

Decision Diagrams for Optimization

Andre Augusto Cire

Dept. of Management, University of Toronto Scarborough Rotman School of Management

MIP 2015, Chicago, June 2015

Collaborators

David Bergman
University of Connecticut

Joris Kinable Carnegie Mellon University

Willem-Jan van Hoeve Carnegie Mellon University

Christian Tjandraatmadja Carnegie Mellon University

John Hooker Carnegie Mellon University

Thiago Serra Carnegie Mellon University

Our Main Research Goal

Investigate the use of Decision Diagrams for solving discrete optimization problems

Contributions so far

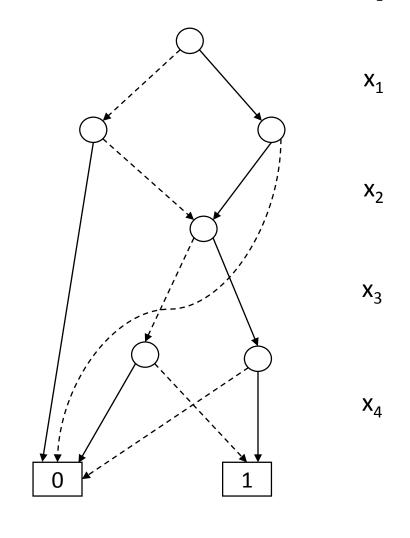
- New relaxation/bounding technique
 - Bounds can be superior to state-of-the-art methods in certain problems
- Generic primal heuristic
 - Scales to large-scale problems
- Inference techniques
 - New types of cuts for MIPs and other optimization technologies
- Novel complete solution technique
 - Solved open instances from classical benchmarks
 - Parallel method that scales almost linearly with number of processors

$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

x_{1}	X_2	X ₃	X_4	f(x)
0	0	0	0	1
0	0	0	1	0
0	1	1	0	0
0	0	1	1	1
•••	•••	•••	•••	•••

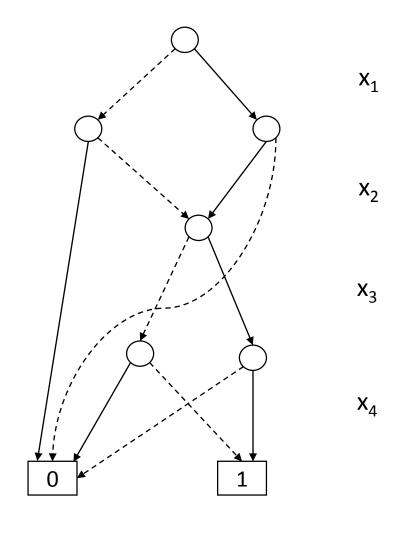
$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

X ₁	X_2	X_3	X_4	f(x)
0	0	0	0	1
0	0	0	1	0
0	1	1	0	0
0	0	1	1	1
•••	•••	•••	•••	•••



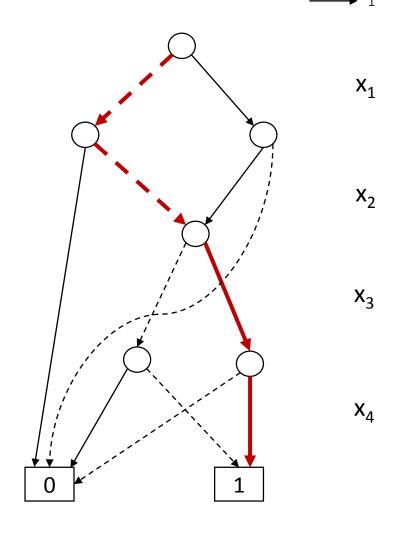
$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

X_1	X ₂	X ₃	X_4	f(x)
0	0	0	0	1
0	0	0	1	0
0	1	1	0	0
0	0	1	1	1
•••	•••	•••	•••	•••



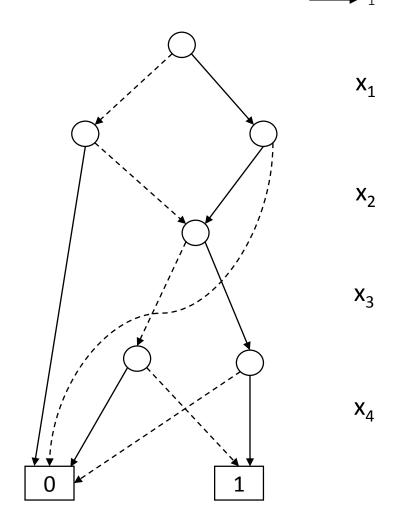
$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

X_1	X_2	X_3	X_4	f(x)
0	0	0	0	1
0	0	0	1	0
0	1	1	0	0
0	0	1	1	1
•••	•••	•••	•••	•••

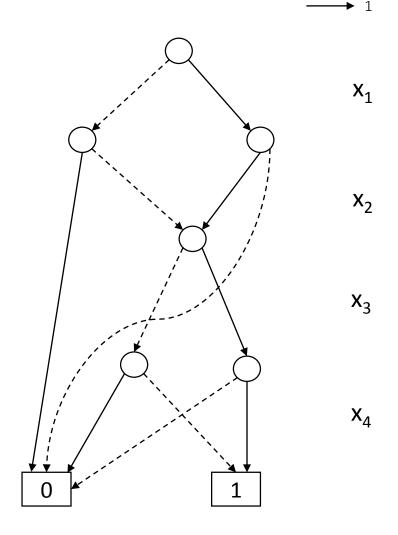


$$f(x) = \left(x_1 \Leftrightarrow x_2\right) \land \left(x_3 \Leftrightarrow x_4\right)$$

- Dual role
 - Computational model
 - Graphical encoding
- [Lee'59, Akers'78, Bryant'86]



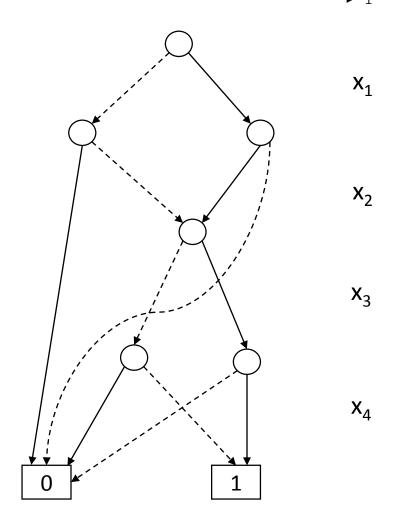
- Application in several areas
 - Circuit design
 - Formal verification
 - Symbolic model checking
 - •
- Our focus: Optimization
 - Literals → variables
 - Arcs → value assignments
 - Paths encode solutions



max
$$2x_1 + x_2 - 4x_3 + x_4$$
 subject to

$$x_1 - x_2 = 0$$

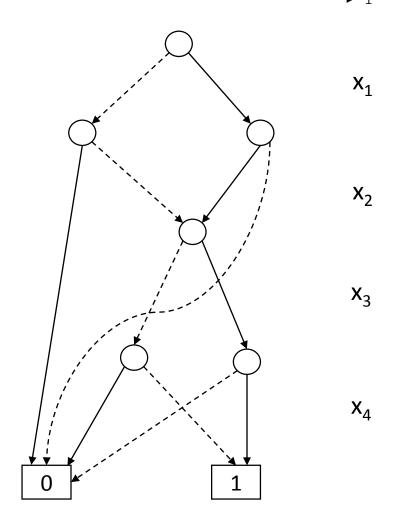
 $x_3 - x_4 = 0$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$



max
$$2x_1 + x_2 - 4x_3 + x_4$$
 subject to

$$x_1 - x_2 = 0$$

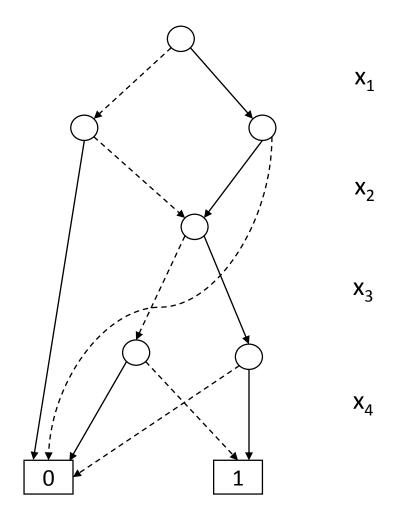
 $x_3 - x_4 = 0$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$



max
$$2x_1 + x_2 - 4x_3 + x_4$$
 subject to

$$x_1 - x_2 = 0$$

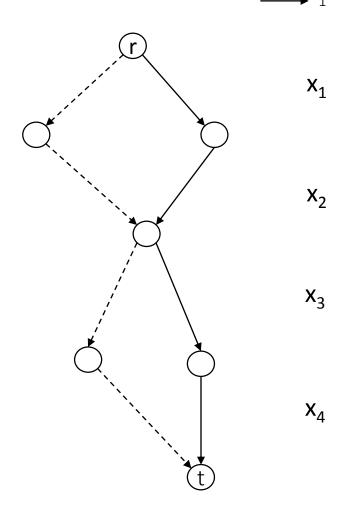
 $x_3 - x_4 = 0$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$



max
$$2x_1 + x_2 - 4x_3 + x_4$$
 subject to

$$x_1 - x_2 = 0$$

 $x_3 - x_4 = 0$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$

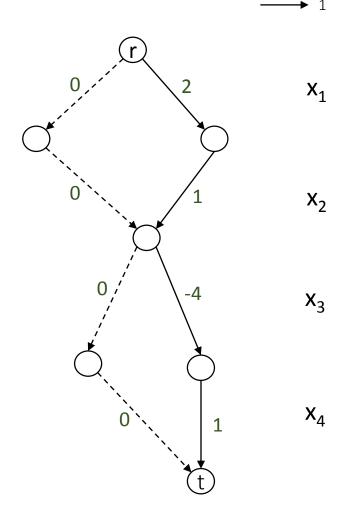


max
$$2x_1 + x_2 - 4x_3 + x_4$$
 subject to

$$x_1 - x_2 = 0$$

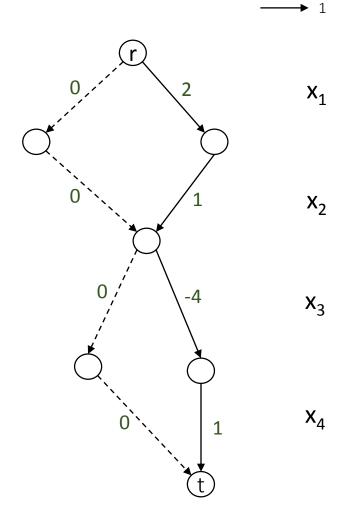
 $x_3 - x_4 = 0$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$

- Maximizing a linear (or separable) function:
 - Arc lengths: contribution to the objective
 - Longest path: optimal solution



- Uses of this framework:
 - Solution counting (Lobbing'96)
 - Large-scale network flows (Hachtel et al'97)
 - Postoptimality analysis (Hadzic & Hooker'08)
 - Few others, typically domain-specific.

