
Decision Diagrams for Discrete Optimization

Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

based on joint work with

David Bergman, Andre A. Cire, Sam Hoda, and John N. Hooker

Outline

• Motivation and background

– multi-valued decision diagrams (MDDs)

• Constraint Programming with MDDs

• MDDs as Relaxations

• MDDs as Restrictions

• Conclusions

2

Decision Diagrams

• Binary Decision Diagrams were introduced to compactly

represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• Main operation: merge isomorphic subtrees of a given binary

decision tree

• MDDs are multi-valued decision diagrams (i.e., for discrete

variables) 3

f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3

Brief background

• Original application areas: circuit design, verification

• Usually Reduced Ordered BDDs/MDDs are applied

– fixed variable ordering

– minimal exact representation

• Recent interest from optimization community

– cut generation [Becker et al., 2005]

– 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

• Interesting variant

– approximate MDDs

[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007]

4

Exact MDDs for discrete optimization

5

l lllll l l l ll00l 0 0 l ll0ll l 0 l 0000l 0 0

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

Exact MDDs for discrete optimization

6

l lllll l l l ll00l 0 0 l ll0ll l 0 l 0000l 0

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

Exact MDDs for discrete optimization

7

l lllll l l l lll l llll l l l

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

Exact MDDs for discrete optimization

8

l lllll l l l lll l llll l

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

Exact MDDs for discrete optimization

9

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

1

Each path corresponds

to a solution

(1,0,1,1,0)s

x1

x2

x3

x4

x5

Approximate MDDs

• Exact MDDs can be of exponential size in

general

• Can we limit the size of the MDD and still have

a meaningful representation?

– Yes, first proposed by Andersen et al. [2007] :

Limit the width of the MDD (the maximum number

of nodes on any layer)

• This talk: applications to CP and IP

10

MDDs for Constraint Programming

Hoda, v.H., and Hooker. A Systematic Approach to MDD-Based Constraint Programming.

In Proceedings of CP. LNCS 6308, pp. 266-280. Springer, 2010.

11

12

Motivation

Constraint Programming applies

• systematic search and

• inference techniques

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}, x4 ∈ {0,1}x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {3}, x4 ∈ {0}

13

Drawback of domain propagation

Observations:

• Communication between constraints only via variable domains

• Information can only be expressed as a domain change

• Other (structural) information that may be learned by a

constraint is lost: it must be projected onto variable domains

• Potential solution space implicitly defined by Cartesian product

of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more

expressive information, using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

14

Illustrative Example

AllEqual(x1, x2, x3, x4), all xi binary

x2

x3

x4

x1{0,1}

{0,1}

{0,1}

{0,1}

domain representation, size 24

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2

15

MDD-based constraint programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008]

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Sequential scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2011]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering

algorithm for any constraint type [Hoda et al., 2010]

16

17

Case study: Among constraints

� Given a set of variables X, and a set of values S, a
lower bound l and upper bound u,

Among(X, S, l, u) := l ≤ ∑x∈X (x ∈ S) ≤ u

“among the variables in X, at least l and at most u
take a value from the set S”

� Applications in, e.g., sequencing and scheduling

� WLOG assume here that X are binary and S = {1}

18

Example: MDD for Among

Exact MDD for Among({x1,x2,x3,x4},{1},2,2)

x2

x3

x4 {0}

{1} {0}

{0}{0}

{0}

{1}

{1}

{1} {1}

{1}

{0}

x1

19

MDD Filtering for Among

Goal: Given an MDD and an Among constraint, remove all

inconsistent edges from the MDD

(establish “MDD-consistency”)

Approach:

• Compute path lengths from the top node and from the bottom

node

• Remove edges that are not on a path with lengths between

lower and upper bound

• Complete (MDD-consistent) version

– Maintain all path lengths; quadratic time

• Partial version (does not remove all inconsistent edges)

– Maintain and check bounds (longest and shortest paths); linear time

20

Node refinement for Among

For each layer in MDD, we first apply edge filter, and

then try to refine

� consider incoming edges for each node

� split the node if there exist incoming edges that are

not equivalent (w.r.t. path length)

Example:

� We will propagate Among({x1,x2,x3,x4},{1},2,2) through

a BDD of maximum width 3

21Among({x1,x2,x3,x4},{1},2,2)

