Decision Diagrams for Discrete Optimization

Willem-Jan van Hoeve

Tepper School of Business
Carnegie Mellon University
www.andrew.cmu.edu/user/vanhoeve/mdd/

Acknowledgments:

David Bergman André Ciré Samid Hoda John Hooker Brian Kell Tallys Yunes
What can MDDs do for discrete optimization?

- *Compact representation* of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling

- MDD propagation natural generalization of domain propagation
- Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

- MDDs provide *discrete relaxations*
- Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated methods, theory, applications,...
Decision Diagrams

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

$$f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2) \lor (x_2 \land x_3)$$
• Original application areas: circuit design, verification
• Usually *reduced ordered* BDDs/MDDs are applied
 – fixed variable ordering
 – minimal exact representation
• Recent interest from optimization community
 – cut generation [Becker et al., 2005]
 – 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 – post-optimality analysis [Hadzic & Hooker, 2006, 2007]
 – set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]
• Interesting variant
 – approximate MDDs
 [Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
Exact MDDs for discrete optimization

(1) \(x_1 + x_2 + x_3 \geq 1 \)
(2) \(x_1 + x_4 + x_5 \geq 1 \)
(3) \(x_2 + x_4 \geq 1 \)
Exact MDDs for discrete optimization

\[(1) \quad x_1 + x_2 + x_3 \geq 1 \]
\[(2) \quad x_1 + x_4 + x_5 \geq 1 \]
\[(3) \quad x_2 + x_4 \geq 1 \]
Exact MDDs for discrete optimization

(1) \(x_1 + x_2 + x_3 \geq 1 \)
(2) \(x_1 + x_4 + x_5 \geq 1 \)
(3) \(x_2 + x_4 \geq 1 \)
Exact MDDs for discrete optimization

(1) \(x_1 + x_2 + x_3 \geq 1 \)
(2) \(x_1 + x_4 + x_5 \geq 1 \)
(3) \(x_2 + x_4 \geq 1 \)
Exact MDDs for discrete optimization

Each path corresponds to a solution

(1) \(x_1 + x_2 + x_3 \geq 1 \)
(2) \(x_1 + x_4 + x_5 \geq 1 \)
(3) \(x_2 + x_4 \geq 1 \)
Approximate MDDs

• Exact MDDs can be of exponential size in general
• Can we limit the size of the MDD and still have a meaningful representation?
 – Yes, first proposed by Andersen et al. [2007]: Limit the width of the MDD (the maximum number of nodes on any layer)

• Approximate MDDs: main focus of this talk
Related Work: Exact MDDs for Constraint Programming

- Set bounds propagation [Hawkins, Lagoon, Stuckey, 2005], [Gange, Lagoon, Stuckey, 2008]
- Ad-hoc Table constraints [Cheng and Yap, 2008]
- Market Split Problem [Hadzic et al., 2009]
- Explanations for MDD propagators [Gange, Stuckey, Szymanek, 2011]
- Regular constraint [Cheng, Xia, Yap, 2012]
- Explaining Propagators for Edge-valued Decision Diagrams [Gange, Stuckey, Van Hentenryck, 2013]

Related Work: Exact MDDs for Integer Programming

- BDDs for IP cut generation: Becker et al. [2005]
- BDDs for 0/1 vertex and facet enumeration: Behle, Eisenbrand [2007]
- Post-optimality analysis: Hadzic, Hooker [2006, 2007]
References (Approximate MDDs)

MDD-Based Constraint Programming

• Andersen, Hadzic, Hooker, Tiedemann: A Constraint Store Based on Multivalued Decision Diagrams. CP 2007: 118-132
• Hadzic, Hooker, O'Sullivan, Tiedemann: Approximate Compilation of Constraints into Multivalued Decision Diagrams. CP 2008: 448-462

Specific MDD Propagation Algorithms

• Hadzic, Hooker, Tiedemann: Propagating Separable Equalities in an MDD Store. CPAIOR 2008: 318-322
MDD-Based Optimization

MDDs and Dynamic Programming

- Hooker: Decision Diagrams and Dynamic Programming. CPAIOR 2013: 94-110
Suppressed Decision Diagrams

• Zero-suppressed BDD (0-BDD or ZDD)
 – arc skips layers for which variables will take value 0

• One-suppressed BDD (1-BDD)
 – arc skips layers for which variables will take value 1

• Zero/one-suppressed BDD (0/1-BDD)
 – arc skips layers for which variables will take value 0/1

Similarly compressed MDDs can be defined
Will not be discussed in detail, but methodology can be extended
MDDs for Constraint Programming
Motivation

Constraint Programming applies
• systematic search and
• inference techniques
to solve discrete optimization problems

Inference mainly takes place through:
• Filtering provably inconsistent values from variable domains
• Propagating the updated domains to other constraints

\[x_1 \in \{1,2\}, \ x_2 \in \{1,2,3\}, \ x_3 \in \{2,3\} \]

\[x_1 < x_2, \ x_2 \in \{2,3\} \]

\[\text{alldifferent}(x_1, x_2, x_3) \]

\[x_1 \in \{1\} \]
Illustrative Example

$\text{AllEqual}(x_1, x_2, \ldots, x_n)$, all x_i binary

$x_1 + x_2 + \ldots + x_n \geq n/2$

domain representation, size 2^n

MDD representation, size 2
Drawback of domain propagation

- All structural relationships among variables are projected onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)

We can communicate more information between constraint using MDDs [Andersen et al. 2007]

- Explicit representation of more refined potential solution space
- Limited width defines relaxed MDD
- Strength is controlled by the imposed width
MDD-based Constraint Programming

• Maintain limited-width MDD
 – Serves as relaxation
 – Typically start with width 1 (initial variable domains)
 – Dynamically adjust MDD, based on constraints

• Constraint Propagation
 – Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 – Node refinement: Split nodes to separate edge information

• Search
 – As in classical CP, but may now be guided by MDD
Domain consistency generalizes naturally to MDDs:

- Let $C(X)$ be a constraint on variables X and let M be an MDD on X
- Constraint C is **MDD consistent** if for each arc in M, there is at least one path in M that represents a solution to C

Equivalent to domain consistency for MDD of width 1
Specific MDD propagation algorithms

- Linear equalities and inequalities [Hadzic et al., 2008] [Hoda et al., 2010]
- Alldifferent constraints [Andersen et al., 2007]
- Element constraints [Hoda et al., 2010]
- Among constraints [Hoda et al., 2010]
- Disjunctive scheduling constraints [Hoda et al., 2010] [Cire & v.H., 2011, 2013]
- Sequence constraints (combination of Amongs) [v.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]
For a given constraint type we maintain specific ‘state information’ at each node in the MDD.

