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Our Main Research Goal

Investigate the use of Decision Diagramsfor 
solving discrete optimization problems
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ÅNew relaxation/bounding technique
ÅBounds can be superior to state-of-the-art methods in certain problems

ÅGeneric primal heuristic
ÅScales to large-scale problems

ÅInference techniques
ÅNew types of cuts for MIPs and other optimization technologies

ÅNovel complete solution technique
ÅSolved open instances from classical benchmarks
ÅParallel method that scales almost linearly with number of processors
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Decision Diagrams

Å Graphical representation of 
Boolean functions
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Decision Diagrams

Å Graphical representation of 
Boolean functions

Å Dual role
Å Computational model
Å Graphical encoding

Å[Lee’59, Akers’78, Bryant’86] 
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Decision Diagrams

Å Applicationin several areas
Å Circuit design
Å Formal verification
Å Symbolic model checking
Å…

Å Our focus: Optimization
Å Literals Ą variables
Å Arcs Ą value assignments
Å Paths encode solutions 0 1
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Decision Diagrams

max 2x1 + x2 - 4x3 + x4
subject to

x1–x2 = 0
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Decision Diagrams
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Decision Diagrams
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Decision Diagrams
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Å Maximizing a linear (or separable) function:
Å Arc lengths: contribution to the objective
Å Longest path: optimal solution
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Decision Diagrams

Å Uses of this framework:
Å Solution counting (Lobbing’96)
Å Large-scale network flowsόIŀŎƘǘŜƭ Ŝǘ ŀƭΩфтύ
Å Postoptimality analysis (Hadzic & Hooker’08)
Å Few others, typically domain-specific.

ÅOur goal: exploit the use of decision 
diagrams in generic optimization 
methods
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Search

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts
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Modeling Framework
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Modeling Framework
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Ex.: Maximum independent set problem

max 3x1 + 4x2 + 2x3 + 2x4 + 7x5

subject to
x1 + x2 1
x1 + x3 1
x2 + x3 1
x3 + x4 1
x4 + x5 1
x1, x2, x3, x4, x5 {ɴ0,1}

Å Integer Programming Formulation:
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Modeling Framework
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Ex.: Maximum independent set problemÅOur model: Dynamic Programming
Å Exploit recursiveness
Å Model is formulated through states
Å Decisions (or controls): define state 

transitions

Å Decision diagram: State-Transition Graph
Å Nodescorresponds to states
Å Arcsare state transitions 
Å Arc weightsare transition costs
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Modeling Framework

ÅDP model for the maximum independent set:
ÅState: vertices that can be added to an independent set (eligible vertices)
ÅDecision: select or not a vertex i from the eligibility set

ÅFormal model:

ὠὛ
άὥὼὠ Ὓʌ Ὥȟὠ Ὓʌ ὔὭ ρȟ Ὥɴ Ὓ

ὠ Ὓʌ ὔὭȟ έȢύȢ

ὠᶮ πȟ Ὥ ρȟȣȟυ
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Maximum Independent Set Problem
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Maximum Independent Set Problem
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Maximum Independent Set Problem
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Some quick observations

ÅVariable ordering plays a big role on size
ÅClosely connected to treewidthand bandwidth

ÅIndependent Set: polynomial for certain classes of graphs

ÅTSP: parameterized-size depending on precendence relations

ÅIn general, decision diagrams grow exponentiallylarge
ÅProof: Extended Formulations for the Independent Set Problem
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation
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Relaxed Decision Diagrams

ÅIn practice, we cannot work with exact diagrams

ÅAlternative: limit the size to approximatethe feasible space

ÅParameter on the width of the diagram

ÅRelaxed Decision Diagrams:Over-approximation

ÅIntroduced by [Andersen et al’07]
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Relaxed Decision Diagrams
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Relaxed Decision Diagrams
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Relaxed Decision Diagrams
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Compiling Relaxed Decision Diagrams

ÅModel is augmented with a state agregationoperator
ÅRecipe on how to merge nodes so that no feasible solution is lost
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Relaxation Bound: Maximum Independent Set
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ÅFiltering operations
Å“Redundant” constraints

ÅAdditive Bounding
ÅIncorporate dual information from LP relaxations

ÅDD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations
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DD-Based LagrangianRelaxation
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Å We are solving

max  f(x)
subject to

x ɴ RelaxedDD



DD-Based LagrangianRelaxation
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DD-Based LagrangianRelaxation
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Å Let A, bbe such that:

Ax ≤ bfor any feasible x

Å DD-Based Lagrangian:

max  f(x) + λ(b –Ax)
subject to

x ɴ RelaxedDD

Å Gives an upper bound for 
any λ≥0 



DD-Based LagrangianRelaxation
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DD-Based LagrangianRelaxation

include
exclude

x1

x2

x3

x4

x5

54

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

=˂ 2 Å Solution (0,1,1,0,1) 
violates constraint

x2 + x3≤ 1

Å Wepenalizewith term

+ λ(1 –x2–x3)

by simply changing the 
cost structure of the DD



DD-Based LagrangianRelaxation
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DD-Based LagrangianRelaxation
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Computational Analysis

ÅIncorporated into IBM ILOG CP Optimizer (CPO)
ÅState-of-the-art constraint-based scheduling solver

ÅUses a portfolio of inference techniques and LP relaxations
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TSP with Time Windows
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Dumas/Ascheuerinstances
- 20-100 jobs
- maximum width: 16
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Other Results

ÅAsymmetric TSP with Precedence Constraints
ÅClosed 3 TSPLIB open instances

ÅEasy modeling for certain problems
ÅExample:Time-Dependent TSPs
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump
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Restricted Decision Diagrams
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Restricted Decision Diagrams
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Primal Bound: Set Covering
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., valid cuts
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Quick Notes on Inference

ÅCut generation for MIPs
ÅSeveral techniques from Behle’07

ÅRecent:Polar set cutsfrom Relaxed Decision Diagrams 
ÅTalk to Christian Tjandraatmadja! (poster yesterday!)

ÅHighly-structured Cuts 
ÅPrecedence relations that must hold in scheduling problems

ÅWe are still exploring notion of decision diagram separation
ÅCire & Hooker, ISAIM 2014
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Search

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts
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Exact Method

ÅNovel decision diagram branch-and-bound scheme
ÅRelaxed diagrams play the role of the LP relaxation

ÅRestricted diagrams are used as primal heuristics

ÅBranching is done on the nodes of the diagram
ÅBranching on poolsof partial solutions

ÅEliminate search symmetry
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Relaxed Exact

Up to a certain layer, 
the diagrams are the 
same (i.e., one layer 
before you start 
forcefully merging)
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Thus, an optimum solution 
must necessarily pass through 
one of these nodes
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Maximum Cut

77

instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65

ÅReduced certain optimality gaps



Maximum Independent Set: 500 variables
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Maximum Independent Set: 1500 variables
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Parallel Search with Decision Diagrams

ÅNew branching scheme is very suitable to parallelism

ÅIdea: explore DP States in different cores
ÅRelatively little information needs to be shared

ÅMost of the computational work involves computing relaxations/restrictions, 
done locally by each computer core

ÅEasier to distribute load

ÅJoint work with Horst Samulowitz, Vijay Saraswat(IBM Research), and 
Ashish Sabharwal (Allen Inst.)
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Parallel Search: Why bother?

ÅCurrent technology
ÅInteger Programming
ÅGurobi: Average speedup factor (Gu, 2013)
Å1.7x on 5 cores

Å1.8x on 25 cores

ÅCPLEX (Mittleman, 2009)
Å1.67x on 4 cores

ÅSAT
Å2013 SAT competition
Å8x on 32 cores

ÅConstraint Programming
ÅOnly focus on infeasible instances/finding all solutions
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Parallel Search with Decision Diagrams

C125.9 1 core 4 cores 16 cores 64cores 256 cores

Time to solve (s) 1100.91 277.07 70.74 19.53 8.07

Speedup - 3.97x 15.56x 56.37x 136.42x
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CPLEX Decision Diagrams
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Thank you!