{0,1}

{0,1}

{0,1}

{0,1}

Example

22

{0}

{0,1}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

23

{0}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0,1}{0,1}

24

{0}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0}{1}{0} {1}

{0,1}{0,1} {0,1}

25

Experiments

• Multiple among constraints

– 50 binary variables total

– 5 variables per among constraint, indices chosen from normal

distribution with uniform-random mean in [1..50] and stdev 2.5,

modulo 50

– Classes: 5 to 200 among constraints (step 5), 100 instances per class

• Nurse rostering instances (horizon n days)

– Work 4-5 days per week

– Max A days every B days

– Min C days every D days

– Three problem classes

� Compare width 1 (traditional domains) with increasing widths

26

width 1 vs 4 width 1 vs 16

Multiple Amongs: Backtracks

27

width 1 vs 4 width 1 vs 16

Multiple Amongs: Running Time

28

Nurse rostering problems

Width 1 Width 4 Width 32

Size BT CPU BT CPU BT CPU

Class 1 40 61,225 55.63 8,138 12.64 3 0.09

80 175,175 442.29 5,025 44.63 11 0.72

Class 2 40 179,743 173.45 17,923 32.59 4 0.07

80 179,743 459.01 8,747 80.62 2 0.32

Class 3 40 91,141 84.43 5,148 9.11 7 0.18

80 882,640 2,391.01 33,379 235.17 55 3.27

29

Summary for MDD-based CP

• MDD provides substantial advantage over traditional

domains for filtering multiple Among constraints

– Strength of MDD can be controlled by the width

– Wider MDDs yield greater speedups

– Huge reduction in the amount of backtracking and solution

time

• Intensive processing at search nodes can pay off when

more structural information is communicated

between constraints

Relaxation MDDs

Bergman, v.H., and Hooker. Manipulating MDD Relaxations for Combinatorial

Optimization. In Proceedings of CPAIOR, LNCS 6697, pp. 20-35. Springer, 2011.
30

Motivation and outline

• Limited width MDDs provide a (discrete)

relaxation to the solution space

• Can we exploit MDDs to obtain bounds for

discrete optimization problems?

31

Handling objective functions

32

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r

x1

x2

x3

x4

x5

1

Suppose we have an objective

function of the form

min ∑i fi(xi)

for arbitrary functions fi

In an exact MDD, the optimum

can be found by a shortest r-s

path computation

(edge weights are fi(xi))

(1,0,1,1,0)s

Approach

• Construct the relaxation MDD using a top-down

compilation method

• Find shortest path → provides bound B

• Extension to an exact method

1. Isolate all paths of length B, and verify if any of

these paths is feasible*

2. if not feasible, set B := B + 1 and go to 1

3. otherwise, we found the optimal solution

* Feasibility can be checked using MDD-based CP
33

Case Study: Set covering problem

• Given set S={1,…,n} and subsets C1,...,Cm of S

• Find a subset X of S with minimum cardinality

such that |Ci ∩ X | ≥ 1 for all i=1,…,m

min ∑j xj

s.t. ∑j in Ci xj ≥ 1 for all i=1,…,m

x1,...,xn binary

34

Exact top-down compilation

35

(1) x1 + x3 ≥ 1

(2) x2 + x4 ≥ 1

r

{2} {1,2}

x1

x2

x3

x4

{1,2}

∅ {2} {1} {1,2}

∅ ∅ ∅ {2} ∅ N/C {2} N/C

{Indices of the constraints that still need a 1}

Equivalence test for set covering

36

(1) x1 + x3 ≥ 1

(2) x2 + x4 ≥ 1

r

x1

x2

x3

x4 ∅ ∅ ∅ {2} ∅ {2}

∅ {2}

s

Relaxation MDD: merge non-equivalent nodes when the

given width is exceeded

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

{3} {1,2,3}

∅ {3} {2} {1,2,3}

{Indices of the constraints

that still need a 1}
37

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

{3} {1,2,3}{3}∅ {2}

{Indices of the constraints

that still need a 1}
38

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

∅ ∅ {3} {3} {2} {2}

{Indices of the constraints

that still need a 1}
39

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

∅ ∅ ∅ {3} ∅ {2}

{Indices of the constraints

that still need a 1}
40

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

s {Indices of the constraints

that still need a 1}
41

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

s(0,0,1,0,1,1) 42

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

s (0,0,0,1,1,1) 43

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

s

min f(x) =x1 + x2 + x3 + x4 + x5 + x6

44

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

x1

x2

x3

x4

x5

x6

r

s

r

Exact MDD Relaxation MDD (width ≤ 3)

s

min f(x) =x1 + x2 + x3 + x4 + x5 + x6f(x*) = 2 f(x*) = 1
45

Tightening the Lower Bound

• Value extraction method

– Given: an MDD relaxation, M

– Given: a valid lower bound, v

– Extract all paths in M that correspond to solutions

with objective function value equal to v in the form

of another MDD M|z=v

• Creating M|z=v can be done efficiently

• Apply MDD-based CP to M|z=v in order to either

– Increase v to v+1 (if no solution exists)