 Our goal: exploit the use of decision diagrams in generic optimization methods



Relaxation Methods

E.g., Linear Programming Relaxation

Modeling Framework

E.g., Linear Inequalities

Primal Heuristics

E.g., Feasibility Pump

Generic Optimization Techniques

E.g., Mixed-integer Programming

Inference

E.g., valid cuts

Search

E.g., Branch and bound

Relaxation Methods

E.g., Linear Programming Relaxation

Modeling Framework

E.g., Linear Inequalities

Primal Heuristics

E.g., Feasibility Pump

Generic Optimization Techniques

E.g., Mixed-integer Programming

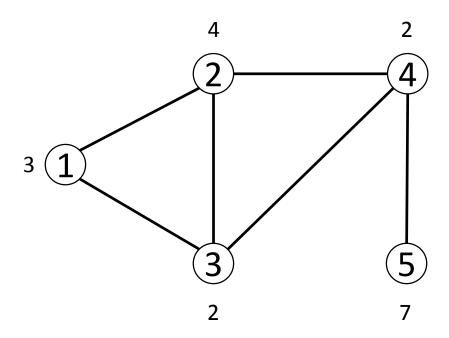
Inference

E.g., valid cuts

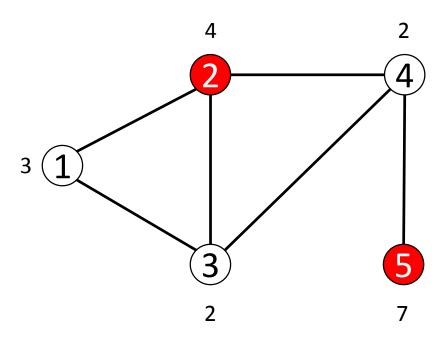
Search

E.g., Branch and bound

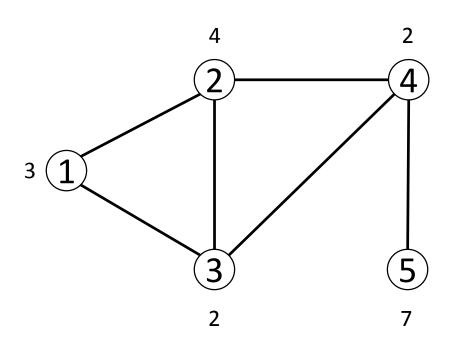
Ex.: Maximum independent set problem



Ex.: Maximum independent set problem



Ex.: Maximum independent set problem



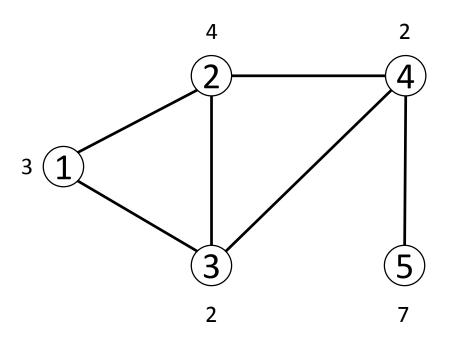
Integer Programming Formulation:

max
$$3x_1 + 4x_2 + 2x_3 + 2x_4 + 7x_5$$
 subject to

$$x_1 + x_2 \le 1$$

 $x_1 + x_3 \le 1$
 $x_2 + x_3 \le 1$
 $x_3 + x_4 \le 1$
 $x_4 + x_5 \le 1$
 $x_1, x_2, x_3, x_4, x_5 \in \{0,1\}$

Ex.: Maximum independent set problem

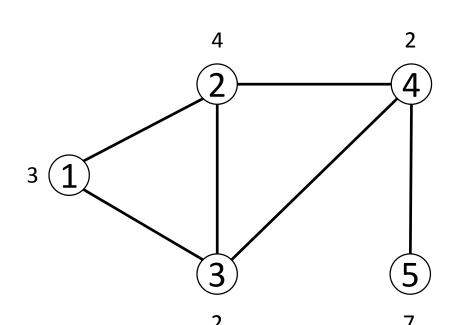


- Our model: Dynamic Programming
 - Exploit recursiveness
 - Model is formulated through states
 - Decisions (or controls): define state transitions
- Decision diagram: State-Transition Graph
 - Nodes corresponds to states
 - Arcs are state transitions
 - Arc weights are transition costs

- DP model for the maximum independent set:
 - State: vertices that can be added to an independent set (eligible vertices)
 - Decision: select or not a vertex i from the eligibility set
- Formal model:

$$V_{i}(S) = \begin{cases} max \{V_{i-1}(S \setminus \{i\}), V_{i-1}(S \setminus N(i)) + 1\}, & i \in S \\ V_{i-1}(S \setminus N(i)), & o.w. \end{cases}$$

