
Decision Diagrams for
Optimization

Andre Augusto Cire
Dept. of Management, University of Toronto Scarborough

Rotman School of Management

MIP 2015, Chicago, June 2015

Collaborators

2

Willem-Jan van Hoeve
Carnegie Mellon University

John Hooker
Carnegie Mellon University

David Bergman
University of Connecticut

JorisKinable
Carnegie Mellon University

Christian Tjandraatmadja
Carnegie Mellon University

Thiago Serra
Carnegie Mellon University

Our Main Research Goal

Investigate the use of Decision Diagramsfor
solving discrete optimization problems

3

ÅNew relaxation/bounding technique
ÅBounds can be superior to state-of-the-art methods in certain problems

ÅGeneric primal heuristic
ÅScales to large-scale problems

ÅInference techniques
ÅNew types of cuts for MIPs and other optimization technologies

ÅNovel complete solution technique
ÅSolved open instances from classical benchmarks
ÅParallel method that scales almost linearly with number of processors

4

Contributions so far

Decision Diagrams

Å Graphical representation of
Boolean functions

Ὢὼ ὼᵾὼ ᷈ ὼᵾὼ

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

Χ Χ Χ Χ Χ

5

Decision Diagrams

Å Graphical representation of
Boolean functions

Ὢὼ ὼᵾὼ ᷈ ὼᵾὼ

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

Χ Χ Χ Χ Χ

6

Decision Diagrams

Å Graphical representation of
Boolean functions

Ὢὼ ὼᵾὼ ᷈ ὼᵾὼ

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

Χ Χ Χ Χ Χ

7

Decision Diagrams

Å Graphical representation of
Boolean functions

Ὢὼ ὼᵾὼ ᷈ ὼᵾὼ

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

Χ Χ Χ Χ Χ

8

Decision Diagrams

Å Graphical representation of
Boolean functions

Å Dual role
Å Computational model
Å Graphical encoding

Å[Lee’59, Akers’78, Bryant’86]

Ὢὼ ὼᵾὼ ᷈ ὼᵾὼ

0 1

x1

x2

x3

x4

0

1

9

Decision Diagrams

Å Applicationin several areas
Å Circuit design
Å Formal verification
Å Symbolic model checking
Å…

Å Our focus: Optimization
Å Literals Ą variables
Å Arcs Ą value assignments
Å Paths encode solutions 0 1

x1

x2

x3

x4

0

1

10

Decision Diagrams

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
x3–x4 = 0
x1, x2, x3, x4 {ɴ0,1}

0 1

x1

x2

x3

x4

0

1

11

Decision Diagrams

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
x3–x4 = 0
x1, x2, x3, x4 {ɴ0,1}

0 1

x1

x2

x3

x4

0

1

12

Decision Diagrams

0 1

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
x3–x4 = 0
x1, x2, x3, x4 {ɴ0,1}

13

Decision Diagrams

r

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
x3–x4 = 0
x1, x2, x3, x4 {ɴ0,1}

t

14

Decision Diagrams

r

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
x3–x4 = 0
x1, x2, x3, x4 {ɴ0,1}

Å Maximizing a linear (or separable) function:
Å Arc lengths: contribution to the objective
Å Longest path: optimal solution

0

0

0

0

2

1

-4

1

t

15

Decision Diagrams

Å Uses of this framework:
Å Solution counting (Lobbing’96)
Å Large-scale network flowsόIŀŎƘǘŜƭ Ŝǘ ŀƭΩфтύ
Å Postoptimality analysis (Hadzic & Hooker’08)
Å Few others, typically domain-specific.