Computed from incoming arcs (both from top and from bottom).

State information is basis for MDD filtering and for MDD refinement.
First example: Among constraints

- Given a set of variables X, and a set of values S, a lower bound l and upper bound u,

$$\text{Among}(X, S, l, u) := l \leq \sum_{x \in X} (x \in S) \leq u$$

“among the variables in X, at least l and at most u take a value from the set S”

- Applications in, e.g., sequencing and scheduling
- WLOG assume here that X are binary and $S = \{1\}$
Example MDD for Among

Exact MDD for $\text{Among}(\{x_1, x_2, x_3, x_4\}, \{1\}, 2, 2)$

State information:
path length from top and from bottom
Goal: Given an MDD and an *Among* constraint, remove all inconsistent edges from the MDD (establish MDD-consistency)
[Hoda et al., CP 2010]

Approach:
- Compute path lengths from the root and from the sink to each node in the MDD
- Remove edges that are not on a path with length between lower and upper bound
- Complete (MDD-consistent) version
 - Maintain all path lengths; quadratic time
- Partial version (does not remove all inconsistent)
 - Maintain and check bounds (longest and shortest
Node refinement for Among

For each layer in MDD, we first apply edge filter, and then try to refine:
- consider incoming edges for each node
- split the node if there exist incoming edges that are not equivalent (w.r.t. path length)
- in other words, need to identify equivalence classes

Example:
- We will propagate $\text{Among}({x_1, x_2, x_3, x_4}, \{1\}, 2, 2)$ through a BDD of maximum width 3
Example

Among({x_1, x_2, x_3, x_4}, {1}, 2, 2)
Example

$\text{Among}\{\{x_1,x_2,x_3,x_4\},\{1\},2,2\}$
Example

Among\(\{x_1, x_2, x_3, x_4\}, \{1\}, 2, 2\)
Example

Among(\{x_1,x_2,x_3,x_4\},\{1\},2,2)
Experiments

- **Multiple among constraints**
 - 50 binary variables total
 - 5 variables per among constraint, indices chosen from normal distribution with uniform-random mean in [1..50] and stdev 2.5, modulo 50 (i.e., somewhat consecutive)
 - Classes: 5 to 200 among constraints (step 5), 100 instances per class

- **Nurse rostering instances** (horizon n days)
 - Work 4-5 days per week
 - Max A days every B days
 - Min C days every D days
 - Three problem classes

- Compare width 1 (traditional domains) with increasing widths
Multiple Amongs: Backtracks

width 1 vs 4

width 1 vs 16
Multiple Amongs: Running Time

width 1 vs 4

width 1 vs 16
Nurse rostering problems

<table>
<thead>
<tr>
<th>Class</th>
<th>Size</th>
<th>Width 1</th>
<th>Width 4</th>
<th>Width 32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BT</td>
<td>CPU</td>
<td>BT</td>
</tr>
<tr>
<td>Class 1</td>
<td>40</td>
<td>61,225</td>
<td>55.63</td>
<td>8,138</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>175,175</td>
<td>442.29</td>
<td>5,025</td>
</tr>
<tr>
<td>Class 2</td>
<td>40</td>
<td>179,743</td>
<td>173.45</td>
<td>17,923</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>179,743</td>
<td>459.01</td>
<td>8,747</td>
</tr>
<tr>
<td>Class 3</td>
<td>40</td>
<td>91,141</td>
<td>84.43</td>
<td>5,148</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>882,640</td>
<td>2,391.01</td>
<td>33,379</td>
</tr>
</tbody>
</table>
Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

<table>
<thead>
<tr>
<th>sun</th>
<th>mon</th>
<th>tue</th>
<th>wed</th>
<th>thu</th>
<th>fri</th>
<th>sat</th>
<th>sun</th>
<th>mon</th>
<th>tue</th>
<th>wed</th>
<th>thu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>(x_6)</td>
<td>(x_7)</td>
<td>(x_8)</td>
<td>(x_9)</td>
<td>(x_{10})</td>
<td>(x_{11})</td>
<td>(x_{12})</td>
</tr>
</tbody>
</table>

\[
0 \leq x_1 + x_2 + \ldots + x_9 \leq 7 \\
0 \leq x_2 + x_3 + \ldots + x_{10} \leq 7 \\
0 \leq x_3 + x_4 + \ldots + x_{11} \leq 7 \\
0 \leq x_4 + x_5 + \ldots + x_{12} \leq 7
\]

\[=: Sequence([x_1, x_2, \ldots, x_{12}], q=9, S=\{1\}, l=0, u=7)\]

\[
Sequence(X, q, S, l, u) := \bigwedge_{|X'|=q} l \leq \sum_{x \in X'} (x \in S) \leq u
\]

\[\Downarrow\]

\[Among(X, S, l, u)\]
MDD Representation for Sequence

- Equivalent to the DFA representation of Sequence for domain propagation
 [v.H. et al., 2006, 2009]

- Size $O(n2^q)$

Exact MDD for $Sequence(X, q=3, S=\{1\}, l=1, u=2)$
Goal: Given an arbitrary MDD and a *Sequence* constraint, remove *all* inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard (even if the MDD order follows the sequence of variables X)

Proof: Reduction from 3-SAT

Next goal: Develop a *partial* filtering algorithm, that does not necessarily achieve MDD consistency
Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard

Proof structure:

- Given 3-SAT problem (NP-complete)
- We will construct a polynomial-size MDD such that a particular *Sequence* constraint will have a solution in the MDD if and only if the 3-SAT instance is satisfiable

- Example 3-SAT problem

\[c_1 = (x_1 \lor \overline{x}_3 \lor x_4) \]
\[c_2 = (x_2 \lor x_3 \lor \overline{x}_4) \]
Each path from root to terminal corresponds to a satisfying assignment for these clauses.

