genetic program-

ming (Loekito et al. 2010, Wegener 2000).

A BDD can represent the feasible set of a 0-1 optimization problem, because the con-

straints can be viewed as defining a Boolean function f(x) that is 1 when x is a feasible

solution. Unfortunately, a BDD that exactly represents the feasible set can grow exponen-

tially in size. We circumvent this difficulty by creating a relaxed BDD of limited size that

represents a superset of the feasible set. The relaxation is created by merging nodes of the
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BDD in such a way that no feasible solutions are excluded. A bound on any additively

separable objective function can now be obtained by solving a longest (or shortest) path

problem on the relaxed BDD. The idea is readily extended to general discrete (as opposed

to 0-1) optimization problems by using multivalued decision diagrams (MDDs).

As a test case, we apply the proposed method to the maximum independent set problem

on a graph. We find that BDDs can deliver tighter bounds than those obtained by a strong

LP formulation, even when the LP is augmented by cutting planes generated at the root

node by a state-of-the-art mixed integer solver. In most instances, the BDD bounds are

obtained in less computation time, even though we used a non-default barrier LP solver

that is faster for these instances.

The paper is organized as follows. After a brief literature review, we show how BDDs can

represent 0-1 optimization problems in general and the maximum weighted independent set

problem in particular. We then exhibit an efficient top-down compilation algorithm that

generates exact reduced BDDs for the independent set problem, and prove its correctness.

We then modify the algorithm to generate a limited-size relaxed BDD, prove its correctness,

and show that it has polynomial time complexity. We also discuss variable ordering for

exact and relaxed BDD compilation, as this can have a significant impact on the size of the

exact BDD and the bound provided by relaxed BDDs. In addition, we describe heuristics

for deciding which nodes to merge while building a relaxed BDD.

At this point we report computational results for random and benchmark instances of

the maximum independent set problem. We experiment with various heuristics for ordering

variables and merging nodes in the relaxed BDDs and test the quality of the bound provided

by the relaxed BDDs versus the maximum BDD size. We then compare the bounds obtained

from the BDDs with the LP bounds obtained by a commercial mixed integer solver. We

conclude with suggestions for future work.

2. Previous Work

Relaxed BDDs and MDDs were introduced by Andersen et al. (2007) for the purpose of

replacing the domain store used in constraint programming by a richer data structure.

They found that MDDs drastically reduce the size of the search tree and allow faster

solution of problems with multiple all-different constraints, which are equivalent to graph

coloring problems. Similar methods were applied to other types of constraints in Hadzic
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et al. (2008) and Hoda et al. (2010). The latter paper also develops a general top-down

compilation method based on state information at nodes of the MDD.

None of this work addresses the issue of obtaining bounds from relaxed BDDs. Three

of us applied this idea to the set covering problem in a conference paper (Bergman et al.

2011), which reports good results for certain structured instances. In the current paper, we

present novel and improved methods for BDD compilation and relaxation. These methods

are superior to continuous relaxation technology for a much wider range of instances, and

require far less time.

The ordering of variables can have a significant bearing on the effectiveness of a BDD

relaxation. We investigated this for the independent set problem in Bergman et al. (2012)

and apply the results here.

We note that binary decision diagrams have also been applied to post-optimality anal-

ysis in discrete optimization (Hadzic and Hooker 2006, 2007), cut generation in integer

programming (Becker et al. 2005), and 0-1 vertex and facet enumeration (Behle and Eisen-

brand 2007).

Branch-and-bound methods for the independent set problem, which make essential use of

relaxation bounds, are studied by Rossi and Smriglio (2001), Tomita and Kameda (2007),

Rebennack et al. (2011), and surveyed by Rebennack et al. (2012).

3. Binary Decision Diagrams

Given binary variables x= (x1, . . . , xn), a binary decision diagram (BDD) B = (U,A) for

x is a directed acyclic multigraph that encodes a set of values of x. The set U of nodes

is partitioned into layers L1, . . . ,Ln corresponding to variables x1, . . . , xn, plus a terminal

layer Ln+1. Layers L1 and Ln+1 are singletons consisting of the root node r and the terminal

node t, respectively. All directed arcs in A run from a node in some layer Lj to a node in

some deeper layer Lk (j < k). For a node u∈Lj, we write ℓ(u) = j to indicate the layer in

which u lies.

Each node u ∈ Lj has one or two out-directed arcs, a 0-arc a0(u) and/or a 1-arc a1(u).

These correspond to setting xj to 0 and 1, respectively. We use the notation b0(u) to

indicate the node at the opposite end of arc a0(u), and similarly for b1(u). Thus, 0-arc a0(u)

is (u, b0(u)), and 1-arc a1(u) is (u, b1(u)). Each arc-specified path from r to t represents

the 0-1 tuple x in which xℓ(u) = 1 for each 1-arc a1(u) on the path, and xj = 0 for all other

j. The entire BDD represents the set Sol(B) of all tuples corresponding to r–t paths.
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Figure 1 (a) Example of a BDD. (b) Instance of the independent set problem for which (a) is an exact BDD.

(c) Relaxed BDD for the instance in (b).

It is often useful to abbreviate a BDD by using long arcs. These arcs skip over variables

whose values are represented implicitly. A long arc can indicate that all skipped variables

take the value zero (resulting in a zero-suppressed BDD) or the value one (a one-suppressed

BDD). More commonly, a long arc indicates that the skipped variables can take either

value. One advantage of BDDs is that we can choose the type of long arc that suits the

problem at hand. We use zero-suppressed BDDs (Minato 1993) because there are many

zero-valued arcs in BDDs for the independent set problem. Thus a long arc from layer Lj

to layer Lk encodes the partial assignment (xj, . . . , xk−1) = (1,0, . . . ,0).

Figure 1(a) illustrates a BDD for variables x= (x1, . . . , x6). The left-most path from root

node r to terminal node t represents the tuple (x1, . . . , x6) = (0,0,1,0,0,0). The third arc

in the path is a long arc because it skips three variables. It encodes the partial assign-

ment (x3, x4, x5, x6) = (1,0,0,0). The entire BDD of Fig. 1(a) represents a set of 10 tuples,

corresponding to the 10 r–t paths.

Given nodes u,u′ ∈U , we will say that Buu′ is the portion of B induced by the nodes in

U that lie on some directed path from u to u′. Thus Brt =B. Two nodes u,u′ on a given

layer of a BDD are equivalent if But and Bu′t are the same BDD. A reduced BDD is one that

contains no equivalent nodes. A standard result of BDD theory Bryant (1986), Wegener

(2000) is that for a fixed variable order, there is a unique reduced BDD that represents a
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given set. The width ωj of layer Lj is |Lj|, and the width ω(B) of a BDD B is maxj{ωj}.

The BDD of Fig. 1(a) is reduced and has width 2.

The feasible set of any optimization problem with binary variables x1, . . . , xn can be

represented by an appropriate reduced BDD. The BDD can be regarded as a compact

representation of a search tree for the problem. It can in principle be obtained by omitting

infeasible leaf nodes from the search tree, superimposing isomorphic subtrees, and identify-

ing all feasible leaf nodes with t. We will present below a much more efficient procedure for

obtaining a reduced BDD. A slight generalization of BDDs, multivalued decision diagrams

(MDDs), can similarly represent the feasible set of any discrete optimization problem.

MDDs allow a node to have more than two outgoing arcs and therefore accommodate

discrete variables with several possible values.

4. BDD Representation of Independent Sets

We focus on BDD representations of themaximum weighted independent set problem. Given

a graph G= (V,E), an independent set is a subset of the vertex set V , such that no two

vertices are connected by an edge in E. If each vertex vj is associated with a weight wj,

the problem is to find an independent set of maximum weight. If each wj = 1, we have the

maximum independent set problem.

If we let binary variable xj be 1 when vj is included in the independent set, the feasible

solutions of any instance of the independent set problem can be represented by a BDD

on variables x1, . . . , xn. Figure 1(a), for example, represents the 10 independent sets of the

graph in Fig. 1(b).

We can remove any node u in a BDD with a single outgoing arc if it is a 0-arc a0(u).

