Exercise 1: Solution

Assume wlog that x is ordered higher than y in the MDD. For each node u in the MDD, we maintain the state information:

- \(S_u^\downarrow \): the set of all values that x takes on some r-u path
- \(S_u^\uparrow \): the set of all values that y takes on some u-t paths
 (these need to be maintained only for nodes between the layers representing x and y)
- \(S_u^\downarrow \) is computed as the union of \(S_v^\downarrow \) for all arcs (v,u) in the MDD
 (likewise for \(S_u^\uparrow \))
- For each node u in the layer representing y for which \(S_u^\downarrow \) is a singleton \{e\}, we delete any arc out of u with label e.
- Similarly for the layer representing x, we do this if \(S_u^\uparrow \) is a singleton.

(See [Hoda et al, CP 2010])
Exercise 2 : Solution

\[x_1 \in \{0,1\}, \; x_2 \in \{0,1,2\}, \; x_3 \in \{1,2\} \]

\[x_1 \neq x_2, \; x_2 \neq x_3, \; x_1 \neq x_3 \]

Refining and filtering an MDD of width one (a) for \(x_1 \neq x_2 \) (b), \(x_2 \neq x_3 \) (c), and \(x_1 \neq x_3 \) (d), yielding the MDD in (e). Dashed lines mark filtered values.
Exercise 3: Solution

\[(A_u^\dagger, A_u^\dagger) = (\emptyset, 1234)\]

\[\pi_1 \quad \{1\} \quad (1, 234)\]

\[\pi_2 \quad \{2\} \quad \{3\} \quad (13, 24)\]

\[\pi_3 \quad \{3\} \quad \{2\} \quad (123, 4)\]

\[\pi_4 \quad \{4\} \quad (1234, \emptyset)\]

Activity 1

Activity 2

Activity 3

Activity 4

\((1, 234)\)

\((13, 24)\)

\((123, 4)\)

\((1234, \emptyset)\)

\(\{2\} \quad \{3\} \quad \{1\} \quad \{2\}\)

\((1, 234)\)

\((13, 24)\)

\((123, 4)\)

\((1234, \emptyset)\)

\begin{align*}
1 & \ll 2 \\
1 & \ll 3 \\
1 & \ll 4 \\
2 & \ll 4 \\
3 & \ll 4
\end{align*}
Exercise 4: Solution

a) For ‘makespan’, the earliest completion time of the terminal is equivalent to the minimum makespan, by construction. The optimal permutation can be recursively retrieved from t up to r. For ‘sum of setup times’, we let the cost of edge with label j be the minimum setup time \(t_{ij} \) for all incoming edges with label i. A shortest r-t path then corresponds to an optimal solution.

b) Similarly, for ‘tardiness’ a natural choice for the cost of an edge \(a \) is \(\max\{ 0, \text{ect}_a - \delta_a \} \). However, this provides a lower bound, since the true cost of an edge depends on the total ordering. (Hence, in case the MDD is a single path, it does reflect the total tardiness.) See next slide for an example.

See [Cire & v.H., 2013] page 6/7
Exercise 4: Solution

<table>
<thead>
<tr>
<th>Act</th>
<th>(r_i)</th>
<th>(\delta_i)</th>
<th>(p_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

precedences: \(1 \ll 3\)
\(2 \ll 3\)

Shortest path \(\{2\} \rightarrow \{1\} \rightarrow \{3\}\) has cost 0 when edge cost is based on earliest completion time. Yet, the solution it represents has total tardiness 2.
Exercise 5: Solution

\[4x_1 + 2x_2 + x_3 + x_4 + 2x_5 + 4x_6 = 7\]

\[4x_1 + 4x_6 + 2x_2 + 2x_5 + x_3 + x_4 = 7\]
Exercise 6: Solution

\[
\begin{align*}
\text{min} & \quad 3x_1 + 2x_2 + x_3 + 4x_4 + 2x_5 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 \geq 1 \quad (1) \\
& \quad x_1 + x_4 + x_5 \geq 1 \quad (2) \\
& \quad x_2 + x_4 \geq 1 \quad (3)
\end{align*}
\]

BDD construction choices:
- lexicographic ordering
- node deletion (instead of merging) rule: delete maximum shortest path, unless all constraints are covered by node
- filter 0-edge for last covering variable

Notes:
- An exact 0-BBD of width 3 exists
- For node merging, need to take maximum cost of merged nodes