$$V_{i}(\emptyset) = 0, \quad i = 1, ..., 5$$



 (\mathbf{r}) $\{v_1, v_2, v_3, v_4, v_5\}$

 \boldsymbol{X}_1

 X_2

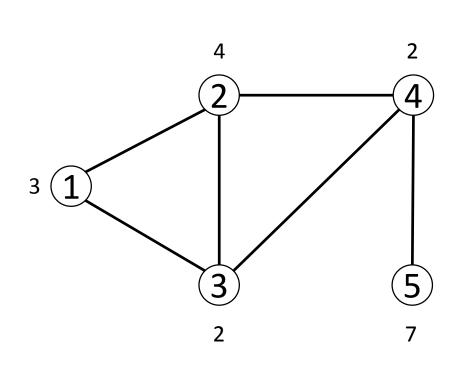
*X*₃

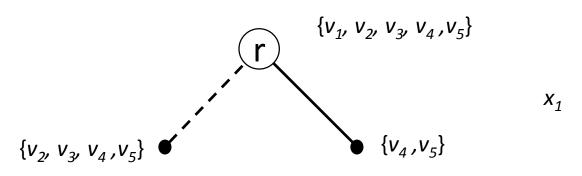
 X_4

State: set of eligible vertices

*X*₅

include --- exclude





*X*₃

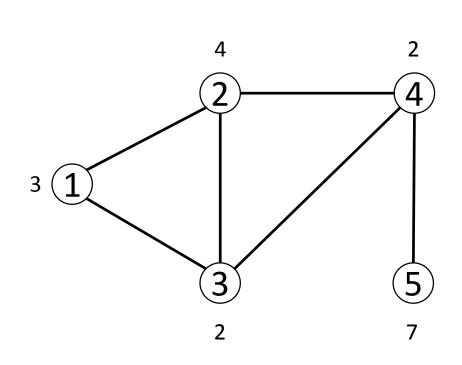
 X_2

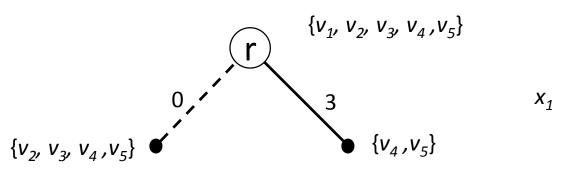
 X_4

State: set of eligible vertices

include – – – · exclude

X₅





 x_4

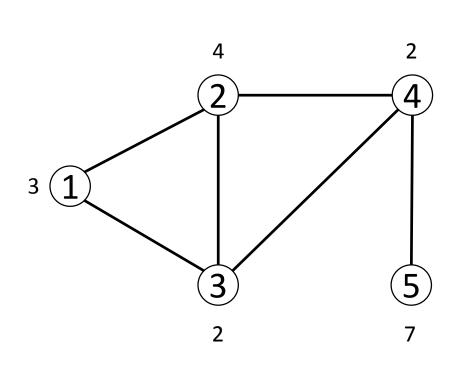
State: set of eligible vertices

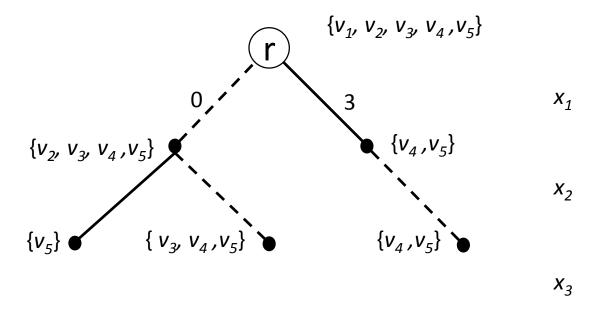
include --- exclude

X₅

 X_2

*X*₃



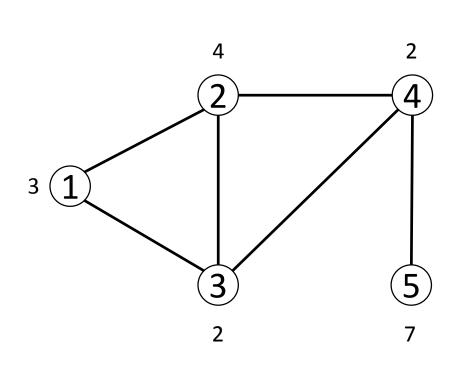


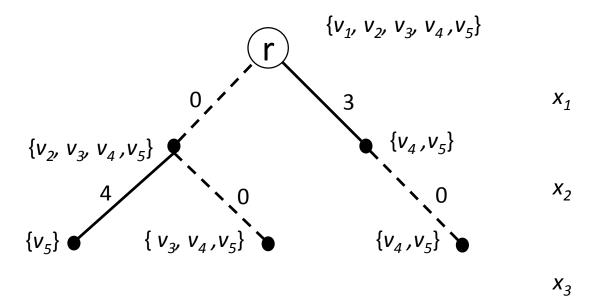
State: set of eligible vertices

include - - - · exclude

X₅

 X_4



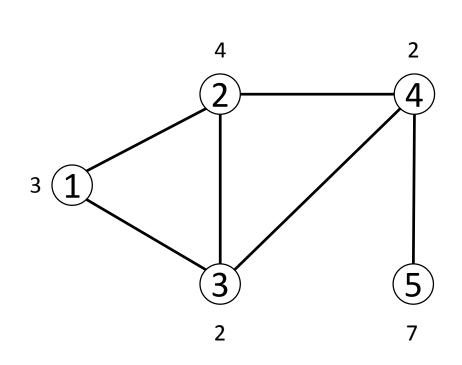


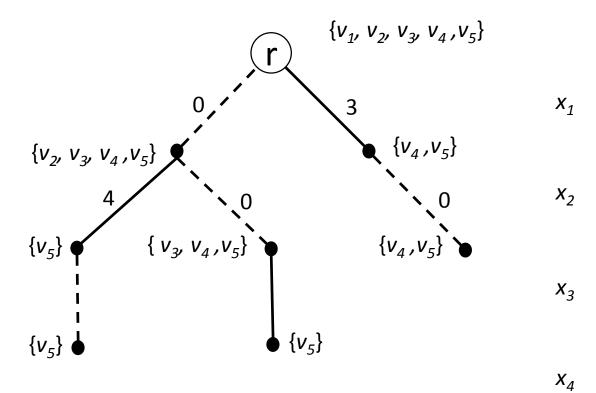
State: set of eligible vertices

_____ include _ _ _ _ exclude

X₅

 X_4

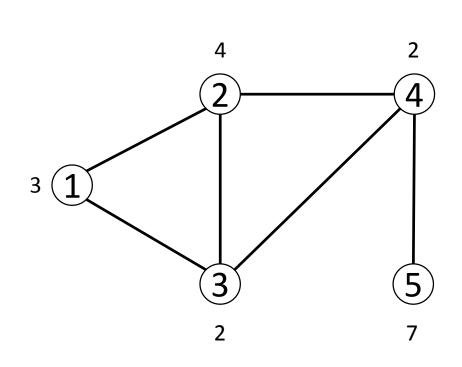


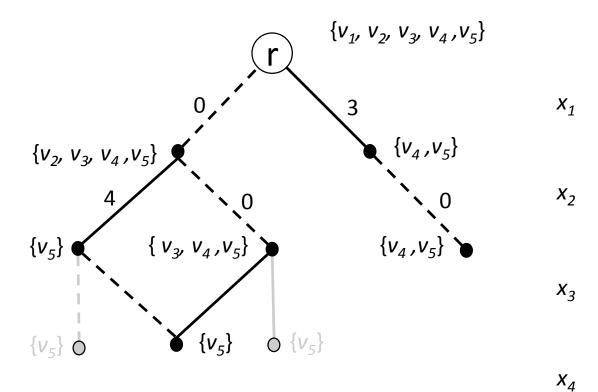


State: set of eligible vertices

_____ include _ _ _ _ exclude

X₅

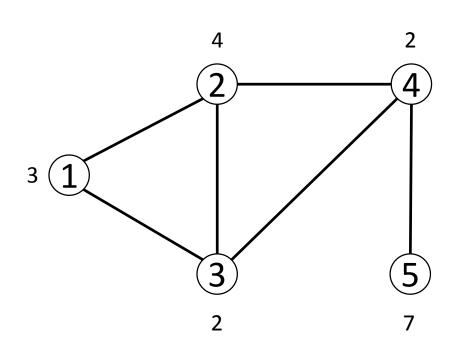




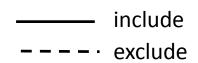
State: set of eligible vertices

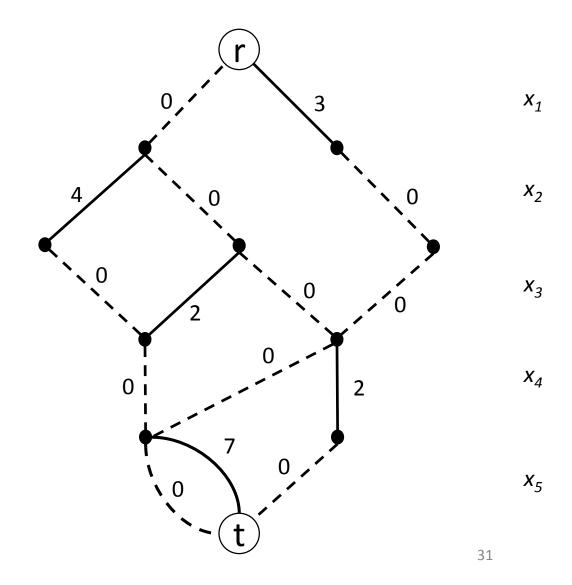
include - - - - exclude

X₅

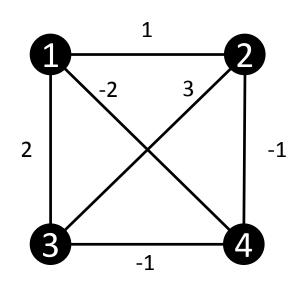


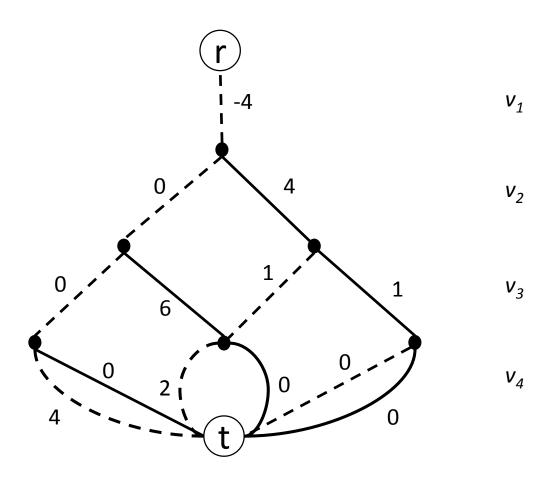
State: set of eligible vertices





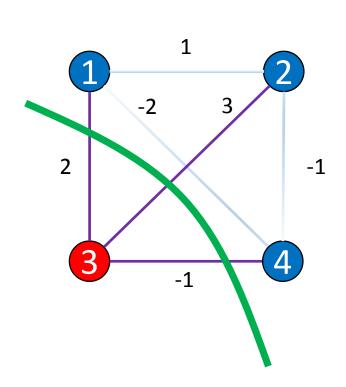
Other Example: Maximum Cut Problem

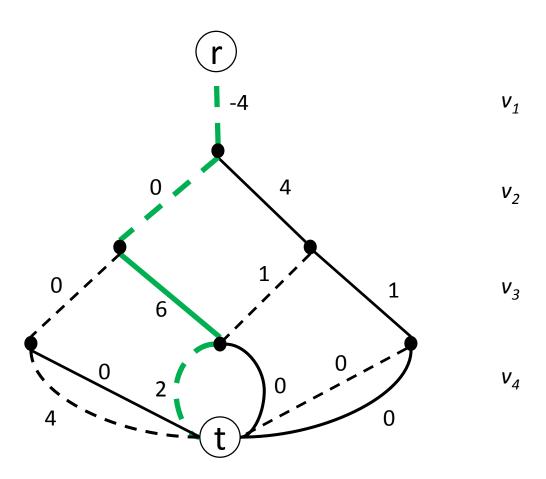




---- right

Other Example: Maximum Cut Problem





Some quick observations

- Variable ordering plays a big role on size
 - Closely connected to treewidth and bandwidth
 - Independent Set: polynomial for certain classes of graphs
 - TSP: parameterized-size depending on precendence relations

- In general, decision diagrams grow exponentially large
 - Proof: Extended Formulations for the Independent Set Problem

Relaxation Methods

E.g., Linear Programming Relaxation

Modeling Framework

E.g., Linear Inequalities

Generic Optimization Techniques

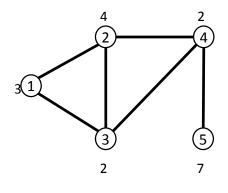
E.g., Mixed-integer Programming

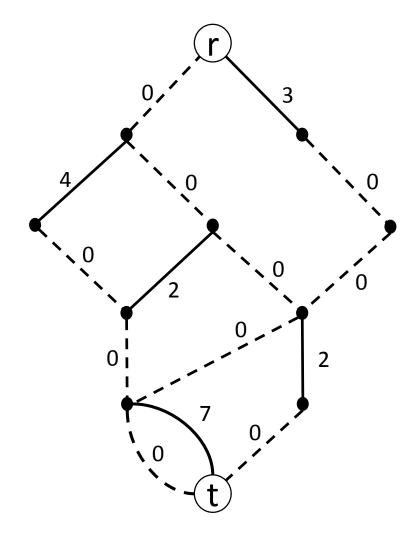
Relaxed Decision Diagrams

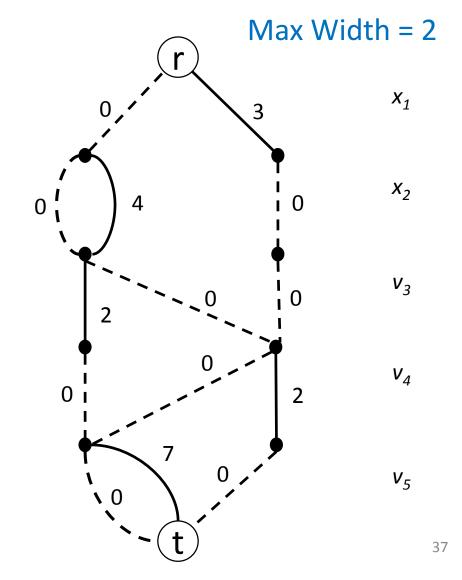
• In practice, we cannot work with exact diagrams

- Alternative: limit the size to approximate the feasible space
 - Parameter on the width of the diagram
 - Relaxed Decision Diagrams: Over-approximation
- Introduced by [Andersen et al'07]

Relaxed Decision Diagrams

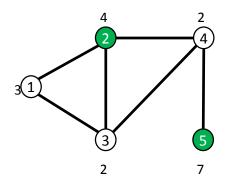




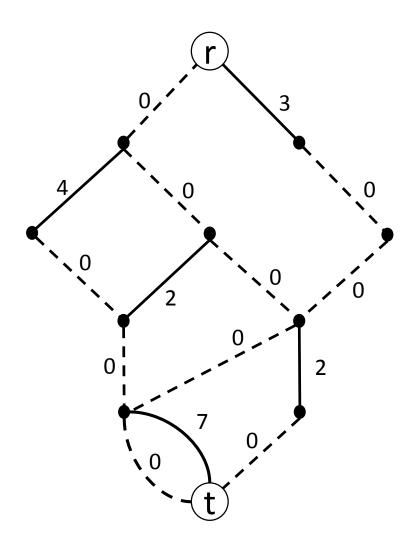


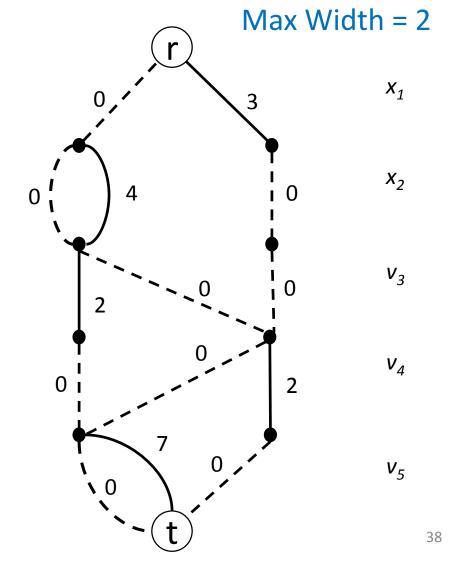
include ---- exclude

Relaxed Decision Diagrams



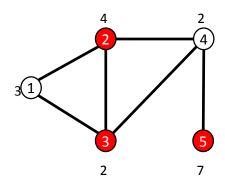
x = (0, 1, 0, 0, 1)Solution value = 11



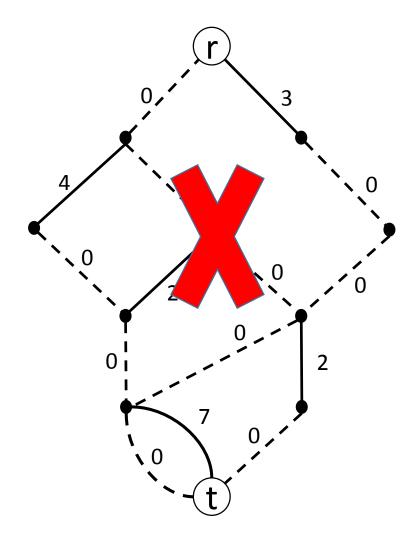


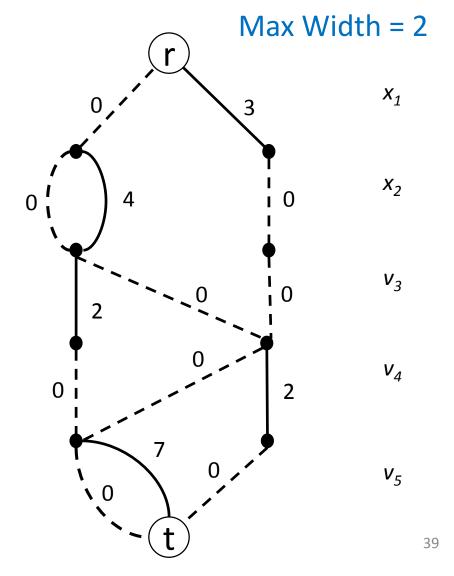
include
--- exclude

Relaxed Decision Diagrams



x = (0, 1, 1, 0, 1)Upper bound = 13





include
--- exclude

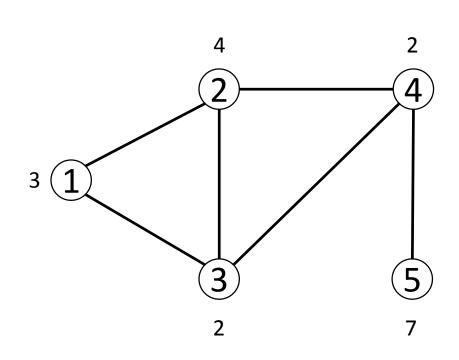
Compiling Relaxed Decision Diagrams

- Model is augmented with a state agregation operator
 - Recipe on how to merge nodes so that no feasible solution is lost

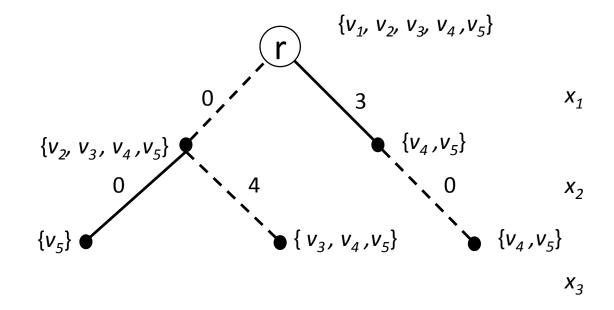
•
$$V_i(S) = \begin{cases} max \{V_{i-1}(S \setminus \{i\}), V_{i-1}(S \setminus N(i)) + 1\}, & i \in S \\ V_{i-1}(S \setminus N(i)), & o.w. \end{cases}$$