This is accomplished by replacing every 0-arc a0(u
′) for which b0(u

′) = u with a longer

arc a0(u
′) for which b0(u

′) = b0(u). We can similarly replace every such 1-arc. If the BDD

represents an instance of the independent set problem, a single outgoing arc must be a

0-arc, which means that all nodes with single outgoing arcs can be removed. Every node

in the resulting BDD has exactly two outgoing arcs.

To represent the objective function in the BDD, let each 1-arc a1(u) have length equal

to the weight wℓ(u), and each 0-arc length 0. Then the length of a path from r to t is the

weight of the independent set it represents. The weighted independent set problem becomes

the problem of finding a longest path in a BDD. If for all vertices vj weight wj = 1, the
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four longest paths in the BDD of Fig. 1(a) have length 2, corresponding to the maximum

independent sets {v1, v3}, {v1, v5}, {v2, v4}, and {v4, v6}.

Any binary optimization problem with an additively separable objective function∑
j fj(xj) can be similarly represented as a longest path problem on a BDD. Zero-

suppressing long edges may be used if fj(0) = 0 and fj(1)≥ 0 for each j. This condition

is met by any independent set problem with nonnegative weights. It can be met by any

binary problem if each fj(xj) is replaced with f̄j(x̄j), where f̄j(0) = 0 and

f̄j(1) = fj(1)− fj(0) and x̄j = xj, if fj(1)≥ fj(0)

f̄j(1) = fj(0)− fj(1) and x̄j = 1−xj, otherwise.

In addition, recent work by Hooker (to appear) shows how nonseparable objective functions

may be represented by BDDs.

5. Exact and Relaxed BDDs

If Sol(B) is equal to the feasible set of an optimization problem, we will say that B is an

exact BDD for the problem. If Sol(B) is a superset of the feasible set, B is a relaxed BDD

for the problem. We will construct limited-width relaxed BDDs by requiring ω(B) to be at

most some pre-set maximum width W .

Figure 1(c) shows a relaxed BDD B′ of width 1 for the independent set problem instance

of Fig. 1(b). B′ represents 21 vertex sets, including the 10 independent sets. The length

of a longest path in B′ is therefore an upper bound on the optimal value of the original

problem instance. If, again, for all vertices vj weight wj = 1, the longest path length is 3,

which provides an upper bound on the maximum cardinality 2 of an independent set.

6. Exact BDD Compilation

We now describe an algorithm that builds an exact reduced BDD for the independent

set problem. Similar algorithms can be designed for any optimization problem on binary

variables by associating a suitable state with each node (Hoda et al. 2010). Choosing the

state variable can be viewed as analogous to formulating a model for the LP relaxation,

because it allows the BDD to reflect the problem at hand.

Starting with the root r, the procedure constructs the BDD B = (U,A) layer by layer,

selecting a graph vertex for each layer and associating a state with each node. We define

the state as follows. Using a slight abuse of notation, let Sol(B) be the set of independent
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sets represented by B (rather than the corresponding set of tuples x). Thus, in particular,

Sol(Bru) is the set of independent sets defined by paths from r to u. Let the neighborhood

N(T ) of a vertex set T be the set of vertices adjacent to vertices in T , where by convention

T ⊆N(T ). The state s(u) of node u is the set of vertices that can be added to any of the

independent sets defined by paths from r to u. Thus

s(u) = {vℓ(u), . . . , vn} \
∪

T∈Sol(Bru)

N(T ).

In an exact BDD, all paths to a given node u define partial assignments to x that have

the same feasible completions. So s(u) = {vℓ(u), . . . , vn} \ N(T ) for any T ∈ Sol(Bru). In

addition, no two nodes on the same layer of an exact reduced BDD have the same feasible

completions. So we have the following:

Lemma 1. An exact BDD for G is reduced if and only if s(u) ̸= s(u′) for any two nodes

u,u′ on the same layer of the BDD.

The exact BDD compilation is stated in Algorithm 1. We begin by creating the root r

of B, which has state s(r) = V because every vertex in V is part of some independent set.

We then add r to a pool P of nodes that have not yet been placed on some layer. Each

node u∈ P is stored along with its state s(u) and the arcs that terminate at u.

To create layer Lj, we first select the j-th vertex vj by means of a function select

(step 4), which can follow a predefined order or select vertices dynamically. We let Lj

contain the nodes u∈ P for which vj ∈ s(u). These are the only nodes in P that will have

both outgoing arcs a0(u) and a1(u). All of the remaining nodes in P would have only an

outgoing 0-arc if placed on this layer and can therefore be skipped. The nodes in Lj are

removed from P , as we need only process them once.

For each node u in Lj, we create outgoing arcs a0(u) and a1(u) as follows. Node b0(u)

(i.e., the node at the opposite end of a0(u)) has state s0 = s(u)\{vj}, and node b1(u) has

state s1 = s(u)\N({vj}). To ensure that the BDD is reduced, we check whether s0 = s(u′)

for some node u′ ∈ P , and if so let b0(u) = u′. Otherwise, we create node u0 with s(u0) = s0,

let b0(u) = u0, and insert u0 into P . If s0 = ∅, u0 is the terminal node t. Arc a1(u) is treated

similarly. After the last iteration, P will contain exactly one node with state ∅, and it

becomes the terminal node t of B.

We now show this algorithm returns the exact BDD.
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Algorithm 1 Exact BDD Compilation

1: Create node r with s(r) = V

2: Let P = {r} and R= V

3: for j = 1 to n do

4: vj = select(R,P )

5: R←R\{vj}

6: Lj = {u∈ P : vj ∈ s(u)}

7: P ← P\Lj

8: for all u∈Lj do

9: s0 := s(u)\{vj}, s1 := s(u)\N(vj)

10: if ∃u′ ∈ P with s(u′) = s0 then

11: a0(u) = (u,u′)

12: else

13: create node u0 with s(u0) = s0 (u0 = t if s0 = ∅)

14: a0(u) = (u,u0)

15: P ← P ∪{u0}

16: if ∃u′ ∈ P with s(u′) = s1 then

17: a1(u) = (u,u′)

18: else

19: create node u1 with s(u1) = s1 (u1 = t if s0 = ∅)

20: a1(u) = (u,u1)

21: P ← P ∪{u1}

22: Let t be the remaining node in P and set Ln+1 = {t}

Theorem 1. For any graph G= (V,E), Algorithm 1 generates a reduced exact BDD for

the independent set problem on G.

Proof. Let Ind(G) be the collection of independent sets of G. We wish to show that if B

is the BDD created by Algorithm 1, Sol(B) = Ind(G). We proceed by induction on n= |V |.

First, suppose n= 1, and let G consist of a single vertex v. B consists of two nodes, r

and t, and two arcs a0(r) and a1(r), both directed from r to t. Therefore, Sol(B) = {∅, v}=

Ind(G). Moreover, this BDD is trivially reduced.
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For the induction hypothesis, suppose that Algorithm 1 creates a reduced exact BDD

for any graph on fewer than n (≥ 2) vertices. Let G be a graph on n vertices. Suppose the

select function in Step 4 returns vertices in the order v1, . . . , vn. Let G0 = (V0,E0) be the

subgraph of G induced by vertex set V \{v1}, and G1 = (V1,E1) the subgraph induced by

V \N(v1). Then Ind(G) = Ind(G0) ∪ {T ∪ {v1} | T ∈ Ind(G1)}, since each independent set

either excludes v1 (whereupon it appears in Ind(G0)) or includes v1 (whereupon it appears

as the union of {v1} with a set in Ind(G1)).

Let B be the BDD returned by the algorithm for G. By construction, s(b0(r)) = V0 and

s(b1(r)) = V1. Let B0 be the BDD that the algorithm creates for G0, and similarly for B1.

We observe as follows that B0 =Bb0(r)t and B1 =Bb1(r)t. The root r0 of B0 has s(r0) = V0,

the same state as node b0(r) in B. But the successor nodes created by the algorithm for r0

and b0(r) depend entirely on the state and are therefore identical in B0 and B, respectively.