– Find a feasible (and optimal) solution
46

Experimental Results

• Investigate whether relaxation MDDs are able

to capture and exploit problem structure

– We consider structured set covering problems

• Purest structure: all constraints are defined on

consecutive variables

– TU constraint matrix; easy for IP

– exact MDD has bounded width; also easy for MDD

47

Instance Generation

• We generated random instances

– Fix number of variables per constraint, k

– Vary the bandwidth, bw

– Randomly assign a 0 to bw – k ones in the bandwidth

• Destroys both the TUM property for IP and the

bounded width property for MDD

48

Computational Results

• 250 variables, 20 instances, k = 20, bw∈ {22,…,44}

• Compare 3 different solution methods

– Pure-IP (CPLEX)

– Pure-MDD (Value Extraction)

– Hybrid (1/10 solution time given to pure-MDD and then pass

bound to CPLEX)

49

Number of Instances Solved (1 min.)

50

Average Ending Lower Bound (1 min)

51

Larger Instances

• 500 variables, 5 instances, k = 20, bw∈{22,…,25}

52

53

bw = 22 bw = 23

bw = 24 bw = 25

Restriction MDDs

54

Definition

• Restriction MDDs represent a subset of feasible

solutions

– we require that every r-s path corresponds to a

feasible solution

– but not all solutions need to be represented

• Goal: Use restriction MDDs as a heuristic to find

good feasible solutions

55

Creating Restriction MDDs

Using an exact top-down compilation method, we can

create a limited-width restriction MDD by

1. merging nodes, or

2. deleting nodes

while ensuring that no solution is lost

56

Node merging by example

57

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1
r

Restriction MDD (width ≤ 3)

{3} {1,2,3}

∅ {3} {2} {1,2,3}

{Indices of the constraints

that still need a 1}

∅ {2}

Node merging by example

58

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1

{Indices of the constraints

that still need a 1}

r

{3} {1,2,3}{1,2,3}

Restriction MDD (width ≤ 3)

Node merging heuristics

• Random

– select two nodes {u1, u2} uniformly at random

• Objective-driven

– select two nodes {u1, u2} such that

f(u1), f(u2) ≥ f(v) for all nodes v ≠ u1, u2 in the layer

• Similarity

– select two nodes {u1, u2} that are ‘closest’

– problem dependent (or based on semantics)

– for our set covering example: symmetric difference

59

Node deletion by example

60

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 + x6 ≥ 1
r

Restriction MDD (width ≤ 3)

{3} {1,2,3}

∅ {3} {2}

{Indices of the constraints

that still need a 1}

{1,2,3}

Node deletion heuristics

• Random

– select node u uniformly at random

• Objective-driven

– select node u such that

f(u) ≥ f(v) for all nodes v ≠ u in the layer

• Information-driven

– for set covering: select node u such that

I(u) ≥ I(v) for all nodes v ≠ u in the layer

where I(u) is the set of constraints that still need a 1

61

Preliminary Experimental Results

• Goals

– obtain insight in the relative strength of the

different restriction heuristics

– compare to well-known greedy heuristic [Chvátal, 1979]

• Randomly generated set covering instances

– n variables and m constraints

– n, m ∈ {25, 50}, with 25 instances per setting

– unit cost instances and random cost instances

(costs are uniform-randomly drawn from {1,...,20}

• MDD widths: 10, 25, 50, 100
62

Unit costs

63

averages over

25 instances

compilation time

(obj-based) is

around 0.05s

Random costs

64

averages over

25 instances

compilation time

(obj-based) is

around 0.05s

MDDs versus greedy heuristic

65

Conclusions

• Limited-width MDDs can be a very useful tool

for discrete optimization

– The maximum width provides a natural trade-off

between computational efficiency and strength

– Powerful inference mechanism for constraint

propagation

– Generic discrete relaxation and restriction method

for MIP-style problems

• Many open questions

– MDD variable ordering, interaction with search,

formal characterizations, …
66