 $V_i(\emptyset) = 0, \quad i = 1, ..., 5$

•
$$\Delta(S_1, S_2) = S_1 \cup S_2$$

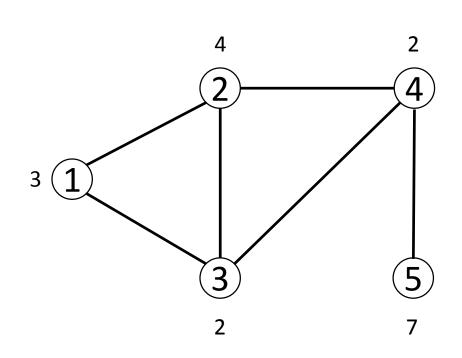


Max Width = 2

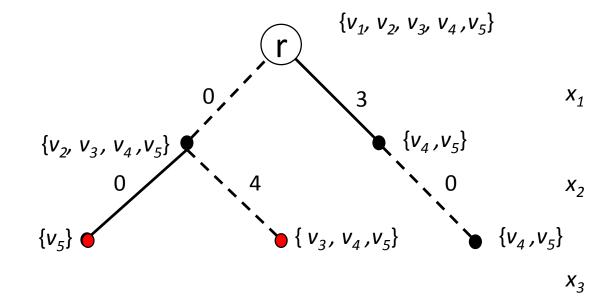


 X_4

_____ include _ _ _ _ · exclude **X**₅

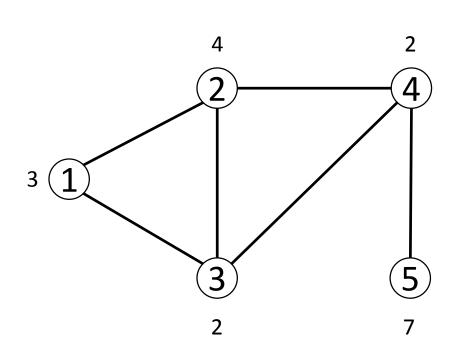


Max Width = 2

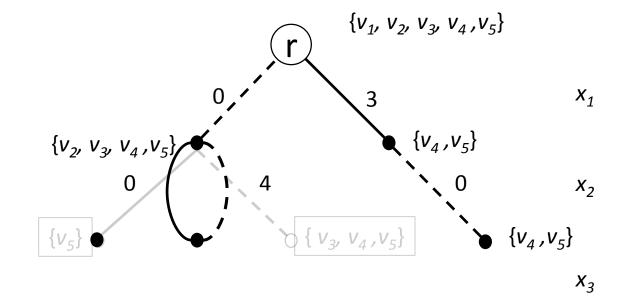


 X_4

_____ include _ _ _ _ · exclude **X**₅



Max Width = 2

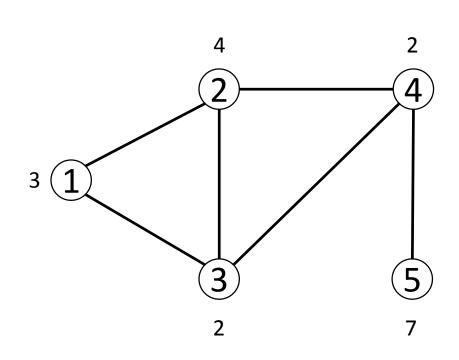


 X_4

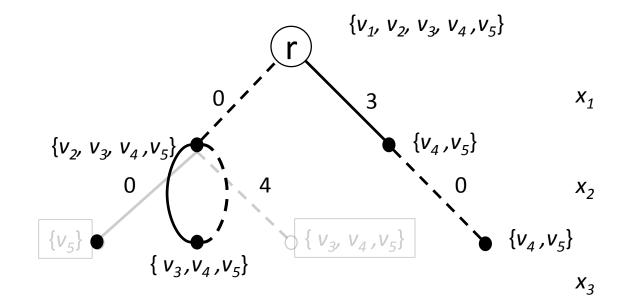
*X*₅

include exclude

43

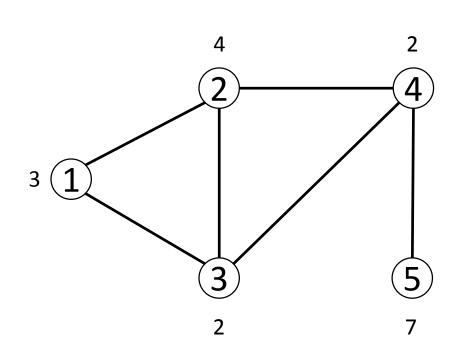


Max Width = 2

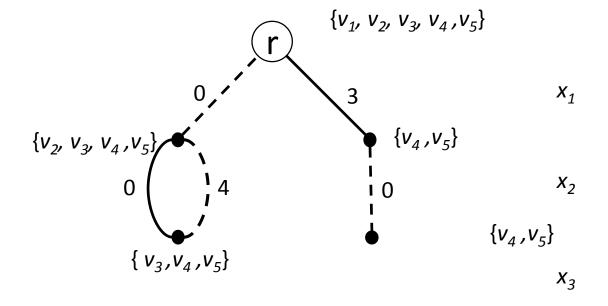


 X_4

_____ include _ _ _ _ . exclude **X**₅



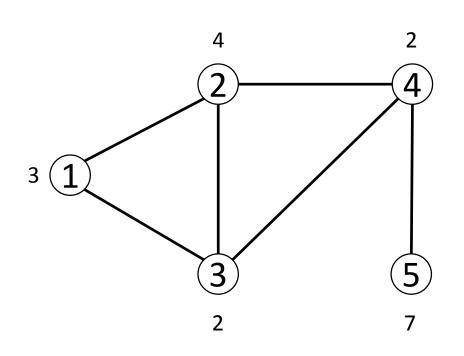
Max Width = 2



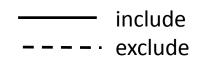
 X_4

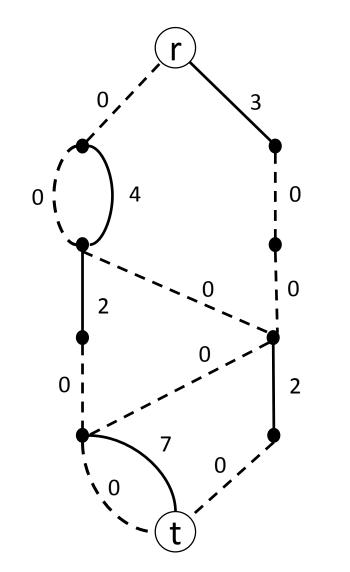
*X*₅

_____ include _ _ _ _ . exclude



Max Width = 2





 \boldsymbol{x}_1

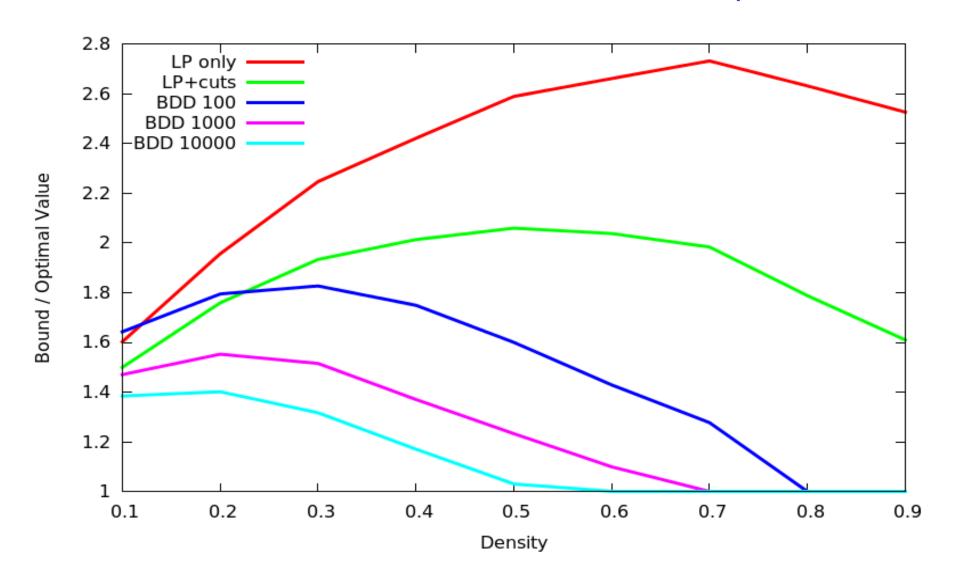
 X_2

*X*₃

 X_{Δ}

 X_{5}

Relaxation Bound: Maximum Independent Set



Strengthening Diagram Relaxations

- Filtering operations
 - "Redundant" constraints

- Additive Bounding
 - Incorporate dual information from LP relaxations

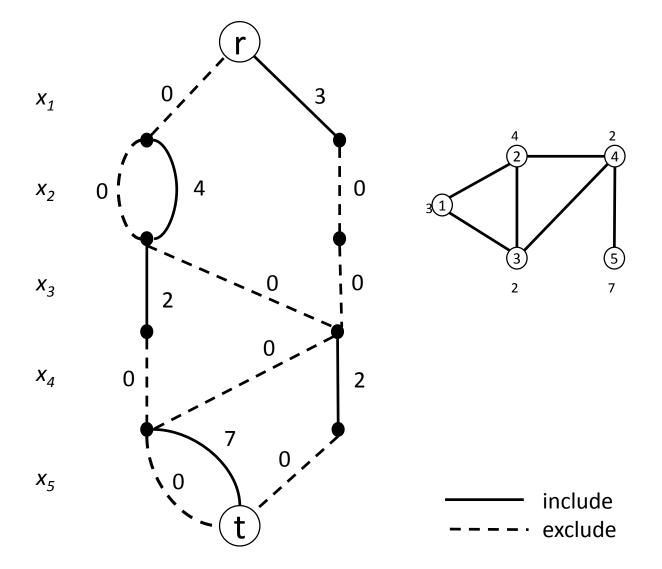
DD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations

- Filtering operations
 - "Redundant" constraints

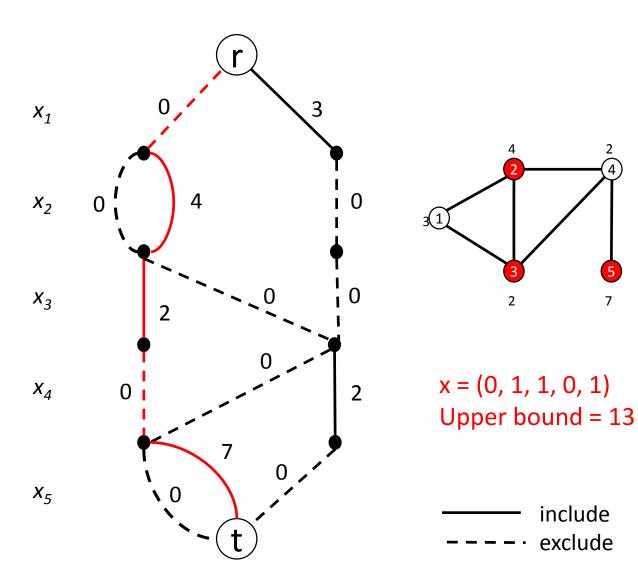
- Additive Bounding
 - Incorporate dual information from LP relaxations