Decision Diagram Page: 
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

acire@utsc.utoronto.ca
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Parallel Architecture

ÅWe consider a centralized 
architecture

ÅMastermaintains a pool of states to 
process

ÅWorkersreceive states, generate 
relaxed diagrams, and send new states 
to master

ÅSuitable to small architectures (up to 
256 cores)
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Master & Workers Pools

ÅMaster keeps a priority queueof states
ÅStates with better optimization bounds have a higher priority of being explored

ÅWorkers also keep a local priority queue
ÅRelaxed (and restricted) decision diagrams are computed very quickly

ÅReduce communication to master

ÅKey issue: large memory consumption
ÅPools may grow quickly for very large problems 

ÅIf memory is almost exceeded, priority queue becomes a regular queue 
(depth-first search)
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Load Balancing

ÅCrucial question in many parallelization scheme

ÅIn our case: How to distribute states among workers?
ÅToo many nodes at once: many workers will be idle

ÅToo few nodes:communication becomes bottleneck  
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Load Balancing
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where c and c’are some constants (in our experiments, c = c’ = 2)



Load Balancing
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75% of nodes with best optimization bounds
ÅSpeed up the processing of promising nodes



Computational Results

ÅRelaxed decision diagrams implemented in C++

ÅParallel architecture implemented in X10
ÅIBM X10 Team: Vijay Saraswat et al

Åx10-lang.org

ÅTested in a computer cluster with 256 cores
Å16 computers, each with 32 cores, 64 GB RAM
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CPLEX Decision Diagrams
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Other results

ÅAlso observe same behaviour for other problem classes
ÅProved optimality for some maxcut instances for the first time

ÅTesting on some variations of constrained TSP

ÅOther architectures
ÅWork-stealing models
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Thank you!
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Relaxed Decision Diagrams

ÅComputational study on the max. independent set problem
ÅAble to provide tighter bounds than integer programming models

ÅApplication on Single-Machine Scheduling Problems
ÅClosed open TSPLib instances, orders of magnitude improvement over 

constraint programming models, plus theoretical properties

ÅApplication on Timetabling Problems
ÅOrders of magnitude speed up in solving times compared to state-of-the-art 

approaches, plus theoretical properties
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problemÅOur model: Dynamic Programming
Å Exploit recursiveness
Å Solved by stages
Å Passing from one stage to another corresponds to 

transitioning from a stateto another

Å Decision diagram: State-Transition Graph
Å Nodescorresponds to states
Å Arcsare state transitions 
Å Arc weightsare transition costs
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problemÅDP model for the maximum independent set:

ὠὛ
άὥὼὠ Ὓʌ Ὥȟὠ Ὓʌ ὔὭ ρȟ Ὥɴ Ὓ

ὠ Ὓʌ ὔὭȟ έȢύȢ

ὠᶮ πȟ Ὥ ρȟȣȟυ

Å Highlights:
Å Stage i: selectvertex i
Å State: set of eligiblevertices
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Filtering
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ÅMax Width = 2
ÅState: left-hand side of 

constraint
2
1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}



Filtering
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ÅMax Width = 2
ÅState: left-hand side of 

constraint
ÅLongest path: x1 = x2 = x3 = 12

1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}



Filtering
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2
1

ÅNote that top-down is a forward 
recursion:

Vi(...) = Vi-1(...) + ...

x1

x2

x3

r

t
2
1

max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

0

1 2

3 2

3



Filtering

102

0

1 ÅBut what happens when we do a 
backward recursion?

2
1

x1

x2

x3
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t
2
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max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}
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Filtering
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0

1 ÅBut what happens when we do a 
backward recursion?

2
1

x1

x2

x3

r

t
2
1

2

max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

2+2+1 > 4!
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3 2
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Filtering
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max  4x1 + 4x2 + x3
subject to

x1 + x2+ x3≤ 4
x1, x2, x3 {ɴ1,2}

2
1

ÅUnderlying concept: Use “redundant” 
DP formulationsto remove arcs, e.g.:

±Ωi(...) = ±Ωi-1(...) + ±Ωi+1(...)+ ...
0

1

x1

x2

x3

r

t

2

0

1 2

3 2
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Some theoretical insights
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ÅLet X the set of solutions represented by 
an MDD

ÅOptimizing a linear function f over the 
MDD is equivalent to solving the LP 
problem:

r

t

x1

x2

x3

Minimize cx
subject to
x is a flow from r to t

Minimize cx
subject to
x cɴonv(X)

=



Some theoretical insights
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ÅLet !Ȅ җ ōbe a set of constraints that we 
dualizeover the MDD.

ÅIf z* is the optimal shortest path after 
dualization, then

r

t

x1

x2

x3

z* =

Minimize cx
subject to
!Ȅ җ ō
x cɴonv(X)