Moreover, the states of the successor nodes depend entirely on the state of the parent and

which branch is taken. Thus the successor nodes have the same states in B0 as in B. If we

apply this reasoning recursively, we obtain B0 = Bb0(r)t. A parallel argument shows that

B1 =Bb1(r)t. Now

Sol(B) = Sol(Bb0(r)t)∪{T ∪{v1} | T ∈ Sol(Bb1(r)t)}

= Sol(B0)∪{T ∪{v1} | T ∈ Sol(B1)}

= Ind(G0)∪{T ∪{v1} | T ∈ Ind(G1)}

= Ind(G)

as claimed, where the third equation is due to the inductive hypothesis. Furthermore, since

all nodes with the same state are merged, Lemma 1 implies that B is reduced. �

To analyze the time complexity of Algorithm 1, we assume that the select function

(Step 4) is “polynomial” in the sense that its running time is at worst proportional to |V |

or the number of BDD nodes created so far, whichever is greater.

Lemma 2. If the select function is polynomial, then the time complexity of Algorithm 1

is polynomial in the size of the reduced exact BDD B = (U,A) constructed by the algorithm.

Proof. We observe that an arc of B is never rechecked again once it was created in one

of the Steps 11, 14, 17, or 20. Hence, the complexity of the algorithm is dominated by

the select function or the constructive operations required when creating the out-arcs of
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a node removed from the pool P . The select function is clearly polynomial in |U | and
|V |. The constructive operations consist of creating a new state (Step 9) and inserting or

searching in the node pool (Steps 10, 15, 16, and 21), which can be implemented in O(|V |).
Since every node has exactly two outgoing arcs (i.e., |A|= 2|U |), the resulting worst-case

complexity is O(|U | |V |), and the lemma follows. �

7. Relaxed BDDs

Limited-width relaxed BDDs allow us to represent an over-approximation of the family of

independent sets of a graph, and thus obtain an upper bound on the optimal value of the

independent set problem.

We propose a novel top-down compilation method for constructing relaxed BDDs. The

procedure modifies Algorithm 1 by forcing nodes to be merged when a particular layer

exceeds a pre-set maximum width W . This modification is given in Algorithm 2, which is

to be inserted immediately after line 7 in Algorithm 1.

The procedure is as follows. We begin by checking if ωj >W , which indicates that the

width of layer Lj exceeds W . If so, we select a subset M of Lj using function node select

in Step 2, which ensures that 2 ≤ |M | ≤ ωj −W . The set M represents the nodes to be

merged so that the desired width is met. Various heuristics for selecting M are discussed

in Section 8.

The state of the new node that results from the merge, snew, must be such that no

feasible independent set is lost in further iterations of the algorithm. As will be established

by Theorem 2, it suffices to let snew be the union of the states associated with the nodes in

M (Step 3). Once snew is created, we search for some node u′ ∈Lj such that s(u′) = snew. If

u′ exists, then by Lemma 1 we are only required to direct the incoming arcs of the nodes in

M to u′, as presented in Algorithm 3. Otherwise, we create a new node û with s(û) = snew

and add it to Lj.

In each iteration of the while loop in Algorithm 2, we decrease the size of Lj by at least

|M | − 1. Thus, after at most ωj −W iterations, the layer Lj will have width no greater

than W . The modified Algorithm 1 hence yields a limited-width W BDD, i.e. ω(B)≤W .

The correctness of Algorithm 2 is proved by showing that every r-t path of the exact

BDD remains after merging operations.

Theorem 2. For any graph G = (V,E), Algorithm 1 modified by adding Algorithm 2

after line 7 generates a relaxed BDD.
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Algorithm 2 Node merger for obtaining a relaxed BDD.

Insert immediately after line 7 of Algorithm 1.

1: while ωj >W do

2: M := node select(Lj) // where 2≤ |M | ≤ ωj −W

3: snew :=
∪

u∈M s(u)

4: Lj←Lj\M

5: if ∃u′ ∈Lj with s(u′) = snew then

6: merge(M,u′)

7: else

8: Create node û with s(û) = snew

9: merge(M, û)

10: Lj =Lj ∪{û}

Algorithm 3 merge(M,u′)

1: for all u∈M do

2: for all arcs a0(w) with b0(w) = u do

3: b0(w)← u′

4: for all arcs a1(w) with b1(w) = u do

5: b1(w)← u′

Proof. We will use the notation Bu for the BDD consisting of all r–t paths in B that

pass through u. Thus

Sol(Bu) = {V1 ∪V2 | V1 ∈ Sol(Bru), V2 ∈ Sol(But)} (1)

It suffices to show that each iteration of the while-loop yields a relaxed BDD if it begins

with a relaxed BDD. Thus we show that if B is a relaxed (or exact) BDD, then the BDD B̂

that results from merging the nodes in M satisfies Sol(B)⊆ Sol(B̂). Here M is any proper

subset of Lj for an arbitrary j ∈ {2, . . . , n− 1}.

LetM = {u1, . . . , uk} be the nodes to be merged into û. Also, let B̄ be the BDD consisting

of all r–t paths in B that do not include any of the nodes ui. Then

Sol(B) = Sol(B̄)∪
k∪

i=1

Sol(Bui
)



Bergman et al.: Optimization Bounds from Binary Decision Diagrams
12 INFORMS Journal on Computing

The merge procedure has no effect on Sol(B̄). Hence it remains to show that

k∪
i=1

Sol(Bui
)⊆ Sol(B̂û)

But we can write

k∪
i=1

Sol(Bui
) =

k∪
i=1

{V1 ∪V2 | V1 ∈ Sol(Brui
), V2 ∈ Sol(Buit)}

=

{
V1 ∪V2

∣∣∣∣∣ V1 ∈
k∪

i=1

Sol(Brui
), V2 ∈

k∪
i=1

Sol(Buit)

}

=

{
V1 ∪V2

∣∣∣∣∣ V1 ∈ Sol(B̂rû), V2 ∈
k∪

i=1

Sol(Buit)

}

⊆
{
V1 ∪V2

∣∣∣ V1 ∈ Sol(B̂rû), V2 ∈ Sol(B̂ût)
}

= Sol(B̂û)

The first and last equations are due to (1). The third equation is due to
∪

i Sol(Brui
) =

Sol(B̂rû), which follows from the fact that û receives precisely the paths received by the

uis before the merge. The fourth line is due to
∪

i Sol(Buit)⊆ Sol(B̂ût). This follows from

the facts that (a) Sol(Buit) contains the independent sets in the subgraph of G induced by

s(ui); (b) Sol(B̂ût) contains the independent sets in the subgraph induced by s(û); and (c)

s(ui)⊆ s(û) for all i. �

The time complexity of Algorithm 2 is highly dependent on the node select function

and on the number of nodes to be merged. Once a subset M of nodes has been chosen,

taking the union of the states (Step 3) has a time complexity of O(|M ||V |), and Algorithm 3

has a worst-case time complexity of O(W |M |) by supposing that every node in M is

adjacent to as many as W nodes located in previous layers. Hence, if k is the number

of nodes to be merged, the complexity of Algorithm 2 is O(H(k) + |M ||V |+W |M |) per

iteration of the while loop in Step 1, where H(k) is the complexity of the node selection

heuristic (node select) for a given k. The number of iterations depends on the size of

the selected node set. For example, if |M | is always 2, then at most W − k iterations

are required (if none of the newly defined states appeared in Lj previously). The time

complexity for the complete relaxation procedure is given by the following lemma.
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Lemma 3. Let S be the time complexity of selecting the next variable (select function

in Step 4 of Algorithm 1), and let R(k) be the time complexity of Algorithm 2. The worst-

case time complexity of Algorithm 1 modified with the procedure in Algorithm 2 is given by

O(n(S+R(nW )+W |V |)).

Proof. If k nodes are removed from the pool in Step 6 of Algorithm 1, then the merging

procedure in Algorithm 2 ensures that at most 2min{k,W} new nodes are added back to

the pool. Thus, at each iteration the pool can be increased by at most W nodes. Since n

iterations in the worst case are required for the complete compilation, the pool can have

at most nW nodes.

