Decision Diagrams for Constraint Programming

Willem-Jan van Hoeve
Tepper School of Business
Carnegie Mellon University
Overview

• BDDs and MDDs show great promise for CP

• Goals of this short presentation
 – what are MDDs?
 – how are they used in CP?
 – how can they impact the modeling and solving aspects of CP?
Decision Diagrams

Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986].

Main operation: merge isomorphic subtrees of a given binary decision tree.

MDDs are Multi-valued Decision Diagrams (i.e., for discrete variables).

\[
f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2) \lor (x_2 \land x_3)
\]
Example: Exact MDD for a CSP

\begin{align*}
(1) \ x_1 + x_2 + x_3 & \geq 1 \\
(2) \ x_1 + x_4 + x_5 & \geq 1 \\
(3) \ x_2 + x_4 & \geq 1
\end{align*}
Example: Exact MDD for a CSP

(1) $x_1 + x_2 + x_3 \geq 1$
(2) $x_1 + x_4 + x_5 \geq 1$
(3) $x_2 + x_4 \geq 1$
Example: Exact MDD for a CSP

\begin{align*}
(1) & \quad x_1 + x_2 + x_3 \geq 1 \\
(2) & \quad x_1 + x_4 + x_5 \geq 1 \\
(3) & \quad x_2 + x_4 \geq 1
\end{align*}
Example: Exact MDD for a CSP

\[\begin{align*}
(1) & \quad x_1 + x_2 + x_3 \geq 1 \\
(2) & \quad x_1 + x_4 + x_5 \geq 1 \\
(3) & \quad x_2 + x_4 \geq 1
\end{align*} \]
Example: Exact MDD for a CSP

(1) $x_1 + x_2 + x_3 \geq 1$
(2) $x_1 + x_4 + x_5 \geq 1$
(3) $x_2 + x_4 \geq 1$

Each path corresponds to a solution

$(1,0,1,1,0)$
Exact MDDs

- Compact representation of solution space
 - in some case exponential number of solution can be represented in polynomial size
- Allows to quickly query and process solution space
 [Hadzic and Hooker, 2006, 2008], [Gange et al., 2011]

Use in CP:
- Table constraints [Cheng and Yap, 2008], regular constraints
 [Lagerkvist, 2008]
- Set variables [Hawkins et al., 2005]
- Overlapping knapsack constraints [Hadzic et al., 2009]
Approximate MDDs

- Exact MDDs can be of exponential size in general
- We can limit the size of the MDD and still have a meaningful representation [Andersen et al., 2007]

Use in CP:
- Replace domain propagation by MDD propagation
 - each constraint gets to filter and refine the MDD
 - Alldiff, linear constraints, element, among, sequence, unary resource scheduling,... [Andersen et al., 2007], [Hadzic et al., 2008], [Hoda et al., 2010], [v.H., 2011], [Cire and v.H., 2011]
- MDD relaxations for optimization
 - lower and upper bounds [Bergman et al., 2011]
Illustrative Example

\textit{AllEqual}(x_1, x_2, \ldots, x_n), \text{ all } x_i \text{ binary}

\begin{itemize}
 \item Domain representation, size 2^n
 \item MDD representation, size 2
\end{itemize}
• Limited-width MDDs can yield orders of magnitude reductions in search tree size and computation time

[Hoda et al., CP 2010]
Integration into CP systems: Modeling

- MDDs for individual (global) constraints
 - just add MDD propagator, invisible to user

- MDDs as propagation tool
 - propagate MDD between constraints
 - probably most effective on subsets of constraints
 - user could provide information which constraints should be grouped together, and how effort is spent
 - ideally, however, the solver should automatically group constraints together

- Thus, impact on user can be minimal w.r.t. model
Integration into CP systems: Solving

- Most likely, MDD propagation will be used in parallel to domain propagation
 - we need close interaction between MDD representation and domain representation
 - projection of MDD onto variable domains is typically weak

- MDDs for individual constraints
 - CP solving mechanism is almost unchanged

- MDDs as propagation tool
 - maintain and manipulate MDD efficiently during search