DD-Based Lagrangian Relaxations



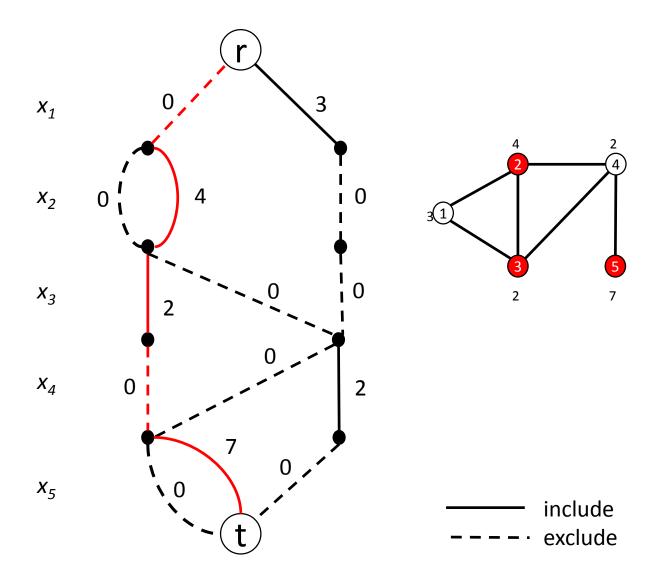
We are solving

max f(x)subject to $x \in RelaxedDD$

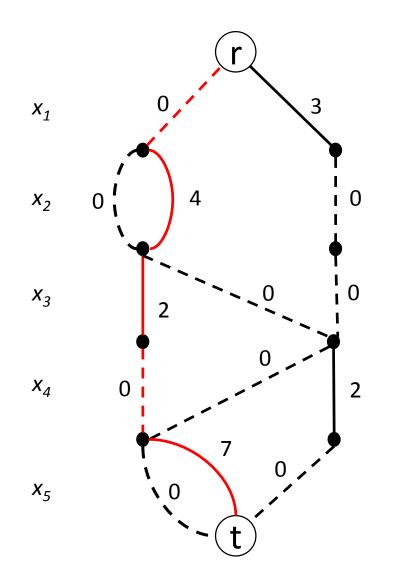


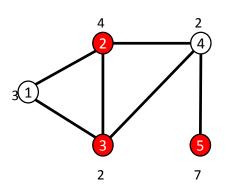
We are solving

max f(x)subject to $x \in RelaxedDD$



- Let A, b be such that:
 - $Ax \le b$ for any feasible x
- DD-Based Lagrangian:
 - max $f(x) + \lambda(b Ax)$ subject to $x \in RelaxedDD$
 - Gives an upper bound for any λ ≥ 0





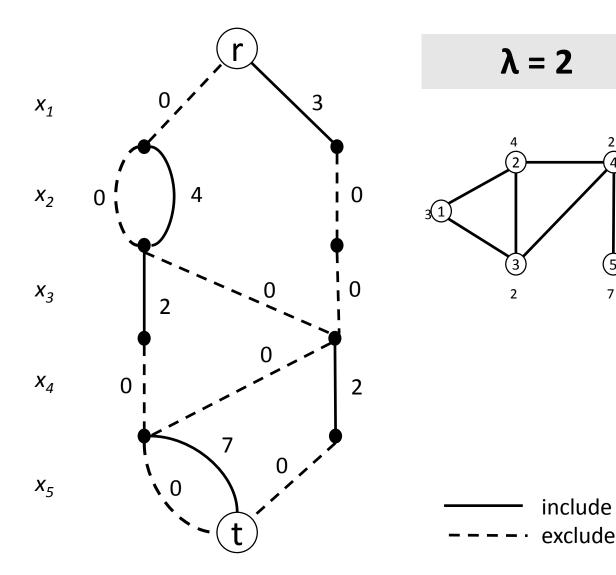
x = (0, 1, 1, 0, 1)Upper bound = 13

Solution (0,1,1,0,1)
 violates constraint

$$x_2 + x_3 \le 1$$

We penalize with term

$$+ \lambda (1 - x_2 - x_3)$$

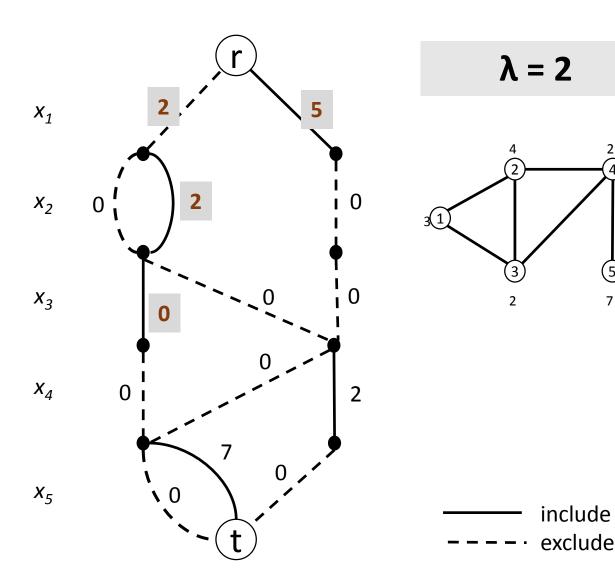


• Solution (0,1,1,0,1) violates constraint

$$x_2 + x_3 \le 1$$

We penalize with term

$$+ \lambda (1 - x_2 - x_3)$$

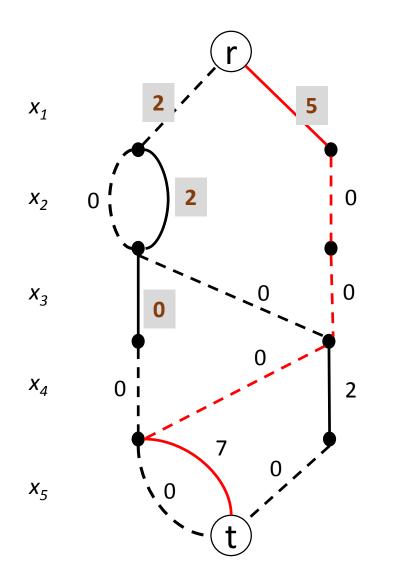


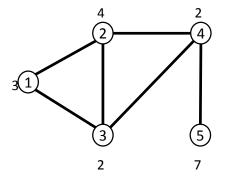
• Solution (0,1,1,0,1) violates constraint

$$x_2 + x_3 \le 1$$

We penalize with term

$$+ \lambda (1 - x_2 - x_3)$$





Better upper bound: 12!

Solution (0,1,1,0,1)
 violates constraint

$$x_2 + x_3 \le 1$$

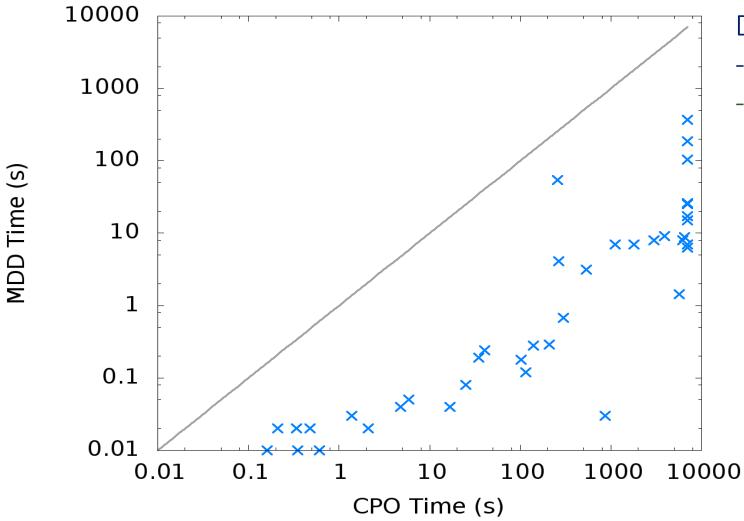
We penalize with term

$$+ \lambda (1 - x_2 - x_3)$$

Computational Analysis

- Incorporated into IBM ILOG CP Optimizer (CPO)
 - State-of-the-art constraint-based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxations

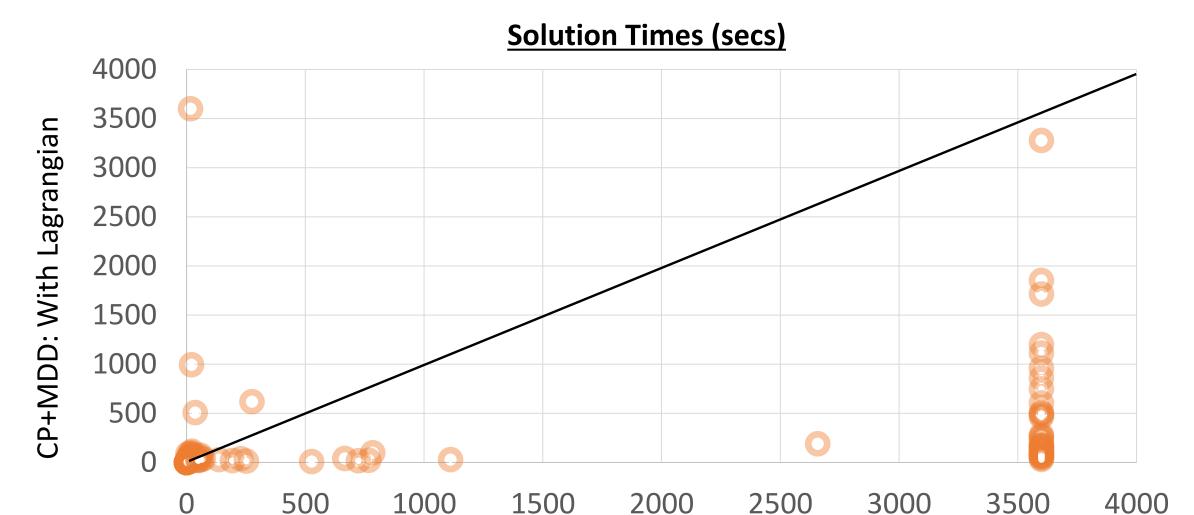
TSP with Time Windows



Dumas/Ascheuer instances

- 20-100 jobs
- maximum width: 16

DD-Based Lagrangian



CP+MDD: No Lagrangian

Other Results

- Asymmetric TSP with Precedence Constraints
 - Closed 3 TSPLIB open instances

- Easy modeling for certain problems
 - Example: *Time-Dependent TSPs*

Relaxation Methods

E.g., Linear Programming Relaxation

Modeling Framework

E.g., Linear Inequalities

Primal Heuristics

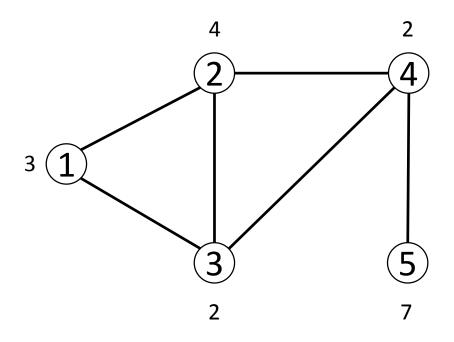
E.g., Feasibility Pump

Generic Optimization Techniques

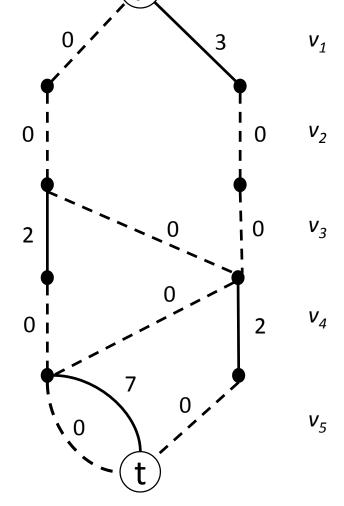
E.g., Mixed-integer Programming

Restricted Decision Diagrams

• Under-approximation of the feasible set

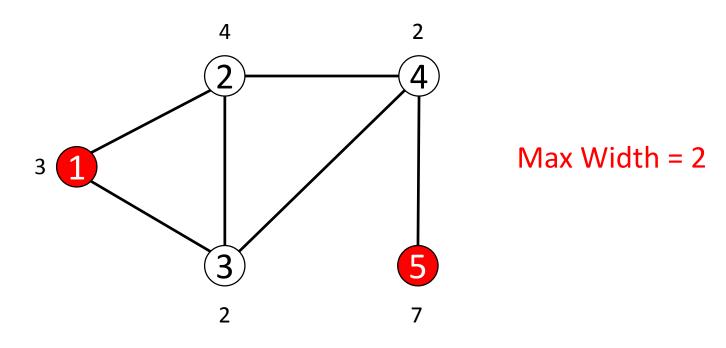


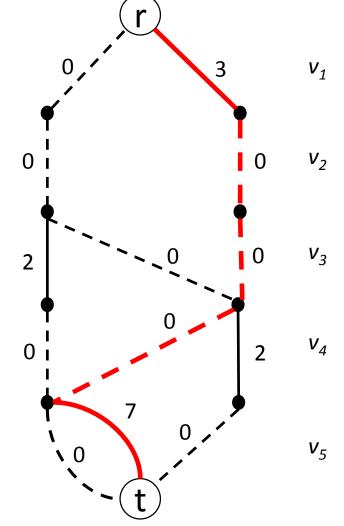
Max Width = 2



Restricted Decision Diagrams

• Under-approximation of the feasible set

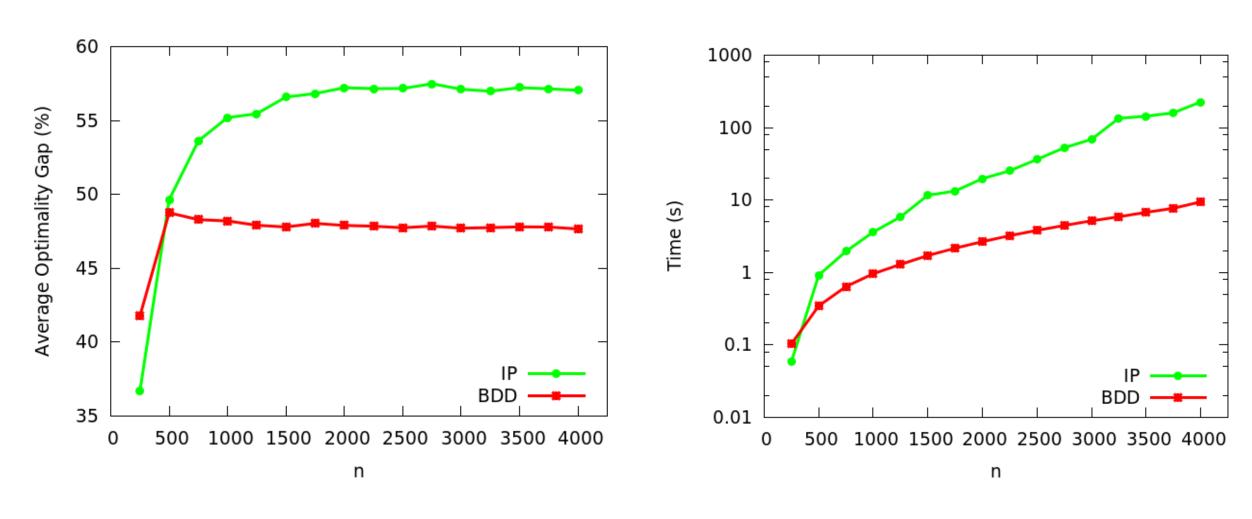




 $(1,0,0,0,1) \rightarrow \text{Lower bound} = 10$

--- exclude

Primal Bound: Set Covering



Relaxation Methods

E.g., Linear Programming Relaxation

Primal Heuristics

E.g., Feasibility Pump

Modeling Framework

E.g., Linear Inequalities

Generic Optimization Techniques

E.g., Mixed-integer Programming

Inference

E.g., valid cuts

Quick Notes on Inference

- Cut generation for MIPs
 - Several techniques from Behle'07
 - Recent: **Polar set cuts** from Relaxed Decision Diagrams
 - Talk to Christian Tjandraatmadja! (poster yesterday!)
- Highly-structured Cuts
 - Precedence relations that must hold in scheduling problems
- We are still exploring notion of decision diagram separation
 - Cire & Hooker, ISAIM 2014

Relaxation Methods

E.g., Linear Programming Relaxation

Modeling Framework

E.g., Linear Inequalities

Primal Heuristics

E.g., Feasibility Pump

Generic Optimization Techniques

E.g., Mixed-integer Programming

Inference

E.g., valid cuts

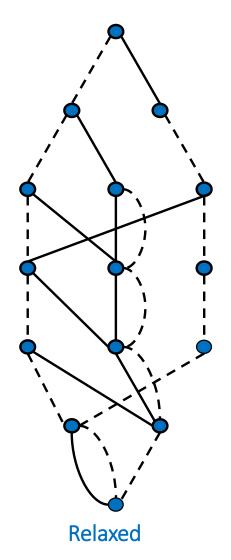
Search

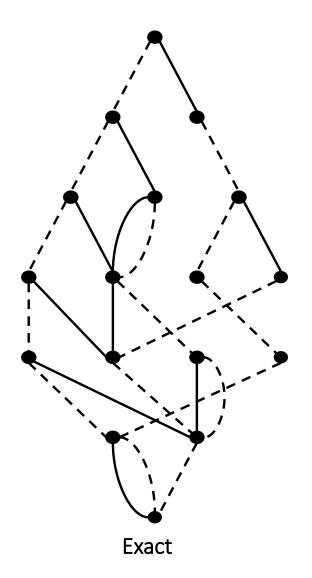
E.g., Branch and bound

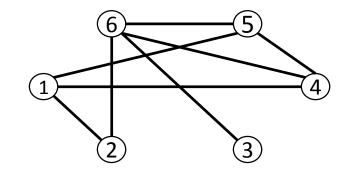
Exact Method

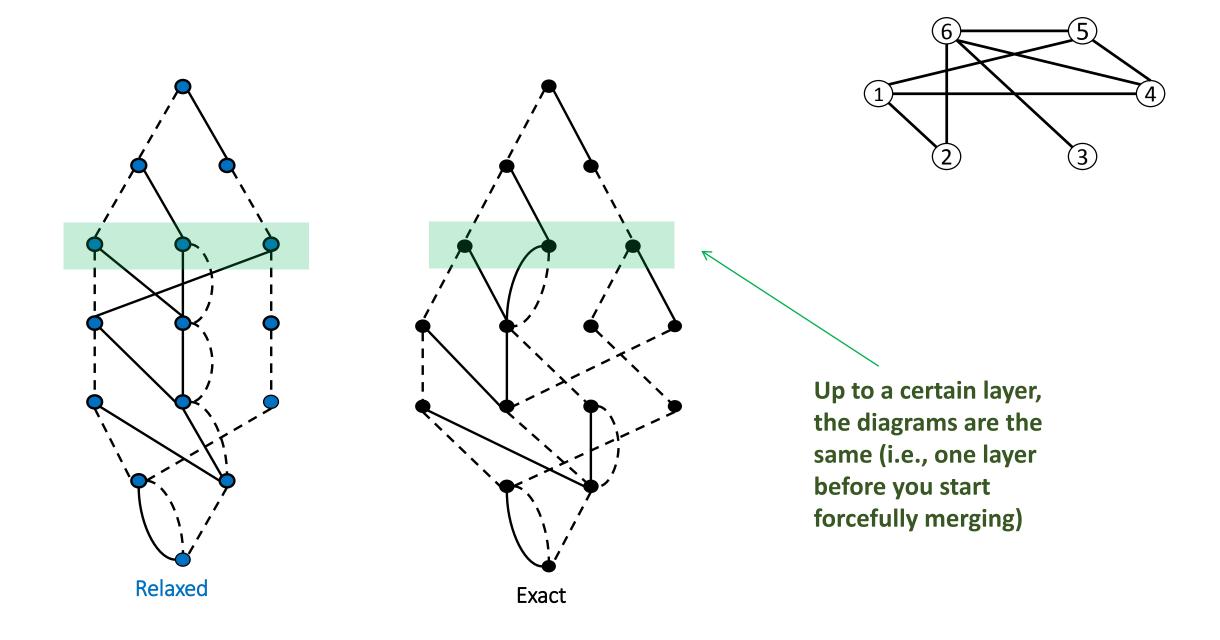
- Novel decision diagram branch-and-bound scheme
 - Relaxed diagrams play the role of the LP relaxation
 - Restricted diagrams are used as primal heuristics

- Branching is done on the nodes of the diagram
 - Branching on **pools** of partial solutions
 - Eliminate search symmetry



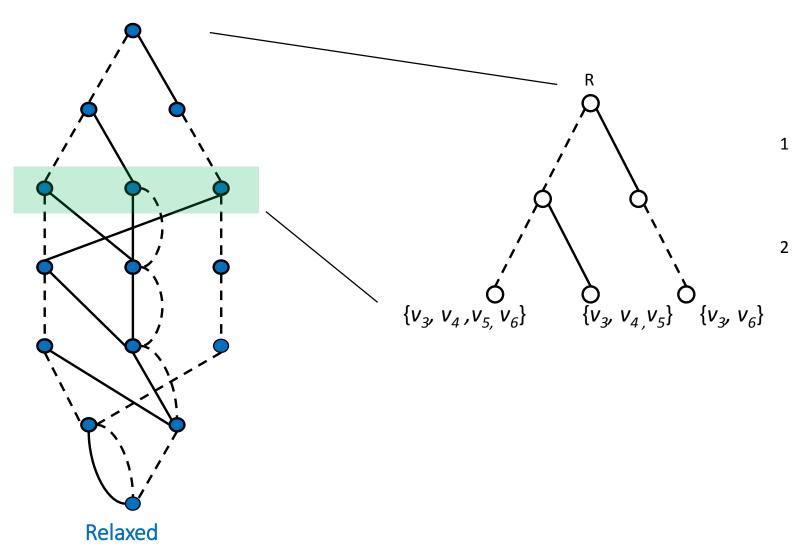


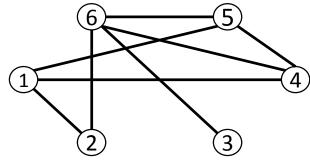


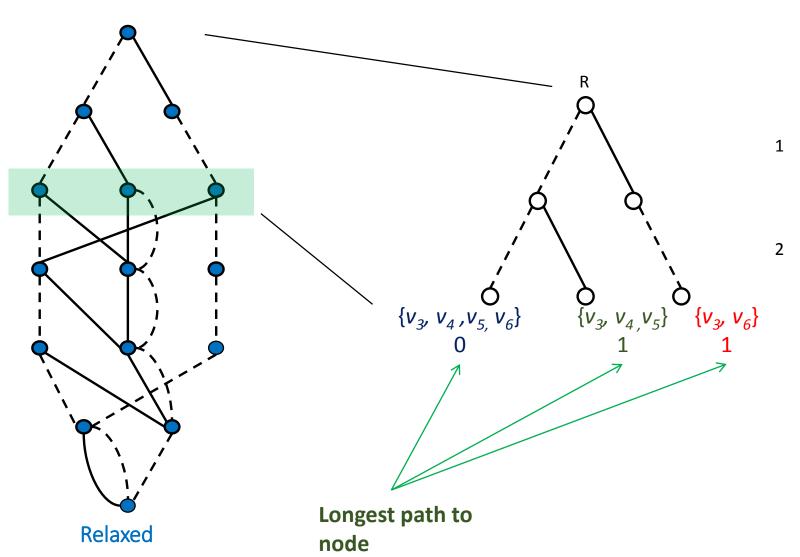


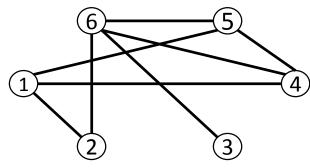
Relaxed

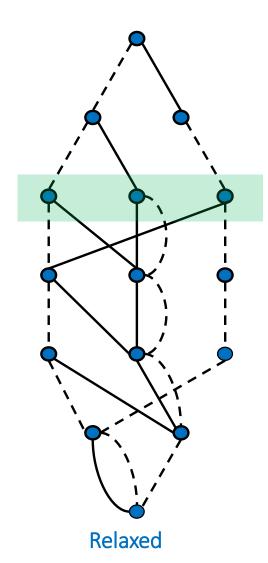
Thus, an optimum solution must necessarily pass through one of these nodes