Suppose now nW nodes are removed from the pool (Step 6 of Algorithm 1) at a particular

iteration. These nodes are first merged so that the maximum widthW is met (Algorithm 2),

and then new nodes or arcs are created according to the result of the merge. The time

complexity for the first operation is R(nW ), which yields a new layer with at most W

nodes. For the second operation, we observe as in Lemma 2 that creating a new state or

searching in the pool size can be implemented in time O(|V |); hence, the second operation

has a worst-case time complexity of O(W |V |).
This implies that the time required per iteration is O(S +R(nW ) +W |V |), yielding a

time complexity of O(n(S+R(nW )+W |V |)) for the modified procedure. �

8. Merging Heuristics

The selection of nodes to merge in a layer that exceeds the maximum allotted width W

is critical for the construction of relaxation BDDs. Different selections may yield dramatic

differences on the obtained upper bounds on the optimal value, since the merging procedure

adds paths corresponding to infeasible solutions to the BDD.

In this section we present a number of possible heuristics for selecting nodes. This refers

to how the subsets M are chosen on line 2 in Algorithm 2. The heuristics we test are

described below.

random: Randomly select a subset M of size |Lj| −W +1 from Lj. This may be used a

stand-alone heuristic or combined with any of the following heuristics for the purpose of

generating several relaxations.

minLP: Sort nodes in Lj in increasing order of the longest path value up to those nodes

and merge the first |Lj| −W + 1 nodes. This is based on the idea that infeasibility is
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introduced into the BDD only when nodes are merged. By selecting nodes with the smallest

longest path, we lose information in parts of the BDD that are unlikely to participate in

the optimal solution.

minSize: Sort nodes in Lj in decreasing order of their corresponding state sizes and merge

the first 2 nodes until |Lj| ≤W . This heuristic merges nodes that have the largest number

of vertices in their associated states. Because larger vertex sets are likely to have more

vertices in common, the heuristic tends to merge nodes that represent similar regions of

the solution space.

9. Variable Ordering

The ordering of the vertices plays an important role in not only the size of exact BDDs, but

also in the bound obtained by relaxed BDDs. It is well known that finding orderings that

minimize the size of BDDs (or even improving on a given ordering) is NP-hard (Ebendt

et al. 2003, Bollig and Wegener 1996). We found that the ordering of the vertices is the

single most important parameter in creating small width exact BDDs and in proving tight

bounds via relaxed BDDs.

Different orderings can yield exact BDDs with dramatically different widths. For exam-

ple, Figure 2a shows a path on 6 vertices with two different orderings given by x1, . . . , x6

and y1, . . . , y6. In Figure 2b we see that the vertex ordering x1, . . . , x6 yields an exact BDD

with width 1, while in Figure 2c the vertex ordering y1, . . . , y6 yields an exact BDD with

width 4. This last example can be extended to a path with 2n vertices, yielding a BDD

with a width of 2n−1, while ordering the vertices according to the order that they lie on

the paths yields a BDD of width 1.

In the remainder of this section we describe classes of graphs for which an appropriate

ordering of the vertices leads to a bound on the width of the exact BDD. In addition, we

provide a set of orderings based on maximal path decompositions that yield exact reduced

BDDs in which the width of layer Lj is bounded by the (j+1)-st Fibonacci number for any

graph. Based on this analysis, we describe various heuristic orderings for reduced BDDs,

on the assumption that an ordering that results in a small-width exact reduced BDD also

results in a relaxed BDD that yields a strong bound on the objective function.
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(a) Path with two orderings
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Figure 2 Path with two different variable orderings.

9.1 Exact BDD Orderings

Here we present orderings of vertices for interval graphs, trees, and general graphs for

which we can bound the width, and therefore the size, of the exact reduced BDD.

We first consider interval graphs; that is, graphs that are isomorphic to the intersection

graph of a multiset of intervals on the real line. Such graphs have vertex orderings v1, . . . vn

for which each vertex vi is adjacent to the set of vertices vai, vai+1, . . . vi−1, vi+1, . . . , vbi for

some ai, bi. We call such an ordering an interval ordering for G. Note that paths and cliques,

for example, are contained in this class of graphs.

Theorem 3. For any interval graph, an interval ordering v1, . . . , vn yields an exact

reduced BDD with width 1.

Proof. Let Tk = {vk, . . . , vn}. We first show by induction that for any interval ordering

v1, . . . , vn, there is a k such that s(u) = Vk for for all u∈ P throughout the entire execution

of Algorithm 1.

At the start of the algorithm, P = ∅,L1 = {r} with s(r) = T1. Starting from r, we have

s0 = s(r)\{v1}= T2, and s1 = s(r)\N(v1) = Tb1+1. Therefore, at the end of iteration j = 1,

P contains two nodes with states T2 and Tb1+1.

Now fix an arbitrary j < n and assume for the induction hypothesis that, at the start

of iteration j, each node u ∈ P has s(u) = Tk. Note that k ≥ j, since at each iteration we

always eliminate vj for each state (if it appears). Then |Lj|= 1, because there can be at
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most one node u′ ∈ P with vj ∈ s(u′), and the only Tk with k ≥ j that contains vj is Tj.

Starting from u′, we have s0 = Vj \ {vj}= Tj+1 and s1 = Vj \N(vj) = Tbj+1. We therefore

add at most two nodes to P at the end of iteration j, each with a state of form Tk for some

k. This proves the claim.

We conclude that s(u) = Tk for all u ∈ P . For any j, we have |Lj|= 1, because there is

at most one node with vj ∈ s(u). Therefore, ω(B) = 1. �
We now prove a width bound for trees.

Theorem 4. For any tree with n ≥ 2 vertices, there exists an ordering of the vertices

that yields an exact reduced BDD with width at most n/2.

The proof will use a lemma demonstrated by Jordan (1869).

Lemma 4. In any tree there exists a vertex v for which the connected components created

upon deleting v from the tree contain at most n/2 vertices.

Proof of Theorem 4. We proceed by induction on n. For n= 2, any tree is an interval

graph, and by Theorem 3 there exists an ordering of the vertices that yields an exact

reduced BDD with width 1.

For the inductive hypothesis, we suppose that for for any tree T with n′ < n vertices,

there exists an ordering of the vertices in T for which the exact reduced BDD has width at

most n′/2. Let T be any tree with n vertices. Let v be a cut vertex satisfying the conditions

of Lemma 4. Each connected component Ti = (Vi,Ei), i= 1, . . . , k, created upon deleting

v from T is a tree. By induction, for each i, there is an ordering of the vertices in Vi for

which the exact reduced BDD for Ti has width at most |Vi|
2
≤ n

4
. Let vi1, . . . , v

i
|Vi| be such an

ordering and Bi = (Ui,Ai) be the exact reduced BDD for Ti with this ordering.

Consider the ordering v11, . . . , v
1
|V1|, v

2
1, . . . , v

k
|Vk|, v of the vertices in T ; i.e., we order the

vertices by the component orderings that yield an exact reduced BDD with width at most

n
4
, followed by the cut vertex v. We now show that using this ordering, the exact reduced

BDD B = (U,A) for T has width at most 2 · n
4
= n

2
, finishing the proof.

Fix j,1≤ j ≤ n− 1, and let viℓ be the jth vertex in the ordering for T . We claim that

using this ordering, for each vertex u∈Lj of B, there exists a w ∈Li
ℓ, the ℓth layer of Bi,

for which

s(u) =

s(w)
∪
(Vi+1 ∪ · · · ∪Vk)

s(w)
∪
(Vi+1 ∪ · · · ∪Vk) \ {v}.
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Consider the BDD Bru. For every set W ∈ Sol(Bru) we have that viℓ ∈ s(u) and

s(u) = (vj ∪ vj+1 ∪ · · · ∪ vn) \N(W )

=
({

viℓ ∪ viℓ+1 ∪ · · · ∪ vi|Vi|

}
∪
{
V i+1 ∪ · · · ∪V k

})
\N(W )

=
({

viℓ ∪ viℓ+1 ∪ · · · ∪ vi|Vi|

}
\N(W )

)
∪
{
V i+1 ∪ · · · ∪V k

}
,

where the last equality follows because the nodes in W are not adjacent to any vertex in

the remaining components.