\[c_1 = (x_1 \lor \overline{x}_3 \lor x_4) \]

\[c_2 = (x_2 \lor x_3 \lor \overline{x}_4) \]
Group clauses together

- Literal x_j in clause c_i represented by variable y_{ij}

- MDD size $O(6(2mn+1))$

- How to ensure that a variable takes the same value in each clause?
Impose Sequence Constraint

Sequence($Y, q=2n, S=\{1\}, l=n, u=n$)

- Start from a *positive* literal: sub-sequence always contains n times the value 1 (namely, for each variable it contains both literals)
- Start from a *negative* literal: the corresponding positive literal in the next clause must take the opposite value (all other variables sum up to $n-1$)
- Therefore, variables take the same value in each clause
- Solution to $Sequence$ in this MDD is equivalent to 3-SAT solution
• *Sequence*(*X*, *q*, *S*, *l*, *u*) with *X* = *x*₁, *x*₂, ..., *x*ₙ

• Introduce a ‘cumulative’ variable *y*ᵢ representing the sum of the first *i* variables in *X*

 *y*₀ = 0

 *y*ᵢ = *y*ᵢ₋₁ + (*x*ᵢ ∈ *S*) for *i* = 1..*n*

• Then the *Among* constraint on [*x*ᵢ₊₁, ..., *x*ᵢ₊*q*] is equivalent to

 \[l ≤ y_{i+q} - y_i \]

 \[y_{i+q} - y_i ≤ u \] for *i* = 0..*n*-*q*

• [Brand et al., 2007] show that bounds reasoning on this decomposition suffices to reach Domain consistency for *Sequence* (in poly-time)
MDD filtering from decomposition

Sequence(\mathbf{X}, $q=3$, $S=\{1\}$, $l=1$, $u=2$)

Approach

• The auxiliary variables y_i can be naturally represented at the nodes of the MDD – this will be our state information

• We can now actively filter this node information (not only the edges)
MDD filtering from decomposition

Sequence($X, q=3, S=\{1\}, l=1, u=2$)

\[y_i = y_{i-1} + x_i \]

\[1 \leq y_3 - y_0 \leq 2 \]
\[1 \leq y_4 - y_1 \leq 2 \]
\[1 \leq y_5 - y_2 \leq 2 \]
MDD filtering from decomposition

Sequence($X, q=3, S=\{1\}, l=1, u=2$)

$y_i = y_{i-1} + x_i$

- $1 \leq y_3 - y_0 \leq 2$
- $1 \leq y_4 - y_1 \leq 2$
- $1 \leq y_5 - y_2 \leq 2$
MDD filtering from decomposition

This procedure does not guarantee MDD consistency.

Sequence(X, $q=3$, $S=\{1\}$, $l=1$, $u=2$)

\[y_i = y_{i-1} + x_i \]

\[1 \leq y_3 - y_0 \leq 2 \]

\[1 \leq y_4 - y_1 \leq 2 \]

\[1 \leq y_5 - y_2 \leq 2 \]

This procedure does not guarantee MDD consistency.
Analysis of Algorithm

• Initial population of node domains (y variables)
 – linear in MDD size

• Analysis of each state in layer k
 – maintain list of ancestors from layer $k-q$
 – direct implementation gives $O(qW^2)$ operations per state (W is maximum width)
 – need only maintain min and max value over previous q layers: $O(Wq)$

• One top-down and one bottom-up pass
Experimental Setup

• Decomposition-based MDD filtering algorithm
 – Implemented as global constraint in IBM ILOG CPLEX CP Optimizer 12.3

• Evaluation
 – Compare MDD filtering with Domain filtering
 – Domain filter based on the same decomposition (achieves domain consistency for all our instances)
 – Random instances and structured shift scheduling instances

• All methods apply the same fixed search strategy
 – lexicographic variable and value ordering
 – find first solution or prove that none exists
Random instances

- Randomly generated instances
 - \(n = 20 \text{ to } 48 \) variables
 - domain size between 10 and 30
 - 1, 2, 5, 7, or 10 \textit{Sequence} constraints
 - \(q \) random from \([2..n/2]\)
 - \(u - l \) random from 0 to \(q-1 \)
 - 360 instances

- Vary maximum width of MDD
 - widths 1 up to 32
Random instances results

- Backtracks – width 1
- Backtracks – width 2
- Time – width 1
- Time – width 2
Random instances results (cont’d)

Backtracks – width 16

Backtracks – width 32

Time – width 16

Time – width 32
Shift scheduling instances

• Shift scheduling problem for $n=40, 50, 60, 70, 80$ days
• Shifts: day (D), evening (E), night (N), off (O)
• Problem type P-I
 – work at least 22 day or evening shifts every 30 days
 $\text{Sequence}(X, q=30, S= \{D, E\}, l=22, u=30)$
 – have between 1 and 4 days off every 7 consecutive days
 $\text{Sequence}(X, q=7, S=\{O\}, l=1, u=4)$

• Problem type P-II
 – $\text{Sequence}(X, q=30, S=\{D, E\}, l=23, u=30)$
 – $\text{Sequence}(X, q=5, S=\{N\}, l=1, u=2)$
MDD Filter versus Domain Filter

<table>
<thead>
<tr>
<th>Instance</th>
<th>Domain filtering</th>
<th>MDD - width 1</th>
<th>MDD - width 2</th>
<th>MDD - width 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>backtracks</td>
<td>time</td>
<td>backtracks</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td>backtracks</td>
<td></td>
</tr>
<tr>
<td>Type P-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>17,054</td>
<td>0.36</td>
<td>17,054</td>
<td>0.61</td>
</tr>
<tr>
<td>50</td>
<td>17,054</td>
<td>0.42</td>
<td>17,054</td>
<td>0.75</td>
</tr>
<tr>
<td>60</td>
<td>17,054</td>
<td>0.54</td>
<td>17,054</td>
<td>0.90</td>
</tr>
<tr>
<td>70</td>
<td>17,054</td>
<td>0.58</td>
<td>17,054</td>
<td>1.04</td>
</tr>
<tr>
<td>80</td>
<td>17,054</td>
<td>0.66</td>
<td>17,054</td>
<td>1.26</td>
</tr>
<tr>
<td>Type P-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>126,406</td>
<td>2.00</td>
<td>126,406</td>
<td>4.66</td>
</tr>
<tr>
<td>50</td>
<td>126,406</td>
<td>2.36</td>
<td>126,406</td>
<td>5.90</td>
</tr>
<tr>
<td>60</td>
<td>126,406</td>
<td>2.86</td>
<td>126,406</td>
<td>7.43</td>
</tr>
<tr>
<td>70</td>
<td>126,406</td>
<td>3.04</td>
<td>126,406</td>
<td>8.38</td>
</tr>
<tr>
<td>80</td>
<td>126,406</td>
<td>3.48</td>
<td>126,406</td>
<td>9.46</td>
</tr>
</tbody>
</table>
Summary for MDD-based CP