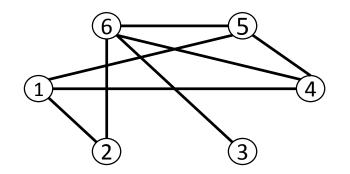


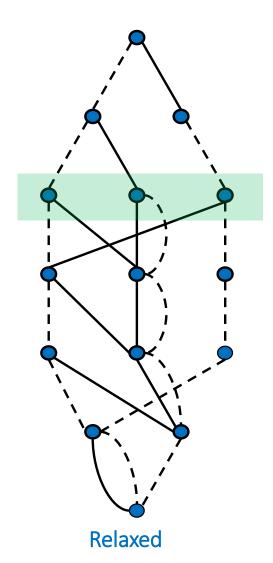


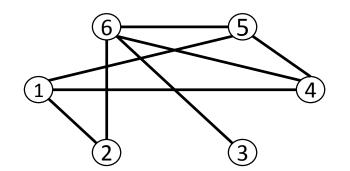


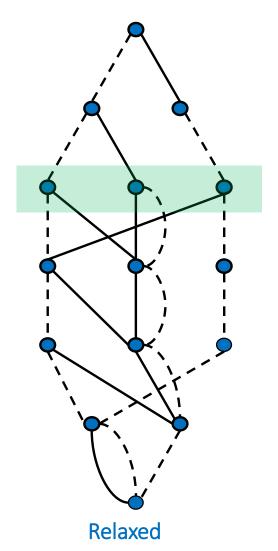


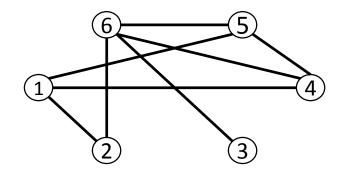


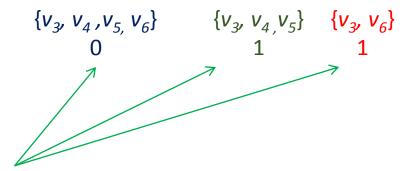












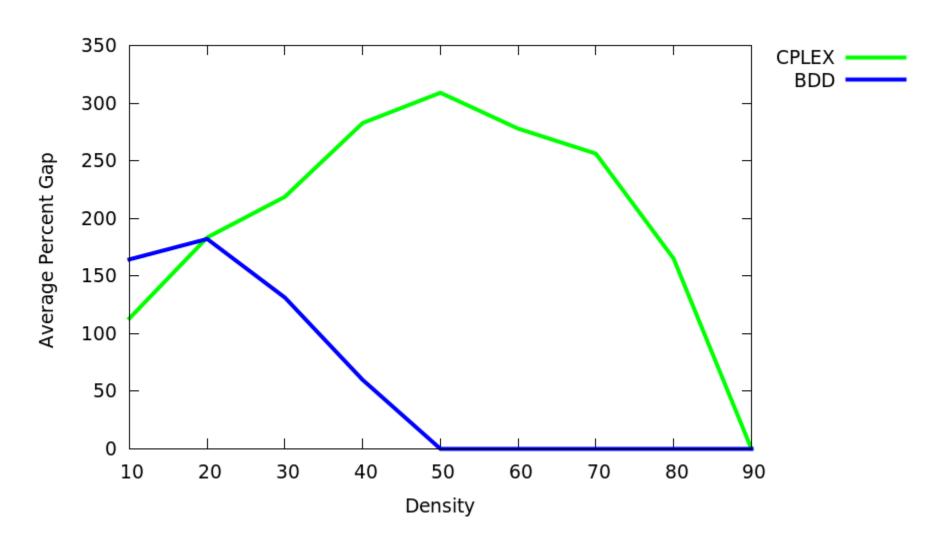
Explore each separately, saving the best solution/bound found

Maximum Cut

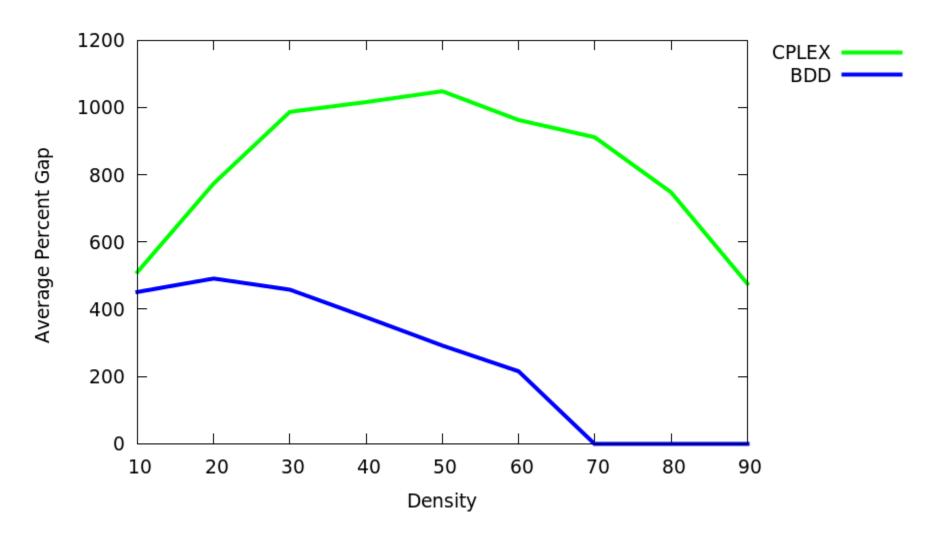
Reduced certain optimality gaps

instance	old % gap	new % gap	% reduction
g11	11.17	0.53	95.24
g50	1.84	0.32	82.44
g32	11.59	10.64	8.20
g12	11.69	10.79	7.69
g33	11.70	11.30	3.39
g34	12.32	11.99	2.65

Maximum Independent Set: 500 variables



Maximum Independent Set: 1500 variables



Parallel Search with Decision Diagrams

New branching scheme is very suitable to parallelism

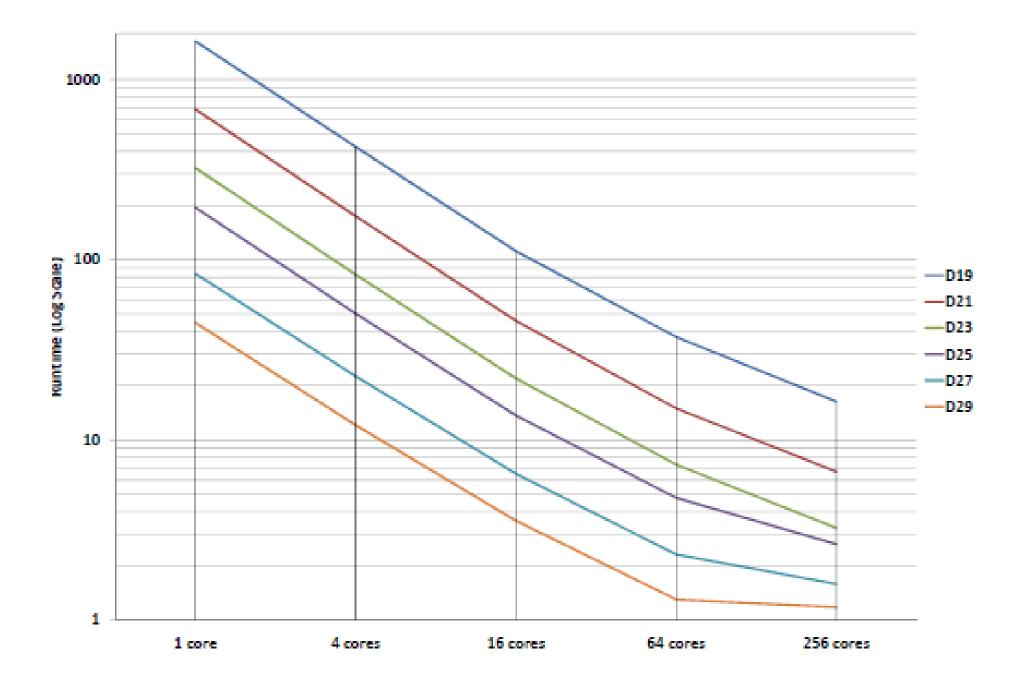
- Idea: explore **DP States** in different cores
 - Relatively little information needs to be shared
 - Most of the computational work involves computing relaxations/restrictions, done locally by each computer core
 - Easier to distribute load
- Joint work with Horst Samulowitz, Vijay Saraswat (IBM Research), and Ashish Sabharwal (Allen Inst.)

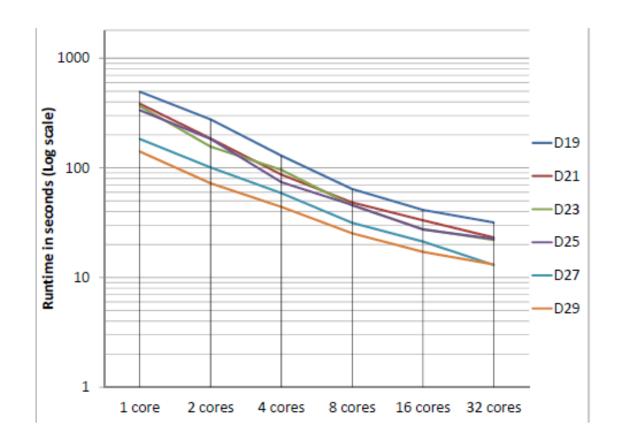
Parallel Search: Why bother?

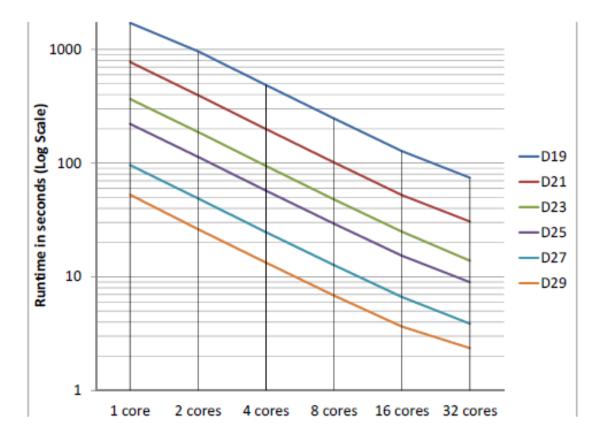
- Current technology
 - Integer Programming
 - Gurobi: Average speedup factor (Gu, 2013)
 - 1.7x on 5 cores
 - 1.8x on 25 cores
 - CPLEX (Mittleman, 2009)
 - 1.67x on 4 cores
 - SAT
 - 2013 SAT competition
 - 8x on 32 cores
 - Constraint Programming
 - Only focus on infeasible instances/finding all solutions

Parallel Search with Decision Diagrams

C125.9	1 core	4 cores	16 cores	64 cores	256 cores
Time to solve (s)	1100.91	277.07	70.74	19.53	8.07
Speedup	-	3.97x	15.56x	56.37x	136.42x







CPLEX

Decision Diagrams

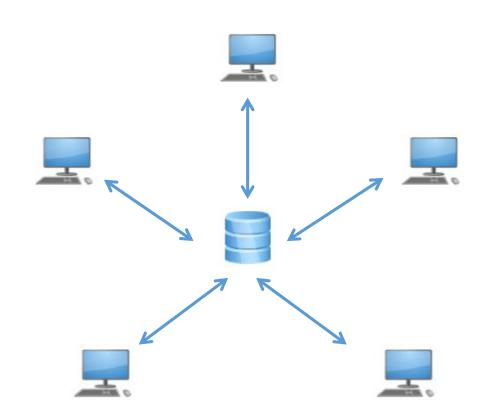
Thank you!