Now, consider the set W [V i] =W ∩ V i. This must be an independent set in the graph

T [V i], the graph induced by vertex set V i. In addition, viℓ ∈ V i \N(W [V i]) is in T [V i]

because this vertex also appears in s(u). Therefore, there is a node w ∈ Li
ℓ with state

s(w) =
{
viℓ ∪ viℓ+1 ∪ · · · ∪ vi|Vi|

}
\N(W [V i]). In the entire graph T , N(W ) contains exactly

the vertices in T [V i] that are in N(W [V i]) and possibly vertex v, because v is the only

vertex, besides those vertices in V i, that can be adjacent to any vertex in V i, as desired.

�
Finally, we prove a bound for general graphs.

Theorem 5. Given any graph, there exists an ordering of the vertices that yields an

exact reduced BDD B = (U,A) with width equal to at most the jth Fibonaci number Fibj+1.

Proof. Given graph G = (V,E), we define a maximal path decomposion ordering of V

as an ordered partition of the vertex set V = V 1 ∪ · · · ∪ V k together with an ordering

vi1, . . . , v
i
|V i| of the vertices in each partition V i for which(

vij, v
i
j+1

)
∈E for i= 1, . . . , k, j = 1, . . . , |V k| − 1

N
(
vi|V i|

)
⊆ V 1 ∪ · · · ∪V i for i= 1, . . . , k.

Thus each partition is covered by a path whose last vertex is independent of all vertices in

the remaining partitions.

We show that for any maximal path decomposition ordering, the exact reduced BDD B

will have ωj ≤Fibj+1. Let Pj be the pool of nodes in Algorithm 1 before line 4 in iteration

j. We will show that |Pj| ≤Fibj+1, which implies that ωj = |Lj| ≤ |Pj| ≤Fibj+1, as desired.

We first consider the case with k = 1; i.e., the graph contains a Hamiltonian path. Let

v1, . . . , vn be a Hamiltonian path in G and the maximal path decomposition ordering we

use to create an exact reduced BDD for G. We proceed by induction.
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We first note that P1 = {r}, so that |P1| = 1. Now L1 = {r}, and with u = r in the

algorithm, we have s0 = T2 and s1 = T2 \N(v1). Since (v1, v2) ∈ E, these two states are

different, so that P2 = {u2
1, u

2
2} with s(u2

1) = T2 and s(u2
2) = T2 \N(v1). However, v2 /∈ s(u2

2)

because (v1, v2)∈E, so that L2 = {u2
1}. Node u2

1 can result in the addition of at most two

more nodes to P2 in when creating P3, one with state s0 and one with state s1. Therefore,

|P3| ≤ 3≤ |P2|+ |P1|= 2+1= 3=Fib4, as desired.

For the inductive hypothesis, suppose |Pj| ≤Fibj+1 for j ≤ j′. We seek to show that

|Pj′+1| ≤Fibj′+2 (2)

Consider the partition of the nodes in Pj′ into X ∪Y , where a node u∈ Pj′ is in X if there

exists a node u′ ∈Lj′−1 for which b1(u
′) = u; i.e., there is a 1-arc ending at u directed out

of a node in Lj′−1. All other nodes are in Y . We make three observations.

1. |Y | ≤ |Pj′−1|

The nodes in Pj′−1 can be partitioned into Lj′−1 ∪ L̄j′−1. All nodes in Pj′ either arise

from a 0-arc or 1-arc directed out of Lj′−1 or are copies of the nodes in L̄j′−1 (these may

be combined because their associated states may coincide). Only the nodes arising

from 1-arcs directed out of nodes in Lj′−1 are in X, and the remaining nodes are in Y .

There are at most |Lj′−1|+ |L̄j′−1| nodes in Y , including at most |Lj′−1| from 0-arcs and

at most |L̄j′−1| copies of nodes from Pj′−1. Therefore, |Y | ≤ |Lj′−1|+ |L̄j′−1|= |Pj′−1|.

2. |Lj′| ≤ |Y |

We have that Lj′ ⊆ Pj′. However, any node u ∈ X must have vj′ /∈ s(u) because

(vj′−1, vj′)∈E. Therefore Lj′ ⊆ Pj′ and |Lj′| ≤ |Y |.

3. |Pj′+1| ≤ 2|Lj′|+(|Pj′ | − |Lj′|) = |Pj′|+ |Lj′|

As in Pj′ , the nodes in Pj′+1 arise from a 0-arc or 1-arc directed out of Lj′ or are

copies of the nodes in L̄j′ (these may be combined because their associated states may

coincide). So each node in Lj′ gives rise to at most two nodes that are inserted Pj′+1,

and each node in L̄j′ contributes at most one node to Pj′+1. The inequality follows.

Putting all three observations together, we get

|Pj′+1| ≤ |Pj′ |+ |Lj′| ≤ |Pj′ |+ |Y | ≤ |Pj′|+ |Pj′−1|,

We therefore have by induction that |Pj′+1| ≤ Fibj′+1 + Fibj′ = Fibj′+2, proving (2) for

k= 1.
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Now let k > 1. From above, we know that
∣∣∣Pv1

|V 1|

∣∣∣≤Fib|V 1|+1. We first show that∣∣∣Pv1
|V 1|+1

∣∣∣≤ ∣∣∣Pv1
|V 1|

∣∣∣ (3)

Take any node u ∈ Pv1
|V 1|

. If v1|V 1| /∈ s(u) then this node is reproduced in Pv1
|V 1|+1

. If v1|V 1| ∈

s(u), then s0 = s1. This is because v1|V 1| is independent of all nodes in the remainder of the

graph. Therefore, eliminating v1|V 1| or eliminating v1|V 1|∪N
(
v1|V 1|

)
from s(u) corresponds to

the the set of vertices in G. This may coincide with the state of some node that originally

did not have v1|V 1| in its state, but in either case at most one new node is added to Pv1
|V 1|+1

.

We therefore have (3). This in turn implies that
∣∣∣Pv1

|V 1|+1

∣∣∣≤ ∣∣∣Pv1
|V 1|

∣∣∣≤Fib|V 1|+1 ≤Fib|V 1|+2,

as desired. In addition, since consecutive Pj’s differ in size by at most a factor of 2,∣∣∣Pv1
|V 1|

+2

∣∣∣≤ 2
∣∣∣Pv1

|V 1|
+1

∣∣∣≤ 2
∣∣∣Pv1

|V 1|

∣∣∣≤ 2Fib|V 1|+1 ≤Fib|V 1|+1,

as desired.

Now, since the vertices in indices v1|V 1| +1 and v1|V 1|+2 are v21 and v22, respectively, and

their corresponding Pj’s are bounded by the desired Fibonacci numbers, we can apply the

reasoning from the proof of k = 1 to bound the sizes of the Pj’s until the end of set V 2,

and by induction bound the remaining Pj’s. �

9.2 Relaxed BDD Orderings

The orderings in Section 9.1 inspire variable ordering heuristics for generating relaxed

BDD. We outline a few that are tested below. Note that the first two orderings are dynamic,

in that we select the j-th vertex in the order based on the first j − 1 vertices chosen and

the partially constructed BDD. In contrast, the last ordering is static, in that the ordering

is determined prior to building the BDD.

random: Randomly select some vertex that has yet to be chosen. This may be used a

stand-alone heuristic or combined with any of the following heuristics for the purpose of

generating several relaxations.

minState: Select the vertex vj appearing in the fewest number of states in P . This min-

imizes the size of Lj, given the previous selection of vertices v1, . . . , vj−1, since the only

nodes in P that will appear in Lj are exactly those nodes containing vj in their associated

state. Doing so limits the number of merging operations that need to be performed.
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MPD: As proved above, a maximal path decomposition ordering of the vertices bounds

the exact BDD width by the Fibonacci numbers, which grow slower than 2j (the worst

case). Hence this ordering limits the width of all layers, therefore limiting the number of

merging operations necessary to build the BDD.

random: Randomly select some vertex that has yet to be chosen. We suggest this vertex

selection not only as a stand alone variable ordering heuristic, but also as a heuristic that

may be mixed with any of the following heuristics for the purpose of generating several

relaxations.

minState: Select the next vertex vj as the vertex appearing in the fewest number of

states in P . This selection minimizes the size of Lj, given the previous selection of vertices

v1, . . . , vj−1, since the only nodes in P that will appear in Lj are exactly those nodes

containing vj in their associated state. Doing so limits the number of merging operations

that need to be performed.