ÅOur goal: exploit the use of decision
diagrams in generic optimization
methods

r

x1

x2

x3

x4

0

1

0

0

0

0

2

1

-4

1

t

16

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

17

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

18

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

19

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

20

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

max 3x1 + 4x2 + 2x3 + 2x4 + 7x5

subject to
x1 + x2 1
x1 + x3 1
x2 + x3 1
x3 + x4 1
x4 + x5 1
x1, x2, x3, x4, x5 {ɴ0,1}

Å Integer Programming Formulation:

21

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problemÅOur model: Dynamic Programming
Å Exploit recursiveness
Å Model is formulated through states
Å Decisions (or controls): define state

transitions

Å Decision diagram: State-Transition Graph
Å Nodescorresponds to states
Å Arcsare state transitions
Å Arc weightsare transition costs

22

Modeling Framework

ÅDP model for the maximum independent set:
ÅState: vertices that can be added to an independent set (eligible vertices)
ÅDecision: select or not a vertex i from the eligibility set

ÅFormal model:

ὠὛ
άὥὼὠ Ὓʌ Ὥȟὠ Ὓʌ ὔὭ ρȟ Ὥɴ Ὓ

ὠ Ὓʌ ὔὭȟ έȢύȢ

ὠᶮ πȟ Ὥ ρȟȣȟυ

23

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

State: set of eligible vertices

24

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
x1

x2

x3

x4

x5

include

exclude

{v4 ,v5}{v2, v3, v4 ,v5}

{v1, v2, v3, v4 ,v5}

State: set of eligible vertices

25

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}{v2, v3, v4 ,v5}

State: set of eligible vertices

26

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

{v4 ,v5}

State: set of eligible vertices

27

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

State: set of eligible vertices

28

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

{v5} {v5}

State: set of eligible vertices

29

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

{v5}

State: set of eligible vertices

30

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r

t

0 3

00

0

0

0

0

0

0

0

4

2

2

7

x1

x2

x3

x4

x5

include

exclude

State: set of eligible vertices

31

32

3

1 2

4

1

2

-2

-1

-1

3

right

left

r

t

-4

0

10
6

4

1

0

4
2 0

0

0

v1

v2

v3

v4

Other Example: Maximum Cut Problem

33

r

t

-4

0

10
6

4

1

0

4
2 0

03

1 2

4

1

2

-2

-1

-1

3

right

left

0

v1

v2

v3

v4

Other Example: Maximum Cut Problem

Some quick observations

ÅVariable ordering plays a big role on size
ÅClosely connected to treewidthand bandwidth

ÅIndependent Set: polynomial for certain classes of graphs

ÅTSP: parameterized-size depending on precendence relations

ÅIn general, decision diagrams grow exponentiallylarge
ÅProof: Extended Formulations for the Independent Set Problem

34

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

35

Relaxed Decision Diagrams

ÅIn practice, we cannot work with exact diagrams

ÅAlternative: limit the size to approximatethe feasible space

ÅParameter on the width of the diagram

ÅRelaxed Decision Diagrams:Over-approximation

ÅIntroduced by [Andersen et al’07]

36

Relaxed Decision Diagrams

37

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

4 2

1

3

2 4

5

3

2 7

Relaxed Decision Diagrams

38

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

x = (0, 1, 0, 0, 1)
Solutionvalue=11

4 2

1

3

2 4

5

3

2 7

Relaxed Decision Diagrams

39

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

x = (0, 1, 1, 0, 1)
Upperbound= 13

4 2

1

3

2 4

5

3

2 7

Compiling Relaxed Decision Diagrams

ÅModel is augmented with a state agregationoperator
ÅRecipe on how to merge nodes so that no feasible solution is lost

40

Å ὠὛ
άὥὼὠ Ὓʌ Ὥȟὠ Ὓʌ ὔὭ ρȟὭɴ Ὓ

ὠ Ὓʌ ὔὭȟ έȢύȢ

ὠᶮ πȟ Ὥ ρȟȣȟυ

Å ɝὛȟὛ Ὓ᷾Ὓ

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3 , v4 ,v5}

{v5} { v3 , v4 ,v5}

{v4 ,v5}

Max Width = 2

0 4 0

41

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3 , v4 ,v5}

{v5} { v3 , v4 ,v5}

{v4 ,v5}

0 4 0

Max Width = 2

x1

x2

x3

x4

x5

42

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

x1

x2

x3

x4

x5

43

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

{ v3 ,v4 ,v5}

x1

x2

x3

x4

x5

44

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

{ v3 ,v4 ,v5}

x1

x2

x3

x4

x5

45

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

include
exclude

Max Width = 2

x1

x2

x3

x4

x5

46

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Relaxation Bound: Maximum Independent Set

