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Constraint Programming applies
e systematic search and
e inference techniques

to solve combinatorial problems

Inference mainly takes place through:
e Filtering provably inconsistent values from variable domains
e Propagating the updated domains to other constraints

X, € {1,2}, x,€ {1,2,3}, x; € {2,3}

X, < X, \\Xz e {2,3}

alldifferent(x,,x,,X;) \Xl e {1}



Drawback of domain propagation lepper
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Observations:
e Communication between constraints only via variable domains
e |nformation can only be expressed as a domain change

e Other (structural) information that may be learned from a
constraint is lost: it must be projected onto variable domains

e Potential solution space implicitly defined by Cartesian product
of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more
expressive information, using MDDs [Andersen et al. 2007]

e Explicit representation of more refined potential solution space
e Limited-width defines relaxation MDD
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MDD-based constraint programming  lepper

e Maintain limited-width MDD

— Serves as relaxation
— Typically start with width 1 (initial variable domains)
— Dynamically adjust MDD, based on constraints

e Constraint Propagation

— Edge filtering: Remove provably inconsistent edges (those
that do not participate in any solution)

— Node refinement: Split nodes to separate edge information

e Search
— As in classical CP, but may now be guided by MDD



Specific MDD propagation algorithms leppeér
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e Linear equalities and inequalities  [Hadzic et al., 2008]
[Hoda et al., 2010]

e Alldifferent constraints [Andersen et al., 2007]
e Flement constraints [Hoda et al., 2010]
e Among constraints [Hoda et al., 2010]

e Sequential scheduling constraints [Hoda etal., 2010]
[Cire & v.H., 2011]

e Sequence constraints (combination of Amongs)
[v.H., 2011]

e Generic re-application of existing domain filtering
algorithm for any constraint type  [Hodaetal, 2010]
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Sequence Constraint lepper

Employee must work at most 7 days every 9 consecutive days

X1 Xy X3 Xy X5 Xg X5 Xg Xg | X0 | X171 | X12

N— N NN s S S
~ VWV

0 £ X @6 ¥ XK g R, <Hk), < 7

> =: Sequence([X,,X,...,X,], =9, $={1}, I=0, u=7)

Sequence(X, q,S, Lu)y:= /N (<3 _.(xeS)su

|X’[=q l

Among(X, S, | u)
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MDD Representation for Sequence lepper

Equivalent to the DFA
representation of
Sequence for domain
propagation

[V.H. et al., 2006, 2009]

X3

H « Size O(n29)

x5

Xg

Exact MDD for Sequence(X, g=3, S={1}, [=1, u=2) S



MDD Filtering for Sequence lepper
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Goal: Given an arbitrary MDD and a Sequence constraint, remove
all inconsistent edges from the MDD (i.e., MDD-consistency)

(Assumption: MDD order follows the sequence of variables X)

Can this be done in polynomial time?

e The sub-sequence constraints impose a strong structure (i.e.,
consecutive-ones LP formulation)

e Exact MDD representation is polynomial in n (i.e., just fix g)

e There are several efficient domain filtering algorithms for
Sequence, some of which have a dynamic programming flavor

e Several existing domain filtering algorithms only reason on the
bounds of the variables, suggesting that intervals may suffice



Sequence Decomposition lepper
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« Sequence(X, q, S, |, u) with X = x, x5, ..., X,
 Introduce a ‘cumulative’ variable y; representing the sum
of the first ({ variables in X
Yo=0
V=Y + (x€S5) for (=1..n

« Then the sub-constraint on [x;,;,..., ] Is equivalent to

l+C[
LS Yig— Y
Yieg—Yis u for(=0.n-q

« [Brand et al., 2007] show that bounds reasoning on this decomposition
suffices to reach domain consistency for Sequence (in poly-time)

10
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Sequence(X, g=3, S={1}, [=1, u=2)

Approach

« The auxiliary variables y; can be
naturally represented at the
nodes of the MDD

« We can now actively filter this

node information (not only the
edges)

11



MDD filtering from decomposition Teppeér
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Sequence(X, g=3, S={1}, [=1, u=2)

Yi=VYi1t X

l<y;-yp<2
l<y,-y,52
l<ys—y,<2
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MDD filtering from decomposition Teppeér
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Sequence(X, g=3, S={1}, [=1, u=2)

Yi=VYi1t X

l<y;-yp<2
l<y,-y,52
l<ys—y,<2
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MDD filtering from decomposition Teppeér
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Hardness of MDD Consistency

15
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Theorem: Establishing MDD consistency for Sequence on
an arbitrary MDD is NP-hard