MPD: As mentioned above, it was shown in Bergman et al. (2012) that a Maximal Path

Decomposition of the vertices in a graph yields an ordering that bounds the exact BDD

width by the Fibonacci numbers, which grow slower than 2j (the worst case). Hence this

ordering limits the width of all layers, therefore also limiting the number of merging oper-

ations necessary to build the BDD.

10. Computational Experiments

In this section, we assess empirically the quality of bounds provided by a relaxed BDD.

We first investigate the impact of various parameters on the bounds. We then compare our

bounds with those obtained by an LP relaxation of a clique-cover model of the problem,

both with and without cutting planes. We measure the quality of a bound by its ratio with

the optimal value (or best lower bound known if the problem instance is unsolved). Thus

a smaller ratio indicates a better bound.

We test our procedure on two sets of instances. The first set, denoted by random, consists

of 180 randomly generated graphs according to the Erdös-Rényi model G(n,p), in which

each pair of n vertices is joined by an edge with probability p. We fix n= 200 and generate

20 instances for each p∈ {0.1,0.2, . . . ,0.9}. The second set of instances, denoted by dimacs,

is composed by the complement graphs of the well-known DIMACS benchmark for the
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maximum clique problem, obtained from http://cs.hbg.psu.edu/txn131/clique.html.

These graphs have between 100 and 4000 vertices and exhibit various types of structure.

Furthermore, we consider the maximum cardinality optimization problem for our test bed

(i.e., wj = 1 for all vertices vj).

The tests ran on an Intel Xeon E5345 with 8 GB RAM in single core mode. The BDD

method was implemented in C++.

10.1 Merging Heuristics

We tested the three merging heuristics presented in Section 8 on the random instance set.

We set a maximum width of W = 10 and used variable ordering heuristic MPD. Figure 3

displays the resulting bound quality.

We see that among the merging heuristics tested, minLP achieves by far the tightest

bounds. This behavior reflects the fact that infeasibility is introduced only at those nodes

selected to be merged, and it seems better to preserve the nodes with the best bounds as in

minLP. The plot also highlights the importance of using a structured merging heuristic,

because random yielded much weaker bounds than the other techniques tested. In light of

these results, we use minLP as the merging heuristic for the remainder of the experiments.

10.2 Variable Ordering Heuristics

We tested the three variable ordering heuristics presented in Section 9 on the random

instance set. The results (Fig. 4) indicate that the MinState ordering is the best of the

three. This is particularly true for sparse graphs, because the number of possible node

states generated by dense graphs is relatively small. We therefore use MinState ordering

for the remainder of the experiments.

10.3 Bounds vs. Maximum BDD Width

The purpose of this experiment is to analyze the impact of maximum BDD width on the

resulting bound. Figure 5 presents the results for instance p-hat 300-1 in the dimacs set.

The results are similar for other instances. The maximum width ranges from W = 5 to the

value necessary to obtain the optimal value of 8. The bound approaches the optimal value

almost monotonically as W increases, but the convergence is superexponential in W .

10.4 Comparison with LP Relaxation

We now address the key question of how BDD bounds compare with bounds produced

by a traditional LP relaxation and cutting planes. To obtain a tight initial LP relaxation,
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Figure 3 Bound quality vs. graph density for each merging heuristic, using the random instance set with MPD

ordering and maximum BDD width 10. Each data point represents an average over 20 problem instances.

The vertical line segments indicate the range obtained in 5 trials of the random heuristic.
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Figure 4 Bound quality vs. graph density for each variable ordering heuristic, using merge heuristic minLP and

otherwise the same experimental setup as Fig. 3.
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Figure 5 Relaxation bound vs. maximum BDD width for dimacs instance p-hat 300-1.

we used a clique cover model (Grötschel et al. 1993) of the maximum independent set

problem, which requires computing a clique cover before the model can be formulated. We

then augmented the LP relaxation with cutting planes generated at the root node by the

CPLEX MILP solver.

Given a collection C ⊆ 2V of cliques whose union covers all the edges of the graph G, the

clique cover formulation is

max
∑
v∈V

xv

s.t.
∑
v∈S

xv ≤ 1, for all S ∈ C

xv ∈ {0,1}.

The clique cover C was computed using a greedy procedure as follows. Starting with C = ∅,

let clique S consist of a single vertex v with the highest positive degree in G. Add to S the

vertex with highest degree in G \ S that is adjacent to all vertices in S, and repeat until

no more additions are possible. At this point, add S to C, remove from G all the edges of

the clique induced by S, update the vertex degrees, and repeat the overall procedure until

G has no more edges.

We solved the LP relaxation with Ilog CPLEX 12.4. We used the interior point (barrier)

option because we found it to be up to 10 times faster than simplex on the larger LP
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instances. To generate cutting planes, we ran the CPLEX MIP solver with instructions

to process the root node only. We turned off presolve, because no presolve is used for the

BDD method, and it had only a marginal effect on the results in any case. Default settings

were used for cutting plane generation.

The results for random instances appear in Table 1 and are plotted in Fig. 6. The table

displays geometric means, rather than averages, to reduce the effect of outliers. It uses

shifted geometric means1 for computation times. The computation times for LP include

the time necessary to compute the clique cover, which is much less than the time required

to solve the initial LP for random instances, and about the same as the LP solution time

for dimacs instances.

The results show that BDDs with width as small as 100 provide bounds that, after taking

means, are superior to LP bounds for all graph densities except 0.1. The computation time

required is about the same overall—more for sparse instances, less for dense instances. The

scatterplot in Fig. 8 shows how the bounds compare on individual instances. The fact that

almost all points lie below the diagonal indicates the superior quality of BDD bounds.

More important, however, is the comparison with the tighter bounds obtained by an

LP with cutting planes, because this is the approach used in practice. BDDs of width 100

yield better bounds overall than even an LP with cuts, and they do so in less than 1%

of the time. However, the mean bounds are worse for the two sparsest instance classes.

By increasing the BDD width to 1000, the mean BDD bounds become superior for all

densities, and they are still obtained in 5% as much time overall. Increasing the width to

10,000 yields bounds that are superior for every instance, as revealed by the scatter plot

in Fig. 10. The time required is about a third as much as LP overall, but somewhat more

for sparse instances.

The results for dimacs instances appear in Table 2 and Fig. 7, with scatter plots in

Figs. 11–13. The instances are grouped into five density classes, with the first class corre-

sponding to densities in the interval [0,0.2), the second class to the interval [0.2,0.4), and

so forth. The table shows the average density of each class. Table 3 shows detailed results

for each instance.

1 The shifted geometric mean of v1, . . . , vn is g−α, where g is the geometric mean of v1+α, . . . , vn+α. We used α= 1
second.
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Figure 6 Bound quality vs. graph density for random instances, showing results for LP only, LP plus cutting

planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is the geometric mean

of 20 instances.
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Figure 7 Bound quality vs. graph density for dimacs instances, showing results for LP only, LP plus cutting

planes, and BDDs with maximum width 100, 1000, and 10000. Each data point is the geometric mean

of instances in a density interval of width 0.2.
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Figure 8 Bound quality for an LP relaxation (no

cuts) vs. width 100 BDDs for ran-

dom instances. Each data point repre-

sents one instance. The time required

is about the same overall for the two

types of bounds.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  1.2  1.4  1.6  1.8  2  2.2

B
D

D
 1

00
0 

bo
un

d 
/ o

pt
im

um

LP+cuts bound / optimum

Figure 9 Bound quality for an LP relaxation with

cuts vs. width 1000 BDDs for ran-

dom instances. The BDD bounds are

obtained in about 5% of the time

required for the LP bounds.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  1.2  1.4  1.6  1.8  2  2.2

B
D

D
 1

00
00

 b
ou

nd
 / 

op
tim

um

LP+cuts bound / optimum

Figure 10 Bound quality for an LP relaxation

with cuts vs. width 10000 BDDs for

random instances. The BDD bounds

are obtained in less time overall than

the LP bounds, but somewhat more

time for sparse instances.
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Figure 11 Bound quality for an LP relaxation