- Key idea: Propagate approximate MDDs instead of domains
- Strength of MDD can be controlled by its width
- Constraint-specific propagation algorithms
 - very similar to domain propagators
 - define state information for each constraint
 - central operations: edge filtering and node refinement
- Detailed examples: Among and Sequence
- Huge reduction in the amount of backtracking and solution time is possible
1. Consider the constraint \(x \neq y \) for two finite-domain variables \(x \) and \(y \). Assume that \(x \) and \(y \) belong to a set \(X \) of variables for which we are given a relaxed MDD. Design an MDD propagator for \(x \neq y \).

2. Consider the following CSP:

\[
\begin{align*}
 x_1 &\in \{0,1\}, \\
 x_2 &\in \{0,1,2\}, \\
 x_3 &\in \{1,2\} \\
 x_1 &\neq x_2, \\
 x_2 &\neq x_3, \\
 x_1 &\neq x_3
\end{align*}
\]

Apply the propagators from Exercise 2, starting from a width-1 MDD, until the MDD represents all solutions to the CSP.
MDDs for Disjunctive Scheduling
Disjunctive Scheduling
• Disjunctive scheduling may be viewed as the ‘killer application’ for CP
 – Natural modeling (activities and resources)
 – Allows many side constraints (precedence relations, time windows, setup times, etc.)
 – State of the art while being generic methodology

• However, CP has some problems when
 – objective is not minimize makespan (but instead, e.g., weighted sum)
 – setup times are present
 – ...

• What can MDDs bring here?

Heinz & Beck [CPAIOR 2012] compare CP and MIP
Disjunctive Scheduling

• Sequencing and scheduling of activities on a resource

• Activities
 – Processing time: p_i
 – Release time: r_i
 – Deadline: d_i
 – Start time variable: s_i

• Resource
 – Nonpreemptive
 – Process one activity at a time
Common Side Constraints

• Precedence relations between activities

• Sequence-dependent setup times

• Induced by objective function
 – Makespan
 – Sum of setup times
 – Sum of completion times
 – Tardiness / number of late jobs
 – ...

Inference

• Inference for disjunctive scheduling
 – Precedence relations
 – Time intervals that an activity can be processed

• Sophisticated techniques include:
 – Edge-Finding
 – Not-first / not-last rules

• Examples: \(1 \ll 3 \)
 \(s_3 \geq 3 \)
MDDs for Disjunctive Scheduling

Three main considerations:

• Representation
 – How to represent solutions of disjunctive scheduling in an MDD?

• Construction
 – How to construct this relaxed MDD?

• Inference techniques
 – What can we infer using the relaxed MDD?

Cire & v.H. [2012, 2013]
• Natural representation as ‘permutation MDD’

• Every solution can be written as a permutation \(\pi \)

\[\pi_1, \pi_2, \pi_3, ..., \pi_n : \text{activity sequencing in the resource} \]

• Schedule is *implied* by a sequence, e.g.:

\[\text{start}_{\pi_i} \geq \text{start}_{\pi_{i-1}} + p_{\pi_{i-1}} \quad i = 2, ..., n \]
MDD Representation

Path \{1\} – \{3\} – \{2\} :

\begin{align*}
0 & \leq \text{start}_1 \leq 1 \\
6 & \leq \text{start}_2 \leq 7 \\
3 & \leq \text{start}_3 \leq 5
\end{align*}

<table>
<thead>
<tr>
<th>Act (r_i)</th>
<th>(d_i)</th>
<th>(p_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>
Theorem: Constructing the exact MDD for a Disjunctive Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

- TSP defined on a complete graph
- Given a fixed parameter k, we must satisfy

 $i \ll j$ if $j - i \geq k$ for cities i, j

Lemma: The exact MDD for the TSP above has $O(n2^k)$ nodes
We can apply several propagation algorithms:

- *Alldifferent* for the permutation structure
- Earliest start time / latest end time
- Precedence relations
• State information at each node i
 – labels on all paths: A_i
 – labels on some paths: S_i
 – earliest starting time: E_i
 – latest completion time: L_i

• Top down example for arc (u,v)
All-different Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - $A_u = \{3\}$
 - Thus eliminate $\{3\}$ from (u,v)

[Andersen et al., 2007]
Some-paths state: S_u
- Labels belonging to some path from node r to node u
- $S_u = \{1,2,3\}$
- Identification of Hall sets
- Thus eliminate $\{1,2,3\}$ from (u,v)
- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time
Propagate Earliest Completion Time

<table>
<thead>
<tr>
<th>Act</th>
<th>r_i</th>
<th>d_i</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- \(E_u = 7 \)
- Eliminate 4 from \((u,v)\)
Arc with label j infeasible if $i \ll j$ and i not on some path from r

Suppose $4 \ll 5$

$S_u = \{1, 2, 3\}$

Since 4 not in S_u, eliminate 5 from (u,v)

Similarly: Bottom-up for $j \ll i$
More MDD Inference

Theorem: *Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M*

- For a node v,
 - A^\downarrow_u: values in all paths from root to u
 - A^\uparrow_u: values in all paths from node u to terminal

- *Precedence relation* $i \ll j$ *holds if and only if*

 $$(j \not\in A^\downarrow_u) \text{ or } (i \not\in A^\uparrow_u) \text{ for all nodes } u \text{ in } M$$

- Same technique applies to relaxed MDD
Build a digraph $G=(V, E)$ where V is the set of activities.