47

ÅFiltering operations
Å“Redundant” constraints

ÅAdditive Bounding
ÅIncorporate dual information from LP relaxations

ÅDD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations

ÅFiltering operations
Å“Redundant” constraints

ÅAdditive Bounding
ÅIncorporate dual information from LP relaxations

ÅDD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

50

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

Å We are solving

max f(x)
subject to

x ɴ RelaxedDD

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

51

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

Å We are solving

max f(x)
subject to

x ɴ RelaxedDD

x = (0, 1, 1, 0, 1)
Upperbound= 13

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

52

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

Å Let A, bbe such that:

Ax ≤ bfor any feasible x

Å DD-Based Lagrangian:

max f(x) + λ(b –Ax)
subject to

x ɴ RelaxedDD

Å Gives an upper bound for
any λ≥0

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

53

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

x = (0, 1, 1, 0, 1)
Upperbound= 13

Å Solution (0,1,1,0,1)
violates constraint

x2 + x3≤ 1

Å Wepenalizewith term

+ λ(1 –x2–x3)

by simply changing the
cost structure of the DD

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

54

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

=˂ 2 Å Solution (0,1,1,0,1)
violates constraint

x2 + x3≤ 1

Å Wepenalizewith term

+ λ(1 –x2–x3)

by simply changing the
cost structure of the DD

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

55

0

r

t

2 5

0

0

0

0

0

0

0
0

2

7

2

4 2

1

3

2 4

5

3

2 7

=˂ 2 Å Solution (0,1,1,0,1)
violates constraint

x2 + x3≤ 1

Å Wepenalizewith term

+ λ(1 –x2–x3)

by simply changing the
cost structure of the DD

DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

56

Better upper
bound: 12 !

0

r

t

2 5

0

0

0

0

0

0

0
0

2

7

2

4 2

1

3

2 4

5

3

2 7

=˂ 2 Å Solution (0,1,1,0,1)
violates constraint

x2 + x3≤ 1

Å Wepenalizewith term

+ λ(1 –x2–x3)

by simply changing the
cost structure of the DD

Computational Analysis

ÅIncorporated into IBM ILOG CP Optimizer (CPO)
ÅState-of-the-art constraint-based scheduling solver

ÅUses a portfolio of inference techniques and LP relaxations

57

TSP with Time Windows

58

Dumas/Ascheuerinstances
- 20-100 jobs
- maximum width: 16

59

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

CP+MDD: No Lagrangian

C
P

+
M

D
D

:
W

ith
 L
a

g
ra

n
g

ia
n

Solution Times (secs)

DD-Based Lagrangian

Other Results

ÅAsymmetric TSP with Precedence Constraints
ÅClosed 3 TSPLIB open instances

ÅEasy modeling for certain problems
ÅExample:Time-Dependent TSPs

60

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

61

Restricted Decision Diagrams

62

4 2

1

3

2 4

5

3

2 7

include

exclude

Max Width = 2

ÅUnder-approximation of the feasible set r

t

0 3

00

0

0

0

0

0

02

2

7

v1

v2

v3

v4

v5

Restricted Decision Diagrams

63
include

exclude

Max Width = 2

ÅUnder-approximation of the feasible set

1

3

2 4

5

3

4 2

2 7

(1,0,0,0,1) Ą Lower bound = 10

r

t

0 3

00

0

0

0

0

0

02

2

7

v1

v2

v3

v4

v5

Primal Bound: Set Covering

64

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., valid cuts

65

Quick Notes on Inference

ÅCut generation for MIPs
ÅSeveral techniques from Behle’07

ÅRecent:Polar set cutsfrom Relaxed Decision Diagrams
ÅTalk to Christian Tjandraatmadja! (poster yesterday!)