(no cuts) vs. width 100 BDDs for

dimacs instances. The BDD bounds

are obtained in generally less time for

all but the sparsest instances.
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Table 1 Bound quality and computation times for LP and BDD relaxations, using random instances. The

bound quality is the ratio of the bound to the optimal value. The BDD bounds correspond to maximum BDD

widths of 100, 1000, and 10000. Each graph density setting is represented by 20 problem instances.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)
LP relaxation BDD relaxation LP relaxation BDD relaxation

Density LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.1 1.60 1.50 1.64 1.47 1.38 0.02 3.74 0.13 1.11 15.0
0.2 1.96 1.76 1.80 1.55 1.40 0.04 9.83 0.10 0.86 13.8
0.3 2.25 1.93 1.83 1.52 1.40 0.04 7.75 0.08 0.82 11.8
0.4 2.42 2.01 1.75 1.37 1.17 0.05 10.6 0.06 0.73 7.82
0.5 2.59 2.06 1.60 1.23 1.03 0.06 13.6 0.05 0.49 3.88
0.6 2.66 2.04 1.43 1.10 1.00 0.06 15.0 0.04 0.23 0.51
0.7 2.73 1.98 1.28 1.00 1.00 0.07 15.3 0.03 0.07 0.07
0.8 2.63 1.79 1.00 1.00 1.00 0.07 9.40 0.02 0.02 0.02
0.9 2.53 1.61 1.00 1.00 1.00 0.08 4.58 0.01 0.01 0.01

All 2.34 1.84 1.45 1.23 1.13 0.05 9.15 0.06 0.43 2.92

Table 2 Bound quality and computation times for LP and BDD relaxations, using dimacs instances. The

bound quality is the ratio of the bound to the optimal value. The BDD bounds correspond to maximum BDD

widths of 100, 1000, and 10000.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)
Avg. LP relaxation BDD relaxation LP relaxation BDD relaxation

Density Count LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.09 25 1.35 1.23 1.62 1.48 1.41 0.53 6.87 1.22 6.45 55.4
0.29 28 2.07 1.77 1.94 1.63 1.46 0.55 50.2 0.48 3.51 34.3
0.50 13 2.54 2.09 2.16 1.81 1.59 4.63 149 0.99 6.54 43.6
0.72 7 3.66 2.46 1.90 1.40 1.14 2.56 45.1 0.36 2.92 10.4
0.89 5 1.07 1.03 1.00 1.00 1.00 0.81 4.19 0.01 0.01 0.01

All 78 1.88 1.61 1.78 1.54 1.40 1.08 27.7 0.72 4.18 29.7

BDDs of width 100 provide somewhat better bounds than the LP without cuts, except for

the sparsest instances, and the computation time is somewhat less overall. Again, however,

the more important comparison is with LP augmented by cutting planes. BDDs of width

100 are no longer superior, but increasing the width to 1000 yields better mean bounds

than LP for all but the sparsest class of instances. The mean time required is about 15%

that required by LP. Increasing the width to 10,000 yields still better bounds and requires

less time for all but the sparsest instances. However, the mean BDD bound remains worse

for instances with density less than 0.2. We conclude that BDDs are generally faster when

they provide better bounds, and they provide better bounds, in the mean, for all but the

sparsest dimacs instances.
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Table 3 Bound comparison for the dimacs instance set, showing the optimal value (Opt), the number of

vertices (Size), and the edge density (Den). LP times correspond to clique cover generation (Clique), processing

at the root node (CPLEX), and total time. The bound (Bnd) and computation time are shown for each BDD

width. The best bounds are shown in boldface (either LP bound or one or more BDD bounds).

Instance LP with Cutting Planes Relaxed BDD
Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