For each node u in M

- if $j \in A_u^\downarrow$ and $i \in A_u^\uparrow$ add edge (i, j) to E
- represents that $i \ll j$ cannot hold

Take complement graph \overline{G}

- complement edge exists iff $i \ll j$ holds
Extracting precedence relations

- Build a digraph $G=(V, E)$ where V is the set of activities
- For each node u in M
 - if $j \in A_u^\downarrow$ and $i \in A_u^\uparrow$ add edge (i,j) to E
 - represents that $i \ll j$ cannot hold
- Take complement graph \overline{G}
 - complement edge exists iff $i \ll j$ holds
- Time complexity: $O(|M|n^2)$
- Same technique applies to relaxed MDD
 - add an edge if $j \in S_u^\downarrow$ and $i \in S_u^\uparrow$
 - complement graph represents subset of precedence relations
1. Provide precedence relations from MDD to CP
 – update start/end time variables
 – other inference techniques may utilize them

2. Filter the MDD using precedence relations from other (CP) techniques
MDD Refinement

• For refinement, we generally want to identify equivalence classes among nodes in a layer

• Theorem:

 Let M represent a Disjunctive Instance. Deciding if two nodes u and v in M are equivalent is NP-hard.

• In practice, refinement is based on *alldifferent*

 – Order activities by some criterion (e.g., decreasing $r_i + p_i$)
 – For given layer, expand all nodes into next layer
 – Separate nodes that are exact relative to as many of the ordered activities, i.e., $A_u = S_u$
 – Nodes beyond maximum width are merged

See [Cire, v.H., 2013] for more details
Experiments

• MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 – State-of-the-art constraint based scheduling solver
 – Uses a portfolio of inference techniques and LP relaxation
 – MDD is added as user-defined propagator

• Main purpose of experiments
 – where can MDDs bring strength to CP
 – compare stand-alone MDD versus CP
 – compare CP versus CP+MDD (most useful in practice)
Problem classes

• Disjunctive instances with
 – sequence-dependent setup times
 – release dates and deadlines
 – precedence relations

• Objectives (that are presented here)
 – minimize makespan
 – minimize sum of setup times

• Benchmarks
 – Random instances with varying setup times
 – TSP-TW instances (Dumas, Ascheuer, Gendreau)
 – Sequential Ordering Problem
Importance of setup times

Random instances
- 15 jobs
- lex search
- MDD width 16
- min makespan
Minimize Makespan

• 229 TSPTW benchmark instances with up to 100 jobs
• Minimize makespan
• Time limit 7,200s
• Max MDD width is 16

instances solved by CP: 211
instances solved by pure MDD: 216
instances solved by CP+MDD: 227
Minimize Makespan: Search tree size

plot only shows instances that were solved by all methods
Minimize Makespan: Time

![Graph showing the relationship between MDD+CPO time (s) and CPO time (s). The x-axis represents CPO time (s) on a logarithmic scale, ranging from 10^{-2} to 10^4. The y-axis represents MDD+CPO time (s) on a logarithmic scale, ranging from 10^{-2} to 10^4. The graph includes a line indicating a 45-degree angle, suggesting a linear relationship between the two variables.](image-url)
Min sum of setup times: Fails

Dumas/Ascheuer instances
- 20-60 jobs
- lex search
- MDD width: 16
Min sum of setup times: Time

Dumas/Ascheuer instances
- 20-60 jobs
- lex search
- MDD width: 16
Instances Dumas (TSPTW)

<table>
<thead>
<tr>
<th>Instance</th>
<th>Cities</th>
<th>Backtracks</th>
<th>Time (s)</th>
<th>Backtracks</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n40w40.004</td>
<td>40</td>
<td>480,970</td>
<td>50.81</td>
<td>18</td>
<td>0.06</td>
</tr>
<tr>
<td>n60w20.001</td>
<td>60</td>
<td>908,606</td>
<td>199.26</td>
<td>50</td>
<td>0.22</td>
</tr>
<tr>
<td>n60w20.002</td>
<td>60</td>
<td>84,074</td>
<td>14.13</td>
<td>46</td>
<td>0.16</td>
</tr>
<tr>
<td>n60w20.003</td>
<td>60</td>
<td>> 22,296,012</td>
<td>> 3600</td>
<td>99</td>
<td>0.32</td>
</tr>
<tr>
<td>n60w20.004</td>
<td>60</td>
<td>2,685,255</td>
<td>408.34</td>
<td>97</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Minimize sum of setup times

MDDs have maximum width 16
Sequential Ordering Problem

- ATSP with precedence constraints (no time windows)

- Instances up to 53 jobs
- Time limit 1,800s
- Default CPO search
- Max MDD width 2,048
Sequential Ordering Problem Results

<table>
<thead>
<tr>
<th>instance</th>
<th>vertices</th>
<th>bounds</th>
<th>CPO</th>
<th>best</th>
<th>time (s)</th>
<th>CPO+MDD, width 2048</th>
<th>best</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>br17.10</td>
<td>17</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>0.01</td>
<td>55</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>br17.12</td>
<td>17</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>0.01</td>
<td>55</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>ESC07</td>
<td>7</td>
<td>2125</td>
<td>2125</td>
<td>2125</td>
<td>0.01</td>
<td>2125</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>ESC25</td>
<td>25</td>
<td>1681</td>
<td>1681</td>
<td>1681</td>
<td>TL</td>
<td>1681</td>
<td>48.42</td>
<td></td>
</tr>
<tr>
<td>p43.1</td>
<td>43</td>
<td>28140</td>
<td>28205</td>
<td>28205</td>
<td>TL</td>
<td>28140</td>
<td>287.57</td>
<td></td>
</tr>
<tr>
<td>p43.2</td>
<td>43</td>
<td>[28175, 28480]</td>
<td>28545</td>
<td>28545</td>
<td>TL</td>
<td>28480</td>
<td>279.18*</td>
<td></td>
</tr>
<tr>
<td>p43.3</td>
<td>43</td>
<td>[28366, 28835]</td>
<td>28930</td>
<td>28930</td>
<td>TL</td>
<td>28835</td>
<td>177.29*</td>
<td></td>
</tr>
<tr>
<td>p43.4</td>
<td>43</td>
<td>83005</td>
<td>83615</td>
<td>83615</td>
<td>TL</td>
<td>83005</td>
<td>88.45</td>
<td></td>
</tr>
<tr>
<td>ry48p.1</td>
<td>48</td>
<td>[15220, 15805]</td>
<td>18209</td>
<td>18209</td>
<td>TL</td>
<td>16561</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ry48p.2</td>
<td>48</td>
<td>[15524, 16666]</td>
<td>18649</td>
<td>18649</td>
<td>TL</td>
<td>17680</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ry48p.3</td>
<td>48</td>
<td>[18156, 19894]</td>
<td>23268</td>
<td>23268</td>
<td>TL</td>
<td>22311</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ry48p.4</td>
<td>48</td>
<td>[29967, 31446]</td>
<td>34502</td>
<td>34502</td>
<td>TL</td>
<td>31446</td>
<td>96.91*</td>
<td></td>
</tr>
<tr>
<td>ft53.1</td>
<td>53</td>
<td>[7438, 7531]</td>
<td>9716</td>
<td>9716</td>
<td>TL</td>
<td>9216</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ft53.2</td>
<td>53</td>
<td>[7630, 8026]</td>
<td>11669</td>
<td>11669</td>
<td>TL</td>
<td>11484</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ft53.3</td>
<td>53</td>
<td>[9473, 10262]</td>
<td>12343</td>
<td>12343</td>
<td>TL</td>
<td>11937</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>ft53.4</td>
<td>53</td>
<td>14425</td>
<td>16018</td>
<td>16018</td>
<td>TL</td>
<td>14425</td>
<td>120.79</td>
<td></td>
</tr>
</tbody>
</table>