Proof structure:
e Given 3-SAT problem (NP-complete)

e We will construct a polynomial-size MDD such that a particular

Sequence constraint will have a solution in the MDD if and only
if the 3-SAT instance is satisfiable

e Example 3-SAT problem
c1 = (‘,{.']_ \/Ig \/;{f4)
co = (w2 Vs \/J_-'4)

16



Single clause representation lepper
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/) . /'\\
f;—j e F : false ® D
- ! T : true - "\
_3(1 1 A 1 :\
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'f‘_\-\' ¢ ]

Each path from root tOL terminal
cQrrespo ds to a sati fymg
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O "|k_, A
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Group clauses together lepper
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| Y c:/QI"-:‘MI o ® Literal X’ in Clause C
| | J !
/ / represented by variable y;

N / Vi [ e MDD size O(6(2mn+1))

>

R >/ e How to ensure that a variable

takes the same value in each
clause?
¥ i 18




Impose Sequence Constraint lepper
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Sequence(Y, g=2n, S={1}, [=n, u=n)

« Start from a positive literal: sub-
sequence always contains n times
the value 1 (namely, for each
variable it contains both literals)

« Start from a negative literal: the
corresponding positive literal in the
next clause must take the opposite

value (all other variables sum up to
n-1)

« Therefore, variables take the same
value in each clause

« Solution to Sequence in this MDD is
equivalent to 3-SAT solution

19
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Preliminary Experimental Results

20



Experimental Setup lepper
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e Decomposition-based filtering algorithm
— implemented in MDD solver of [Hoda, PhD 2010]

e Evaluation
— compare Sequence MDD filter with Among MDD filter
(the Among MDD filter is also implemented in [Hoda, PhD 2010])

— compare Sequence MDD filter with Sequence domain filter
(the domain filter is based on the same decomposition)

e All methods use the same search strategy
— variable selection: smallest domain first

— value selection: lexicographic ordering
21



MDD Sequence versus Among lepper
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« Randomly generated instances
— 50 variables
— two Sequence constraints
-g=14"
— u— [ =1 (select | uniform-randomly from [1,n-1])
— 100 instances

« Vary maximum width of MDD
— widths 1, 4, 8

" For g<7 Among and Sequence performed similarly
22
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MDD Filter versus Domain Filter lepper
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Shift scheduling problem for n=40, 50, 60, 70, 80 days
Shifts: day (D), evening (E), night (N), off (O)

Problem type P-I

— work at least 22 day or evening shifts every 30 days
Sequence(X, g=30, S= {D, E}, (=22, u=30)

— have between 1 and 4 days off every 7 consecutive days

Sequence(X, g=7, S={0}, [=1, u=4)

Problem type P-II

— Sequence(X, g=30, S={D, E}, (=23, u=30)
— Sequence(X, g=5, S={N}, (=1, u=2)

24
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MDD Filter versus Domain Filter

tieTaEs MDD MDD MDD MDD

instance  propagator width 1 width 4 width 8 width 16
n BT CPU BT CPU BT CPU BT CPU BT CPU

P-I1 40 (121.767)(4.63) 34.108 ( 251.06) [ 75) 1.67 28( 0.99] 28 1.00
50 1121777 ||5.67| 34.108 | 487.25|| 75| 3.06 20| 1.86] 29 1.90

60 | 121,782 ([6.51] 34.108 | 79621 || 75| 5.00 30| 3.09] 30 3.12

70 121,787 |[6.99] 34,108 [1.11088 ]| 75| 6.96 28| 4.30] 28 4.33

S0 |121.792(|7.48| 34.108 [1.492.33| | 75| 9.38 28| 5.97| 28 5.88

P-II 40 [116.548 [[3.52] 233.006 [1.492.03| | 71| 1.63 32| 1.17| 36 1.29
50 |116.548(]3.98 | >1600|| 69277 36| 236 36 240

60 | 116,548 ||4.56 | >1600|| 65| 438 36| 356 36 3.83

70 |116.548 ||4.95 | >1600|| 67| 632 32| 471| 36 5.44

80 |116.548]|5.08 | >1600] | 73| 847 32| 6.36| 36 7.24

M N )
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Conclusions r[éppel“
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e Complete MDD filtering for Sequence is NP-hard

e Partial MDD filtering based on cumulative
decomposition can be quite effective

— represent auxiliary variables at nodes
— actively filter node information

e Preliminary experimental results are promising

e Future/current work: better implementation, in ILOG
CP Optimizer

26