brock200 1 21 200 0.25 38.51 0 9.13 9.13 36 0.08 31 0.78 28 13.05
brock200 2 12 200 0.50 22.45 0.02 13.56 13.58 17 0.06 14 .45 12 4.09
brock200 3 15 200 0.39 28.20 0.01 11.24 11.25 24 0.06 19 0.70 16 8.31
brock200 4 17 200 0.34 31.54 0.01 9.11 9.12 29 0.08 23 0.81 20 10.92
brock400 1 27 400 0.25 66.10 0.05 164.92 164.97 68 0.34 56 3.34 48 47.51
brock400 2 29 400 0.25 66.47 0.04 178.17 178.21 69 0.34 57 3.34 47 51.44
brock400 3 31 400 0.25 66.35 0.05 164.55 164.60 67 0.34 55 3.24 48 47.29
brock400 4 33 400 0.25 66.28 0.05 160.73 160.78 68 0.35 55 3.32 48 47.82
brock800 1 23 800 0.35 96.42 0.73 1814.64 1815.37 89 1.04 67 13.17 55 168.72
brock800 2 24 800 0.35 97.24 0.73 1824.55 1825.28 88 1.02 69 13.11 55 180.45
brock800 3 25 800 0.35 95.98 0.72 2587.85 2588.57 87 1.01 68 12.93 55 209.72
brock800 4 26 800 0.35 96.33 0.73 1850.77 1851.50 88 1.02 67 12.91 56 221.07
C1000.9 68 1000 0.10 219.934 0.2 1204.41 1204.61 265 3.40 235 28.93 219 314.99
C125.9 34 125 0.10 41.29 0.00 1.51 1.51 45 0.05 41 0.43 39 5.73
C2000.5 16 2000 0.50 154.78 35.78 3601.41 3637.19 125 4.66 80 67.71 59 1207.69
C2000.9 77 2000 0.10 398.924 2.88 3811.94 3814.82 503 13.56 442 118.00 397 1089.96
C250.9 44 250 0.10 71.53 0.00 6.84 6.84 80 0.21 75 1.80 67 23.69
C4000.5 18 4000 0.50 295.67 631.09 3601.22 4232.31 234 18.73 147 195.05 107 3348.65
C500.9 57 500 0.10 124.21 0.03 64.56 64.59 147 0.85 134 7.42 120 84.66
c-fat200-1 12 200 0.92 12.00 0.04 0.95 0.99 12 0.00 12 0.00 12 0.00
c-fat200-2 24 200 0.84 24.00 0.05 0.15 0.2 24 0.00 24 0.00 24 0.00
c-fat200-5 58 200 0.57 61.70 0.07 35.85 35.92 58 0.00 58 0.00 58 0.00
c-fat500-10 126 500 0.63 126.00 1.89 2.80 4.69 126 0.01 126 0.01 126 0.01
c-fat500-1 14 500 0.96 16.00 1.03 27.79 28.82 14 0.02 14 0.01 14 0.01
c-fat500-2 26 500 0.93 26.00 0.81 7.71 8.52 26 0.01 26 0.00 26 0.01
c-fat500-5 64 500 0.81 64.00 1.51 3.05 4.56 64 0.01 64 0.01 64 0.01
gen200 p0.9 44 44 200 0.10 44.00 0.00 0.52 0.52 64 0.14 57 1.17 53 15.94
gen200 p0.9 55 55 200 0.10 55.00 0.00 2.04 2.04 65 0.14 63 1.19 61 15.74
gen400 p0.9 55 55 400 0.10 55.00 0.02 1.97 1.99 110 0.56 99 4.76 92 59.31
gen400 p0.9 65 65 400 0.10 65.00 0.02 3.08 3.1 114 0.55 105 4.74 94 56.99
gen400 p0.9 75 75 400 0.10 75.00 0.02 7.94 7.96 118 0.54 105 4.64 100 59.41
hamming10-2 512 1024 0.01 512.00 0.01 0.22 0.23 549 5.05 540 48.17 542 484.66
hamming10-4 40 1024 0.17 51.20 0.50 305.75 306.25 111 3.10 95 30.93 85 322.94
hamming6-2 32 64 0.10 32.00 0.00 0.00 0.00 32 0.01 32 0.09 32 1.20
hamming6-4 4 64 0.65 5.33 0.00 0.10 0.10 4 0.00 4 0.00 4 0.00
hamming8-2 128 256 0.03 128.00 0.00 0.01 0.01 132 0.26 136 2.45 131 25.70
hamming8-4 16 256 0.36 16.00 0.02 2.54 2.56 24 0.10 18 1.01 16 10.32
johnson16-2-4 8 120 0.24 8.00 0.00 0.00 0.00 12 0.02 8 0.10 8 0.23
johnson32-2-4 16 496 0.12 16.00 0.01 0.00 0.01 33 0.72 29 6.10 29 50.65
johnson8-2-4 4 28 0.44 4.00 0.00 0.00 0.00 4 0.00 4 0.00 4 0.00
johnson8-4-4 14 70 0.23 14.00 0.00 0.00 0.00 14 0.00 14 0.06 14 0.36
keller4 11 171 0.35 15.00 0.00 0.45 0.45 15 0.05 12 0.30 11 2.59
keller5 27 776 0.25 31.00 0.36 39.66 40.02 55 1.53 55 16.96 50 178.04
keller6 59 3361 0.18 63.00 55.94 3601.09 3657.03 194 37.02 152 361.31 136 3856.53
MANN a27 126 378 0.01 132.82 0.00 1.31 1.31 152 0.46 142 3.71 136 41.90
MANN a45 345 1035 0.00 357.97 0.01 1.47 1.48 387 2.83 367 26.73 389 285.05
MANN a81 1100 3321 0.00 1129.57 0.07 11.22 11.29 1263 20.83 1215 254.23 1193 2622.59
MANN a9 16 45 0.07 17.00 0.00 0.01 0.01 18 0.00 16 0.00 16 0.00
p hat1000-1 10 1000 0.76 43.45 5.38 362.91 368.29 33 0.76 20 13.99 14 117.45
p hat1000-2 46 1000 0.51 93.19 3.30 524.82 528.12 118 1.23 103 16.48 91 224.92
p hat1000-3 68 1000 0.26 152.74 1.02 1112.94 1113.96 194 2.20 167 21.96 153 313.71
p hat1500-1 12 1500 0.75 62.83 21.71 1664.41 1686.12 47 2.26 28 35.87 20 453.13
p hat1500-2 65 1500 0.49 138.13 13.42 1955.38 1968.80 187 3.11 155 36.76 140 476.65
p hat1500-3 94 1500 0.25 223.60 4.00 2665.67 2669.67 295 5.14 260 47.90 235 503.55
p hat300-1 8 300 0.76 16.778 0.10 20.74 20.84 12 0.06 9 0.19 8 0.22
p hat300-2 25 300 0.51 34.60 0.06 29.73 29.79 42 0.11 38 1.25 34 11.79
p hat300-3 36 300 0.26 55.49 0.02 25.50 25.52 67 0.20 60 2.15 54 27.61
p hat500-1 9 500 0.75 25.69 0.52 42.29 42.81 19 0.18 13 2.12 9 9.54
p hat500-2 36 500 0.50 54.17 0.30 195.59 195.89 70 0.31 61 4.23 53 51.57
p hat500-3 50 500 0.25 86.03 0.11 289.12 289.23 111 0.55 97 5.97 91 85.50
p hat700-1 11 700 0.75 533.10 1.64 115.55 117.19 24 0.35 15 5.95 12 34.68
p hat700-2 44 700 0.50 71.83 1.00 460.58 461.58 96 0.60 80 8.09 72 82.10
p hat700-3 62 700 0.25 114.36 0.30 646.96 647.26 149 1.08 134 11.32 119 127.37
san1000 15 1000 0.50 16.00 43.14 180.46 223.60 19 1.14 15 15.01 15 99.71
san200 0.7 1 30 200 0.30 30.00 0.02 0.74 0.76 30 0.08 30 0.62 30 7.80
san200 0.7 2 18 200 0.30 18.00 0.02 1.55 1.57 19 0.06 18 0.50 18 6.50
san200 0.9 1 70 200 0.10 70.00 0.00 0.16 0.16 71 0.13 70 1.08 70 12.88
san200 0.9 2 60 200 0.10 60.00 0.00 0.49 0.49 66 0.13 60 1.14 60 14.96
san200 0.9 3 44 200 0.10 44.00 0.00 0.46 0.46 60 0.13 54 1.18 49 15.41
san400 0.5 1 13 400 0.50 13.00 1.09 10.08 11.17 13 0.19 13 1.27 13 5.00
san400 0.7 1 40 400 0.30 40.00 0.33 16.91 17.24 45 0.32 40 2.97 40 33.58
san400 0.7 2 30 400 0.30 30.00 0.31 12.22 12.53 39 0.32 32 3.50 30 38.96
san400 0.7 3 22 400 0.30 22.00 0.28 6.38 6.66 31 0.31 26 3.68 23 41.45
san400 0.9 1 100 400 0.10 100.00 0.02 6.52 6.54 123 0.56 107 4.66 100 57.46
sanr200 0.7 18 200 0.30 34.02 0.01 9.00 9.01 31 0.08 28 0.82 24 11.88
sanr200 0.9 42 200 0.10 59.60 0.00 3.32 3.32 67 0.14 60 1.17 57 15.51
sanr400 0.5 13 400 0.50 39.30 0.13 281.21 281.34 31 0.21 24 4.09 18 35.88
sanr400 0.7 21 400 0.30 60.05 0.06 168.64 168.70 58 0.30 47 3.52 39 51.93



Bergman et al.: Optimization Bounds from Binary Decision Diagrams
INFORMS Journal on Computing 29

 1

 2

 5

 10

 15

 1  2  5  10  15

B
D

D
 1

00
0 

bo
un

d 
/ o

pt
im

um

LP+cuts bound / optimum

Figure 12 Bound quality for an LP relaxation

with cuts vs. width 1000 BDDs for

dimacs instances. The BDD bounds

are obtained in about 15% as much

time overall as the LP bounds.
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Figure 13 Bound quality for an LP relaxation

with cuts vs. width 10000 BDDs for

dimacs instances. The BDD bounds

are generally obtained in less time for

all but the sparsest instances.

11. Conclusions

In this paper we presented a novel method, based on binary decision diagrams (BDDs),

for obtaining bounds on the optimal value of discrete optimization problems. As a test

case, we applied the technique to the maximum independent set problem. We found that

the BDD-based bounding procedure often yields better bounds, in less time, than a state-

of-the-art mixed-integer solver obtains at the root node for a tight integer programming

model.

The performance of both BDD and conventional relaxations is sensitive to the density

of the graph. We found, however, that BDDs yield tighter bounds in less time, taking

the geometric mean, for random instances of all density classes. For a well-known set

of benchmark instances, BDDs provide better mean bounds in less time for all but the

sparsest class of instances (i.e., all but those with density less than 0.2). We obtained these

results using a barrier LP solver that is generally faster than simplex for these instances.

A further advantage of BDD relaxations is that the quality of the bound can be contin-

uously adjusted by controlling the maximum width of the BDD. This allows one to invest

as much or little time as one wishes in improving the quality of the bound. In addition,

BDD-based bounds can be obtained for combinatorial problems that are not formulated
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as mixed integer models. Unlike LP relaxations, BDD relaxations do not presuppose that

the constraints take the form of linear inequalities.

BDD bounds can be rapidly updated during a search procedure, much as the LP can

be reoptimized after branching. This is achieved simply by removing arcs of the BDD that

correspond to excluded values of the branching variable, and recomputing the shortest (or

longest) path. Nonetheless, due to the speed at which BDDs can be constructed, it may be

advantageous to rebuild the BDD from scratch, so as to obtain a relaxation that is suited

to the current subproblem. One may be able to adjust the BDD width to obtain a bound

that is just tight enough to fathom the current node of the search tree, thus saving time.

These remain as research issues.

The above results suggest that BDD-based relaxations may have promise as a general

technique for bounding the optimal value of discrete problems. The BDD algorithms pre-

sented here are relatively simple, compared with the highly developed technology of LP and

mixed-integer solvers, and nonetheless improve the state of the art for at least one problem

class. Future research may yield improvements in BDD-based bounding and extend its

usefulness to a broader range of discrete optimization problems.
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