* solved for the first time
Minimize Total Tardiness

• Consider activity i with due date \(\delta_i \)
 – Completion time of i: \(c_i = s_i + p_i \)
 – Tardiness of i: \(\max\{0, c_i - \delta_i\} \)

• Objective: minimize total (weighted) tardiness

• 120 test instances
 – 15 activities per instance
 – varying \(r_i, p_i, \) and \(\delta_i \), and tardiness weights
 – no side constraints, setup times (measure only impact of objective)
 – lexicographic search, time limit of 1,800s
Total Tardiness Results

- **Total Tardiness**
- **Total Weighted Tardiness**

![Graphs showing total tardiness and total weighted tardiness for various MDD configurations and CPO.](image)
Summary for Disjunctive Scheduling

• Application of MDD-based CP to generic disjunctive scheduling

• MDD propagation for
 – *Alldifferent* constraint (permutation of activities)
 – Precedence constraints
 – Earliest start time/Latest end time
 – Various objective functions (makespan, setup times, tardiness, ...)

• Communication of precedence constraints between MDD and domain propagators

• Orders of magnitude improvement
3. Consider the following scheduling problem

<table>
<thead>
<tr>
<th>Act</th>
<th>r_i</th>
<th>d_i</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

- a) Create an exact MDD M representation for this problem.
- b) Use the state information A_\downarrow_u and A_\uparrow_u to derive all precedence relations from M.
4. Consider an arbitrary disjunctive scheduling problem, and assume we are given an exact MDD M representing all its solutions.

a) Verify that the optimal solution to objectives ‘minimize makespan’ and ‘minimize sum of setup times’ can be derived by computing a shortest path in M.

b) Give an example that shows that for objective ‘minimize total tardiness’, a shortest path in M provides a lower bound.
MDDs for Discrete Optimization
Motivation

• Limited width MDDs provide a (discrete) relaxation to the solution space
• Can we exploit MDDs to obtain bounds for discrete optimization problems?

• Relaxation: [Bergman et al., CPAIOR 2011; IJOC to appear]
• Restriction (heuristic solutions): [Bergman et al., 2013]
Handling objective functions

Suppose we have an objective function of the form

\[
\min \sum_i f_i(x_i)
\]

for arbitrary functions \(f_i \)

In an exact MDD, the optimum can be found by a shortest \(r-s \) path computation (edge weights are \(f_i(x_i) \)).

(1) \(x_1 + x_2 + x_3 \geq 1 \)
(2) \(x_1 + x_4 + x_5 \geq 1 \)
(3) \(x_2 + x_4 \geq 1 \)
Approach

• Construct the relaxation MDD using a top-down compilation method
• Find shortest path → provides bound B
• Extension to an exact method
 1. Isolate all paths of length B, and verify if any of these paths is feasible*
 2. if not feasible, set $B := B + 1$ and go to 1
 3. otherwise, we found the optimal solution

* Feasibility can be checked using MDD-based CP
Case Study: Independent Set Problem

- Given graph $G = (V, E)$ with vertex weights w_i
- Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

\[
\max \sum_i w_i x_i \\
\text{s.t. } x_i + x_j \leq 1 \quad \text{for all } (i,j) \text{ in } E \\
x_i \text{ binary} \quad \text{for all } i \text{ in } V
\]
Exact top-down compilation

state information: eligible vertices

Merge equivalent nodes
Theorem: This procedure generates an exact BDD

Relaxed BDD: merge non-equivalent nodes when the given width is exceeded

[Bergman et al., 2012]
Relaxed BDD

Exact BDD

Relaxed BDD (width ≤ 3)
Relaxed BDD

Exact BDD

Relaxed BDD (width ≤ 3)
Relaxed BDD

Exact BDD

Relaxed BDD (width ≤ 3)

(0,0,0,1,0)
Relaxed BDD

--- : 0
-- : 1

Exact BDD

Relaxed BDD (width ≤ 3)

(1,0,0,0,1)
Evaluate Objective Function

Exact BDD

\[\max f(x) = 12 \]

Relaxed BDD (width ≤ 3)

\[\max f(x) = 13 \]
Node merging heuristics

Suppose layer j has nodes L_j with $|L_j| > W$ (max width)
Which subsets of non-equivalent nodes to merge?

