
MDD Filtering for Sequence Constraints

Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

Outline

• Motivation and background

• Partial MDD filtering

• Hardness of complete MDD filtering

• Experimental results

• Conclusions

2

3

Motivation

Constraint Programming applies

• systematic search and

• inference techniques

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}

4

Drawback of domain propagation

Observations:

• Communication between constraints only via variable domains

• Information can only be expressed as a domain change

• Other (structural) information that may be learned from a

constraint is lost: it must be projected onto variable domains

• Potential solution space implicitly defined by Cartesian product

of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more

expressive information, using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

• Limited-width defines relaxation MDD

5

MDD-based constraint programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008]

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Sequential scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2011]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering

algorithm for any constraint type [Hoda et al., 2010]

6

Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

7

sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 70 ≤ x2+x3+ ... +x10 ≤ 70 ≤ x3+x4+ ... +x11 ≤ 70 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) := ∧ l ≤ ∑x∈X’ (x ∈ S) ≤ u
|X’|=q

Among(X, S, l, u)

MDD Representation for Sequence

Exact MDD for Sequence(X, q=3, S={1}, l=1, u=2) 8

• Equivalent to the DFA
representation of
Sequence for domain
propagation

[v.H. et al., 2006, 2009]

• Size O(n2q)

9

MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a Sequence constraint, remove

all inconsistent edges from the MDD (i.e., MDD-consistency)

(Assumption: MDD order follows the sequence of variables X)

Can this be done in polynomial time?

• The sub-sequence constraints impose a strong structure (i.e.,

consecutive-ones LP formulation)

• Exact MDD representation is polynomial in n (i.e., just fix q)

• There are several efficient domain filtering algorithms for

Sequence, some of which have a dynamic programming flavor

• Several existing domain filtering algorithms only reason on the

bounds of the variables, suggesting that intervals may suffice

Sequence Decomposition

• Sequence(X, q, S, l, u) with X = x1, x2, …, xn

• Introduce a ‘cumulative’ variable yi representing the sum
of the first i variables in X

y0 = 0

yi = yi-1 + (xi∈S) for i=1..n

• Then the sub-constraint on [xi+1,…, xi+q] is equivalent to

l ≤ yi+q − yi

yi+q − yi≤ u for i = 0..n-q

• [Brand et al., 2007] show that bounds reasoning on this decomposition
suffices to reach domain consistency for Sequence (in poly-time)

10

MDD filtering from decomposition

11

Sequence(X, q=3, S={1}, l=1, u=2)

Approach

• The auxiliary variables yi can be
naturally represented at the
nodes of the MDD

• We can now actively filter this
node information (not only the
edges)

MDD filtering from decomposition

12

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

MDD filtering from decomposition

13

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

MDD filtering from decomposition

14

This procedure does
not guarantee MDD
consistency

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2

Hardness of MDD Consistency

15

Result

Theorem: Establishing MDD consistency for Sequence on

an arbitrary MDD is NP-hard

Proof structure:

• Given 3-SAT problem (NP-complete)

• We will construct a polynomial-size MDD such that a particular

Sequence constraint will have a solution in the MDD if and only

if the 3-SAT instance is satisfiable

• Example 3-SAT problem

16

Single clause representation

17

Each path from root to terminal

corresponds to a satisfying

assignment for this clause

Group clauses together

• Literal xj in clause ci

represented by variable yij

• MDD size O(6(2mn+1))

• How to ensure that a variable

takes the same value in each

clause?

18

Impose Sequence Constraint

Sequence(Y, q=2n, S={1}, l=n, u=n)

19

• Start from a positive literal: sub-
sequence always contains n times
the value 1 (namely, for each
variable it contains both literals)

• Start from a negative literal: the
corresponding positive literal in the
next clause must take the opposite
value (all other variables sum up to
n-1)

• Therefore, variables take the same
value in each clause

• Solution to Sequence in this MDD is
equivalent to 3-SAT solution

Preliminary Experimental Results

20

21

Experimental Setup

• Decomposition-based filtering algorithm

– implemented in MDD solver of [Hoda, PhD 2010]

• Evaluation

– compare Sequence MDD filter with Among MDD filter

(the Among MDD filter is also implemented in [Hoda, PhD 2010])

– compare Sequence MDD filter with Sequence domain filter

(the domain filter is based on the same decomposition)

• All methods use the same search strategy

– variable selection: smallest domain first

– value selection: lexicographic ordering

22

MDD Sequence versus Among

• Randomly generated instances

– 50 variables

– two Sequence constraints

– q = 14 *

– u – l = 1 (select l uniform-randomly from [1,n-1])

– 100 instances

• Vary maximum width of MDD

– widths 1, 4, 8

* For q≤7 Among and Sequence performed similarly

23

MDD Sequence versus Among

24

MDD Filter versus Domain Filter

• Shift scheduling problem for n=40, 50, 60, 70, 80 days

• Shifts: day (D), evening (E), night (N), off (O)

• Problem type P-I

– work at least 22 day or evening shifts every 30 days

Sequence(X, q=30, S= {D, E}, l=22, u=30)

– have between 1 and 4 days off every 7 consecutive days

Sequence(X, q=7, S={O}, l=1, u=4)

• Problem type P-II

– Sequence(X, q=30, S={D, E}, l=23, u=30)

– Sequence(X, q=5, S={N}, l=1, u=2)

25

MDD Filter versus Domain Filter

Conclusions

• Complete MDD filtering for Sequence is NP-hard

• Partial MDD filtering based on cumulative

decomposition can be quite effective

– represent auxiliary variables at nodes

– actively filter node information

• Preliminary experimental results are promising

• Future/current work: better implementation, in ILOG

CP Optimizer

26