Decision Diagram Page: http://www.andrew.cmu.edu/user/vanhoeve/mdd/

acire@utsc.utoronto.ca

Parallel Architecture

- We consider a centralized architecture
 - Master maintains a pool of states to process
 - Workers receive states, generate relaxed diagrams, and send new states to master
- Suitable to small architectures (up to 256 cores)



Master & Workers Pools

- Master keeps a **priority queue** of states
 - States with better optimization bounds have a higher priority of being explored

- Workers also keep a local priority queue
 - Relaxed (and restricted) decision diagrams are computed very quickly
 - Reduce communication to master
- Key issue: large memory consumption
 - Pools may grow quickly for very large problems
 - If memory is almost exceeded, priority queue becomes a regular queue (depth-first search)

Load Balancing

Crucial question in many parallelization scheme

- In our case: How to distribute states among workers?
 - Too many nodes at once: many workers will be idle
 - Too few nodes: communication becomes bottleneck

Load Balancing

$$nodes\ to\ send = \min\left(c.\frac{size\ of\ pool}{number\ of\ cores}, \frac{avg\ states\ added}{c'}\right)$$

where **c** and **c'** are some constants (in our experiments, c = c' = 2)

Load Balancing

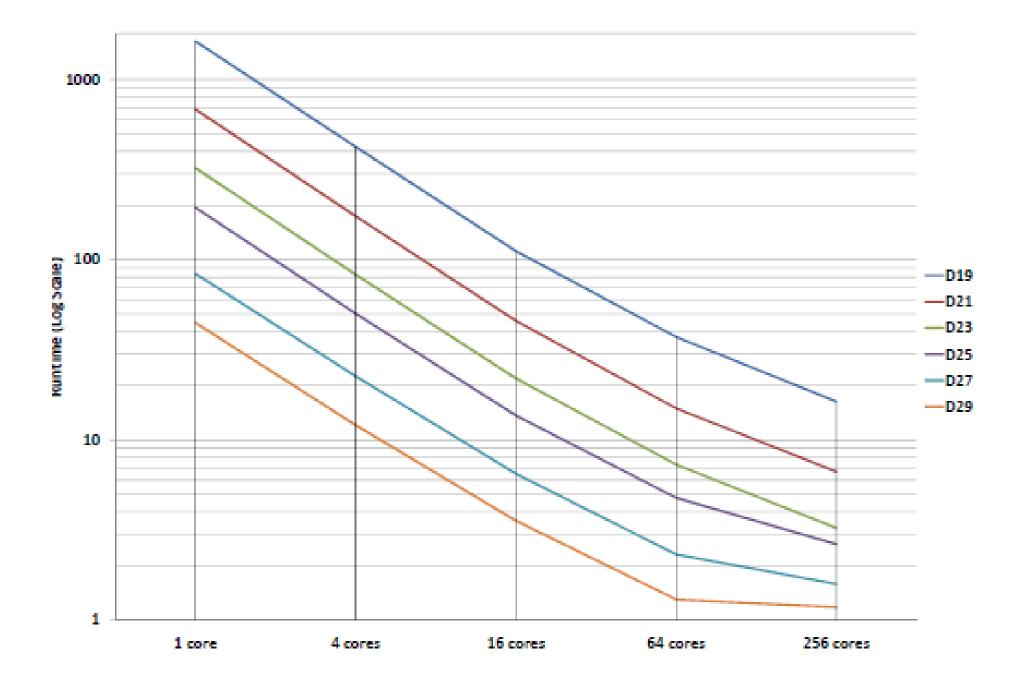
75% of nodes with best optimization bounds

• Speed up the processing of promising nodes

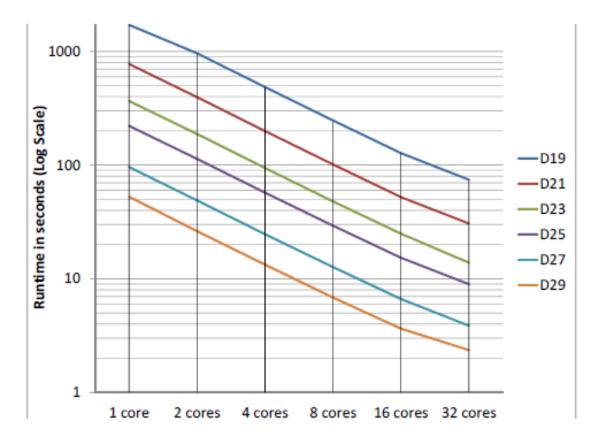
Computational Results

Relaxed decision diagrams implemented in C++

- Parallel architecture implemented in X10
 - IBM X10 Team: Vijay Saraswat et al
 - x10-lang.org
- Tested in a computer cluster with 256 cores
 - 16 computers, each with 32 cores, 64 GB RAM







CPLEX

Decision Diagrams

Other results

- Also observe same behaviour for other problem classes
 - Proved optimality for some maxcut instances for the first time
 - Testing on some variations of constrained TSP

- Other architectures
 - Work-stealing models

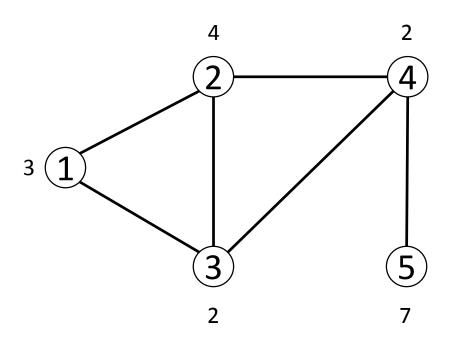
Thank you!

Relaxed Decision Diagrams

- Computational study on the max. independent set problem
 - Able to provide tighter bounds than integer programming models
- Application on Single-Machine Scheduling Problems
 - Closed open TSPLib instances, orders of magnitude improvement over constraint programming models, plus theoretical properties
- Application on Timetabling Problems
 - Orders of magnitude speed up in solving times compared to state-of-the-art approaches, plus theoretical properties

Modeling Framework

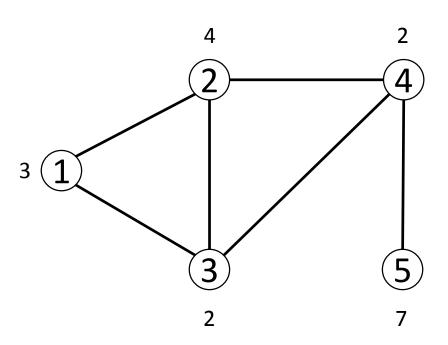
Ex.: Maximum independent set problem



- Our model: Dynamic Programming
 - Exploit recursiveness
 - Solved by stages
 - Passing from one stage to another corresponds to transitioning from a state to another
- Decision diagram: State-Transition Graph
 - Nodes corresponds to states
 - Arcs are state transitions
 - Arc weights are transition costs

Modeling Framework

Ex.: Maximum independent set problem



DP model for the maximum independent set:

$$V_{i}(S) = \begin{cases} \max \left\{ V_{i-1}(S \setminus \{i\}), V_{i-1}(S \setminus N(i)) + 1 \right\}, & i \in S \\ V_{i-1}(S \setminus N(i)), & o.w. \end{cases}$$

$$V_i(\emptyset) = 0, \quad i = 1, ..., 5$$

- Highlights:
 - Stage i: **select** vertex i
 - State: set of **eligible** vertices

\boldsymbol{x}_1 2 X_2 3 *X*₃

Filtering

max
$$4x_1 + 4x_2 + x_3$$

subject to
 $x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \in \{1, 2\}$

- Max Width = 2
- **State**: left-hand side of constraint

X₁ 2 X_2 3 *X*₃

Filtering

max
$$4x_1 + 4x_2 + x_3$$

subject to
 $x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \in \{1, 2\}$

- **Max Width** = 2
- **State**: left-hand side of constraint
- Longest path: $x_1 = x_2 = x_3 = 1$

X₁ X_2 3 *X*₃

Filtering

max
$$4x_1 + 4x_2 + x_3$$

subject to
 $x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \in \{1, 2\}$

 Note that top-down is a forward recursion:

$$V_i(\ldots) = V_{i-1}(\ldots) + \ldots$$

\boldsymbol{x}_1 X_2 3 *X*₃

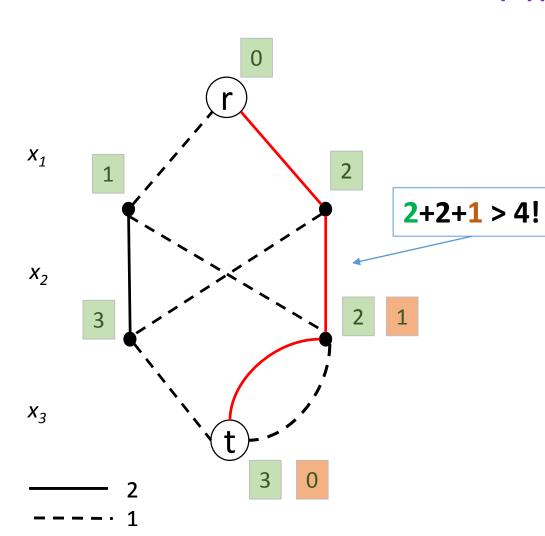
Filtering

max
$$4x_1 + 4x_2 + x_3$$

subject to
 $x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \in \{1, 2\}$

 But what happens when we do a backward recursion?

Filtering



$$max 4x_1 + 4x_2 + x_3$$

subject to

$$x_1 + x_2 + x_3 \le 4$$

 $x_1, x_2, x_3 \in \{1, 2\}$

 But what happens when we do a backward recursion?

\boldsymbol{x}_1 X_2 3 X_3

Filtering

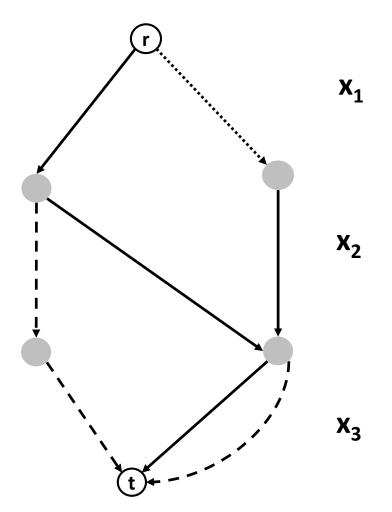
max
$$4x_1 + 4x_2 + x_3$$

subject to
 $x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \in \{1, 2\}$

Underlying concept: Use "redundant"
 DP formulations to remove arcs, e.g.:

$$V'_{i}(...) = V'_{i-1}(...) + V'_{i+1}(...) + ...$$

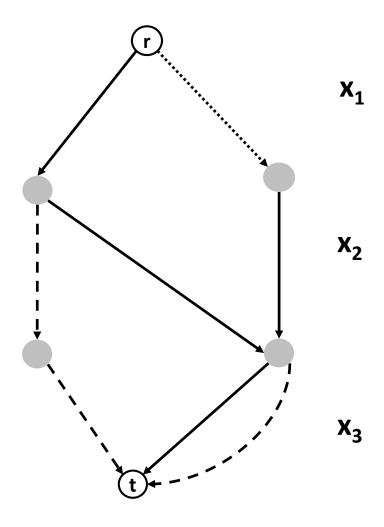
Some theoretical insights



- Let X the set of solutions represented by an MDD
- Optimizing a linear function f over the MDD is equivalent to solving the LP problem:

Minimize cx subject to = $x \in \text{Subject to}$ x is a flow from r to t $x \in \text{conv}(X)$

Some theoretical insights



- Let Ax ≥ b be a set of constraints that we dualize over the MDD.
- If z* is the optimal shortest path after dualization, then

$$z^* = \begin{cases} Minimize \ cx \\ subject \ to \\ Ax \ge b \\ x \in conv(X) \end{cases}$$