ÅHighly-structured Cuts
ÅPrecedence relations that must hold in scheduling problems

ÅWe are still exploring notion of decision diagram separation
ÅCire & Hooker, ISAIM 2014

66

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

67

Exact Method

ÅNovel decision diagram branch-and-bound scheme
ÅRelaxed diagrams play the role of the LP relaxation

ÅRestricted diagrams are used as primal heuristics

ÅBranching is done on the nodes of the diagram
ÅBranching on poolsof partial solutions

ÅEliminate search symmetry

68

1

2

4

3

56

Relaxed Exact

69

1

2

4

3

56

Relaxed Exact

Up to a certain layer,
the diagrams are the
same (i.e., one layer
before you start
forcefully merging)

70

1

2

4

3

56

Relaxed

Thus, an optimum solution
must necessarily pass through
one of these nodes

71

1

2

4

3

56

Relaxed

R

1

2

{v3, v4 ,v5, v6} {v3, v6}{v3, v4 ,v5}

72

1

2

4

3

56

Relaxed

R

1

2

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

73

Longest path to
node

1

2

4

3

56

Relaxed

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

74

v3

R

T

{v3, v6}

{v6} { }

{ }

v6

1

2

4

3

56

Relaxed

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

75

v3

R

T

{v3, v6}

{v6} { }

{ }

v6
Solution of value 2 !!

1

2

4

3

56

Relaxed

76

Explore each separately, saving the best
solution/bound found

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

Maximum Cut

77

instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65

ÅReduced certain optimality gaps

Maximum Independent Set: 500 variables

78

Maximum Independent Set: 1500 variables

79

Parallel Search with Decision Diagrams

ÅNew branching scheme is very suitable to parallelism

ÅIdea: explore DP States in different cores
ÅRelatively little information needs to be shared

ÅMost of the computational work involves computing relaxations/restrictions,
done locally by each computer core

ÅEasier to distribute load

ÅJoint work with Horst Samulowitz, Vijay Saraswat(IBM Research), and
Ashish Sabharwal (Allen Inst.)

80

Parallel Search: Why bother?

ÅCurrent technology
ÅInteger Programming
ÅGurobi: Average speedup factor (Gu, 2013)
Å1.7x on 5 cores

Å1.8x on 25 cores

ÅCPLEX (Mittleman, 2009)
Å1.67x on 4 cores

ÅSAT
Å2013 SAT competition
Å8x on 32 cores

ÅConstraint Programming
ÅOnly focus on infeasible instances/finding all solutions

81

Parallel Search with Decision Diagrams

C125.9 1 core 4 cores 16 cores 64cores 256 cores

Time to solve (s) 1100.91 277.07 70.74 19.53 8.07

Speedup - 3.97x 15.56x 56.37x 136.42x

82

83

CPLEX Decision Diagrams

84

Thank you!

Decision Diagram Page:
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

acire@utsc.utoronto.ca

85

Parallel Architecture

ÅWe consider a centralized
architecture

ÅMastermaintains a pool of states to
process

ÅWorkersreceive states, generate
relaxed diagrams, and send new states
to master

ÅSuitable to small architectures (up to
256 cores)

86

Master & Workers Pools

ÅMaster keeps a priority queueof states
ÅStates with better optimization bounds have a higher priority of being explored

ÅWorkers also keep a local priority queue
ÅRelaxed (and restricted) decision diagrams are computed very quickly

ÅReduce communication to master

ÅKey issue: large memory consumption
ÅPools may grow quickly for very large problems

ÅIf memory is almost exceeded, priority queue becomes a regular queue
(depth-first search)

87

Load Balancing

ÅCrucial question in many parallelization scheme

ÅIn our case: How to distribute states among workers?
ÅToo many nodes at once: many workers will be idle

