
MDD Filtering for Sequence Constraints

Andre Cire and Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

Outline

• Motivation and background

• MDD filtering for Sequence

• Experimental results

• Conclusions

2

3

Motivation

Constraint Programming applies

• systematic search and

• inference techniques

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}

4

Illustrative Example

AllEqual(x1, x2, x3, x4), all xi binary

x2

x3

x4

x1{0,1}

{0,1}

{0,1}

{0,1}

domain representation, size 24

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2

5

Drawback of domain propagation

• All structural relationships among variables are

projected onto the domains

• Potential solution space implicitly defined by Cartesian

product of variable domains (very coarse relaxation)

We can communicate more information between

constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential

solution space

• Limited width defines relaxation MDD

6

MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008]

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2012]

• Generic re-application of existing domain filtering

algorithm for any constraint type [Hoda et al., 2010]

• Sequence constraints (combination of Amongs)

7

Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

8

sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 70 ≤ x2+x3+ ... +x10 ≤ 70 ≤ x3+x4+ ... +x11 ≤ 70 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) := ∧ l ≤ ∑x∈X’ (x ∈ S) ≤ u
|X’|=q

Among(X, S, l, u)

MDD Representation for Sequence

Exact MDD for Sequence(X, q=3, S={1}, l=1, u=2) 9

• Equivalent to the DFA
representation of
Sequence for domain
propagation

[v.H. et al., 2006, 2009]

• Size O(n2q)

10

MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a Sequence constraint, remove

all inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for Sequence on an

arbitrary MDD is NP-hard

(even if the MDD order follows the sequence of variables X)

Proof: Reduction from 3-SAT

Next goal: Develop a partial filtering algorithm, that does not

necessarily achieve MDD consistency

Sequence Decomposition

• Sequence(X, q, S, l, u) with X = x1, x2, …, xn

• Introduce a ‘cumulative’ variable yi representing the sum
of the first i variables in X

y0 = 0

yi = yi-1 + (xi∈S) for i=1..n

• Then the sub-constraint on [xi+1,…, xi+q] is equivalent to

l ≤ yi+q − yi

yi+q − yi≤ u for i = 0..n-q

• [Brand et al., 2007] show that bounds reasoning on this decomposition
suffices to reach Domain consistency for Sequence (in poly-time)

11

MDD filtering from decomposition

12

Sequence(X, q=3, S={1}, l=1, u=2)

Approach

• The auxiliary variables yi can be
naturally represented at the
nodes of the MDD

• We can now actively filter this
node information (not only the
edges)

MDD filtering from decomposition

13

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

MDD filtering from decomposition

14

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

MDD filtering from decomposition

15

This procedure does
not guarantee MDD
consistency

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

Analysis of Algorithm

• Initial population of node domains (y variables)

– linear in MDD size

• Analysis of each state in layer k

– maintain list of ancestors from layer k-q

– direct implementation gives O(qW2) operations per

state (W is maximum width)

– need only maintain min and max value over

previous q layers: O(Wq)

• One top-down and one bottom-up pass

16

Experimental Results

17

18

Experimental Setup

• Decomposition-based filtering algorithm

– Implemented as global constraint in IBM ILOG CPLEX/CP

Optimizer 12.3

• Evaluation

– Compare MDD filtering with Domain filtering

– Domain filter based on the same decomposition

(achieved domain consistency for almost all our instances)

– Random instances and structured shift scheduling instances

• All methods apply the same fixed search strategy

– lexicographic variable and value ordering

– find first solution or prove that none exists

19

Random instances

• Randomly generated instances

– n=20-48 variables

– domain size between 10 and 30

– 1, 2, 5, 7, or 10 Sequence constraints

– q random from [2..n/2]

– u – l random from 0 to q-1

– 360 instances

• Vary maximum width of MDD

– widths 1 up to 32

20

Random instances results

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 2

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 2

21

Random instances results (cont’d)

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 32

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 32

22

Random instances results (cont’d)

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 32

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 32

23

Shift scheduling instances

• Shift scheduling problem for n=40, 50, 60, 70, 80 days

• Shifts: day (D), evening (E), night (N), off (O)

• Problem type P-I

– work at least 22 day or evening shifts every 30 days

Sequence(X, q=30, S= {D, E}, l=22, u=30)

– have between 1 and 4 days off every 7 consecutive days

Sequence(X, q=7, S={O}, l=1, u=4)

• Problem type P-II

– Sequence(X, q=30, S={D, E}, l=23, u=30)

– Sequence(X, q=5, S={N}, l=1, u=2)

24

MDD Filter versus Domain Filter

Summary

• We studied MDD propagation for Sequence

constraints

• Complete MDD filtering for Sequence is NP-hard

• Partial MDD filtering based on cumulative

decomposition can be quite effective

– represent auxiliary variables at nodes

– actively filter node information

• Large savings possible w.r.t. Domain propagation

• MDD propagation can be a powerful mechanism for

solving Constraint Programming problems

25