- **Random**
 - select random subset of nodes to merge

- **Minimum Longest Path (minLP)**
 - sort nodes by increasing longest path value from r
 - merge the first $|L_j| - W + 1$ nodes (i.e., keep best W nodes)

- **Minimum State Size (minSize)**
 - sort nodes by decreasing state size
 - merge first 2 nodes until $|L_j| \leq W$ (larger states are more likely to have vertices in common and may be more similar)
Variable Ordering

- Order of variables greatly impacts BDD size
 - also influences bound from relaxed BDD (see next)
- Finding ‘optimal ordering’ is NP-hard

- Insights from independent set as case study
 - formal bounds on BDD size
 - measure strength of relaxation w.r.t. ordering
Exact BDD orderings for Paths

\[x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \]

\[y_1 \ y_4 \ y_2 \ y_5 \ y_3 \ y_6 \]
Many Random Orderings

Better orderings give stronger bounds

For each random ordering, plot the exact BDD width and the bound from width-10 BDD relaxation
Formal Results for Independent Set

<table>
<thead>
<tr>
<th>Graph Class</th>
<th>Bound on Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paths</td>
<td>1</td>
</tr>
<tr>
<td>Cliques</td>
<td>1</td>
</tr>
<tr>
<td>Interval Graphs</td>
<td>n/2</td>
</tr>
<tr>
<td>Trees</td>
<td>n/2</td>
</tr>
<tr>
<td>General Graphs</td>
<td>Fibonacci Numbers</td>
</tr>
</tbody>
</table>

(The proof for general graphs is based on a maximal path decomposition of the graph)
Variable Ordering for Relaxed BDDs

- **Random**
 - select random variable ordering

- **Minimum number of states (minState)**
 - Given current layer j with node L_j
 - Select vertex that appears in fewest number of states of L_j
 (dynamic ordering; minimizes the size of the next layer)

- **Maximal Path Decomposition (MPD)**
 - Greedily compute a maximal path decomposition
 - Order the vertices by the order in which they appear in the paths (static ordering; provides bound on the width)
Impact of node merging and ordering

Experimental setup:

• 180 randomly generated instances

• Erdos-Renyi model $G(n,p)$
 – graph on n vertices
 – edge exists between pair of vertices with probability p
 – $n = 200$, $p \in \{0.1, 0.2, ..., 0.9\}$ (20 instances per p)

• Maximum BDD width $W=10$
Impact of node merging heuristics

- Variable ordering: maximal path decomposition (MPD)
- Each data point is average over 20 instances
- For random, line segment indicates range over 5 instances
Impact of variable ordering heuristics

- Node merging heuristic: minLP
- Each data point is average over 20 instances
- For random, line segment indicates range over 5 instances
Experimental Evaluation

- **Goals**
 - Measure impact of maximum width on strength of bound
 - Compare BDD bounds to Linear Programming bounds

- **LP Settings**
 - LP model uses Clique Cover formulation
 - LP cuts from IBM ILOG CPLEX 12.4
 - root node relaxation, no presolve, barrier method

- **BDD settings**
 - variable ordering minState, node merging minLP

- **Time Limit** 3,600s

- **Random + DIMACS clique instances**
Impact of width on relaxation

upper bound

time (s)

brock_200-2 instance
Bound quality versus density: Random

Each data point is geometric mean over 20 instances
Bound quality versus density: DIMACS

Each data point is geometric mean over 20 instances
Bound quality in more detail

- Random instances
- BDD bounds obtained in 5% of LP time

- DIMACS instances
- BDD bounds obtained in less time than LP except for sparsest
Restricted MDDs

- Relaxed MDDs find upper bounds for independent set problem
- Can we use MDDs to find lower bounds as well (i.e., good feasible solutions)?
- **Restricted MDDs** represent a subset of feasible solutions
 - we require that every r-t path corresponds to a feasible solution
 - but not all solutions need to be represented
- Goal: Use restricted MDDs as a heuristic to find good feasible solutions
Creating Restricted MDDs

Using an exact top-down compilation method, we can create a limited-width restricted MDD by

1. merging nodes, or
2. deleting nodes

while ensuring that no non-solutions are introduced
Node merging by example

Restricted BDD (width ≤ 3)

---: 0
—: 1

\(x_1 \)

\(x_2 \)

\(x_3 \)

\[\emptyset \]

\{4\}

\{5\}

\{5\}

\{4,5\}

\{3,4\}

\{3,4\}

\{3,4\}

\{5\}

\{5\}

\{3,4,5\}

\{2,3,4,5\}

\{1,2,3,4,5\}
Node merging by example

Restricted BDD (width \(\leq 3 \))
Node deletion by example

Restricted MDD (width ≤ 3)

In practice, node deletion superior to node merging
(similar or better bounds, but much faster)
Node deletion heuristics

Similar to node merging heuristics for MDD relaxations:

- Random

- **Minimum Longest Path (minLP)**
 - sort nodes by increasing longest path value from r
 - delete the first $|L_j| - W + 1$ nodes (i.e., keep best W nodes)

- **Minimum State Size (minState)**
Experimental Evaluation

- Compare with Integer Programming (CPLEX)
 - LP relaxation + cutting planes
 - Root node solution

- DIMACS instance set

- MDDs with varying maximum width
IP versus BDD heuristic

Each data point is geometric mean over 20 instances.
More Applications

Methods for MDD relaxations and restrictions can easily be extended to other problems

- Knapsack problem, Set covering, Set packing, Bin packing (also multi-dimensional),...
- Key is the state representation

One more example: Set covering
Set Covering Problem

• Given set $S=\{1,\ldots,n\}$ and subsets C_1,\ldots,C_m of S

• Find a subset X of S with minimum cardinality such that $|C_i \cap X| \geq 1$ for all $i=1,\ldots,m$

$$\min \sum_j x_j$$

s.t. $$\sum_{j \text{ in } C_i} x_j \geq 1 \quad \text{for all } i=1,\ldots,m$$

$$x_1,\ldots,x_n \text{ binary}$$
minimize \[x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \]
s.t. \[x_1 + x_2 + x_3 \geq 1 \quad (1) \]
\[x_1 + x_4 + x_5 \geq 1 \quad (2) \]
\[x_2 + x_4 + x_6 \geq 1 \quad (3) \]

For BDD we need
- **State information**
 - set of uncovered constraints
- **Merging rule**
 - for relaxation: intersection
 - for restriction: union
Relaxed BDD (width ≤ 3)

\[x_1 + x_2 + x_3 \geq 1 \] (1)
\[x_1 + x_4 + x_5 \geq 1 \] (2)
\[x_2 + x_4 + x_6 \geq 1 \] (3)

Merging rule
- for relaxation: intersection
- (for restriction: union)
Relaxed BDD (width ≤ 3)

\[x_1 + x_2 + x_3 \geq 1 \quad (1) \]
\[x_1 + x_4 + x_5 \geq 1 \quad (2) \]
\[x_2 + x_4 + x_6 \geq 1 \quad (3) \]