ÅToo few nodes:communication becomes bottleneck

88

Load Balancing

89

ὲέὨὩίὸέίὩὲὨÍÉÎὧȢ
ίὭᾀὩέὪὴέέὰ

ὲόάὦὩὶέὪὧέὶὩί
ȟ
ὥὺὫίὸὥὸὩίὥὨὨὩὨ

ὧᴂ

where c and c’are some constants (in our experiments, c = c’ = 2)

Load Balancing

90

75% of nodes with best optimization bounds
ÅSpeed up the processing of promising nodes

Computational Results

ÅRelaxed decision diagrams implemented in C++

ÅParallel architecture implemented in X10
ÅIBM X10 Team: Vijay Saraswat et al

Åx10-lang.org

ÅTested in a computer cluster with 256 cores
Å16 computers, each with 32 cores, 64 GB RAM

91

92

CPLEX Decision Diagrams

93

Other results

ÅAlso observe same behaviour for other problem classes
ÅProved optimality for some maxcut instances for the first time

ÅTesting on some variations of constrained TSP

ÅOther architectures
ÅWork-stealing models

94

Thank you!

95

Relaxed Decision Diagrams

ÅComputational study on the max. independent set problem
ÅAble to provide tighter bounds than integer programming models

ÅApplication on Single-Machine Scheduling Problems
ÅClosed open TSPLib instances, orders of magnitude improvement over

constraint programming models, plus theoretical properties

ÅApplication on Timetabling Problems
ÅOrders of magnitude speed up in solving times compared to state-of-the-art

approaches, plus theoretical properties

96

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problemÅOur model: Dynamic Programming
Å Exploit recursiveness
Å Solved by stages
Å Passing from one stage to another corresponds to

transitioning from a stateto another

Å Decision diagram: State-Transition Graph
Å Nodescorresponds to states
Å Arcsare state transitions
Å Arc weightsare transition costs

97

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problemÅDP model for the maximum independent set:

ὠὛ
άὥὼὠ Ὓʌ Ὥȟὠ Ὓʌ ὔὭ ρȟ Ὥɴ Ὓ

ὠ Ὓʌ ὔὭȟ έȢύȢ

ὠᶮ πȟ Ὥ ρȟȣȟυ

Å Highlights:
Å Stage i: selectvertex i
Å State: set of eligiblevertices

98

Filtering

99

ÅMax Width = 2
ÅState: left-hand side of

constraint
2
1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

Filtering

100

ÅMax Width = 2
ÅState: left-hand side of

constraint
ÅLongest path: x1 = x2 = x3 = 12

1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

Filtering

101

2
1

ÅNote that top-down is a forward
recursion:

Vi(...) = Vi-1(...) + ...

x1

x2

x3

r

t
2
1

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

0

1 2

3 2

3

Filtering

102

0

1 ÅBut what happens when we do a
backward recursion?

2
1

x1

x2

x3

r

t
2
1

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

0

1 2

3 2

3

Filtering

103

0

1 ÅBut what happens when we do a
backward recursion?

2
1

x1

x2

x3

r

t
2
1

2

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

2+2+1 > 4!

0

1 2

3 2

3

Filtering

104

max 4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

2
1

ÅUnderlying concept: Use “redundant”
DP formulationsto remove arcs, e.g.:

±Ωi(...) = ±Ωi-1(...) + ±Ωi+1(...)+ ...
0

1

x1

x2

x3

r

t

2

0

1 2

3 2

3

Some theoretical insights

105

ÅLet X the set of solutions represented by
an MDD

ÅOptimizing a linear function f over the
MDD is equivalent to solving the LP
problem:

r

t

x1

x2

x3

Minimize cx
subject to
x is a flow from r to t

Minimize cx
subject to
x cɴonv(X)

=

Some theoretical insights

106

ÅLet !Ȅ җ ōbe a set of constraints that we
dualizeover the MDD.

ÅIf z* is the optimal shortest path after
dualization, then

r

t

x1

x2

x3

z* =

Minimize cx
subject to
!Ȅ җ ō
x cɴonv(X)