Merging rule
- for relaxation: intersection
- (for restriction: union)
Building relaxed BDD for set covering

Relaxed BDD (width ≤ 3)

\[x_1 + x_2 + x_3 \geq 1 \] (1)
\[x_1 + x_4 + x_5 \geq 1 \] (2)
\[x_2 + x_4 + x_6 \geq 1 \] (3)

Merging rule
- for relaxation: intersection
- (for restriction: union)

Edge weights equal to objective coefficients: shortest path gives lower bound
Tightening the Lower Bound

- Value extraction method
 - Given: an MDD relaxation, M
 - Given: a valid lower bound, v
 - Extract all paths in M that correspond to solutions with objective function value equal to v in the form of another MDD $M|_{z=v}$

- Creating $M|_{z=v}$ can be done efficiently

- Apply MDD-based CP to $M|_{z=v}$ in order to either
 - Increase v to $v+1$ (if no solution exists)
 - Find a feasible (and optimal) solution
Experimental Results

• Investigate whether relaxation MDDs are able to capture and exploit problem structure
 – We consider structured set covering problems

• Purest structure: all constraints are defined on consecutive variables
 – TU constraint matrix; easy for IP
 – Exact MDD has bounded width; also easy for MDD
Instance Generation

- We generated random instances
 - Fix number of variables per constraint, k
 - Vary the bandwidth b
 - Randomly assign a 0 to $b - k$ ones in the bandwidth

- Destroys both the TU property for IP and the bounded width property for MDD
Computational Results

- 250 variables, $k = 20$, $b \in \{22, \ldots, 44\}$, 20 instances for each bandwidth

- Compare 3 different solution methods
 - Pure-IP (CPLEX)
 - Pure-MDD (Value Extraction)
 - Hybrid (1/10 solution time given to pure-MDD and then pass bound to CPLEX)
Number of Instances Solved (1 min.)

![Graph showing the number of instances solved over bandwidth for different methods: IP, MDD, and HYBRID. The x-axis represents bandwidth, and the y-axis represents the number of instances solved. The graph illustrates the performance of each method under varying bandwidth conditions.]
Average Ending Lower Bound (1 min)
Larger Instances

500 variables, 5 instances, $k = 20$, $b \in \{22, \ldots, 25\}$
Restricted BDDs

• Compare with Integer Programming (CPLEX)
 – Heuristic solution found at the root node
 – Also compute LP relaxation to measure the gap

• Experimental setup
 – As before, randomly generated with increasing bandwidth
 – n=500 variables, k=75 number of ones per constraints
 – bandwidth is multiple of k: b \in \{1.1k, 1.2k, ..., 2.6k\}
 – 30 instances per triple (n,k,b)
 – randomly generated weights

• Maximum BDD width 500

• Compare BDD-gap with IP-gap (relative to LP)
Unweighted instances

BDD reduces optimality gap from 40% to 30% w.r.t. IP

optimality gap (%) vs. increasing bandwidth
Weighted instances

Relative strength of BDD decreases for larger bandwidth

![Graph showing the relationship between optimality gap (%) and increasing bandwidth.]

- IP-gap
- BDD-gap
Summary for MDD-Optimization

- Limited-width MDDs can provide useful bounds for discrete optimization
 - The maximum width provides a natural trade-off between computational efficiency and strength
 - Both lower and upper bounds
 - Generic discrete relaxation and restriction method for MIP-style problems

- Successfully applied to number of problems
 - Independent Set Problem, Set Covering Problem, Set Packing Problem, Bin Packing,...
5. Consider the following CSP

\[4x_1 + 2x_2 + x_3 + x_4 + 2x_5 + 4x_6 = 7 \]

\[x_1, x_2, ..., x_6 \in \{0,1\} \]

a) Draw an exact BDD for this problem using the variable ordering \(x_1, x_2, x_3, x_4, x_5, x_6 \)

b) Draw an exact BDD for this problem using the variable ordering \(x_1, x_6, x_2, x_5, x_3, x_4 \)

c) Which of the two orderings yields the smallest width?
6. Consider the following set covering instance:

\[
\begin{align*}
\text{minimize} & \quad 3x_1 + 2x_2 + x_3 + 4x_4 + 2x_5 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 \geq 1 \\
& \quad x_1 + x_4 + x_5 \geq 1 \\
& \quad x_2 + x_4 \geq 1
\end{align*}
\]

Construct a restricted BDD with maximum width 3. Does it yield the optimal solution?
Open issues

• Extend application to CP
 – Which other global constraints are suitable?
 – Can we develop search heuristics based on the MDD?
 – Can we more efficiently store and manipulate approximate MDDs? (Implementation issues)
 – Can we obtain a tighter integration with CP domains?

• MDD technology
 – Variable ordering is crucial for MDDs. What can we do if the ordering is not clear from the problem statement?
 – How should we handle constraints that partially overlap on the variables? Build one large MDD or have partial MDDs communicate?
Open issues (cont’d)

• Formal characterization
 – Can MDDs be used to identify tractable classes of CSPs?
 – Can we identify classes of global constraints for which establishing MDD consistency is hard/easy?
 – Can MDDs be used to prove approximation guarantees?
 – Can we exploit a connection between MDDs and tight LP representations of the solution space?

• Optimization
 – Approximate MDDs can provide bounds for any nonlinear (separable) objective function. Demonstrate the performance on an actual application.
Open issues (cont’d)

• Beyond classical CP
 – How can MDDs be helpful in presence of uncertainty? E.g., can we use approximate MDDs to represent policy trees for stochastic optimization? [Cire, Coban, v.H., 2012]
 – Can we utilize approximate MDDs for SAT?
 – Can MDDs help generate nogoods, e.g., in lazy clause generation? (We have done this for disjunctive scheduling)
 – Can we exploit a tighter integration of MDDs in MIP solvers?

• Applications
 – So far we have looked mostly at generic problems. Are there specific applications for which MDDs work particularly well? (Bioinformatics?)
Summary

What can MDDs do for discrete optimization?

• Compact representation of all solutions to a problem
• Limit on size gives approximation
• Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling

• MDD propagation natural generalization of domain propagation
• Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

• MDDs provide discrete relaxations
• Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated methods, theory, applications, ...